jump.c 153 KB
Newer Older
Richard Kenner committed
1
/* Optimize jump instructions, for GNU compiler.
Jeff Law committed
2
   Copyright (C) 1987, 88, 89, 91-98, 1999 Free Software Foundation, Inc.
Richard Kenner committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
Richard Kenner committed
18 19
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */
Richard Kenner committed
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


/* This is the jump-optimization pass of the compiler.
   It is run two or three times: once before cse, sometimes once after cse,
   and once after reload (before final).

   jump_optimize deletes unreachable code and labels that are not used.
   It also deletes jumps that jump to the following insn,
   and simplifies jumps around unconditional jumps and jumps
   to unconditional jumps.

   Each CODE_LABEL has a count of the times it is used
   stored in the LABEL_NUSES internal field, and each JUMP_INSN
   has one label that it refers to stored in the
   JUMP_LABEL internal field.  With this we can detect labels that
   become unused because of the deletion of all the jumps that
   formerly used them.  The JUMP_LABEL info is sometimes looked
   at by later passes.

   Optionally, cross-jumping can be done.  Currently it is done
   only the last time (when after reload and before final).
   In fact, the code for cross-jumping now assumes that register
   allocation has been done, since it uses `rtx_renumbered_equal_p'.

   Jump optimization is done after cse when cse's constant-propagation
   causes jumps to become unconditional or to be deleted.

   Unreachable loops are not detected here, because the labels
   have references and the insns appear reachable from the labels.
   find_basic_blocks in flow.c finds and deletes such loops.

   The subroutines delete_insn, redirect_jump, and invert_jump are used
   from other passes as well.  */

#include "config.h"
55
#include "system.h"
Richard Kenner committed
56 57 58 59 60 61
#include "rtl.h"
#include "flags.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "insn-config.h"
#include "insn-flags.h"
62
#include "insn-attr.h"
63
#include "recog.h"
64
#include "expr.h"
Richard Kenner committed
65
#include "real.h"
Mike Stump committed
66
#include "except.h"
Graham Stott committed
67
#include "toplev.h"
Richard Kenner committed
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

/* ??? Eventually must record somehow the labels used by jumps
   from nested functions.  */
/* Pre-record the next or previous real insn for each label?
   No, this pass is very fast anyway.  */
/* Condense consecutive labels?
   This would make life analysis faster, maybe.  */
/* Optimize jump y; x: ... y: jumpif... x?
   Don't know if it is worth bothering with.  */
/* Optimize two cases of conditional jump to conditional jump?
   This can never delete any instruction or make anything dead,
   or even change what is live at any point.
   So perhaps let combiner do it.  */

/* Vector indexed by uid.
   For each CODE_LABEL, index by its uid to get first unconditional jump
   that jumps to the label.
   For each JUMP_INSN, index by its uid to get the next unconditional jump
   that jumps to the same label.
   Element 0 is the start of a chain of all return insns.
   (It is safe to use element 0 because insn uid 0 is not used.  */

static rtx *jump_chain;

/* List of labels referred to from initializers.
   These can never be deleted.  */
rtx forced_labels;

/* Maximum index in jump_chain.  */

static int max_jump_chain;

/* Set nonzero by jump_optimize if control can fall through
   to the end of the function.  */
int can_reach_end;

/* Indicates whether death notes are significant in cross jump analysis.
   Normally they are not significant, because of A and B jump to C,
   and R dies in A, it must die in B.  But this might not be true after
   stack register conversion, and we must compare death notes in that
Mike Stump committed
108
   case.  */
Richard Kenner committed
109 110 111

static int cross_jump_death_matters = 0;

112 113 114 115 116 117
static int init_label_info		PROTO((rtx));
static void delete_barrier_successors	PROTO((rtx));
static void mark_all_labels		PROTO((rtx, int));
static rtx delete_unreferenced_labels	PROTO((rtx));
static void delete_noop_moves		PROTO((rtx));
static int calculate_can_reach_end	PROTO((rtx, int, int));
118 119 120 121 122 123 124 125 126
static int duplicate_loop_exit_test	PROTO((rtx));
static void find_cross_jump		PROTO((rtx, rtx, int, rtx *, rtx *));
static void do_cross_jump		PROTO((rtx, rtx, rtx));
static int jump_back_p			PROTO((rtx, rtx));
static int tension_vector_labels	PROTO((rtx, int));
static void mark_jump_label		PROTO((rtx, rtx, int));
static void delete_computation		PROTO((rtx));
static void delete_from_jump_chain	PROTO((rtx));
static int delete_labelref_insn		PROTO((rtx, rtx, int));
127
static void mark_modified_reg		PROTO((rtx, rtx));
128
static void redirect_tablejump		PROTO((rtx, rtx));
129
static void jump_optimize_1		PROTO ((rtx, int, int, int, int));
130
#ifndef HAVE_cc0
Jeff Law committed
131
static rtx find_insert_position         PROTO((rtx, rtx));
132
#endif
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

/* Main external entry point into the jump optimizer.  See comments before
   jump_optimize_1 for descriptions of the arguments.  */
void
jump_optimize (f, cross_jump, noop_moves, after_regscan)
     rtx f;
     int cross_jump;
     int noop_moves;
     int after_regscan;
{
  jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, 0);
}

/* Alternate entry into the jump optimizer.  This entry point only rebuilds
   the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
   instructions.  */
void
rebuild_jump_labels (f)
     rtx f;
{
  jump_optimize_1 (f, 0, 0, 0, 1);
}

Richard Kenner committed
156 157 158 159 160 161 162 163 164 165 166 167 168 169

/* Delete no-op jumps and optimize jumps to jumps
   and jumps around jumps.
   Delete unused labels and unreachable code.

   If CROSS_JUMP is 1, detect matching code
   before a jump and its destination and unify them.
   If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.

   If NOOP_MOVES is nonzero, delete no-op move insns.

   If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
   after regscan, and it is safe to use regno_first_uid and regno_last_uid.

170 171 172
   If MARK_LABELS_ONLY is nonzero, then we only rebuild the jump chain
   and JUMP_LABEL field for jumping insns.

Richard Kenner committed
173 174 175 176 177 178
   If `optimize' is zero, don't change any code,
   just determine whether control drops off the end of the function.
   This case occurs when we have -W and not -O.
   It works because `delete_insn' checks the value of `optimize'
   and refrains from actually deleting when that is 0.  */

179
static void
180
jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, mark_labels_only)
Richard Kenner committed
181 182 183 184
     rtx f;
     int cross_jump;
     int noop_moves;
     int after_regscan;
185
     int mark_labels_only;
Richard Kenner committed
186
{
187
  register rtx insn, next;
Richard Kenner committed
188
  int changed;
189
  int old_max_reg;
Richard Kenner committed
190 191 192 193 194
  int first = 1;
  int max_uid = 0;
  rtx last_insn;

  cross_jump_death_matters = (cross_jump == 2);
195
  max_uid = init_label_info (f) + 1;
Richard Kenner committed
196

197 198 199 200 201 202
  /* If we are performing cross jump optimizations, then initialize
     tables mapping UIDs to EH regions to avoid incorrect movement
     of insns from one EH region to another.  */
  if (flag_exceptions && cross_jump)
    init_insn_eh_region (f, max_uid);

203
  delete_barrier_successors (f);
Richard Kenner committed
204 205 206 207 208

  /* Leave some extra room for labels and duplicate exit test insns
     we make.  */
  max_jump_chain = max_uid * 14 / 10;
  jump_chain = (rtx *) alloca (max_jump_chain * sizeof (rtx));
209
  bzero ((char *) jump_chain, max_jump_chain * sizeof (rtx));
Richard Kenner committed
210

211
  mark_all_labels (f, cross_jump);
Richard Kenner committed
212 213 214 215 216 217 218

  /* Keep track of labels used from static data;
     they cannot ever be deleted.  */

  for (insn = forced_labels; insn; insn = XEXP (insn, 1))
    LABEL_NUSES (XEXP (insn, 0))++;

Mike Stump committed
219 220 221 222 223 224 225 226
  check_exception_handler_labels ();

  /* Keep track of labels used for marking handlers for exception
     regions; they cannot usually be deleted.  */

  for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
    LABEL_NUSES (XEXP (insn, 0))++;

227 228 229 230 231
  /* Quit now if we just wanted to rebuild the JUMP_LABEL and REG_LABEL
     notes and recompute LABEL_NUSES.  */
  if (mark_labels_only)
    return;

Mike Stump committed
232 233
  exception_optimize ();

234
  last_insn = delete_unreferenced_labels (f);
Richard Kenner committed
235 236 237

  if (!optimize)
    {
238 239 240 241 242 243
      /* CAN_REACH_END is persistent for each function.  Once set it should
	 not be cleared.  This is especially true for the case where we
	 delete the NOTE_FUNCTION_END note.  CAN_REACH_END is cleared by
	 the front-end before compiling each function.  */
      if (calculate_can_reach_end (last_insn, 1, 0))
	can_reach_end = 1;
Richard Kenner committed
244 245 246 247

      /* Zero the "deleted" flag of all the "deleted" insns.  */
      for (insn = f; insn; insn = NEXT_INSN (insn))
	INSN_DELETED_P (insn) = 0;
248 249 250

      /* Show that the jump chain is not valid.  */
      jump_chain = 0;
Richard Kenner committed
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
      return;
    }

#ifdef HAVE_return
  if (HAVE_return)
    {
      /* If we fall through to the epilogue, see if we can insert a RETURN insn
	 in front of it.  If the machine allows it at this point (we might be
	 after reload for a leaf routine), it will improve optimization for it
	 to be there.  */
      insn = get_last_insn ();
      while (insn && GET_CODE (insn) == NOTE)
	insn = PREV_INSN (insn);

      if (insn && GET_CODE (insn) != BARRIER)
	{
	  emit_jump_insn (gen_return ());
	  emit_barrier ();
	}
    }
#endif

  if (noop_moves)
274
    delete_noop_moves (f);
Richard Kenner committed
275

276 277 278 279 280 281 282 283 284 285 286 287 288 289
  /* If we haven't yet gotten to reload and we have just run regscan,
     delete any insn that sets a register that isn't used elsewhere.
     This helps some of the optimizations below by having less insns
     being jumped around.  */

  if (! reload_completed && after_regscan)
    for (insn = f; insn; insn = next)
      {
	rtx set = single_set (insn);

	next = NEXT_INSN (insn);

	if (set && GET_CODE (SET_DEST (set)) == REG
	    && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
290
	    && REGNO_FIRST_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
291 292 293
	    /* We use regno_last_note_uid so as not to delete the setting
	       of a reg that's used in notes.  A subsequent optimization
	       might arrange to use that reg for real.  */	       
294
	    && REGNO_LAST_NOTE_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
295 296
	    && ! side_effects_p (SET_SRC (set))
	    && ! find_reg_note (insn, REG_RETVAL, 0))
297 298 299
	  delete_insn (insn);
      }

Richard Kenner committed
300 301
  /* Now iterate optimizing jumps until nothing changes over one pass.  */
  changed = 1;
302
  old_max_reg = max_reg_num ();
Richard Kenner committed
303 304 305 306 307 308 309
  while (changed)
    {
      changed = 0;

      for (insn = f; insn; insn = next)
	{
	  rtx reallabelprev;
310
	  rtx temp, temp1, temp2, temp3, temp4, temp5, temp6;
Richard Kenner committed
311
	  rtx nlabel;
312
	  int this_is_simplejump, this_is_condjump, reversep = 0;
313
	  int this_is_condjump_in_parallel;
314

Richard Kenner committed
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
#if 0
	  /* If NOT the first iteration, if this is the last jump pass
	     (just before final), do the special peephole optimizations.
	     Avoiding the first iteration gives ordinary jump opts
	     a chance to work before peephole opts.  */

	  if (reload_completed && !first && !flag_no_peephole)
	    if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
	      peephole (insn);
#endif

	  /* That could have deleted some insns after INSN, so check now
	     what the following insn is.  */

	  next = NEXT_INSN (insn);

	  /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
	     jump.  Try to optimize by duplicating the loop exit test if so.
	     This is only safe immediately after regscan, because it uses
	     the values of regno_first_uid and regno_last_uid.  */
	  if (after_regscan && GET_CODE (insn) == NOTE
	      && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
	      && (temp1 = next_nonnote_insn (insn)) != 0
	      && simplejump_p (temp1))
	    {
	      temp = PREV_INSN (insn);
	      if (duplicate_loop_exit_test (insn))
		{
		  changed = 1;
		  next = NEXT_INSN (temp);
		  continue;
		}
	    }

	  if (GET_CODE (insn) != JUMP_INSN)
	    continue;

	  this_is_simplejump = simplejump_p (insn);
	  this_is_condjump = condjump_p (insn);
354
	  this_is_condjump_in_parallel = condjump_in_parallel_p (insn);
Richard Kenner committed
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

	  /* Tension the labels in dispatch tables.  */

	  if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
	    changed |= tension_vector_labels (PATTERN (insn), 0);
	  if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
	    changed |= tension_vector_labels (PATTERN (insn), 1);

	  /* If a dispatch table always goes to the same place,
	     get rid of it and replace the insn that uses it.  */

	  if (GET_CODE (PATTERN (insn)) == ADDR_VEC
	      || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
	    {
	      int i;
	      rtx pat = PATTERN (insn);
	      int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
	      int len = XVECLEN (pat, diff_vec_p);
	      rtx dispatch = prev_real_insn (insn);

	      for (i = 0; i < len; i++)
		if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
		    != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
		  break;
	      if (i == len
380
		  && dispatch != 0
Richard Kenner committed
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
		  && GET_CODE (dispatch) == JUMP_INSN
		  && JUMP_LABEL (dispatch) != 0
		  /* Don't mess with a casesi insn.  */
		  && !(GET_CODE (PATTERN (dispatch)) == SET
		       && (GET_CODE (SET_SRC (PATTERN (dispatch)))
			   == IF_THEN_ELSE))
		  && next_real_insn (JUMP_LABEL (dispatch)) == insn)
		{
		  redirect_tablejump (dispatch,
				      XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
		  changed = 1;
		}
	    }

	  reallabelprev = prev_active_insn (JUMP_LABEL (insn));

	  /* If a jump references the end of the function, try to turn
	     it into a RETURN insn, possibly a conditional one.  */
	  if (JUMP_LABEL (insn)
400 401 402
	      && (next_active_insn (JUMP_LABEL (insn)) == 0
		  || GET_CODE (PATTERN (next_active_insn (JUMP_LABEL (insn))))
		      == RETURN))
403
	    changed |= redirect_jump (insn, NULL_RTX);
Richard Kenner committed
404 405 406 407

	  /* Detect jump to following insn.  */
	  if (reallabelprev == insn && condjump_p (insn))
	    {
408
	      next = next_real_insn (JUMP_LABEL (insn));
Richard Kenner committed
409 410 411 412 413
	      delete_jump (insn);
	      changed = 1;
	      continue;
	    }

414
	  /* If we have an unconditional jump preceded by a USE, try to put
Richard Kenner committed
415 416 417 418 419 420 421 422 423 424 425 426
	     the USE before the target and jump there.  This simplifies many
	     of the optimizations below since we don't have to worry about
	     dealing with these USE insns.  We only do this if the label
	     being branch to already has the identical USE or if code
	     never falls through to that label.  */

	  if (this_is_simplejump
	      && (temp = prev_nonnote_insn (insn)) != 0
	      && GET_CODE (temp) == INSN && GET_CODE (PATTERN (temp)) == USE
	      && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
	      && (GET_CODE (temp1) == BARRIER
		  || (GET_CODE (temp1) == INSN
427 428 429 430 431 432 433 434 435
		      && rtx_equal_p (PATTERN (temp), PATTERN (temp1))))
	      /* Don't do this optimization if we have a loop containing only
		 the USE instruction, and the loop start label has a usage
		 count of 1.  This is because we will redo this optimization
		 everytime through the outer loop, and jump opt will never
		 exit.  */
	      && ! ((temp2 = prev_nonnote_insn (temp)) != 0
		    && temp2 == JUMP_LABEL (insn)
		    && LABEL_NUSES (temp2) == 1))
Richard Kenner committed
436 437 438
	    {
	      if (GET_CODE (temp1) == BARRIER)
		{
439
		  emit_insn_after (PATTERN (temp), temp1);
Richard Kenner committed
440 441 442
		  temp1 = NEXT_INSN (temp1);
		}

443
	      delete_insn (temp);
Richard Kenner committed
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	      redirect_jump (insn, get_label_before (temp1));
	      reallabelprev = prev_real_insn (temp1);
	      changed = 1;
	    }

	  /* Simplify   if (...) x = a; else x = b; by converting it
	     to         x = b; if (...) x = a;
	     if B is sufficiently simple, the test doesn't involve X,
	     and nothing in the test modifies B or X.

	     If we have small register classes, we also can't do this if X
	     is a hard register.

	     If the "x = b;" insn has any REG_NOTES, we don't do this because
	     of the possibility that we are running after CSE and there is a
	     REG_EQUAL note that is only valid if the branch has already been
	     taken.  If we move the insn with the REG_EQUAL note, we may
	     fold the comparison to always be false in a later CSE pass.
	     (We could also delete the REG_NOTES when moving the insn, but it
	     seems simpler to not move it.)  An exception is that we can move
	     the insn if the only note is a REG_EQUAL or REG_EQUIV whose
	     value is the same as "b".

	     INSN is the branch over the `else' part. 

	     We set:

471
	     TEMP to the jump insn preceding "x = a;"
Richard Kenner committed
472 473
	     TEMP1 to X
	     TEMP2 to the insn that sets "x = b;"
474 475
	     TEMP3 to the insn that sets "x = a;"
	     TEMP4 to the set of "x = b";  */
Richard Kenner committed
476 477 478 479

	  if (this_is_simplejump
	      && (temp3 = prev_active_insn (insn)) != 0
	      && GET_CODE (temp3) == INSN
480 481
	      && (temp4 = single_set (temp3)) != 0
	      && GET_CODE (temp1 = SET_DEST (temp4)) == REG
482 483
	      && (! SMALL_REGISTER_CLASSES
		  || REGNO (temp1) >= FIRST_PSEUDO_REGISTER)
Richard Kenner committed
484 485
	      && (temp2 = next_active_insn (insn)) != 0
	      && GET_CODE (temp2) == INSN
486 487
	      && (temp4 = single_set (temp2)) != 0
	      && rtx_equal_p (SET_DEST (temp4), temp1)
488 489
	      && ! side_effects_p (SET_SRC (temp4))
	      && ! may_trap_p (SET_SRC (temp4))
Richard Kenner committed
490 491 492 493 494
	      && (REG_NOTES (temp2) == 0
		  || ((REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUAL
		       || REG_NOTE_KIND (REG_NOTES (temp2)) == REG_EQUIV)
		      && XEXP (REG_NOTES (temp2), 1) == 0
		      && rtx_equal_p (XEXP (REG_NOTES (temp2), 0),
495
				      SET_SRC (temp4))))
Richard Kenner committed
496 497 498 499 500 501 502 503 504 505
	      && (temp = prev_active_insn (temp3)) != 0
	      && condjump_p (temp) && ! simplejump_p (temp)
	      /* TEMP must skip over the "x = a;" insn */
	      && prev_real_insn (JUMP_LABEL (temp)) == insn
	      && no_labels_between_p (insn, JUMP_LABEL (temp))
	      /* There must be no other entries to the "x = b;" insn.  */
	      && no_labels_between_p (JUMP_LABEL (temp), temp2)
	      /* INSN must either branch to the insn after TEMP2 or the insn
		 after TEMP2 must branch to the same place as INSN.  */
	      && (reallabelprev == temp2
506 507 508
		  || ((temp5 = next_active_insn (temp2)) != 0
		      && simplejump_p (temp5)
		      && JUMP_LABEL (temp5) == JUMP_LABEL (insn))))
Richard Kenner committed
509 510 511 512 513 514 515
	    {
	      /* The test expression, X, may be a complicated test with
		 multiple branches.  See if we can find all the uses of
		 the label that TEMP branches to without hitting a CALL_INSN
		 or a jump to somewhere else.  */
	      rtx target = JUMP_LABEL (temp);
	      int nuses = LABEL_NUSES (target);
Kaveh R. Ghazi committed
516 517 518 519
	      rtx p;
#ifdef HAVE_cc0
	      rtx q;
#endif
Richard Kenner committed
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558

	      /* Set P to the first jump insn that goes around "x = a;".  */
	      for (p = temp; nuses && p; p = prev_nonnote_insn (p))
		{
		  if (GET_CODE (p) == JUMP_INSN)
		    {
		      if (condjump_p (p) && ! simplejump_p (p)
			  && JUMP_LABEL (p) == target)
			{
			  nuses--;
			  if (nuses == 0)
			    break;
			}
		      else
			break;
		    }
		  else if (GET_CODE (p) == CALL_INSN)
		    break;
		}

#ifdef HAVE_cc0
	      /* We cannot insert anything between a set of cc and its use
		 so if P uses cc0, we must back up to the previous insn.  */
	      q = prev_nonnote_insn (p);
	      if (q && GET_RTX_CLASS (GET_CODE (q)) == 'i'
		  && sets_cc0_p (PATTERN (q)))
		p = q;
#endif

	      if (p)
		p = PREV_INSN (p);

	      /* If we found all the uses and there was no data conflict, we
		 can move the assignment unless we can branch into the middle
		 from somewhere.  */
	      if (nuses == 0 && p
		  && no_labels_between_p (p, insn)
		  && ! reg_referenced_between_p (temp1, p, NEXT_INSN (temp3))
		  && ! reg_set_between_p (temp1, p, temp3)
559
		  && (GET_CODE (SET_SRC (temp4)) == CONST_INT
560 561 562
		      || ! modified_between_p (SET_SRC (temp4), p, temp2))
		  /* Verify that registers used by the jump are not clobbered
		     by the instruction being moved.  */
563 564
		  && ! regs_set_between_p (PATTERN (temp),
					   PREV_INSN (temp2),
565
					   NEXT_INSN (temp2)))
Richard Kenner committed
566
		{
567 568
		  emit_insn_after_with_line_notes (PATTERN (temp2), p, temp2);
		  delete_insn (temp2);
Richard Kenner committed
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

		  /* Set NEXT to an insn that we know won't go away.  */
		  next = next_active_insn (insn);

		  /* Delete the jump around the set.  Note that we must do
		     this before we redirect the test jumps so that it won't
		     delete the code immediately following the assignment
		     we moved (which might be a jump).  */

		  delete_insn (insn);

		  /* We either have two consecutive labels or a jump to
		     a jump, so adjust all the JUMP_INSNs to branch to where
		     INSN branches to.  */
		  for (p = NEXT_INSN (p); p != next; p = NEXT_INSN (p))
		    if (GET_CODE (p) == JUMP_INSN)
		      redirect_jump (p, target);

		  changed = 1;
		  continue;
		}
	    }

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	  /* Simplify   if (...) { x = a; goto l; } x = b; by converting it
	     to         x = a; if (...) goto l; x = b;
	     if A is sufficiently simple, the test doesn't involve X,
	     and nothing in the test modifies A or X.

	     If we have small register classes, we also can't do this if X
	     is a hard register.

	     If the "x = a;" insn has any REG_NOTES, we don't do this because
	     of the possibility that we are running after CSE and there is a
	     REG_EQUAL note that is only valid if the branch has already been
	     taken.  If we move the insn with the REG_EQUAL note, we may
	     fold the comparison to always be false in a later CSE pass.
	     (We could also delete the REG_NOTES when moving the insn, but it
	     seems simpler to not move it.)  An exception is that we can move
	     the insn if the only note is a REG_EQUAL or REG_EQUIV whose
	     value is the same as "a".

	     INSN is the goto.

	     We set:

	     TEMP to the jump insn preceding "x = a;"
	     TEMP1 to X
	     TEMP2 to the insn that sets "x = b;"
	     TEMP3 to the insn that sets "x = a;"
	     TEMP4 to the set of "x = a";  */

	  if (this_is_simplejump
	      && (temp2 = next_active_insn (insn)) != 0
	      && GET_CODE (temp2) == INSN
	      && (temp4 = single_set (temp2)) != 0
	      && GET_CODE (temp1 = SET_DEST (temp4)) == REG
625 626
	      && (! SMALL_REGISTER_CLASSES
		  || REGNO (temp1) >= FIRST_PSEUDO_REGISTER)
627 628 629 630
	      && (temp3 = prev_active_insn (insn)) != 0
	      && GET_CODE (temp3) == INSN
	      && (temp4 = single_set (temp3)) != 0
	      && rtx_equal_p (SET_DEST (temp4), temp1)
631 632
	      && ! side_effects_p (SET_SRC (temp4))
	      && ! may_trap_p (SET_SRC (temp4))
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	      && (REG_NOTES (temp3) == 0
		  || ((REG_NOTE_KIND (REG_NOTES (temp3)) == REG_EQUAL
		       || REG_NOTE_KIND (REG_NOTES (temp3)) == REG_EQUIV)
		      && XEXP (REG_NOTES (temp3), 1) == 0
		      && rtx_equal_p (XEXP (REG_NOTES (temp3), 0),
				      SET_SRC (temp4))))
	      && (temp = prev_active_insn (temp3)) != 0
	      && condjump_p (temp) && ! simplejump_p (temp)
	      /* TEMP must skip over the "x = a;" insn */
	      && prev_real_insn (JUMP_LABEL (temp)) == insn
	      && no_labels_between_p (temp, insn))
	    {
	      rtx prev_label = JUMP_LABEL (temp);
	      rtx insert_after = prev_nonnote_insn (temp);

#ifdef HAVE_cc0
	      /* We cannot insert anything between a set of cc and its use.  */
	      if (insert_after && GET_RTX_CLASS (GET_CODE (insert_after)) == 'i'
		  && sets_cc0_p (PATTERN (insert_after)))
		insert_after = prev_nonnote_insn (insert_after);
#endif
	      ++LABEL_NUSES (prev_label);

	      if (insert_after
		  && no_labels_between_p (insert_after, temp)
658
		  && ! reg_referenced_between_p (temp1, insert_after, temp3)
659 660
		  && ! reg_referenced_between_p (temp1, temp3,
						 NEXT_INSN (temp2))
661
		  && ! reg_set_between_p (temp1, insert_after, temp)
662
		  && ! modified_between_p (SET_SRC (temp4), insert_after, temp)
663 664
		  /* Verify that registers used by the jump are not clobbered
		     by the instruction being moved.  */
665 666
		  && ! regs_set_between_p (PATTERN (temp),
					   PREV_INSN (temp3),
667
					   NEXT_INSN (temp3))
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
		  && invert_jump (temp, JUMP_LABEL (insn)))
		{
		  emit_insn_after_with_line_notes (PATTERN (temp3),
						   insert_after, temp3);
		  delete_insn (temp3);
		  delete_insn (insn);
		  /* Set NEXT to an insn that we know won't go away.  */
		  next = temp2;
		  changed = 1;
		}
	      if (prev_label && --LABEL_NUSES (prev_label) == 0)
		delete_insn (prev_label);
	      if (changed)
		continue;
	    }

684 685 686 687 688 689 690 691 692 693 694 695 696 697
#ifndef HAVE_cc0
	  /* If we have if (...) x = exp;  and branches are expensive,
	     EXP is a single insn, does not have any side effects, cannot
	     trap, and is not too costly, convert this to
	     t = exp; if (...) x = t;

	     Don't do this when we have CC0 because it is unlikely to help
	     and we'd need to worry about where to place the new insn and
	     the potential for conflicts.  We also can't do this when we have
	     notes on the insn for the same reason as above.

	     We set:

	     TEMP to the "x = exp;" insn.
698
	     TEMP1 to the single set in the "x = exp;" insn.
699 700 701 702 703 704
	     TEMP2 to "x".  */

	  if (! reload_completed
	      && this_is_condjump && ! this_is_simplejump
	      && BRANCH_COST >= 3
	      && (temp = next_nonnote_insn (insn)) != 0
705
	      && GET_CODE (temp) == INSN
706 707 708 709 710 711 712
	      && REG_NOTES (temp) == 0
	      && (reallabelprev == temp
		  || ((temp2 = next_active_insn (temp)) != 0
		      && simplejump_p (temp2)
		      && JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
	      && (temp1 = single_set (temp)) != 0
	      && (temp2 = SET_DEST (temp1), GET_CODE (temp2) == REG)
713 714
	      && (! SMALL_REGISTER_CLASSES
		  || REGNO (temp2) >= FIRST_PSEUDO_REGISTER)
715 716 717 718 719
	      && GET_CODE (SET_SRC (temp1)) != REG
	      && GET_CODE (SET_SRC (temp1)) != SUBREG
	      && GET_CODE (SET_SRC (temp1)) != CONST_INT
	      && ! side_effects_p (SET_SRC (temp1))
	      && ! may_trap_p (SET_SRC (temp1))
720
	      && rtx_cost (SET_SRC (temp1), SET) < 10)
721 722 723
	    {
	      rtx new = gen_reg_rtx (GET_MODE (temp2));

Jeff Law committed
724 725
	      if ((temp3 = find_insert_position (insn, temp))
		  && validate_change (temp, &SET_DEST (temp1), new, 0))
726 727 728
		{
		  next = emit_insn_after (gen_move_insn (temp2, new), insn);
		  emit_insn_after_with_line_notes (PATTERN (temp), 
Jeff Law committed
729
						   PREV_INSN (temp3), temp);
730
		  delete_insn (temp);
731
		  reallabelprev = prev_active_insn (JUMP_LABEL (insn));
732 733 734 735 736 737

		  if (after_regscan)
		    {
		      reg_scan_update (temp3, NEXT_INSN (next), old_max_reg);
		      old_max_reg = max_reg_num ();
		    }
738 739 740 741 742 743 744 745 746 747 748
		}
	    }

	  /* Similarly, if it takes two insns to compute EXP but they
	     have the same destination.  Here TEMP3 will be the second
	     insn and TEMP4 the SET from that insn.  */

	  if (! reload_completed
	      && this_is_condjump && ! this_is_simplejump
	      && BRANCH_COST >= 4
	      && (temp = next_nonnote_insn (insn)) != 0
749
	      && GET_CODE (temp) == INSN
750 751
	      && REG_NOTES (temp) == 0
	      && (temp3 = next_nonnote_insn (temp)) != 0
752
	      && GET_CODE (temp3) == INSN
753 754 755 756 757 758 759 760
	      && REG_NOTES (temp3) == 0
	      && (reallabelprev == temp3
		  || ((temp2 = next_active_insn (temp3)) != 0
		      && simplejump_p (temp2)
		      && JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
	      && (temp1 = single_set (temp)) != 0
	      && (temp2 = SET_DEST (temp1), GET_CODE (temp2) == REG)
	      && GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
761 762
	      && (! SMALL_REGISTER_CLASSES
		  || REGNO (temp2) >= FIRST_PSEUDO_REGISTER)
763 764
	      && ! side_effects_p (SET_SRC (temp1))
	      && ! may_trap_p (SET_SRC (temp1))
765
	      && rtx_cost (SET_SRC (temp1), SET) < 10
766 767 768 769
	      && (temp4 = single_set (temp3)) != 0
	      && rtx_equal_p (SET_DEST (temp4), temp2)
	      && ! side_effects_p (SET_SRC (temp4))
	      && ! may_trap_p (SET_SRC (temp4))
770
	      && rtx_cost (SET_SRC (temp4), SET) < 10)
771 772 773
	    {
	      rtx new = gen_reg_rtx (GET_MODE (temp2));

Jeff Law committed
774 775 776
	      if ((temp5 = find_insert_position (insn, temp))
		  && (temp6 = find_insert_position (insn, temp3))
		  && validate_change (temp, &SET_DEST (temp1), new, 0))
777
		{
Jeff Law committed
778 779 780
		  /* Use the earliest of temp5 and temp6. */
		  if (temp5 != insn)
		    temp6 = temp5;
781 782
		  next = emit_insn_after (gen_move_insn (temp2, new), insn);
		  emit_insn_after_with_line_notes (PATTERN (temp),
Jeff Law committed
783
						   PREV_INSN (temp6), temp);
784 785
		  emit_insn_after_with_line_notes
		    (replace_rtx (PATTERN (temp3), temp2, new),
Jeff Law committed
786
		     PREV_INSN (temp6), temp3);
787 788
		  delete_insn (temp);
		  delete_insn (temp3);
789
		  reallabelprev = prev_active_insn (JUMP_LABEL (insn));
790 791 792 793 794 795

		  if (after_regscan)
		    {
		      reg_scan_update (temp6, NEXT_INSN (next), old_max_reg);
		      old_max_reg = max_reg_num ();
		    }
796 797 798 799 800
		}
	    }

	  /* Finally, handle the case where two insns are used to 
	     compute EXP but a temporary register is used.  Here we must
Mike Stump committed
801
	     ensure that the temporary register is not used anywhere else.  */
802 803 804 805 806 807

	  if (! reload_completed
	      && after_regscan
	      && this_is_condjump && ! this_is_simplejump
	      && BRANCH_COST >= 4
	      && (temp = next_nonnote_insn (insn)) != 0
808
	      && GET_CODE (temp) == INSN
809 810
	      && REG_NOTES (temp) == 0
	      && (temp3 = next_nonnote_insn (temp)) != 0
811
	      && GET_CODE (temp3) == INSN
812 813 814 815 816 817
	      && REG_NOTES (temp3) == 0
	      && (reallabelprev == temp3
		  || ((temp2 = next_active_insn (temp3)) != 0
		      && simplejump_p (temp2)
		      && JUMP_LABEL (temp2) == JUMP_LABEL (insn)))
	      && (temp1 = single_set (temp)) != 0
818 819 820 821 822
	      && (temp5 = SET_DEST (temp1),
		  (GET_CODE (temp5) == REG
		   || (GET_CODE (temp5) == SUBREG
		       && (temp5 = SUBREG_REG (temp5),
			   GET_CODE (temp5) == REG))))
823
	      && REGNO (temp5) >= FIRST_PSEUDO_REGISTER
824 825
	      && REGNO_FIRST_UID (REGNO (temp5)) == INSN_UID (temp)
	      && REGNO_LAST_UID (REGNO (temp5)) == INSN_UID (temp3)
826 827
	      && ! side_effects_p (SET_SRC (temp1))
	      && ! may_trap_p (SET_SRC (temp1))
828
	      && rtx_cost (SET_SRC (temp1), SET) < 10
829 830 831
	      && (temp4 = single_set (temp3)) != 0
	      && (temp2 = SET_DEST (temp4), GET_CODE (temp2) == REG)
	      && GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
832 833
	      && (! SMALL_REGISTER_CLASSES
		  || REGNO (temp2) >= FIRST_PSEUDO_REGISTER)
834 835 836
	      && rtx_equal_p (SET_DEST (temp4), temp2)
	      && ! side_effects_p (SET_SRC (temp4))
	      && ! may_trap_p (SET_SRC (temp4))
837
	      && rtx_cost (SET_SRC (temp4), SET) < 10)
838 839 840
	    {
	      rtx new = gen_reg_rtx (GET_MODE (temp2));

Jeff Law committed
841 842 843
	      if ((temp5 = find_insert_position (insn, temp))
		  && (temp6 = find_insert_position (insn, temp3))
		  && validate_change (temp3, &SET_DEST (temp4), new, 0))
844
		{
Jeff Law committed
845 846 847
		  /* Use the earliest of temp5 and temp6. */
		  if (temp5 != insn)
		    temp6 = temp5;
848 849
		  next = emit_insn_after (gen_move_insn (temp2, new), insn);
		  emit_insn_after_with_line_notes (PATTERN (temp),
Jeff Law committed
850
						   PREV_INSN (temp6), temp);
851
		  emit_insn_after_with_line_notes (PATTERN (temp3),
Jeff Law committed
852
						   PREV_INSN (temp6), temp3);
853 854
		  delete_insn (temp);
		  delete_insn (temp3);
855
		  reallabelprev = prev_active_insn (JUMP_LABEL (insn));
856 857 858 859 860 861

		  if (after_regscan)
		    {
		      reg_scan_update (temp6, NEXT_INSN (next), old_max_reg);
		      old_max_reg = max_reg_num ();
		    }
862 863 864 865
		}
	    }
#endif /* HAVE_cc0 */

866 867 868 869 870 871 872 873
	  /* Try to use a conditional move (if the target has them), or a
	     store-flag insn.  The general case is:

	     1) x = a; if (...) x = b; and
	     2) if (...) x = b;

	     If the jump would be faster, the machine should not have defined
	     the movcc or scc insns!.  These cases are often made by the
Tom Wood committed
874
	     previous optimization.
Richard Kenner committed
875

876 877
	     The second case is treated as  x = x; if (...) x = b;.

Richard Kenner committed
878 879 880 881
	     INSN here is the jump around the store.  We set:

	     TEMP to the "x = b;" insn.
	     TEMP1 to X.
882
	     TEMP2 to B.
Richard Kenner committed
883 884 885 886 887 888 889 890 891 892 893 894
	     TEMP3 to A (X in the second case).
	     TEMP4 to the condition being tested.
	     TEMP5 to the earliest insn used to find the condition.  */

	  if (/* We can't do this after reload has completed.  */
	      ! reload_completed
	      && this_is_condjump && ! this_is_simplejump
	      /* Set TEMP to the "x = b;" insn.  */
	      && (temp = next_nonnote_insn (insn)) != 0
	      && GET_CODE (temp) == INSN
	      && GET_CODE (PATTERN (temp)) == SET
	      && GET_CODE (temp1 = SET_DEST (PATTERN (temp))) == REG
895 896
	      && (! SMALL_REGISTER_CLASSES
		  || REGNO (temp1) >= FIRST_PSEUDO_REGISTER)
897 898
	      && ! side_effects_p (temp2 = SET_SRC (PATTERN (temp)))
	      && ! may_trap_p (temp2)
899 900 901 902
	      /* Allow either form, but prefer the former if both apply. 
		 There is no point in using the old value of TEMP1 if
		 it is a register, since cse will alias them.  It can
		 lose if the old value were a hard register since CSE
903 904 905 906 907
		 won't replace hard registers.  Avoid using TEMP3 if
		 small register classes and it is a hard register.  */
	      && (((temp3 = reg_set_last (temp1, insn)) != 0
		   && ! (SMALL_REGISTER_CLASSES && GET_CODE (temp3) == REG
			 && REGNO (temp3) < FIRST_PSEUDO_REGISTER))
908 909
		  /* Make the latter case look like  x = x; if (...) x = b;  */
		  || (temp3 = temp1, 1))
Richard Kenner committed
910 911 912 913 914 915 916
	      /* INSN must either branch to the insn after TEMP or the insn
		 after TEMP must branch to the same place as INSN.  */
	      && (reallabelprev == temp
		  || ((temp4 = next_active_insn (temp)) != 0
		      && simplejump_p (temp4)
		      && JUMP_LABEL (temp4) == JUMP_LABEL (insn)))
	      && (temp4 = get_condition (insn, &temp5)) != 0
917 918 919 920
	      /* We must be comparing objects whose modes imply the size.
		 We could handle BLKmode if (1) emit_store_flag could
		 and (2) we could find the size reliably.  */
	      && GET_MODE (XEXP (temp4, 0)) != BLKmode
921 922 923
	      /* Even if branches are cheap, the store_flag optimization
		 can win when the operation to be performed can be
		 expressed directly.  */
924 925 926 927 928 929
#ifdef HAVE_cc0
	      /* If the previous insn sets CC0 and something else, we can't
		 do this since we are going to delete that insn.  */

	      && ! ((temp6 = prev_nonnote_insn (insn)) != 0
		    && GET_CODE (temp6) == INSN
930 931 932
		    && (sets_cc0_p (PATTERN (temp6)) == -1
			|| (sets_cc0_p (PATTERN (temp6)) == 1
			    && FIND_REG_INC_NOTE (temp6, NULL_RTX))))
933 934
#endif
	      )
Richard Kenner committed
935
	    {
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
#ifdef HAVE_conditional_move
	      /* First try a conditional move.  */
	      {
		enum rtx_code code = GET_CODE (temp4);
		rtx var = temp1;
		rtx cond0, cond1, aval, bval;
		rtx target;

		/* Copy the compared variables into cond0 and cond1, so that
		   any side effects performed in or after the old comparison,
		   will not affect our compare which will come later.  */
		/* ??? Is it possible to just use the comparison in the jump
		   insn?  After all, we're going to delete it.  We'd have
		   to modify emit_conditional_move to take a comparison rtx
		   instead or write a new function.  */
		cond0 = gen_reg_rtx (GET_MODE (XEXP (temp4, 0)));
		/* We want the target to be able to simplify comparisons with
		   zero (and maybe other constants as well), so don't create
		   pseudos for them.  There's no need to either.  */
		if (GET_CODE (XEXP (temp4, 1)) == CONST_INT
		    || GET_CODE (XEXP (temp4, 1)) == CONST_DOUBLE)
		  cond1 = XEXP (temp4, 1);
		else
		  cond1 = gen_reg_rtx (GET_MODE (XEXP (temp4, 1)));

		aval = temp3;
		bval = temp2;

		start_sequence ();
		target = emit_conditional_move (var, code,
						cond0, cond1, VOIDmode,
						aval, bval, GET_MODE (var),
						(code == LTU || code == GEU
						 || code == LEU || code == GTU));

		if (target)
		  {
973 974
		    rtx seq1, seq2, last;
		    int copy_ok;
975 976 977 978 979 980 981 982 983

		    /* Save the conditional move sequence but don't emit it
		       yet.  On some machines, like the alpha, it is possible
		       that temp5 == insn, so next generate the sequence that
		       saves the compared values and then emit both
		       sequences ensuring seq1 occurs before seq2.  */
		    seq2 = get_insns ();
		    end_sequence ();

984 985 986
		    /* "Now that we can't fail..."  Famous last words.
		       Generate the copy insns that preserve the compared
		       values.  */
987 988 989 990 991 992 993
		    start_sequence ();
		    emit_move_insn (cond0, XEXP (temp4, 0));
		    if (cond1 != XEXP (temp4, 1))
		      emit_move_insn (cond1, XEXP (temp4, 1));
		    seq1 = get_insns ();
		    end_sequence ();

994 995 996 997 998 999 1000 1001 1002 1003
		    /* Validate the sequence -- this may be some weird
		       bit-extract-and-test instruction for which there
		       exists no complimentary bit-extract insn.  */
		    copy_ok = 1;
		    for (last = seq1; last ; last = NEXT_INSN (last))
		      if (recog_memoized (last) < 0)
			{
			  copy_ok = 0;
			  break;
			}
1004

1005
		    if (copy_ok)
1006
		      {
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		        emit_insns_before (seq1, temp5);

		        /* Insert conditional move after insn, to be sure
			   that the jump and a possible compare won't be
			   separated.  */
		        last = emit_insns_after (seq2, insn);

		        /* ??? We can also delete the insn that sets X to A.
		           Flow will do it too though.  */
		        delete_insn (temp);
		        next = NEXT_INSN (insn);
		        delete_jump (insn);

		        if (after_regscan)
		          {
			    reg_scan_update (seq1, NEXT_INSN (last),
					     old_max_reg);
			    old_max_reg = max_reg_num ();
		          }

		        changed = 1;
		        continue;
1029
		      }
1030 1031
		  }
		else
1032
		  end_sequence ();
1033 1034
	      }
#endif
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	      /* That didn't work, try a store-flag insn.

		 We further divide the cases into:

		 1) x = a; if (...) x = b; and either A or B is zero,
		 2) if (...) x = 0; and jumps are expensive,
		 3) x = a; if (...) x = b; and A and B are constants where all
		 the set bits in A are also set in B and jumps are expensive,
		 4) x = a; if (...) x = b; and A and B non-zero, and jumps are
		 more expensive, and
		 5) if (...) x = b; if jumps are even more expensive.  */

	      if (GET_MODE_CLASS (GET_MODE (temp1)) == MODE_INT
		  && ((GET_CODE (temp3) == CONST_INT)
		      /* Make the latter case look like
			 x = x; if (...) x = 0;  */
		      || (temp3 = temp1,
			  ((BRANCH_COST >= 2
			    && temp2 == const0_rtx)
			   || BRANCH_COST >= 3)))
		  /* If B is zero, OK; if A is zero, can only do (1) if we
		     can reverse the condition.  See if (3) applies possibly
		     by reversing the condition.  Prefer reversing to (4) when
		     branches are very expensive.  */
1060 1061 1062 1063 1064 1065
		  && (((BRANCH_COST >= 2
			|| STORE_FLAG_VALUE == -1
			|| (STORE_FLAG_VALUE == 1
			 /* Check that the mask is a power of two,
			    so that it can probably be generated
			    with a shift.  */
1066
			    && GET_CODE (temp3) == CONST_INT
1067 1068 1069 1070 1071
			    && exact_log2 (INTVAL (temp3)) >= 0))
		       && (reversep = 0, temp2 == const0_rtx))
		      || ((BRANCH_COST >= 2
			   || STORE_FLAG_VALUE == -1
			   || (STORE_FLAG_VALUE == 1
1072
			       && GET_CODE (temp2) == CONST_INT
1073 1074
			       && exact_log2 (INTVAL (temp2)) >= 0))
			  && temp3 == const0_rtx
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
			  && (reversep = can_reverse_comparison_p (temp4, insn)))
		      || (BRANCH_COST >= 2
			  && GET_CODE (temp2) == CONST_INT
			  && GET_CODE (temp3) == CONST_INT
			  && ((INTVAL (temp2) & INTVAL (temp3)) == INTVAL (temp2)
			      || ((INTVAL (temp2) & INTVAL (temp3)) == INTVAL (temp3)
				  && (reversep = can_reverse_comparison_p (temp4,
									   insn)))))
		      || BRANCH_COST >= 3)
		  )
		{
		  enum rtx_code code = GET_CODE (temp4);
		  rtx uval, cval, var = temp1;
		  int normalizep;
		  rtx target;

		  /* If necessary, reverse the condition.  */
		  if (reversep)
		    code = reverse_condition (code), uval = temp2, cval = temp3;
		  else
		    uval = temp3, cval = temp2;

		  /* If CVAL is non-zero, normalize to -1.  Otherwise, if UVAL
		     is the constant 1, it is best to just compute the result
		     directly.  If UVAL is constant and STORE_FLAG_VALUE
		     includes all of its bits, it is best to compute the flag
		     value unnormalized and `and' it with UVAL.  Otherwise,
		     normalize to -1 and `and' with UVAL.  */
		  normalizep = (cval != const0_rtx ? -1
				: (uval == const1_rtx ? 1
				   : (GET_CODE (uval) == CONST_INT
				      && (INTVAL (uval) & ~STORE_FLAG_VALUE) == 0)
				   ? 0 : -1));

		  /* We will be putting the store-flag insn immediately in
		     front of the comparison that was originally being done,
		     so we know all the variables in TEMP4 will be valid.
		     However, this might be in front of the assignment of
		     A to VAR.  If it is, it would clobber the store-flag
		     we will be emitting.

		     Therefore, emit into a temporary which will be copied to
		     VAR immediately after TEMP.  */
1118 1119

		  start_sequence ();
1120 1121 1122 1123 1124 1125 1126
		  target = emit_store_flag (gen_reg_rtx (GET_MODE (var)), code,
					    XEXP (temp4, 0), XEXP (temp4, 1),
					    VOIDmode,
					    (code == LTU || code == LEU 
					     || code == GEU || code == GTU),
					    normalizep);
		  if (target)
Tom Wood committed
1127
		    {
1128 1129
		      rtx seq;
		      rtx before = insn;
Tom Wood committed
1130

1131 1132
		      seq = get_insns ();
		      end_sequence ();
Tom Wood committed
1133

1134 1135 1136 1137 1138 1139 1140
		      /* Put the store-flag insns in front of the first insn
			 used to compute the condition to ensure that we
			 use the same values of them as the current 
			 comparison.  However, the remainder of the insns we
			 generate will be placed directly in front of the
			 jump insn, in case any of the pseudos we use
			 are modified earlier.  */
Tom Wood committed
1141

1142
		      emit_insns_before (seq, temp5);
Tom Wood committed
1143

1144 1145 1146 1147
		      start_sequence ();

		      /* Both CVAL and UVAL are non-zero.  */
		      if (cval != const0_rtx && uval != const0_rtx)
1148
			{
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
			  rtx tem1, tem2;

			  tem1 = expand_and (uval, target, NULL_RTX);
			  if (GET_CODE (cval) == CONST_INT
			      && GET_CODE (uval) == CONST_INT
			      && (INTVAL (cval) & INTVAL (uval)) == INTVAL (cval))
			    tem2 = cval;
			  else
			    {
			      tem2 = expand_unop (GET_MODE (var), one_cmpl_optab,
						  target, NULL_RTX, 0);
			      tem2 = expand_and (cval, tem2,
						 (GET_CODE (tem2) == REG
						  ? tem2 : 0));
			    }

			  /* If we usually make new pseudos, do so here.  This
			     turns out to help machines that have conditional
			     move insns.  */
			  /* ??? Conditional moves have already been handled.
			     This may be obsolete.  */

			  if (flag_expensive_optimizations)
			    target = 0;

			  target = expand_binop (GET_MODE (var), ior_optab,
						 tem1, tem2, target,
						 1, OPTAB_WIDEN);
1177
			}
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		      else if (normalizep != 1)
			{
			  /* We know that either CVAL or UVAL is zero.  If
			     UVAL is zero, negate TARGET and `and' with CVAL.
			     Otherwise, `and' with UVAL.  */
			  if (uval == const0_rtx)
			    {
			      target = expand_unop (GET_MODE (var), one_cmpl_optab,
						    target, NULL_RTX, 0);
			      uval = cval;
			    }
1189

1190 1191 1192 1193 1194
			  target = expand_and (uval, target,
					       (GET_CODE (target) == REG
						&& ! preserve_subexpressions_p ()
						? target : NULL_RTX));
			}
Tom Wood committed
1195
		  
1196 1197 1198
		      emit_move_insn (var, target);
		      seq = get_insns ();
		      end_sequence ();
1199
#ifdef HAVE_cc0
1200 1201 1202 1203
		      /* If INSN uses CC0, we must not separate it from the
			 insn that sets cc0.  */
		      if (reg_mentioned_p (cc0_rtx, PATTERN (before)))
			before = prev_nonnote_insn (before);
1204
#endif
1205
		      emit_insns_before (seq, before);
1206

1207 1208 1209
		      delete_insn (temp);
		      next = NEXT_INSN (insn);
		      delete_jump (insn);
1210 1211 1212 1213 1214 1215 1216

		      if (after_regscan)
			{
			  reg_scan_update (seq, NEXT_INSN (next), old_max_reg);
			  old_max_reg = max_reg_num ();
			}

1217 1218 1219 1220 1221
		      changed = 1;
		      continue;
		    }
		  else
		    end_sequence ();
Richard Kenner committed
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
		}
	    }

	  /* If branches are expensive, convert
	        if (foo) bar++;    to    bar += (foo != 0);
	     and similarly for "bar--;" 

	     INSN is the conditional branch around the arithmetic.  We set:

	     TEMP is the arithmetic insn.
1232
	     TEMP1 is the SET doing the arithmetic.
Richard Kenner committed
1233 1234 1235 1236
	     TEMP2 is the operand being incremented or decremented.
	     TEMP3 to the condition being tested.
	     TEMP4 to the earliest insn used to find the condition.  */

1237
	  if ((BRANCH_COST >= 2
1238
#ifdef HAVE_incscc
1239
	       || HAVE_incscc
1240 1241
#endif
#ifdef HAVE_decscc
1242
	       || HAVE_decscc
1243 1244
#endif
	      )
Richard Kenner committed
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	      && ! reload_completed
	      && this_is_condjump && ! this_is_simplejump
	      && (temp = next_nonnote_insn (insn)) != 0
	      && (temp1 = single_set (temp)) != 0
	      && (temp2 = SET_DEST (temp1),
		  GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT)
	      && GET_CODE (SET_SRC (temp1)) == PLUS
	      && (XEXP (SET_SRC (temp1), 1) == const1_rtx
		  || XEXP (SET_SRC (temp1), 1) == constm1_rtx)
	      && rtx_equal_p (temp2, XEXP (SET_SRC (temp1), 0))
1255 1256
	      && ! side_effects_p (temp2)
	      && ! may_trap_p (temp2)
Richard Kenner committed
1257 1258 1259 1260 1261 1262 1263
	      /* INSN must either branch to the insn after TEMP or the insn
		 after TEMP must branch to the same place as INSN.  */
	      && (reallabelprev == temp
		  || ((temp3 = next_active_insn (temp)) != 0
		      && simplejump_p (temp3)
		      && JUMP_LABEL (temp3) == JUMP_LABEL (insn)))
	      && (temp3 = get_condition (insn, &temp4)) != 0
1264 1265 1266 1267
	      /* We must be comparing objects whose modes imply the size.
		 We could handle BLKmode if (1) emit_store_flag could
		 and (2) we could find the size reliably.  */
	      && GET_MODE (XEXP (temp3, 0)) != BLKmode
Richard Kenner committed
1268 1269
	      && can_reverse_comparison_p (temp3, insn))
	    {
1270
	      rtx temp6, target = 0, seq, init_insn = 0, init = temp2;
Richard Kenner committed
1271 1272 1273 1274
	      enum rtx_code code = reverse_condition (GET_CODE (temp3));

	      start_sequence ();

1275 1276 1277 1278 1279 1280 1281
	      /* It must be the case that TEMP2 is not modified in the range
		 [TEMP4, INSN).  The one exception we make is if the insn
		 before INSN sets TEMP2 to something which is also unchanged
		 in that range.  In that case, we can move the initialization
		 into our sequence.  */

	      if ((temp5 = prev_active_insn (insn)) != 0
1282
		  && no_labels_between_p (temp5, insn)
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
		  && GET_CODE (temp5) == INSN
		  && (temp6 = single_set (temp5)) != 0
		  && rtx_equal_p (temp2, SET_DEST (temp6))
		  && (CONSTANT_P (SET_SRC (temp6))
		      || GET_CODE (SET_SRC (temp6)) == REG
		      || GET_CODE (SET_SRC (temp6)) == SUBREG))
		{
		  emit_insn (PATTERN (temp5));
		  init_insn = temp5;
		  init = SET_SRC (temp6);
		}

	      if (CONSTANT_P (init)
		  || ! reg_set_between_p (init, PREV_INSN (temp4), insn))
		target = emit_store_flag (gen_reg_rtx (GET_MODE (temp2)), code,
					  XEXP (temp3, 0), XEXP (temp3, 1),
					  VOIDmode,
					  (code == LTU || code == LEU
					   || code == GTU || code == GEU), 1);
Richard Kenner committed
1302 1303 1304 1305 1306 1307 1308 1309

	      /* If we can do the store-flag, do the addition or
		 subtraction.  */

	      if (target)
		target = expand_binop (GET_MODE (temp2),
				       (XEXP (SET_SRC (temp1), 1) == const1_rtx
					? add_optab : sub_optab),
1310
				       temp2, target, temp2, 0, OPTAB_WIDEN);
Richard Kenner committed
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326

	      if (target != 0)
		{
		  /* Put the result back in temp2 in case it isn't already.
		     Then replace the jump, possible a CC0-setting insn in
		     front of the jump, and TEMP, with the sequence we have
		     made.  */

		  if (target != temp2)
		    emit_move_insn (temp2, target);

		  seq = get_insns ();
		  end_sequence ();

		  emit_insns_before (seq, temp4);
		  delete_insn (temp);
1327 1328 1329 1330

		  if (init_insn)
		    delete_insn (init_insn);

Richard Kenner committed
1331 1332 1333 1334 1335
		  next = NEXT_INSN (insn);
#ifdef HAVE_cc0
		  delete_insn (prev_nonnote_insn (insn));
#endif
		  delete_insn (insn);
1336 1337 1338 1339 1340 1341 1342

		  if (after_regscan)
		    {
		      reg_scan_update (seq, NEXT_INSN (next), old_max_reg);
		      old_max_reg = max_reg_num ();
		    }

Richard Kenner committed
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		  changed = 1;
		  continue;
		}
	      else
		end_sequence ();
	    }

	  /* Simplify   if (...) x = 1; else {...}  if (x) ...
	     We recognize this case scanning backwards as well.

	     TEMP is the assignment to x;
	     TEMP1 is the label at the head of the second if.  */
	  /* ?? This should call get_condition to find the values being
	     compared, instead of looking for a COMPARE insn when HAVE_cc0
	     is not defined.  This would allow it to work on the m88k.  */
	  /* ?? This optimization is only safe before cse is run if HAVE_cc0
	     is not defined and the condition is tested by a separate compare
	     insn.  This is because the code below assumes that the result
	     of the compare dies in the following branch.

	     Not only that, but there might be other insns between the
	     compare and branch whose results are live.  Those insns need
	     to be executed.

	     A way to fix this is to move the insns at JUMP_LABEL (insn)
	     to before INSN.  If we are running before flow, they will
	     be deleted if they aren't needed.   But this doesn't work
	     well after flow.

	     This is really a special-case of jump threading, anyway.  The
	     right thing to do is to replace this and jump threading with
	     much simpler code in cse.

	     This code has been turned off in the non-cc0 case in the
	     meantime.  */

#ifdef HAVE_cc0
	  else if (this_is_simplejump
		   /* Safe to skip USE and CLOBBER insns here
		      since they will not be deleted.  */
		   && (temp = prev_active_insn (insn))
		   && no_labels_between_p (temp, insn)
		   && GET_CODE (temp) == INSN
		   && GET_CODE (PATTERN (temp)) == SET
		   && GET_CODE (SET_DEST (PATTERN (temp))) == REG
		   && CONSTANT_P (SET_SRC (PATTERN (temp)))
		   && (temp1 = next_active_insn (JUMP_LABEL (insn)))
		   /* If we find that the next value tested is `x'
		      (TEMP1 is the insn where this happens), win.  */
		   && GET_CODE (temp1) == INSN
		   && GET_CODE (PATTERN (temp1)) == SET
#ifdef HAVE_cc0
		   /* Does temp1 `tst' the value of x?  */
		   && SET_SRC (PATTERN (temp1)) == SET_DEST (PATTERN (temp))
		   && SET_DEST (PATTERN (temp1)) == cc0_rtx
		   && (temp1 = next_nonnote_insn (temp1))
#else
		   /* Does temp1 compare the value of x against zero?  */
		   && GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
		   && XEXP (SET_SRC (PATTERN (temp1)), 1) == const0_rtx
		   && (XEXP (SET_SRC (PATTERN (temp1)), 0)
		       == SET_DEST (PATTERN (temp)))
		   && GET_CODE (SET_DEST (PATTERN (temp1))) == REG
		   && (temp1 = find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
#endif
		   && condjump_p (temp1))
	    {
	      /* Get the if_then_else from the condjump.  */
	      rtx choice = SET_SRC (PATTERN (temp1));
	      if (GET_CODE (choice) == IF_THEN_ELSE)
		{
		  enum rtx_code code = GET_CODE (XEXP (choice, 0));
		  rtx val = SET_SRC (PATTERN (temp));
		  rtx cond
		    = simplify_relational_operation (code, GET_MODE (SET_DEST (PATTERN (temp))),
						     val, const0_rtx);
		  rtx ultimate;

		  if (cond == const_true_rtx)
		    ultimate = XEXP (choice, 1);
		  else if (cond == const0_rtx)
		    ultimate = XEXP (choice, 2);
		  else
		    ultimate = 0;

		  if (ultimate == pc_rtx)
		    ultimate = get_label_after (temp1);
		  else if (ultimate && GET_CODE (ultimate) != RETURN)
		    ultimate = XEXP (ultimate, 0);

1433
		  if (ultimate && JUMP_LABEL(insn) != ultimate)
Richard Kenner committed
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
		    changed |= redirect_jump (insn, ultimate);
		}
	    }
#endif

#if 0
	  /* @@ This needs a bit of work before it will be right.

	     Any type of comparison can be accepted for the first and
	     second compare.  When rewriting the first jump, we must
	     compute the what conditions can reach label3, and use the
	     appropriate code.  We can not simply reverse/swap the code
	     of the first jump.  In some cases, the second jump must be
	     rewritten also.

	     For example, 
	     <  == converts to >  ==
	     <  != converts to ==  >
	     etc.

	     If the code is written to only accept an '==' test for the second
	     compare, then all that needs to be done is to swap the condition
	     of the first branch.

	     It is questionable whether we want this optimization anyways,
	     since if the user wrote code like this because he/she knew that
1460
	     the jump to label1 is taken most of the time, then rewriting
Richard Kenner committed
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	     this gives slower code.  */
	  /* @@ This should call get_condition to find the values being
	     compared, instead of looking for a COMPARE insn when HAVE_cc0
	     is not defined.  This would allow it to work on the m88k.  */
	  /* @@ This optimization is only safe before cse is run if HAVE_cc0
	     is not defined and the condition is tested by a separate compare
	     insn.  This is because the code below assumes that the result
	     of the compare dies in the following branch.  */

	  /* Simplify  test a ~= b
		       condjump label1;
		       test a == b
		       condjump label2;
		       jump label3;
		       label1:

	     rewriting as
		       test a ~~= b
		       condjump label3
		       test a == b
		       condjump label2
		       label1:

	     where ~= is an inequality, e.g. >, and ~~= is the swapped
	     inequality, e.g. <.

	     We recognize this case scanning backwards.

	     TEMP is the conditional jump to `label2';
	     TEMP1 is the test for `a == b';
	     TEMP2 is the conditional jump to `label1';
	     TEMP3 is the test for `a ~= b'.  */
	  else if (this_is_simplejump
		   && (temp = prev_active_insn (insn))
		   && no_labels_between_p (temp, insn)
		   && condjump_p (temp)
		   && (temp1 = prev_active_insn (temp))
		   && no_labels_between_p (temp1, temp)
		   && GET_CODE (temp1) == INSN
		   && GET_CODE (PATTERN (temp1)) == SET
#ifdef HAVE_cc0
		   && sets_cc0_p (PATTERN (temp1)) == 1
#else
		   && GET_CODE (SET_SRC (PATTERN (temp1))) == COMPARE
		   && GET_CODE (SET_DEST (PATTERN (temp1))) == REG
		   && (temp == find_next_ref (SET_DEST (PATTERN (temp1)), temp1))
#endif
		   && (temp2 = prev_active_insn (temp1))
		   && no_labels_between_p (temp2, temp1)
		   && condjump_p (temp2)
		   && JUMP_LABEL (temp2) == next_nonnote_insn (NEXT_INSN (insn))
		   && (temp3 = prev_active_insn (temp2))
		   && no_labels_between_p (temp3, temp2)
		   && GET_CODE (PATTERN (temp3)) == SET
		   && rtx_equal_p (SET_DEST (PATTERN (temp3)),
				   SET_DEST (PATTERN (temp1)))
		   && rtx_equal_p (SET_SRC (PATTERN (temp1)),
				   SET_SRC (PATTERN (temp3)))
		   && ! inequality_comparisons_p (PATTERN (temp))
		   && inequality_comparisons_p (PATTERN (temp2)))
	    {
	      rtx fallthrough_label = JUMP_LABEL (temp2);

	      ++LABEL_NUSES (fallthrough_label);
	      if (swap_jump (temp2, JUMP_LABEL (insn)))
		{
		  delete_insn (insn);
		  changed = 1;
		}

	      if (--LABEL_NUSES (fallthrough_label) == 0)
		delete_insn (fallthrough_label);
	    }
#endif
	  /* Simplify  if (...) {... x = 1;} if (x) ...

	     We recognize this case backwards.

	     TEMP is the test of `x';
	     TEMP1 is the assignment to `x' at the end of the
	     previous statement.  */
	  /* @@ This should call get_condition to find the values being
	     compared, instead of looking for a COMPARE insn when HAVE_cc0
	     is not defined.  This would allow it to work on the m88k.  */
	  /* @@ This optimization is only safe before cse is run if HAVE_cc0
	     is not defined and the condition is tested by a separate compare
	     insn.  This is because the code below assumes that the result
	     of the compare dies in the following branch.  */
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559

	  /* ??? This has to be turned off.  The problem is that the
	     unconditional jump might indirectly end up branching to the
	     label between TEMP1 and TEMP.  We can't detect this, in general,
	     since it may become a jump to there after further optimizations.
	     If that jump is done, it will be deleted, so we will retry
	     this optimization in the next pass, thus an infinite loop.

	     The present code prevents this by putting the jump after the
	     label, but this is not logically correct.  */
#if 0
Richard Kenner committed
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	  else if (this_is_condjump
		   /* Safe to skip USE and CLOBBER insns here
		      since they will not be deleted.  */
		   && (temp = prev_active_insn (insn))
		   && no_labels_between_p (temp, insn)
		   && GET_CODE (temp) == INSN
		   && GET_CODE (PATTERN (temp)) == SET
#ifdef HAVE_cc0
		   && sets_cc0_p (PATTERN (temp)) == 1
		   && GET_CODE (SET_SRC (PATTERN (temp))) == REG
#else
		   /* Temp must be a compare insn, we can not accept a register
		      to register move here, since it may not be simply a
		      tst insn.  */
		   && GET_CODE (SET_SRC (PATTERN (temp))) == COMPARE
		   && XEXP (SET_SRC (PATTERN (temp)), 1) == const0_rtx
		   && GET_CODE (XEXP (SET_SRC (PATTERN (temp)), 0)) == REG
		   && GET_CODE (SET_DEST (PATTERN (temp))) == REG
		   && insn == find_next_ref (SET_DEST (PATTERN (temp)), temp)
#endif
		   /* May skip USE or CLOBBER insns here
		      for checking for opportunity, since we
		      take care of them later.  */
		   && (temp1 = prev_active_insn (temp))
		   && GET_CODE (temp1) == INSN
		   && GET_CODE (PATTERN (temp1)) == SET
#ifdef HAVE_cc0
		   && SET_SRC (PATTERN (temp)) == SET_DEST (PATTERN (temp1))
#else
		   && (XEXP (SET_SRC (PATTERN (temp)), 0)
		       == SET_DEST (PATTERN (temp1)))
#endif
		   && CONSTANT_P (SET_SRC (PATTERN (temp1)))
		   /* If this isn't true, cse will do the job.  */
		   && ! no_labels_between_p (temp1, temp))
	    {
	      /* Get the if_then_else from the condjump.  */
	      rtx choice = SET_SRC (PATTERN (insn));
	      if (GET_CODE (choice) == IF_THEN_ELSE
		  && (GET_CODE (XEXP (choice, 0)) == EQ
		      || GET_CODE (XEXP (choice, 0)) == NE))
		{
		  int want_nonzero = (GET_CODE (XEXP (choice, 0)) == NE);
		  rtx last_insn;
		  rtx ultimate;
		  rtx p;

		  /* Get the place that condjump will jump to
		     if it is reached from here.  */
		  if ((SET_SRC (PATTERN (temp1)) != const0_rtx)
		      == want_nonzero)
		    ultimate = XEXP (choice, 1);
		  else
		    ultimate = XEXP (choice, 2);
		  /* Get it as a CODE_LABEL.  */
		  if (ultimate == pc_rtx)
		    ultimate = get_label_after (insn);
		  else
		    /* Get the label out of the LABEL_REF.  */
		    ultimate = XEXP (ultimate, 0);

1621 1622 1623
		  /* Insert the jump immediately before TEMP, specifically
		     after the label that is between TEMP1 and TEMP.  */
		  last_insn = PREV_INSN (temp);
Richard Kenner committed
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

		  /* If we would be branching to the next insn, the jump
		     would immediately be deleted and the re-inserted in
		     a subsequent pass over the code.  So don't do anything
		     in that case.  */
		  if (next_active_insn (last_insn)
		      != next_active_insn (ultimate))
		    {
		      emit_barrier_after (last_insn);
		      p = emit_jump_insn_after (gen_jump (ultimate),
						last_insn);
		      JUMP_LABEL (p) = ultimate;
		      ++LABEL_NUSES (ultimate);
		      if (INSN_UID (ultimate) < max_jump_chain
			  && INSN_CODE (p) < max_jump_chain)
			{
			  jump_chain[INSN_UID (p)]
			    = jump_chain[INSN_UID (ultimate)];
			  jump_chain[INSN_UID (ultimate)] = p;
			}
		      changed = 1;
		      continue;
		    }
		}
	    }
1649
#endif
Richard Kenner committed
1650 1651 1652 1653 1654 1655 1656 1657
	  /* Detect a conditional jump going to the same place
	     as an immediately following unconditional jump.  */
	  else if (this_is_condjump
		   && (temp = next_active_insn (insn)) != 0
		   && simplejump_p (temp)
		   && (next_active_insn (JUMP_LABEL (insn))
		       == next_active_insn (JUMP_LABEL (temp))))
	    {
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	      rtx tem = temp;

	      /* ??? Optional.  Disables some optimizations, but makes
		 gcov output more accurate with -O.  */
	      if (flag_test_coverage && !reload_completed)
		for (tem = insn; tem != temp; tem = NEXT_INSN (tem))
		  if (GET_CODE (tem) == NOTE && NOTE_LINE_NUMBER (tem) > 0)
		    break;

	      if (tem == temp)
		{
		  delete_jump (insn);
		  changed = 1;
		  continue;
		}
Richard Kenner committed
1673
	    }
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
#ifdef HAVE_trap
	  /* Detect a conditional jump jumping over an unconditional trap.  */
	  else if (HAVE_trap
		   && this_is_condjump && ! this_is_simplejump
		   && reallabelprev != 0
		   && GET_CODE (reallabelprev) == INSN
		   && GET_CODE (PATTERN (reallabelprev)) == TRAP_IF
		   && TRAP_CONDITION (PATTERN (reallabelprev)) == const_true_rtx
		   && prev_active_insn (reallabelprev) == insn
		   && no_labels_between_p (insn, reallabelprev)
		   && (temp2 = get_condition (insn, &temp4))
		   && can_reverse_comparison_p (temp2, insn))
	    {
	      rtx new = gen_cond_trap (reverse_condition (GET_CODE (temp2)),
				       XEXP (temp2, 0), XEXP (temp2, 1),
				       TRAP_CODE (PATTERN (reallabelprev)));

	      if (new)
		{
		  emit_insn_before (new, temp4);
		  delete_insn (reallabelprev);
		  delete_jump (insn);
		  changed = 1;
		  continue;
		}
	    }
	  /* Detect a jump jumping to an unconditional trap.  */
	  else if (HAVE_trap && this_is_condjump
		   && (temp = next_active_insn (JUMP_LABEL (insn)))
		   && GET_CODE (temp) == INSN
		   && GET_CODE (PATTERN (temp)) == TRAP_IF
		   && (this_is_simplejump
		       || (temp2 = get_condition (insn, &temp4))))
	    {
	      rtx tc = TRAP_CONDITION (PATTERN (temp));

	      if (tc == const_true_rtx
		  || (! this_is_simplejump && rtx_equal_p (temp2, tc)))
		{
		  rtx new;
		  /* Replace an unconditional jump to a trap with a trap.  */
		  if (this_is_simplejump)
		    {
		      emit_barrier_after (emit_insn_before (gen_trap (), insn));
		      delete_jump (insn);
		      changed = 1;
		      continue;
		    }
		  new = gen_cond_trap (GET_CODE (temp2), XEXP (temp2, 0),
				       XEXP (temp2, 1),
				       TRAP_CODE (PATTERN (temp)));
		  if (new)
		    {
		      emit_insn_before (new, temp4);
		      delete_jump (insn);
		      changed = 1;
		      continue;
		    }
		}
	      /* If the trap condition and jump condition are mutually
		 exclusive, redirect the jump to the following insn.  */
	      else if (GET_RTX_CLASS (GET_CODE (tc)) == '<'
		       && ! this_is_simplejump
		       && swap_condition (GET_CODE (temp2)) == GET_CODE (tc)
		       && rtx_equal_p (XEXP (tc, 0), XEXP (temp2, 0))
		       && rtx_equal_p (XEXP (tc, 1), XEXP (temp2, 1))
		       && redirect_jump (insn, get_label_after (temp)))
		{
		  changed = 1;
		  continue;
		}
	    }
#endif

Richard Kenner committed
1748 1749
	  /* Detect a conditional jump jumping over an unconditional jump.  */

1750 1751
	  else if ((this_is_condjump || this_is_condjump_in_parallel)
		   && ! this_is_simplejump
Richard Kenner committed
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
		   && reallabelprev != 0
		   && GET_CODE (reallabelprev) == JUMP_INSN
		   && prev_active_insn (reallabelprev) == insn
		   && no_labels_between_p (insn, reallabelprev)
		   && simplejump_p (reallabelprev))
	    {
	      /* When we invert the unconditional jump, we will be
		 decrementing the usage count of its old label.
		 Make sure that we don't delete it now because that
		 might cause the following code to be deleted.  */
	      rtx prev_uses = prev_nonnote_insn (reallabelprev);
	      rtx prev_label = JUMP_LABEL (insn);

1765 1766
	      if (prev_label)
		++LABEL_NUSES (prev_label);
Richard Kenner committed
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

	      if (invert_jump (insn, JUMP_LABEL (reallabelprev)))
		{
		  /* It is very likely that if there are USE insns before
		     this jump, they hold REG_DEAD notes.  These REG_DEAD
		     notes are no longer valid due to this optimization,
		     and will cause the life-analysis that following passes
		     (notably delayed-branch scheduling) to think that
		     these registers are dead when they are not.

		     To prevent this trouble, we just remove the USE insns
		     from the insn chain.  */

		  while (prev_uses && GET_CODE (prev_uses) == INSN
			 && GET_CODE (PATTERN (prev_uses)) == USE)
		    {
		      rtx useless = prev_uses;
		      prev_uses = prev_nonnote_insn (prev_uses);
		      delete_insn (useless);
		    }

		  delete_insn (reallabelprev);
		  next = insn;
		  changed = 1;
		}

	      /* We can now safely delete the label if it is unreferenced
		 since the delete_insn above has deleted the BARRIER.  */
1795
	      if (prev_label && --LABEL_NUSES (prev_label) == 0)
Richard Kenner committed
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
		delete_insn (prev_label);
	      continue;
	    }
	  else
	    {
	      /* Detect a jump to a jump.  */

	      nlabel = follow_jumps (JUMP_LABEL (insn));
	      if (nlabel != JUMP_LABEL (insn)
		  && redirect_jump (insn, nlabel))
		{
		  changed = 1;
		  next = insn;
		}

	      /* Look for   if (foo) bar; else break;  */
	      /* The insns look like this:
		 insn = condjump label1;
		 ...range1 (some insns)...
		 jump label2;
		 label1:
		 ...range2 (some insns)...
		 jump somewhere unconditionally
		 label2:  */
	      {
		rtx label1 = next_label (insn);
		rtx range1end = label1 ? prev_active_insn (label1) : 0;
		/* Don't do this optimization on the first round, so that
		   jump-around-a-jump gets simplified before we ask here
		   whether a jump is unconditional.

		   Also don't do it when we are called after reload since
		   it will confuse reorg.  */
		if (! first
		    && (reload_completed ? ! flag_delayed_branch : 1)
		    /* Make sure INSN is something we can invert.  */
		    && condjump_p (insn)
		    && label1 != 0
		    && JUMP_LABEL (insn) == label1
		    && LABEL_NUSES (label1) == 1
		    && GET_CODE (range1end) == JUMP_INSN
		    && simplejump_p (range1end))
		  {
		    rtx label2 = next_label (label1);
		    rtx range2end = label2 ? prev_active_insn (label2) : 0;
		    if (range1end != range2end
			&& JUMP_LABEL (range1end) == label2
			&& GET_CODE (range2end) == JUMP_INSN
			&& GET_CODE (NEXT_INSN (range2end)) == BARRIER
			/* Invert the jump condition, so we
			   still execute the same insns in each case.  */
			&& invert_jump (insn, label1))
		      {
			rtx range1beg = next_active_insn (insn);
			rtx range2beg = next_active_insn (label1);
			rtx range1after, range2after;
			rtx range1before, range2before;
1853
			rtx rangenext;
Richard Kenner committed
1854

1855 1856 1857
			/* Include in each range any notes before it, to be
			   sure that we get the line number note if any, even
			   if there are other notes here.  */
1858
			while (PREV_INSN (range1beg)
1859
			       && GET_CODE (PREV_INSN (range1beg)) == NOTE)
1860 1861 1862
			  range1beg = PREV_INSN (range1beg);

			while (PREV_INSN (range2beg)
1863
			       && GET_CODE (PREV_INSN (range2beg)) == NOTE)
1864 1865
			  range2beg = PREV_INSN (range2beg);

Richard Kenner committed
1866 1867
			/* Don't move NOTEs for blocks or loops; shift them
			   outside the ranges, where they'll stay put.  */
Jim Wilson committed
1868 1869
			range1beg = squeeze_notes (range1beg, range1end);
			range2beg = squeeze_notes (range2beg, range2end);
Richard Kenner committed
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886

			/* Get current surrounds of the 2 ranges.  */
			range1before = PREV_INSN (range1beg);
			range2before = PREV_INSN (range2beg);
			range1after = NEXT_INSN (range1end);
			range2after = NEXT_INSN (range2end);

			/* Splice range2 where range1 was.  */
			NEXT_INSN (range1before) = range2beg;
			PREV_INSN (range2beg) = range1before;
			NEXT_INSN (range2end) = range1after;
			PREV_INSN (range1after) = range2end;
			/* Splice range1 where range2 was.  */
			NEXT_INSN (range2before) = range1beg;
			PREV_INSN (range1beg) = range2before;
			NEXT_INSN (range1end) = range2after;
			PREV_INSN (range2after) = range1end;
1887 1888 1889 1890 1891 1892 1893 1894

			/* Check for a loop end note between the end of
			   range2, and the next code label.  If there is one,
			   then what we have really seen is
			   if (foo) break; end_of_loop;
			   and moved the break sequence outside the loop.
			   We must move the LOOP_END note to where the
			   loop really ends now, or we will confuse loop
1895 1896 1897
			   optimization.  Stop if we find a LOOP_BEG note
			   first, since we don't want to move the LOOP_END
			   note in that case.  */
1898 1899 1900
			for (;range2after != label2; range2after = rangenext)
			  {
			    rangenext = NEXT_INSN (range2after);
1901
			    if (GET_CODE (range2after) == NOTE)
1902
			      {
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
				if (NOTE_LINE_NUMBER (range2after)
				    == NOTE_INSN_LOOP_END)
				  {
				    NEXT_INSN (PREV_INSN (range2after))
				      = rangenext;
				    PREV_INSN (rangenext)
				      = PREV_INSN (range2after);
				    PREV_INSN (range2after) 
				      = PREV_INSN (range1beg);
				    NEXT_INSN (range2after) = range1beg;
				    NEXT_INSN (PREV_INSN (range1beg))
				      = range2after;
				    PREV_INSN (range1beg) = range2after;
				  }
				else if (NOTE_LINE_NUMBER (range2after)
					 == NOTE_INSN_LOOP_BEG)
				  break;
1920 1921
			      }
			  }
Richard Kenner committed
1922 1923 1924 1925 1926 1927 1928 1929
			changed = 1;
			continue;
		      }
		  }
	      }

	      /* Now that the jump has been tensioned,
		 try cross jumping: check for identical code
Mike Stump committed
1930
		 before the jump and before its target label.  */
Richard Kenner committed
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

	      /* First, cross jumping of conditional jumps:  */

	      if (cross_jump && condjump_p (insn))
		{
		  rtx newjpos, newlpos;
		  rtx x = prev_real_insn (JUMP_LABEL (insn));

		  /* A conditional jump may be crossjumped
		     only if the place it jumps to follows
		     an opposing jump that comes back here.  */

		  if (x != 0 && ! jump_back_p (x, insn))
		    /* We have no opposing jump;
		       cannot cross jump this insn.  */
		    x = 0;

		  newjpos = 0;
		  /* TARGET is nonzero if it is ok to cross jump
		     to code before TARGET.  If so, see if matches.  */
		  if (x != 0)
		    find_cross_jump (insn, x, 2,
				     &newjpos, &newlpos);

		  if (newjpos != 0)
		    {
		      do_cross_jump (insn, newjpos, newlpos);
		      /* Make the old conditional jump
			 into an unconditional one.  */
		      SET_SRC (PATTERN (insn))
1961
			= gen_rtx_LABEL_REF (VOIDmode, JUMP_LABEL (insn));
Richard Kenner committed
1962 1963 1964
		      INSN_CODE (insn) = -1;
		      emit_barrier_after (insn);
		      /* Add to jump_chain unless this is a new label
Mike Stump committed
1965
			 whose UID is too large.  */
Richard Kenner committed
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
		      if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
			{
			  jump_chain[INSN_UID (insn)]
			    = jump_chain[INSN_UID (JUMP_LABEL (insn))];
			  jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
			}
		      changed = 1;
		      next = insn;
		    }
		}

	      /* Cross jumping of unconditional jumps:
		 a few differences.  */

	      if (cross_jump && simplejump_p (insn))
		{
		  rtx newjpos, newlpos;
		  rtx target;

		  newjpos = 0;

		  /* TARGET is nonzero if it is ok to cross jump
		     to code before TARGET.  If so, see if matches.  */
		  find_cross_jump (insn, JUMP_LABEL (insn), 1,
				   &newjpos, &newlpos);

		  /* If cannot cross jump to code before the label,
		     see if we can cross jump to another jump to
		     the same label.  */
		  /* Try each other jump to this label.  */
		  if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
		    for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
			 target != 0 && newjpos == 0;
			 target = jump_chain[INSN_UID (target)])
		      if (target != insn
			  && JUMP_LABEL (target) == JUMP_LABEL (insn)
			  /* Ignore TARGET if it's deleted.  */
			  && ! INSN_DELETED_P (target))
			find_cross_jump (insn, target, 2,
					 &newjpos, &newlpos);

		  if (newjpos != 0)
		    {
		      do_cross_jump (insn, newjpos, newlpos);
		      changed = 1;
		      next = insn;
		    }
		}

	      /* This code was dead in the previous jump.c!  */
	      if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
		{
		  /* Return insns all "jump to the same place"
		     so we can cross-jump between any two of them.  */

		  rtx newjpos, newlpos, target;

		  newjpos = 0;

		  /* If cannot cross jump to code before the label,
		     see if we can cross jump to another jump to
		     the same label.  */
		  /* Try each other jump to this label.  */
		  for (target = jump_chain[0];
		       target != 0 && newjpos == 0;
		       target = jump_chain[INSN_UID (target)])
		    if (target != insn
			&& ! INSN_DELETED_P (target)
			&& GET_CODE (PATTERN (target)) == RETURN)
		      find_cross_jump (insn, target, 2,
				       &newjpos, &newlpos);

		  if (newjpos != 0)
		    {
		      do_cross_jump (insn, newjpos, newlpos);
		      changed = 1;
		      next = insn;
		    }
		}
	    }
	}

      first = 0;
    }

  /* Delete extraneous line number notes.
     Note that two consecutive notes for different lines are not really
     extraneous.  There should be some indication where that line belonged,
     even if it became empty.  */

  {
    rtx last_note = 0;

    for (insn = f; insn; insn = NEXT_INSN (insn))
      if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0)
	{
	  /* Delete this note if it is identical to previous note.  */
	  if (last_note
	      && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
	      && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
	    {
	      delete_insn (insn);
	      continue;
	    }

	  last_note = insn;
	}
  }

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
#ifdef HAVE_return
  if (HAVE_return)
    {
      /* If we fall through to the epilogue, see if we can insert a RETURN insn
	 in front of it.  If the machine allows it at this point (we might be
	 after reload for a leaf routine), it will improve optimization for it
	 to be there.  We do this both here and at the start of this pass since
	 the RETURN might have been deleted by some of our optimizations.  */
      insn = get_last_insn ();
      while (insn && GET_CODE (insn) == NOTE)
	insn = PREV_INSN (insn);

      if (insn && GET_CODE (insn) != BARRIER)
	{
	  emit_jump_insn (gen_return ());
	  emit_barrier ();
	}
    }
#endif

2095 2096 2097 2098 2099 2100
  /* CAN_REACH_END is persistent for each function.  Once set it should
     not be cleared.  This is especially true for the case where we
     delete the NOTE_FUNCTION_END note.  CAN_REACH_END is cleared by
     the front-end before compiling each function.  */
  if (calculate_can_reach_end (last_insn, 0, 1))
    can_reach_end = 1;
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140

  /* Show JUMP_CHAIN no longer valid.  */
  jump_chain = 0;
}

/* Initialize LABEL_NUSES and JUMP_LABEL fields.  Delete any REG_LABEL
   notes whose labels don't occur in the insn any more.  Returns the
   largest INSN_UID found.  */
static int
init_label_info (f)
     rtx f;
{
  int largest_uid = 0;
  rtx insn;

  for (insn = f; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) == CODE_LABEL)
	LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
      else if (GET_CODE (insn) == JUMP_INSN)
	JUMP_LABEL (insn) = 0;
      else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
	{
	  rtx note, next;

	  for (note = REG_NOTES (insn); note; note = next)
	    {
	      next = XEXP (note, 1);
	      if (REG_NOTE_KIND (note) == REG_LABEL
		  && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
		remove_note (insn, note);
	    }
	}
      if (INSN_UID (insn) > largest_uid)
	largest_uid = INSN_UID (insn);
    }

  return largest_uid;
}

2141 2142 2143
/* Delete insns following barriers, up to next label. 

   Also delete no-op jumps created by gcse.  */
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
static void
delete_barrier_successors (f)
     rtx f;
{
  rtx insn;

  for (insn = f; insn;)
    {
      if (GET_CODE (insn) == BARRIER)
	{
	  insn = NEXT_INSN (insn);
	  while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
	    {
	      if (GET_CODE (insn) == NOTE
		  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
		insn = NEXT_INSN (insn);
	      else
		insn = delete_insn (insn);
	    }
	  /* INSN is now the code_label.  */
	}
2165 2166 2167 2168 2169 2170 2171 2172
      /* Also remove (set (pc) (pc)) insns which can be created by
	 gcse.  We eliminate such insns now to avoid having them
	 cause problems later.  */
      else if (GET_CODE (insn) == JUMP_INSN
	       && SET_SRC (PATTERN (insn)) == pc_rtx
	       && SET_DEST (PATTERN (insn)) == pc_rtx)
	insn = delete_insn (insn);

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
      else
	insn = NEXT_INSN (insn);
    }
}

/* Mark the label each jump jumps to.
   Combine consecutive labels, and count uses of labels.

   For each label, make a chain (using `jump_chain')
   of all the *unconditional* jumps that jump to it;
   also make a chain of all returns.

   CROSS_JUMP indicates whether we are doing cross jumping
   and if we are whether we will be paying attention to
   death notes or not.  */

static void
mark_all_labels (f, cross_jump)
     rtx f;
     int cross_jump;
{
  rtx insn;

  for (insn = f; insn; insn = NEXT_INSN (insn))
    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
      {
	mark_jump_label (PATTERN (insn), insn, cross_jump);
	if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
	  {
	    if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
	      {
		jump_chain[INSN_UID (insn)]
		  = jump_chain[INSN_UID (JUMP_LABEL (insn))];
		jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
	      }
	    if (GET_CODE (PATTERN (insn)) == RETURN)
	      {
		jump_chain[INSN_UID (insn)] = jump_chain[0];
		jump_chain[0] = insn;
	      }
	  }
      }
}

/* Delete all labels already not referenced.
   Also find and return the last insn.  */

static rtx
delete_unreferenced_labels (f)
     rtx f;
{
  rtx final = NULL_RTX;
  rtx insn;

  for (insn = f; insn; )
    {
      if (GET_CODE (insn) == CODE_LABEL && LABEL_NUSES (insn) == 0)
	insn = delete_insn (insn);
      else
	{
	  final = insn;
	  insn = NEXT_INSN (insn);
	}
    }

  return final;
}

/* Delete various simple forms of moves which have no necessary
   side effect.  */

static void
delete_noop_moves (f)
     rtx f;
{
  rtx insn, next;

  for (insn = f; insn; )
    {
      next = NEXT_INSN (insn);

      if (GET_CODE (insn) == INSN)
	{
	  register rtx body = PATTERN (insn);

/* Combine stack_adjusts with following push_insns.  */
#ifdef PUSH_ROUNDING
	  if (GET_CODE (body) == SET
	      && SET_DEST (body) == stack_pointer_rtx
	      && GET_CODE (SET_SRC (body)) == PLUS
	      && XEXP (SET_SRC (body), 0) == stack_pointer_rtx
	      && GET_CODE (XEXP (SET_SRC (body), 1)) == CONST_INT
	      && INTVAL (XEXP (SET_SRC (body), 1)) > 0)
	    {
	      rtx p;
	      rtx stack_adjust_insn = insn;
	      int stack_adjust_amount = INTVAL (XEXP (SET_SRC (body), 1));
	      int total_pushed = 0;
	      int pushes = 0;

	      /* Find all successive push insns.  */
	      p = insn;
	      /* Don't convert more than three pushes;
		 that starts adding too many displaced addresses
		 and the whole thing starts becoming a losing
		 proposition.  */
	      while (pushes < 3)
		{
		  rtx pbody, dest;
		  p = next_nonnote_insn (p);
		  if (p == 0 || GET_CODE (p) != INSN)
		    break;
		  pbody = PATTERN (p);
		  if (GET_CODE (pbody) != SET)
		    break;
		  dest = SET_DEST (pbody);
		  /* Allow a no-op move between the adjust and the push.  */
		  if (GET_CODE (dest) == REG
		      && GET_CODE (SET_SRC (pbody)) == REG
		      && REGNO (dest) == REGNO (SET_SRC (pbody)))
		    continue;
		  if (! (GET_CODE (dest) == MEM
			 && GET_CODE (XEXP (dest, 0)) == POST_INC
			 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
		    break;
		  pushes++;
		  if (total_pushed + GET_MODE_SIZE (GET_MODE (SET_DEST (pbody)))
		      > stack_adjust_amount)
		    break;
		  total_pushed += GET_MODE_SIZE (GET_MODE (SET_DEST (pbody)));
		}

	      /* Discard the amount pushed from the stack adjust;
		 maybe eliminate it entirely.  */
	      if (total_pushed >= stack_adjust_amount)
		{
		  delete_computation (stack_adjust_insn);
		  total_pushed = stack_adjust_amount;
		}
	      else
		XEXP (SET_SRC (PATTERN (stack_adjust_insn)), 1)
		  = GEN_INT (stack_adjust_amount - total_pushed);

	      /* Change the appropriate push insns to ordinary stores.  */
	      p = insn;
	      while (total_pushed > 0)
		{
		  rtx pbody, dest;
		  p = next_nonnote_insn (p);
		  if (GET_CODE (p) != INSN)
		    break;
		  pbody = PATTERN (p);
		  if (GET_CODE (pbody) != SET)
		    break;
		  dest = SET_DEST (pbody);
		  /* Allow a no-op move between the adjust and the push.  */
		  if (GET_CODE (dest) == REG
		      && GET_CODE (SET_SRC (pbody)) == REG
		      && REGNO (dest) == REGNO (SET_SRC (pbody)))
		    continue;
		  if (! (GET_CODE (dest) == MEM
			 && GET_CODE (XEXP (dest, 0)) == POST_INC
			 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx))
		    break;
		  total_pushed -= GET_MODE_SIZE (GET_MODE (SET_DEST (pbody)));
		  /* If this push doesn't fully fit in the space
		     of the stack adjust that we deleted,
		     make another stack adjust here for what we
		     didn't use up.  There should be peepholes
		     to recognize the resulting sequence of insns.  */
		  if (total_pushed < 0)
		    {
		      emit_insn_before (gen_add2_insn (stack_pointer_rtx,
						       GEN_INT (- total_pushed)),
					p);
		      break;
		    }
		  XEXP (dest, 0)
		    = plus_constant (stack_pointer_rtx, total_pushed);
		}
	    }
#endif

	  /* Detect and delete no-op move instructions
	     resulting from not allocating a parameter in a register.  */

	  if (GET_CODE (body) == SET
	      && (SET_DEST (body) == SET_SRC (body)
		  || (GET_CODE (SET_DEST (body)) == MEM
		      && GET_CODE (SET_SRC (body)) == MEM
		      && rtx_equal_p (SET_SRC (body), SET_DEST (body))))
	      && ! (GET_CODE (SET_DEST (body)) == MEM
		    && MEM_VOLATILE_P (SET_DEST (body)))
	      && ! (GET_CODE (SET_SRC (body)) == MEM
		    && MEM_VOLATILE_P (SET_SRC (body))))
	    delete_computation (insn);

	  /* Detect and ignore no-op move instructions
	     resulting from smart or fortuitous register allocation.  */

	  else if (GET_CODE (body) == SET)
	    {
	      int sreg = true_regnum (SET_SRC (body));
	      int dreg = true_regnum (SET_DEST (body));

	      if (sreg == dreg && sreg >= 0)
		delete_insn (insn);
	      else if (sreg >= 0 && dreg >= 0)
		{
		  rtx trial;
		  rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
					    sreg, NULL_PTR, dreg,
					    GET_MODE (SET_SRC (body)));

		  if (tem != 0
		      && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
		    {
		      /* DREG may have been the target of a REG_DEAD note in
			 the insn which makes INSN redundant.  If so, reorg
			 would still think it is dead.  So search for such a
			 note and delete it if we find it.  */
		      if (! find_regno_note (insn, REG_UNUSED, dreg))
			for (trial = prev_nonnote_insn (insn);
			     trial && GET_CODE (trial) != CODE_LABEL;
			     trial = prev_nonnote_insn (trial))
			  if (find_regno_note (trial, REG_DEAD, dreg))
			    {
			      remove_death (dreg, trial);
			      break;
			    }

		      /* Deleting insn could lose a death-note for SREG.  */
		      if ((trial = find_regno_note (insn, REG_DEAD, sreg)))
			{
			  /* Change this into a USE so that we won't emit
			     code for it, but still can keep the note.  */
			  PATTERN (insn)
			    = gen_rtx_USE (VOIDmode, XEXP (trial, 0));
			  INSN_CODE (insn) = -1;
			  /* Remove all reg notes but the REG_DEAD one.  */
			  REG_NOTES (insn) = trial;
			  XEXP (trial, 1) = NULL_RTX;
			}
		      else
			delete_insn (insn);
		    }
		}
	      else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
		       && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
					  NULL_PTR, 0,
					  GET_MODE (SET_DEST (body))))
		{
		  /* This handles the case where we have two consecutive
		     assignments of the same constant to pseudos that didn't
		     get a hard reg.  Each SET from the constant will be
		     converted into a SET of the spill register and an
		     output reload will be made following it.  This produces
		     two loads of the same constant into the same spill
		     register.  */

		  rtx in_insn = insn;

		  /* Look back for a death note for the first reg.
		     If there is one, it is no longer accurate.  */
		  while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
		    {
		      if ((GET_CODE (in_insn) == INSN
			   || GET_CODE (in_insn) == JUMP_INSN)
			  && find_regno_note (in_insn, REG_DEAD, dreg))
			{
			  remove_death (dreg, in_insn);
			  break;
			}
		      in_insn = PREV_INSN (in_insn);
		    }

		  /* Delete the second load of the value.  */
		  delete_insn (insn);
		}
	    }
	  else if (GET_CODE (body) == PARALLEL)
	    {
	      /* If each part is a set between two identical registers or
		 a USE or CLOBBER, delete the insn.  */
	      int i, sreg, dreg;
	      rtx tem;

	      for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
		{
		  tem = XVECEXP (body, 0, i);
		  if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
		    continue;

		  if (GET_CODE (tem) != SET
		      || (sreg = true_regnum (SET_SRC (tem))) < 0
		      || (dreg = true_regnum (SET_DEST (tem))) < 0
		      || dreg != sreg)
		    break;
		}
		  
	      if (i < 0)
		delete_insn (insn);
	    }
	  /* Also delete insns to store bit fields if they are no-ops.  */
	  /* Not worth the hair to detect this in the big-endian case.  */
	  else if (! BYTES_BIG_ENDIAN
		   && GET_CODE (body) == SET
		   && GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
		   && XEXP (SET_DEST (body), 2) == const0_rtx
		   && XEXP (SET_DEST (body), 0) == SET_SRC (body)
		   && ! (GET_CODE (SET_SRC (body)) == MEM
			 && MEM_VOLATILE_P (SET_SRC (body))))
	    delete_insn (insn);
	}
      insn = next;
    }
}

/* See if there is still a NOTE_INSN_FUNCTION_END in this function.
   If so indicate that this function can drop off the end by returning
   1, else return 0.

   CHECK_DELETED indicates whether we must check if the note being
   searched for has the deleted flag set.

   DELETE_FINAL_NOTE indicates whether we should delete the note
   if we find it.  */

static int
calculate_can_reach_end (last, check_deleted, delete_final_note)
     rtx last;
     int check_deleted;
     int delete_final_note;
{
  rtx insn = last;
  int n_labels = 1;

  while (insn != NULL_RTX)
    {
      int ok = 0;

      /* One label can follow the end-note: the return label.  */
      if (GET_CODE (insn) == CODE_LABEL && n_labels-- > 0)
	ok = 1;
      /* Ordinary insns can follow it if returning a structure.  */
      else if (GET_CODE (insn) == INSN)
	ok = 1;
      /* If machine uses explicit RETURN insns, no epilogue,
	 then one of them follows the note.  */
      else if (GET_CODE (insn) == JUMP_INSN
	       && GET_CODE (PATTERN (insn)) == RETURN)
	ok = 1;
      /* A barrier can follow the return insn.  */
      else if (GET_CODE (insn) == BARRIER)
	ok = 1;
      /* Other kinds of notes can follow also.  */
      else if (GET_CODE (insn) == NOTE
	       && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
	ok = 1;

      if (ok != 1)
	break;
Richard Kenner committed
2535 2536

      insn = PREV_INSN (insn);
2537
    }
Richard Kenner committed
2538

2539 2540 2541 2542
  /* See if we backed up to the appropriate type of note.  */
  if (insn != NULL_RTX
      && GET_CODE (insn) == NOTE
      && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END
2543 2544
      && (check_deleted == 0
	  || ! INSN_DELETED_P (insn)))
Richard Kenner committed
2545
    {
2546 2547 2548
      if (delete_final_note)
	delete_insn (insn);
      return 1;
Richard Kenner committed
2549 2550
    }

2551
  return 0;
Richard Kenner committed
2552
}
2553

Richard Kenner committed
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
   jump.  Assume that this unconditional jump is to the exit test code.  If
   the code is sufficiently simple, make a copy of it before INSN,
   followed by a jump to the exit of the loop.  Then delete the unconditional
   jump after INSN.

   Return 1 if we made the change, else 0.

   This is only safe immediately after a regscan pass because it uses the
   values of regno_first_uid and regno_last_uid.  */

static int
duplicate_loop_exit_test (loop_start)
     rtx loop_start;
{
2569
  rtx insn, set, reg, p, link;
2570
  rtx copy = 0;
Richard Kenner committed
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
  int num_insns = 0;
  rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
  rtx lastexit;
  int max_reg = max_reg_num ();
  rtx *reg_map = 0;

  /* Scan the exit code.  We do not perform this optimization if any insn:

         is a CALL_INSN
	 is a CODE_LABEL
	 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
	 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
	 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
2584
	      is not valid.
2585 2586 2587 2588

     We also do not do this if we find an insn with ASM_OPERANDS.  While
     this restriction should not be necessary, copying an insn with
     ASM_OPERANDS can confuse asm_noperands in some cases.
Richard Kenner committed
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

     Also, don't do this if the exit code is more than 20 insns.  */

  for (insn = exitcode;
       insn
       && ! (GET_CODE (insn) == NOTE
	     && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
       insn = NEXT_INSN (insn))
    {
      switch (GET_CODE (insn))
	{
	case CODE_LABEL:
	case CALL_INSN:
	  return 0;
	case NOTE:
2604 2605 2606 2607 2608 2609 2610 2611 2612
	  /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
	     a jump immediately after the loop start that branches outside
	     the loop but within an outer loop, near the exit test.
	     If we copied this exit test and created a phony
	     NOTE_INSN_LOOP_VTOP, this could make instructions immediately
	     before the exit test look like these could be safely moved
	     out of the loop even if they actually may be never executed.
	     This can be avoided by checking here for NOTE_INSN_LOOP_CONT.  */

Richard Kenner committed
2613
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
2614
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
Richard Kenner committed
2615
	    return 0;
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625

	  if (optimize < 2
	      && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
		  || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
	    /* If we were to duplicate this code, we would not move
	       the BLOCK notes, and so debugging the moved code would
	       be difficult.  Thus, we only move the code with -O2 or
	       higher.  */
	    return 0;

Richard Kenner committed
2626 2627 2628
	  break;
	case JUMP_INSN:
	case INSN:
2629 2630 2631 2632
	  /* The code below would grossly mishandle REG_WAS_0 notes,
	     so get rid of them here.  */
	  while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
	    remove_note (insn, p);
Richard Kenner committed
2633
	  if (++num_insns > 20
2634
	      || find_reg_note (insn, REG_RETVAL, NULL_RTX)
2635
	      || find_reg_note (insn, REG_LIBCALL, NULL_RTX)
2636
	      || asm_noperands (PATTERN (insn)) > 0)
Richard Kenner committed
2637 2638
	    return 0;
	  break;
2639 2640
	default:
	  break;
Richard Kenner committed
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	}
    }

  /* Unless INSN is zero, we can do the optimization.  */
  if (insn == 0)
    return 0;

  lastexit = insn;

  /* See if any insn sets a register only used in the loop exit code and
     not a user variable.  If so, replace it with a new register.  */
  for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == INSN
	&& (set = single_set (insn)) != 0
2655 2656 2657 2658
	&& ((reg = SET_DEST (set), GET_CODE (reg) == REG)
	    || (GET_CODE (reg) == SUBREG
		&& (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
	&& REGNO (reg) >= FIRST_PSEUDO_REGISTER
2659
	&& REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
Richard Kenner committed
2660 2661
      {
	for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
2662
	  if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
Richard Kenner committed
2663 2664 2665 2666 2667 2668 2669 2670 2671
	    break;

	if (p != lastexit)
	  {
	    /* We can do the replacement.  Allocate reg_map if this is the
	       first replacement we found.  */
	    if (reg_map == 0)
	      {
		reg_map = (rtx *) alloca (max_reg * sizeof (rtx));
2672
		bzero ((char *) reg_map, max_reg * sizeof (rtx));
Richard Kenner committed
2673 2674
	      }

2675
	    REG_LOOP_TEST_P (reg) = 1;
Richard Kenner committed
2676

2677
	    reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
Richard Kenner committed
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	  }
      }

  /* Now copy each insn.  */
  for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
    switch (GET_CODE (insn))
      {
      case BARRIER:
	copy = emit_barrier_before (loop_start);
	break;
      case NOTE:
	/* Only copy line-number notes.  */
	if (NOTE_LINE_NUMBER (insn) >= 0)
	  {
	    copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
	    NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
	  }
	break;

      case INSN:
	copy = emit_insn_before (copy_rtx (PATTERN (insn)), loop_start);
	if (reg_map)
	  replace_regs (PATTERN (copy), reg_map, max_reg, 1);

	mark_jump_label (PATTERN (copy), copy, 0);

	/* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
	   make them.  */
	for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
	  if (REG_NOTE_KIND (link) != REG_LABEL)
	    REG_NOTES (copy)
2709 2710 2711
	      = copy_rtx (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
					     XEXP (link, 0),
					     REG_NOTES (copy)));
Richard Kenner committed
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
	if (reg_map && REG_NOTES (copy))
	  replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
	break;

      case JUMP_INSN:
	copy = emit_jump_insn_before (copy_rtx (PATTERN (insn)), loop_start);
	if (reg_map)
	  replace_regs (PATTERN (copy), reg_map, max_reg, 1);
	mark_jump_label (PATTERN (copy), copy, 0);
	if (REG_NOTES (insn))
	  {
	    REG_NOTES (copy) = copy_rtx (REG_NOTES (insn));
	    if (reg_map)
	      replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
	  }
	
	/* If this is a simple jump, add it to the jump chain.  */

	if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
	    && simplejump_p (copy))
	  {
	    jump_chain[INSN_UID (copy)]
	      = jump_chain[INSN_UID (JUMP_LABEL (copy))];
	    jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
	  }
	break;

      default:
	abort ();
      }

  /* Now clean up by emitting a jump to the end label and deleting the jump
     at the start of the loop.  */
2745
  if (! copy || GET_CODE (copy) != BARRIER)
Richard Kenner committed
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
    {
      copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
				    loop_start);
      mark_jump_label (PATTERN (copy), copy, 0);
      if (INSN_UID (copy) < max_jump_chain
	  && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
	{
	  jump_chain[INSN_UID (copy)]
	    = jump_chain[INSN_UID (JUMP_LABEL (copy))];
	  jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
	}
      emit_barrier_before (loop_start);
    }

  /* Mark the exit code as the virtual top of the converted loop.  */
  emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);

2763 2764
  delete_insn (next_nonnote_insn (loop_start));

Richard Kenner committed
2765 2766 2767 2768
  return 1;
}

/* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, and
Jim Wilson committed
2769 2770 2771 2772
   loop-end notes between START and END out before START.  Assume that
   END is not such a note.  START may be such a note.  Returns the value
   of the new starting insn, which may be different if the original start
   was such a note.  */
Richard Kenner committed
2773

Jim Wilson committed
2774
rtx
Richard Kenner committed
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
squeeze_notes (start, end)
     rtx start, end;
{
  rtx insn;
  rtx next;

  for (insn = start; insn != end; insn = next)
    {
      next = NEXT_INSN (insn);
      if (GET_CODE (insn) == NOTE
	  && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
	{
Jim Wilson committed
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	  if (insn == start)
	    start = next;
	  else
	    {
	      rtx prev = PREV_INSN (insn);
	      PREV_INSN (insn) = PREV_INSN (start);
	      NEXT_INSN (insn) = start;
	      NEXT_INSN (PREV_INSN (insn)) = insn;
	      PREV_INSN (NEXT_INSN (insn)) = insn;
	      NEXT_INSN (prev) = next;
	      PREV_INSN (next) = prev;
	    }
Richard Kenner committed
2804 2805
	}
    }
Jim Wilson committed
2806 2807

  return start;
Richard Kenner committed
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
}

/* Compare the instructions before insn E1 with those before E2
   to find an opportunity for cross jumping.
   (This means detecting identical sequences of insns followed by
   jumps to the same place, or followed by a label and a jump
   to that label, and replacing one with a jump to the other.)

   Assume E1 is a jump that jumps to label E2
   (that is not always true but it might as well be).
   Find the longest possible equivalent sequences
   and store the first insns of those sequences into *F1 and *F2.
   Store zero there if no equivalent preceding instructions are found.

   We give up if we find a label in stream 1.
   Actually we could transfer that label into stream 2.  */

static void
find_cross_jump (e1, e2, minimum, f1, f2)
     rtx e1, e2;
     int minimum;
     rtx *f1, *f2;
{
  register rtx i1 = e1, i2 = e2;
  register rtx p1, p2;
  int lose = 0;

  rtx last1 = 0, last2 = 0;
  rtx afterlast1 = 0, afterlast2 = 0;

  *f1 = 0;
  *f2 = 0;

  while (1)
    {
      i1 = prev_nonnote_insn (i1);

      i2 = PREV_INSN (i2);
      while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
	i2 = PREV_INSN (i2);

      if (i1 == 0)
	break;

      /* Don't allow the range of insns preceding E1 or E2
	 to include the other (E2 or E1).  */
      if (i2 == e1 || i1 == e2)
	break;

      /* If we will get to this code by jumping, those jumps will be
	 tensioned to go directly to the new label (before I2),
	 so this cross-jumping won't cost extra.  So reduce the minimum.  */
      if (GET_CODE (i1) == CODE_LABEL)
	{
	  --minimum;
	  break;
	}

      if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
	break;

2869 2870 2871 2872 2873 2874 2875
      /* Avoid moving insns across EH regions if either of the insns
	 can throw.  */
      if (flag_exceptions
	  && (asynchronous_exceptions || GET_CODE (i1) == CALL_INSN)
	  && !in_same_eh_region (i1, i2))
	break;

Richard Kenner committed
2876 2877 2878
      p1 = PATTERN (i1);
      p2 = PATTERN (i2);
	
2879 2880 2881 2882 2883 2884
      /* If this is a CALL_INSN, compare register usage information.
	 If we don't check this on stack register machines, the two
	 CALL_INSNs might be merged leaving reg-stack.c with mismatching
	 numbers of stack registers in the same basic block.
	 If we don't check this on machines with delay slots, a delay slot may
	 be filled that clobbers a parameter expected by the subroutine.
2885

2886 2887 2888 2889 2890 2891 2892 2893 2894
	 ??? We take the simple route for now and assume that if they're
	 equal, they were constructed identically.  */

      if (GET_CODE (i1) == CALL_INSN
	  && ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
			    CALL_INSN_FUNCTION_USAGE (i2)))
	lose = 1;

#ifdef STACK_REGS
Richard Kenner committed
2895 2896
      /* If cross_jump_death_matters is not 0, the insn's mode
	 indicates whether or not the insn contains any stack-like
Mike Stump committed
2897
	 regs.  */
Richard Kenner committed
2898

2899
      if (!lose && cross_jump_death_matters && stack_regs_mentioned (i1))
Richard Kenner committed
2900 2901 2902
	{
	  /* If register stack conversion has already been done, then
	     death notes must also be compared before it is certain that
Mike Stump committed
2903
	     the two instruction streams match.  */
Richard Kenner committed
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929

	  rtx note;
	  HARD_REG_SET i1_regset, i2_regset;

	  CLEAR_HARD_REG_SET (i1_regset);
	  CLEAR_HARD_REG_SET (i2_regset);

	  for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
	    if (REG_NOTE_KIND (note) == REG_DEAD
		&& STACK_REG_P (XEXP (note, 0)))
	      SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));

	  for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
	    if (REG_NOTE_KIND (note) == REG_DEAD
		&& STACK_REG_P (XEXP (note, 0)))
	      SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));

	  GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);

	  lose = 1;

	done:
	  ;
	}
#endif

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
      /* Don't allow old-style asm or volatile extended asms to be accepted
	 for cross jumping purposes.  It is conceptually correct to allow
	 them, since cross-jumping preserves the dynamic instruction order
	 even though it is changing the static instruction order.  However,
	 if an asm is being used to emit an assembler pseudo-op, such as
	 the MIPS `.set reorder' pseudo-op, then the static instruction order
	 matters and it must be preserved.  */
      if (GET_CODE (p1) == ASM_INPUT || GET_CODE (p2) == ASM_INPUT
	  || (GET_CODE (p1) == ASM_OPERANDS && MEM_VOLATILE_P (p1))
	  || (GET_CODE (p2) == ASM_OPERANDS && MEM_VOLATILE_P (p2)))
	lose = 1;

      if (lose || GET_CODE (p1) != GET_CODE (p2)
Richard Kenner committed
2943 2944 2945 2946 2947 2948 2949
	  || ! rtx_renumbered_equal_p (p1, p2))
	{
	  /* The following code helps take care of G++ cleanups.  */
	  rtx equiv1;
	  rtx equiv2;

	  if (!lose && GET_CODE (p1) == GET_CODE (p2)
2950 2951 2952 2953
	      && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
		  || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
	      && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
		  || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
Richard Kenner committed
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	      /* If the equivalences are not to a constant, they may
		 reference pseudos that no longer exist, so we can't
		 use them.  */
	      && CONSTANT_P (XEXP (equiv1, 0))
	      && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
	    {
	      rtx s1 = single_set (i1);
	      rtx s2 = single_set (i2);
	      if (s1 != 0 && s2 != 0
		  && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
		{
		  validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
		  validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
		  if (! rtx_renumbered_equal_p (p1, p2))
		    cancel_changes (0);
		  else if (apply_change_group ())
		    goto win;
		}
	    }

	  /* Insns fail to match; cross jumping is limited to the following
	     insns.  */

#ifdef HAVE_cc0
	  /* Don't allow the insn after a compare to be shared by
	     cross-jumping unless the compare is also shared.
	     Here, if either of these non-matching insns is a compare,
	     exclude the following insn from possible cross-jumping.  */
	  if (sets_cc0_p (p1) || sets_cc0_p (p2))
	    last1 = afterlast1, last2 = afterlast2, ++minimum;
#endif

	  /* If cross-jumping here will feed a jump-around-jump
	     optimization, this jump won't cost extra, so reduce
	     the minimum.  */
	  if (GET_CODE (i1) == JUMP_INSN
	      && JUMP_LABEL (i1)
	      && prev_real_insn (JUMP_LABEL (i1)) == e1)
	    --minimum;
	  break;
	}

    win:
      if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
	{
	  /* Ok, this insn is potentially includable in a cross-jump here.  */
	  afterlast1 = last1, afterlast2 = last2;
	  last1 = i1, last2 = i2, --minimum;
	}
    }

  if (minimum <= 0 && last1 != 0 && last1 != e1)
    *f1 = last1, *f2 = last2;
}

static void
do_cross_jump (insn, newjpos, newlpos)
     rtx insn, newjpos, newlpos;
{
  /* Find an existing label at this point
     or make a new one if there is none.  */
  register rtx label = get_label_before (newlpos);

  /* Make the same jump insn jump to the new point.  */
  if (GET_CODE (PATTERN (insn)) == RETURN)
    {
      /* Remove from jump chain of returns.  */
      delete_from_jump_chain (insn);
      /* Change the insn.  */
      PATTERN (insn) = gen_jump (label);
      INSN_CODE (insn) = -1;
      JUMP_LABEL (insn) = label;
      LABEL_NUSES (label)++;
      /* Add to new the jump chain.  */
      if (INSN_UID (label) < max_jump_chain
	  && INSN_UID (insn) < max_jump_chain)
	{
	  jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
	  jump_chain[INSN_UID (label)] = insn;
	}
    }
  else
    redirect_jump (insn, label);

  /* Delete the matching insns before the jump.  Also, remove any REG_EQUAL
     or REG_EQUIV note in the NEWLPOS stream that isn't also present in
     the NEWJPOS stream.  */

  while (newjpos != insn)
    {
      rtx lnote;

      for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
	if ((REG_NOTE_KIND (lnote) == REG_EQUAL
	     || REG_NOTE_KIND (lnote) == REG_EQUIV)
	    && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
	    && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
	  remove_note (newlpos, lnote);

      delete_insn (newjpos);
      newjpos = next_real_insn (newjpos);
      newlpos = next_real_insn (newlpos);
    }
}

/* Return the label before INSN, or put a new label there.  */

rtx
get_label_before (insn)
     rtx insn;
{
  rtx label;

  /* Find an existing label at this point
     or make a new one if there is none.  */
  label = prev_nonnote_insn (insn);

  if (label == 0 || GET_CODE (label) != CODE_LABEL)
    {
      rtx prev = PREV_INSN (insn);

      label = gen_label_rtx ();
      emit_label_after (label, prev);
      LABEL_NUSES (label) = 0;
    }
  return label;
}

/* Return the label after INSN, or put a new label there.  */

rtx
get_label_after (insn)
     rtx insn;
{
  rtx label;

  /* Find an existing label at this point
     or make a new one if there is none.  */
  label = next_nonnote_insn (insn);

  if (label == 0 || GET_CODE (label) != CODE_LABEL)
    {
      label = gen_label_rtx ();
      emit_label_after (label, insn);
      LABEL_NUSES (label) = 0;
    }
  return label;
}

/* Return 1 if INSN is a jump that jumps to right after TARGET
   only on the condition that TARGET itself would drop through.
   Assumes that TARGET is a conditional jump.  */

static int
jump_back_p (insn, target)
     rtx insn, target;
{
  rtx cinsn, ctarget;
  enum rtx_code codei, codet;

  if (simplejump_p (insn) || ! condjump_p (insn)
      || simplejump_p (target)
      || target != prev_real_insn (JUMP_LABEL (insn)))
    return 0;

  cinsn = XEXP (SET_SRC (PATTERN (insn)), 0);
  ctarget = XEXP (SET_SRC (PATTERN (target)), 0);

  codei = GET_CODE (cinsn);
  codet = GET_CODE (ctarget);

  if (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx)
    {
      if (! can_reverse_comparison_p (cinsn, insn))
	return 0;
      codei = reverse_condition (codei);
    }

  if (XEXP (SET_SRC (PATTERN (target)), 2) == pc_rtx)
    {
      if (! can_reverse_comparison_p (ctarget, target))
	return 0;
      codet = reverse_condition (codet);
    }

  return (codei == codet
	  && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
	  && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
}

/* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
   return non-zero if it is safe to reverse this comparison.  It is if our
   floating-point is not IEEE, if this is an NE or EQ comparison, or if
   this is known to be an integer comparison.  */

int
can_reverse_comparison_p (comparison, insn)
     rtx comparison;
     rtx insn;
{
  rtx arg0;

  /* If this is not actually a comparison, we can't reverse it.  */
  if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
    return 0;

  if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
      /* If this is an NE comparison, it is safe to reverse it to an EQ
	 comparison and vice versa, even for floating point.  If no operands
	 are NaNs, the reversal is valid.  If some operand is a NaN, EQ is
	 always false and NE is always true, so the reversal is also valid.  */
3165
      || flag_fast_math
Richard Kenner committed
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
      || GET_CODE (comparison) == NE
      || GET_CODE (comparison) == EQ)
    return 1;

  arg0 = XEXP (comparison, 0);

  /* Make sure ARG0 is one of the actual objects being compared.  If we
     can't do this, we can't be sure the comparison can be reversed. 

     Handle cc0 and a MODE_CC register.  */
  if ((GET_CODE (arg0) == REG && GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC)
#ifdef HAVE_cc0
      || arg0 == cc0_rtx
#endif
      )
    {
      rtx prev = prev_nonnote_insn (insn);
3183
      rtx set;
Richard Kenner committed
3184

3185 3186 3187 3188 3189 3190 3191 3192 3193
      /* If the comparison itself was a loop invariant, it could have been
	 hoisted out of the loop.  If we proceed to unroll such a loop, then
	 we may not be able to find the comparison when copying the loop.

	 Returning zero in that case is the safe thing to do.  */
      if (prev == 0)
	return 0;

      set = single_set (prev);
Richard Kenner committed
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
      if (set == 0 || SET_DEST (set) != arg0)
	return 0;

      arg0 = SET_SRC (set);

      if (GET_CODE (arg0) == COMPARE)
	arg0 = XEXP (arg0, 0);
    }

  /* We can reverse this if ARG0 is a CONST_INT or if its mode is
     not VOIDmode and neither a MODE_CC nor MODE_FLOAT type.  */
  return (GET_CODE (arg0) == CONST_INT
	  || (GET_MODE (arg0) != VOIDmode
	      && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_CC
	      && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_FLOAT));
}

/* Given an rtx-code for a comparison, return the code
   for the negated comparison.
   WATCH OUT!  reverse_condition is not safe to use on a jump
   that might be acting on the results of an IEEE floating point comparison,
   because of the special treatment of non-signaling nans in comparisons.  
   Use can_reverse_comparison_p to be sure.  */

enum rtx_code
reverse_condition (code)
     enum rtx_code code;
{
  switch (code)
    {
    case EQ:
      return NE;

    case NE:
      return EQ;

    case GT:
      return LE;

    case GE:
      return LT;

    case LT:
      return GE;

    case LE:
      return GT;

    case GTU:
      return LEU;

    case GEU:
      return LTU;

    case LTU:
      return GEU;

    case LEU:
      return GTU;

    default:
      abort ();
      return UNKNOWN;
    }
}

/* Similar, but return the code when two operands of a comparison are swapped.
   This IS safe for IEEE floating-point.  */

enum rtx_code
swap_condition (code)
     enum rtx_code code;
{
  switch (code)
    {
    case EQ:
    case NE:
      return code;

    case GT:
      return LT;

    case GE:
      return LE;

    case LT:
      return GT;

    case LE:
      return GE;

    case GTU:
      return LTU;

    case GEU:
      return LEU;

    case LTU:
      return GTU;

    case LEU:
      return GEU;

    default:
      abort ();
      return UNKNOWN;
    }
}

/* Given a comparison CODE, return the corresponding unsigned comparison.
   If CODE is an equality comparison or already an unsigned comparison,
   CODE is returned.  */

enum rtx_code
unsigned_condition (code)
     enum rtx_code code;
{
  switch (code)
    {
    case EQ:
    case NE:
    case GTU:
    case GEU:
    case LTU:
    case LEU:
      return code;

    case GT:
      return GTU;

    case GE:
      return GEU;

    case LT:
      return LTU;

    case LE:
      return LEU;

    default:
      abort ();
    }
}

/* Similarly, return the signed version of a comparison.  */

enum rtx_code
signed_condition (code)
     enum rtx_code code;
{
  switch (code)
    {
    case EQ:
    case NE:
    case GT:
    case GE:
    case LT:
    case LE:
      return code;

    case GTU:
      return GT;

    case GEU:
      return GE;

    case LTU:
      return LT;

    case LEU:
      return LE;

    default:
      abort ();
    }
}

/* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
   truth of CODE1 implies the truth of CODE2.  */

int
comparison_dominates_p (code1, code2)
     enum rtx_code code1, code2;
{
  if (code1 == code2)
    return 1;

  switch (code1)
    {
    case EQ:
      if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU)
	return 1;
      break;

    case LT:
3389
      if (code2 == LE || code2 == NE)
Richard Kenner committed
3390 3391 3392 3393
	return 1;
      break;

    case GT:
3394
      if (code2 == GE || code2 == NE)
Richard Kenner committed
3395 3396 3397 3398
	return 1;
      break;

    case LTU:
3399
      if (code2 == LEU || code2 == NE)
Richard Kenner committed
3400 3401 3402 3403
	return 1;
      break;

    case GTU:
3404
      if (code2 == GEU || code2 == NE)
Richard Kenner committed
3405 3406
	return 1;
      break;
3407 3408 3409
      
    default:
      break;
Richard Kenner committed
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
    }

  return 0;
}

/* Return 1 if INSN is an unconditional jump and nothing else.  */

int
simplejump_p (insn)
     rtx insn;
{
  return (GET_CODE (insn) == JUMP_INSN
	  && GET_CODE (PATTERN (insn)) == SET
	  && GET_CODE (SET_DEST (PATTERN (insn))) == PC
	  && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
}

/* Return nonzero if INSN is a (possibly) conditional jump
   and nothing more.  */

int
condjump_p (insn)
     rtx insn;
{
  register rtx x = PATTERN (insn);
  if (GET_CODE (x) != SET)
    return 0;
  if (GET_CODE (SET_DEST (x)) != PC)
    return 0;
  if (GET_CODE (SET_SRC (x)) == LABEL_REF)
    return 1;
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
    return 0;
  if (XEXP (SET_SRC (x), 2) == pc_rtx
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
      && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
	  || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
    return 1;
  if (XEXP (SET_SRC (x), 1) == pc_rtx
      && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
	  || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
    return 1;
  return 0;
}

/* Return nonzero if INSN is a (possibly) conditional jump
   and nothing more.  */

int
condjump_in_parallel_p (insn)
     rtx insn;
{
  register rtx x = PATTERN (insn);

  if (GET_CODE (x) != PARALLEL)
    return 0;
  else
    x = XVECEXP (x, 0, 0);

  if (GET_CODE (x) != SET)
    return 0;
  if (GET_CODE (SET_DEST (x)) != PC)
    return 0;
  if (GET_CODE (SET_SRC (x)) == LABEL_REF)
    return 1;
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
    return 0;
  if (XEXP (SET_SRC (x), 2) == pc_rtx
Richard Kenner committed
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
      && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
	  || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
    return 1;
  if (XEXP (SET_SRC (x), 1) == pc_rtx
      && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
	  || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
    return 1;
  return 0;
}

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
/* Return the label of a conditional jump.  */

rtx
condjump_label (insn)
     rtx insn;
{
  register rtx x = PATTERN (insn);

  if (GET_CODE (x) == PARALLEL)
    x = XVECEXP (x, 0, 0);
  if (GET_CODE (x) != SET)
    return NULL_RTX;
  if (GET_CODE (SET_DEST (x)) != PC)
    return NULL_RTX;
  x = SET_SRC (x);
  if (GET_CODE (x) == LABEL_REF)
    return x;
  if (GET_CODE (x) != IF_THEN_ELSE)
    return NULL_RTX;
  if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
    return XEXP (x, 1);
  if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
    return XEXP (x, 2);
  return NULL_RTX;
}

3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
/* Return true if INSN is a (possibly conditional) return insn.  */

static int
returnjump_p_1 (loc, data)
     rtx *loc;
     void *data ATTRIBUTE_UNUSED;
{
  rtx x = *loc;
  return GET_CODE (x) == RETURN;
}

int
returnjump_p (insn)
     rtx insn;
{
  return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
}

3531 3532
#ifdef HAVE_cc0

Richard Kenner committed
3533 3534 3535 3536 3537 3538 3539
/* Return 1 if X is an RTX that does nothing but set the condition codes
   and CLOBBER or USE registers.
   Return -1 if X does explicitly set the condition codes,
   but also does other things.  */

int
sets_cc0_p (x)
Kaveh R. Ghazi committed
3540
     rtx x ATTRIBUTE_UNUSED;
Richard Kenner committed
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
{
  if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
    return 1;
  if (GET_CODE (x) == PARALLEL)
    {
      int i;
      int sets_cc0 = 0;
      int other_things = 0;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  if (GET_CODE (XVECEXP (x, 0, i)) == SET
	      && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
	    sets_cc0 = 1;
	  else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
	    other_things = 1;
	}
      return ! sets_cc0 ? 0 : other_things ? -1 : 1;
    }
  return 0;
}
3561
#endif
Richard Kenner committed
3562 3563 3564 3565

/* Follow any unconditional jump at LABEL;
   return the ultimate label reached by any such chain of jumps.
   If LABEL is not followed by a jump, return LABEL.
3566 3567
   If the chain loops or we can't find end, return LABEL,
   since that tells caller to avoid changing the insn.
Richard Kenner committed
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584

   If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
   a USE or CLOBBER.  */

rtx
follow_jumps (label)
     rtx label;
{
  register rtx insn;
  register rtx next;
  register rtx value = label;
  register int depth;

  for (depth = 0;
       (depth < 10
	&& (insn = next_active_insn (value)) != 0
	&& GET_CODE (insn) == JUMP_INSN
3585 3586
	&& ((JUMP_LABEL (insn) != 0 && simplejump_p (insn))
	    || GET_CODE (PATTERN (insn)) == RETURN)
Richard Kenner committed
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
	&& (next = NEXT_INSN (insn))
	&& GET_CODE (next) == BARRIER);
       depth++)
    {
      /* Don't chain through the insn that jumps into a loop
	 from outside the loop,
	 since that would create multiple loop entry jumps
	 and prevent loop optimization.  */
      rtx tem;
      if (!reload_completed)
	for (tem = value; tem != insn; tem = NEXT_INSN (tem))
	  if (GET_CODE (tem) == NOTE
3599 3600 3601 3602
	      && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
		  /* ??? Optional.  Disables some optimizations, but makes
		     gcov output more accurate with -O.  */
		  || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
Richard Kenner committed
3603 3604 3605 3606
	    return value;

      /* If we have found a cycle, make the insn jump to itself.  */
      if (JUMP_LABEL (insn) == label)
3607
	return label;
3608 3609 3610 3611 3612 3613

      tem = next_active_insn (JUMP_LABEL (insn));
      if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
		  || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
	break;

Richard Kenner committed
3614 3615
      value = JUMP_LABEL (insn);
    }
3616 3617
  if (depth == 10)
    return label;
Richard Kenner committed
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
  return value;
}

/* Assuming that field IDX of X is a vector of label_refs,
   replace each of them by the ultimate label reached by it.
   Return nonzero if a change is made.
   If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG.  */

static int
tension_vector_labels (x, idx)
     register rtx x;
     register int idx;
{
  int changed = 0;
  register int i;
  for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
    {
      register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
      register rtx nlabel = follow_jumps (olabel);
      if (nlabel && nlabel != olabel)
	{
	  XEXP (XVECEXP (x, idx, i), 0) = nlabel;
	  ++LABEL_NUSES (nlabel);
	  if (--LABEL_NUSES (olabel) == 0)
	    delete_insn (olabel);
	  changed = 1;
	}
    }
  return changed;
}

/* Find all CODE_LABELs referred to in X, and increment their use counts.
   If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
   in INSN, then store one of them in JUMP_LABEL (INSN).
   If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
   referenced in INSN, add a REG_LABEL note containing that label to INSN.
   Also, when there are consecutive labels, canonicalize on the last of them.

   Note that two labels separated by a loop-beginning note
   must be kept distinct if we have not yet done loop-optimization,
   because the gap between them is where loop-optimize
   will want to move invariant code to.  CROSS_JUMP tells us
   that loop-optimization is done with.

   Once reload has completed (CROSS_JUMP non-zero), we need not consider
   two labels distinct if they are separated by only USE or CLOBBER insns.  */

static void
mark_jump_label (x, insn, cross_jump)
     register rtx x;
     rtx insn;
     int cross_jump;
{
  register RTX_CODE code = GET_CODE (x);
  register int i;
  register char *fmt;

  switch (code)
    {
    case PC:
    case CC0:
    case REG:
    case SUBREG:
    case CONST_INT:
    case SYMBOL_REF:
    case CONST_DOUBLE:
    case CLOBBER:
    case CALL:
      return;

3688 3689 3690 3691 3692 3693 3694
    case MEM:
      /* If this is a constant-pool reference, see if it is a label.  */
      if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
	mark_jump_label (get_pool_constant (XEXP (x, 0)), insn, cross_jump);
      break;

Richard Kenner committed
3695 3696
    case LABEL_REF:
      {
3697 3698 3699 3700 3701
	rtx label = XEXP (x, 0);
	rtx olabel = label;
	rtx note;
	rtx next;

Richard Kenner committed
3702 3703
	if (GET_CODE (label) != CODE_LABEL)
	  abort ();
3704

Richard Stallman committed
3705 3706 3707
	/* Ignore references to labels of containing functions.  */
	if (LABEL_REF_NONLOCAL_P (x))
	  break;
3708

Richard Kenner committed
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
	/* If there are other labels following this one,
	   replace it with the last of the consecutive labels.  */
	for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
	  {
	    if (GET_CODE (next) == CODE_LABEL)
	      label = next;
	    else if (cross_jump && GET_CODE (next) == INSN
		     && (GET_CODE (PATTERN (next)) == USE
			 || GET_CODE (PATTERN (next)) == CLOBBER))
	      continue;
	    else if (GET_CODE (next) != NOTE)
	      break;
	    else if (! cross_jump
		     && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
3723 3724 3725 3726
			 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END
			 /* ??? Optional.  Disables some optimizations, but
			    makes gcov output more accurate with -O.  */
			 || (flag_test_coverage && NOTE_LINE_NUMBER (next) > 0)))
Richard Kenner committed
3727 3728
	      break;
	  }
3729

Richard Kenner committed
3730
	XEXP (x, 0) = label;
3731 3732
	if (! insn || ! INSN_DELETED_P (insn))
	  ++LABEL_NUSES (label);
3733

Richard Kenner committed
3734 3735 3736 3737
	if (insn)
	  {
	    if (GET_CODE (insn) == JUMP_INSN)
	      JUMP_LABEL (insn) = label;
3738 3739 3740 3741 3742 3743 3744 3745 3746

	    /* If we've changed OLABEL and we had a REG_LABEL note
	       for it, update it as well.  */
	    else if (label != olabel
		     && (note = find_reg_note (insn, REG_LABEL, olabel)) != 0)
	      XEXP (note, 0) = label;

	    /* Otherwise, add a REG_LABEL note for LABEL unless there already
	       is one.  */
3747
	    else if (! find_reg_note (insn, REG_LABEL, label))
Richard Kenner committed
3748
	      {
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
		/* This code used to ignore labels which refered to dispatch
		   tables to avoid flow.c generating worse code.

		   However, in the presense of global optimizations like
		   gcse which call find_basic_blocks without calling
		   life_analysis, not recording such labels will lead
		   to compiler aborts because of inconsistencies in the
		   flow graph.  So we go ahead and record the label.

		   It may also be the case that the optimization argument
		   is no longer valid because of the more accurate cfg
		   we build in find_basic_blocks -- it no longer pessimizes
		   code when it finds a REG_LABEL note.  */
		REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, label,
						      REG_NOTES (insn));
Richard Kenner committed
3764 3765 3766 3767 3768 3769 3770 3771 3772
	      }
	  }
	return;
      }

  /* Do walk the labels in a vector, but not the first operand of an
     ADDR_DIFF_VEC.  Don't set the JUMP_LABEL of a vector.  */
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
3773 3774 3775
      if (! INSN_DELETED_P (insn))
	{
	  int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
Richard Kenner committed
3776

3777 3778 3779
	  for (i = 0; i < XVECLEN (x, eltnum); i++)
	    mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, cross_jump);
	}
3780 3781 3782 3783
      return;
      
    default:
      break;
Richard Kenner committed
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	mark_jump_label (XEXP (x, i), insn, cross_jump);
      else if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    mark_jump_label (XVECEXP (x, i, j), insn, cross_jump);
	}
    }
}

/* If all INSN does is set the pc, delete it,
   and delete the insn that set the condition codes for it
   if that's what the previous thing was.  */

void
delete_jump (insn)
     rtx insn;
{
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
  register rtx set = single_set (insn);

  if (set && GET_CODE (SET_DEST (set)) == PC)
    delete_computation (insn);
}

/* Delete INSN and recursively delete insns that compute values used only
   by INSN.  This uses the REG_DEAD notes computed during flow analysis.
   If we are running before flow.c, we need do nothing since flow.c will
   delete dead code.  We also can't know if the registers being used are
   dead or not at this point.

   Otherwise, look at all our REG_DEAD notes.  If a previous insn does
   nothing other than set a register that dies in this insn, we can delete
   that insn as well.

   On machines with CC0, if CC0 is used in this insn, we may be able to
   delete the insn that set it.  */

3827
static void
3828 3829 3830 3831
delete_computation (insn)
     rtx insn;
{
  rtx note, next;
Richard Kenner committed
3832 3833

#ifdef HAVE_cc0
3834
  if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
3835
    {
3836
      rtx prev = prev_nonnote_insn (insn);
Richard Kenner committed
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
      /* We assume that at this stage
	 CC's are always set explicitly
	 and always immediately before the jump that
	 will use them.  So if the previous insn
	 exists to set the CC's, delete it
	 (unless it performs auto-increments, etc.).  */
      if (prev && GET_CODE (prev) == INSN
	  && sets_cc0_p (PATTERN (prev)))
	{
	  if (sets_cc0_p (PATTERN (prev)) > 0
3847
	      && !FIND_REG_INC_NOTE (prev, NULL_RTX))
3848
	    delete_computation (prev);
Richard Kenner committed
3849 3850
	  else
	    /* Otherwise, show that cc0 won't be used.  */
3851 3852
	    REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
						  cc0_rtx, REG_NOTES (prev));
Richard Kenner committed
3853
	}
3854
    }
3855
#endif
Richard Kenner committed
3856

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
#ifdef INSN_SCHEDULING
  /* ?!? The schedulers do not keep REG_DEAD notes accurate after
     reload has completed.  The schedulers need to be fixed.  Until
     they are, we must not rely on the death notes here.  */
  if (reload_completed && flag_schedule_insns_after_reload)
    {
      delete_insn (insn);
      return;
    }
#endif

3868 3869 3870
  for (note = REG_NOTES (insn); note; note = next)
    {
      rtx our_prev;
Richard Kenner committed
3871

3872
      next = XEXP (note, 1);
Richard Kenner committed
3873

3874 3875 3876 3877
      if (REG_NOTE_KIND (note) != REG_DEAD
	  /* Verify that the REG_NOTE is legitimate.  */
	  || GET_CODE (XEXP (note, 0)) != REG)
	continue;
Richard Kenner committed
3878

3879 3880 3881 3882 3883 3884 3885 3886
      for (our_prev = prev_nonnote_insn (insn);
	   our_prev && GET_CODE (our_prev) == INSN;
	   our_prev = prev_nonnote_insn (our_prev))
	{
	  /* If we reach a SEQUENCE, it is too complex to try to
	     do anything with it, so give up.  */
	  if (GET_CODE (PATTERN (our_prev)) == SEQUENCE)
	    break;
Richard Kenner committed
3887

3888 3889 3890 3891 3892
	  if (GET_CODE (PATTERN (our_prev)) == USE
	      && GET_CODE (XEXP (PATTERN (our_prev), 0)) == INSN)
	    /* reorg creates USEs that look like this.  We leave them
	       alone because reorg needs them for its own purposes.  */
	    break;
Richard Kenner committed
3893

3894 3895 3896 3897
	  if (reg_set_p (XEXP (note, 0), PATTERN (our_prev)))
	    {
	      if (FIND_REG_INC_NOTE (our_prev, NULL_RTX))
		break;
Richard Kenner committed
3898

3899 3900 3901 3902
	      if (GET_CODE (PATTERN (our_prev)) == PARALLEL)
		{
		  /* If we find a SET of something else, we can't
		     delete the insn.  */
Richard Kenner committed
3903

3904
		  int i;
Richard Kenner committed
3905

3906 3907 3908
		  for (i = 0; i < XVECLEN (PATTERN (our_prev), 0); i++)
		    {
		      rtx part = XVECEXP (PATTERN (our_prev), 0, i);
Richard Kenner committed
3909

3910 3911 3912 3913
		      if (GET_CODE (part) == SET
			  && SET_DEST (part) != XEXP (note, 0))
			break;
		    }
Richard Kenner committed
3914

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
		  if (i == XVECLEN (PATTERN (our_prev), 0))
		    delete_computation (our_prev);
		}
	      else if (GET_CODE (PATTERN (our_prev)) == SET
		       && SET_DEST (PATTERN (our_prev)) == XEXP (note, 0))
		delete_computation (our_prev);

	      break;
	    }

	  /* If OUR_PREV references the register that dies here, it is an
	     additional use.  Hence any prior SET isn't dead.  However, this
	     insn becomes the new place for the REG_DEAD note.  */
	  if (reg_overlap_mentioned_p (XEXP (note, 0),
				       PATTERN (our_prev)))
	    {
	      XEXP (note, 1) = REG_NOTES (our_prev);
	      REG_NOTES (our_prev) = note;
	      break;
	    }
	}
Richard Kenner committed
3936
    }
3937

3938
  delete_insn (insn);
Richard Kenner committed
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
}

/* Delete insn INSN from the chain of insns and update label ref counts.
   May delete some following insns as a consequence; may even delete
   a label elsewhere and insns that follow it.

   Returns the first insn after INSN that was not deleted.  */

rtx
delete_insn (insn)
     register rtx insn;
{
  register rtx next = NEXT_INSN (insn);
  register rtx prev = PREV_INSN (insn);
3953 3954
  register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
  register int dont_really_delete = 0;
Richard Kenner committed
3955 3956 3957 3958 3959 3960 3961 3962

  while (next && INSN_DELETED_P (next))
    next = NEXT_INSN (next);

  /* This insn is already deleted => return first following nondeleted.  */
  if (INSN_DELETED_P (insn))
    return next;

3963 3964 3965
  if (was_code_label)
    remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);

3966 3967
  /* Don't delete user-declared labels.  Convert them to special NOTEs
     instead.  */
3968 3969
  if (was_code_label && LABEL_NAME (insn) != 0
      && optimize && ! dont_really_delete)
3970 3971 3972 3973 3974 3975 3976 3977 3978
    {
      PUT_CODE (insn, NOTE);
      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
      NOTE_SOURCE_FILE (insn) = 0;
      dont_really_delete = 1;
    }
  else
    /* Mark this insn as deleted.  */
    INSN_DELETED_P (insn) = 1;
Richard Kenner committed
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994

  /* If this is an unconditional jump, delete it from the jump chain.  */
  if (simplejump_p (insn))
    delete_from_jump_chain (insn);

  /* If instruction is followed by a barrier,
     delete the barrier too.  */

  if (next != 0 && GET_CODE (next) == BARRIER)
    {
      INSN_DELETED_P (next) = 1;
      next = NEXT_INSN (next);
    }

  /* Patch out INSN (and the barrier if any) */

3995
  if (optimize && ! dont_really_delete)
Richard Kenner committed
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
    {
      if (prev)
	{
	  NEXT_INSN (prev) = next;
	  if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
	    NEXT_INSN (XVECEXP (PATTERN (prev), 0,
				XVECLEN (PATTERN (prev), 0) - 1)) = next;
	}

      if (next)
	{
	  PREV_INSN (next) = prev;
	  if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
	    PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
	}

      if (prev && NEXT_INSN (prev) == 0)
	set_last_insn (prev);
    }

  /* If deleting a jump, decrement the count of the label,
     and delete the label if it is now unused.  */

  if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
    if (--LABEL_NUSES (JUMP_LABEL (insn)) == 0)
      {
	/* This can delete NEXT or PREV,
	   either directly if NEXT is JUMP_LABEL (INSN),
	   or indirectly through more levels of jumps.  */
	delete_insn (JUMP_LABEL (insn));
	/* I feel a little doubtful about this loop,
	   but I see no clean and sure alternative way
	   to find the first insn after INSN that is not now deleted.
	   I hope this works.  */
	while (next && INSN_DELETED_P (next))
	  next = NEXT_INSN (next);
	return next;
      }

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
  /* Likewise if we're deleting a dispatch table.  */

  if (GET_CODE (insn) == JUMP_INSN
      && (GET_CODE (PATTERN (insn)) == ADDR_VEC
	  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
    {
      rtx pat = PATTERN (insn);
      int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
      int len = XVECLEN (pat, diff_vec_p);

      for (i = 0; i < len; i++)
	if (--LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
	  delete_insn (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
      while (next && INSN_DELETED_P (next))
	next = NEXT_INSN (next);
      return next;
    }

Richard Kenner committed
4053 4054 4055 4056 4057 4058 4059
  while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
    prev = PREV_INSN (prev);

  /* If INSN was a label and a dispatch table follows it,
     delete the dispatch table.  The tablejump must have gone already.
     It isn't useful to fall through into a table.  */

4060
  if (was_code_label
Richard Kenner committed
4061 4062 4063 4064 4065 4066 4067 4068
      && NEXT_INSN (insn) != 0
      && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
      && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
	  || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
    next = delete_insn (NEXT_INSN (insn));

  /* If INSN was a label, delete insns following it if now unreachable.  */

4069
  if (was_code_label && prev && GET_CODE (prev) == BARRIER)
Richard Kenner committed
4070 4071 4072
    {
      register RTX_CODE code;
      while (next != 0
4073
	     && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
4074
		 || code == NOTE || code == BARRIER
4075
		 || (code == CODE_LABEL && INSN_DELETED_P (next))))
Richard Kenner committed
4076 4077 4078 4079
	{
	  if (code == NOTE
	      && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
	    next = NEXT_INSN (next);
4080 4081 4082
	  /* Keep going past other deleted labels to delete what follows.  */
	  else if (code == CODE_LABEL && INSN_DELETED_P (next))
	    next = NEXT_INSN (next);
Richard Kenner committed
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
	  else
	    /* Note: if this deletes a jump, it can cause more
	       deletion of unreachable code, after a different label.
	       As long as the value from this recursive call is correct,
	       this invocation functions correctly.  */
	    next = delete_insn (next);
	}
    }

  return next;
}

/* Advance from INSN till reaching something not deleted
   then return that.  May return INSN itself.  */

rtx
next_nondeleted_insn (insn)
     rtx insn;
{
  while (INSN_DELETED_P (insn))
    insn = NEXT_INSN (insn);
  return insn;
}

/* Delete a range of insns from FROM to TO, inclusive.
   This is for the sake of peephole optimization, so assume
   that whatever these insns do will still be done by a new
   peephole insn that will replace them.  */

void
delete_for_peephole (from, to)
     register rtx from, to;
{
  register rtx insn = from;

  while (1)
    {
      register rtx next = NEXT_INSN (insn);
      register rtx prev = PREV_INSN (insn);

      if (GET_CODE (insn) != NOTE)
	{
	  INSN_DELETED_P (insn) = 1;

	  /* Patch this insn out of the chain.  */
	  /* We don't do this all at once, because we
	     must preserve all NOTEs.  */
	  if (prev)
	    NEXT_INSN (prev) = next;

	  if (next)
	    PREV_INSN (next) = prev;
	}

      if (insn == to)
	break;
      insn = next;
    }

  /* Note that if TO is an unconditional jump
     we *do not* delete the BARRIER that follows,
     since the peephole that replaces this sequence
     is also an unconditional jump in that case.  */
}

/* Invert the condition of the jump JUMP, and make it jump
   to label NLABEL instead of where it jumps now.  */

int
invert_jump (jump, nlabel)
     rtx jump, nlabel;
{
  /* We have to either invert the condition and change the label or
     do neither.  Either operation could fail.  We first try to invert
     the jump. If that succeeds, we try changing the label.  If that fails,
     we invert the jump back to what it was.  */

  if (! invert_exp (PATTERN (jump), jump))
    return 0;

  if (redirect_jump (jump, nlabel))
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
    {
      if (flag_branch_probabilities)
	{
	  rtx note = find_reg_note (jump, REG_BR_PROB, 0);

	  /* An inverted jump means that a probability taken becomes a
	     probability not taken.  Subtract the branch probability from the
	     probability base to convert it back to a taken probability.
	     (We don't flip the probability on a branch that's never taken.  */
	  if (note && XINT (XEXP (note, 0), 0) >= 0)
	    XINT (XEXP (note, 0), 0) = REG_BR_PROB_BASE - XINT (XEXP (note, 0), 0);
	}

      return 1;
    }
Richard Kenner committed
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191

  if (! invert_exp (PATTERN (jump), jump))
    /* This should just be putting it back the way it was.  */
    abort ();

  return  0;
}

/* Invert the jump condition of rtx X contained in jump insn, INSN. 

   Return 1 if we can do so, 0 if we cannot find a way to do so that
   matches a pattern.  */

4192
int
Richard Kenner committed
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
invert_exp (x, insn)
     rtx x;
     rtx insn;
{
  register RTX_CODE code;
  register int i;
  register char *fmt;

  code = GET_CODE (x);

  if (code == IF_THEN_ELSE)
    {
      register rtx comp = XEXP (x, 0);
      register rtx tem;

      /* We can do this in two ways:  The preferable way, which can only
	 be done if this is not an integer comparison, is to reverse
	 the comparison code.  Otherwise, swap the THEN-part and ELSE-part
	 of the IF_THEN_ELSE.  If we can't do either, fail.  */

      if (can_reverse_comparison_p (comp, insn)
	  && validate_change (insn, &XEXP (x, 0),
4215 4216 4217
			      gen_rtx_fmt_ee (reverse_condition (GET_CODE (comp)),
					      GET_MODE (comp), XEXP (comp, 0),
					      XEXP (comp, 1)), 0))
Richard Kenner committed
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
	return 1;
				       
      tem = XEXP (x, 1);
      validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
      validate_change (insn, &XEXP (x, 2), tem, 1);
      return apply_change_group ();
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	if (! invert_exp (XEXP (x, i), insn))
	  return 0;
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (!invert_exp (XVECEXP (x, i, j), insn))
	      return 0;
	}
    }

  return 1;
}

/* Make jump JUMP jump to label NLABEL instead of where it jumps now.
   If the old jump target label is unused as a result,
   it and the code following it may be deleted.

   If NLABEL is zero, we are to turn the jump into a (possibly conditional)
   RETURN insn.

   The return value will be 1 if the change was made, 0 if it wasn't (this
   can only occur for NLABEL == 0).  */

int
redirect_jump (jump, nlabel)
     rtx jump, nlabel;
{
  register rtx olabel = JUMP_LABEL (jump);

  if (nlabel == olabel)
    return 1;

  if (! redirect_exp (&PATTERN (jump), olabel, nlabel, jump))
    return 0;

  /* If this is an unconditional branch, delete it from the jump_chain of
     OLABEL and add it to the jump_chain of NLABEL (assuming both labels
     have UID's in range and JUMP_CHAIN is valid).  */
  if (jump_chain && (simplejump_p (jump)
		     || GET_CODE (PATTERN (jump)) == RETURN))
    {
      int label_index = nlabel ? INSN_UID (nlabel) : 0;

      delete_from_jump_chain (jump);
4275 4276
      if (label_index < max_jump_chain
	  && INSN_UID (jump) < max_jump_chain)
Richard Kenner committed
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
	{
	  jump_chain[INSN_UID (jump)] = jump_chain[label_index];
	  jump_chain[label_index] = jump;
	}
    }

  JUMP_LABEL (jump) = nlabel;
  if (nlabel)
    ++LABEL_NUSES (nlabel);

  if (olabel && --LABEL_NUSES (olabel) == 0)
    delete_insn (olabel);

  return 1;
}

/* Delete the instruction JUMP from any jump chain it might be on.  */

static void
delete_from_jump_chain (jump)
     rtx jump;
{
  int index;
  rtx olabel = JUMP_LABEL (jump);

  /* Handle unconditional jumps.  */
  if (jump_chain && olabel != 0
      && INSN_UID (olabel) < max_jump_chain
      && simplejump_p (jump))
    index = INSN_UID (olabel);
  /* Handle return insns.  */
  else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
    index = 0;
  else return;

  if (jump_chain[index] == jump)
    jump_chain[index] = jump_chain[INSN_UID (jump)];
  else
    {
      rtx insn;

      for (insn = jump_chain[index];
	   insn != 0;
	   insn = jump_chain[INSN_UID (insn)])
	if (jump_chain[INSN_UID (insn)] == jump)
	  {
	    jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
	    break;
	  }
    }
}

/* If NLABEL is nonzero, throughout the rtx at LOC,
   alter (LABEL_REF OLABEL) to (LABEL_REF NLABEL).  If OLABEL is
   zero, alter (RETURN) to (LABEL_REF NLABEL).

   If NLABEL is zero, alter (LABEL_REF OLABEL) to (RETURN) and check
   validity with validate_change.  Convert (set (pc) (label_ref olabel))
   to (return).

   Return 0 if we found a change we would like to make but it is invalid.
   Otherwise, return 1.  */

4340
int
Richard Kenner committed
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
redirect_exp (loc, olabel, nlabel, insn)
     rtx *loc;
     rtx olabel, nlabel;
     rtx insn;
{
  register rtx x = *loc;
  register RTX_CODE code = GET_CODE (x);
  register int i;
  register char *fmt;

  if (code == LABEL_REF)
    {
      if (XEXP (x, 0) == olabel)
	{
	  if (nlabel)
	    XEXP (x, 0) = nlabel;
	  else
4358
	    return validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 0);
Richard Kenner committed
4359 4360 4361 4362 4363
	  return 1;
	}
    }
  else if (code == RETURN && olabel == 0)
    {
4364
      x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
Richard Kenner committed
4365
      if (loc == &PATTERN (insn))
4366
	x = gen_rtx_SET (VOIDmode, pc_rtx, x);
Richard Kenner committed
4367 4368 4369 4370 4371 4372
      return validate_change (insn, loc, x, 0);
    }

  if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
      && GET_CODE (SET_SRC (x)) == LABEL_REF
      && XEXP (SET_SRC (x), 0) == olabel)
4373
    return validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 0);
Richard Kenner committed
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	if (! redirect_exp (&XEXP (x, i), olabel, nlabel, insn))
	  return 0;
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (! redirect_exp (&XVECEXP (x, i, j), olabel, nlabel, insn))
	      return 0;
	}
    }

  return 1;
}

/* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.

   If the old jump target label (before the dispatch table) becomes unused,
   it and the dispatch table may be deleted.  In that case, find the insn
4397
   before the jump references that label and delete it and logical successors
Richard Kenner committed
4398 4399
   too.  */

4400
static void
Richard Kenner committed
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
redirect_tablejump (jump, nlabel)
     rtx jump, nlabel;
{
  register rtx olabel = JUMP_LABEL (jump);

  /* Add this jump to the jump_chain of NLABEL.  */
  if (jump_chain && INSN_UID (nlabel) < max_jump_chain
      && INSN_UID (jump) < max_jump_chain)
    {
      jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
      jump_chain[INSN_UID (nlabel)] = jump;
    }

  PATTERN (jump) = gen_jump (nlabel);
  JUMP_LABEL (jump) = nlabel;
  ++LABEL_NUSES (nlabel);
  INSN_CODE (jump) = -1;

  if (--LABEL_NUSES (olabel) == 0)
    {
      delete_labelref_insn (jump, olabel, 0);
      delete_insn (olabel);
    }
}

/* Find the insn referencing LABEL that is a logical predecessor of INSN.
   If we found one, delete it and then delete this insn if DELETE_THIS is
   non-zero.  Return non-zero if INSN or a predecessor references LABEL.  */

static int
delete_labelref_insn (insn, label, delete_this)
     rtx insn, label;
     int delete_this;
{
  int deleted = 0;
  rtx link;

  if (GET_CODE (insn) != NOTE
      && reg_mentioned_p (label, PATTERN (insn)))
    {
      if (delete_this)
	{
	  delete_insn (insn);
	  deleted = 1;
	}
      else
	return 1;
    }

  for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
    if (delete_labelref_insn (XEXP (link, 0), label, 1))
      {
	if (delete_this)
	  {
	    delete_insn (insn);
	    deleted = 1;
	  }
	else
	  return 1;
      }

  return deleted;
}

/* Like rtx_equal_p except that it considers two REGs as equal
4466 4467
   if they renumber to the same value and considers two commutative
   operations to be the same if the order of the operands has been
4468 4469 4470 4471 4472 4473 4474 4475 4476
   reversed.

   ??? Addition is not commutative on the PA due to the weird implicit
   space register selection rules for memory addresses.  Therefore, we
   don't consider a + b == b + a.

   We could/should make this test a little tighter.  Possibly only
   disabling it on the PA via some backend macro or only disabling this
   case when the PLUS is inside a MEM.  */
Richard Kenner committed
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487

int
rtx_renumbered_equal_p (x, y)
     rtx x, y;
{
  register int i;
  register RTX_CODE code = GET_CODE (x);
  register char *fmt;
      
  if (x == y)
    return 1;
4488

Richard Kenner committed
4489 4490 4491 4492
  if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
      && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
				  && GET_CODE (SUBREG_REG (y)) == REG)))
    {
4493 4494
      int reg_x = -1, reg_y = -1;
      int word_x = 0, word_y = 0;
Richard Kenner committed
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505

      if (GET_MODE (x) != GET_MODE (y))
	return 0;

      /* If we haven't done any renumbering, don't
	 make any assumptions.  */
      if (reg_renumber == 0)
	return rtx_equal_p (x, y);

      if (code == SUBREG)
	{
4506 4507 4508 4509 4510 4511 4512 4513
	  reg_x = REGNO (SUBREG_REG (x));
	  word_x = SUBREG_WORD (x);

	  if (reg_renumber[reg_x] >= 0)
	    {
	      reg_x = reg_renumber[reg_x] + word_x;
	      word_x = 0;
	    }
Richard Kenner committed
4514
	}
4515

Richard Kenner committed
4516 4517
      else
	{
4518 4519 4520
	  reg_x = REGNO (x);
	  if (reg_renumber[reg_x] >= 0)
	    reg_x = reg_renumber[reg_x];
Richard Kenner committed
4521
	}
4522

Richard Kenner committed
4523 4524
      if (GET_CODE (y) == SUBREG)
	{
4525 4526 4527 4528 4529 4530 4531 4532
	  reg_y = REGNO (SUBREG_REG (y));
	  word_y = SUBREG_WORD (y);

	  if (reg_renumber[reg_y] >= 0)
	    {
	      reg_y = reg_renumber[reg_y];
	      word_y = 0;
	    }
Richard Kenner committed
4533
	}
4534

Richard Kenner committed
4535 4536
      else
	{
4537 4538 4539
	  reg_y = REGNO (y);
	  if (reg_renumber[reg_y] >= 0)
	    reg_y = reg_renumber[reg_y];
Richard Kenner committed
4540
	}
4541 4542

      return reg_x >= 0 && reg_x == reg_y && word_x == word_y;
Richard Kenner committed
4543
    }
4544

Richard Kenner committed
4545 4546 4547 4548
  /* Now we have disposed of all the cases 
     in which different rtx codes can match.  */
  if (code != GET_CODE (y))
    return 0;
4549

Richard Kenner committed
4550 4551 4552 4553 4554 4555 4556 4557 4558
  switch (code)
    {
    case PC:
    case CC0:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 0;

    case CONST_INT:
4559
      return INTVAL (x) == INTVAL (y);
Richard Kenner committed
4560 4561

    case LABEL_REF:
Richard Stallman committed
4562 4563 4564
      /* We can't assume nonlocal labels have their following insns yet.  */
      if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
	return XEXP (x, 0) == XEXP (y, 0);
4565

Richard Kenner committed
4566 4567 4568 4569 4570 4571 4572
      /* Two label-refs are equivalent if they point at labels
	 in the same position in the instruction stream.  */
      return (next_real_insn (XEXP (x, 0))
	      == next_real_insn (XEXP (y, 0)));

    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);
4573

4574 4575 4576 4577
    case CODE_LABEL:
      /* If we didn't match EQ equality above, they aren't the same.  */
      return 0;

4578 4579
    default:
      break;
Richard Kenner committed
4580 4581 4582 4583 4584 4585 4586
    }

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */

  if (GET_MODE (x) != GET_MODE (y))
    return 0;

4587
  /* For commutative operations, the RTX match if the operand match in any
4588 4589 4590 4591 4592
     order.  Also handle the simple binary and unary cases without a loop.

     ??? Don't consider PLUS a commutative operator; see comments above.  */
  if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
      && code != PLUS)
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
    return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
	     && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
	    || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
		&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
  else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
    return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
	    && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
  else if (GET_RTX_CLASS (code) == '1')
    return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));

Richard Kenner committed
4603 4604 4605 4606 4607 4608 4609 4610 4611
  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      register int j;
      switch (fmt[i])
	{
4612 4613 4614 4615 4616
	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
	  break;

Richard Kenner committed
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
	case 'i':
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
	  break;

	case 's':
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
	  break;

	case 'e':
	  if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
	    return 0;
	  break;

	case 'u':
	  if (XEXP (x, i) != XEXP (y, i))
	    return 0;
	  /* fall through.  */
	case '0':
	  break;

	case 'E':
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;
	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
	      return 0;
	  break;

	default:
	  abort ();
	}
    }
  return 1;
}

/* If X is a hard register or equivalent to one or a subregister of one,
   return the hard register number.  If X is a pseudo register that was not
   assigned a hard register, return the pseudo register number.  Otherwise,
   return -1.  Any rtx is valid for X.  */

int
true_regnum (x)
     rtx x;
{
  if (GET_CODE (x) == REG)
    {
      if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
	return reg_renumber[REGNO (x)];
      return REGNO (x);
    }
  if (GET_CODE (x) == SUBREG)
    {
      int base = true_regnum (SUBREG_REG (x));
      if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
	return SUBREG_WORD (x) + base;
    }
  return -1;
}

/* Optimize code of the form:

	for (x = a[i]; x; ...)
	  ...
	for (x = a[i]; x; ...)
	  ...
      foo:

   Loop optimize will change the above code into

	if (x = a[i])
	  for (;;)
	     { ...; if (! (x = ...)) break; }
	if (x = a[i])
	  for (;;)
	     { ...; if (! (x = ...)) break; }
      foo:

   In general, if the first test fails, the program can branch
   directly to `foo' and skip the second try which is doomed to fail.
   We run this after loop optimization and before flow analysis.  */
   
/* When comparing the insn patterns, we track the fact that different
   pseudo-register numbers may have been used in each computation.
   The following array stores an equivalence -- same_regs[I] == J means
   that pseudo register I was used in the first set of tests in a context
   where J was used in the second set.  We also count the number of such
   pending equivalences.  If nonzero, the expressions really aren't the
   same.  */

4708
static int *same_regs;
Richard Kenner committed
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726

static int num_same_regs;

/* Track any registers modified between the target of the first jump and
   the second jump.  They never compare equal.  */

static char *modified_regs;

/* Record if memory was modified.  */

static int modified_mem;

/* Called via note_stores on each insn between the target of the first 
   branch and the second branch.  It marks any changed registers.  */

static void
mark_modified_reg (dest, x)
     rtx dest;
Kaveh R. Ghazi committed
4727
     rtx x ATTRIBUTE_UNUSED;
Richard Kenner committed
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
{
  int regno, i;

  if (GET_CODE (dest) == SUBREG)
    dest = SUBREG_REG (dest);

  if (GET_CODE (dest) == MEM)
    modified_mem = 1;

  if (GET_CODE (dest) != REG)
    return;

  regno = REGNO (dest);
  if (regno >= FIRST_PSEUDO_REGISTER)
    modified_regs[regno] = 1;
  else
    for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
      modified_regs[regno + i] = 1;
}

/* F is the first insn in the chain of insns.  */
   
void
4751
thread_jumps (f, max_reg, flag_before_loop)
Richard Kenner committed
4752 4753
     rtx f;
     int max_reg;
4754
     int flag_before_loop;
Richard Kenner committed
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
{
  /* Basic algorithm is to find a conditional branch,
     the label it may branch to, and the branch after
     that label.  If the two branches test the same condition,
     walk back from both branch paths until the insn patterns
     differ, or code labels are hit.  If we make it back to
     the target of the first branch, then we know that the first branch
     will either always succeed or always fail depending on the relative
     senses of the two branches.  So adjust the first branch accordingly
     in this case.  */
     
  rtx label, b1, b2, t1, t2;
  enum rtx_code code1, code2;
  rtx b1op0, b1op1, b2op0, b2op1;
  int changed = 1;
  int i;
4771
  int *all_reset;
Richard Kenner committed
4772 4773 4774

  /* Allocate register tables and quick-reset table.  */
  modified_regs = (char *) alloca (max_reg * sizeof (char));
4775 4776
  same_regs = (int *) alloca (max_reg * sizeof (int));
  all_reset = (int *) alloca (max_reg * sizeof (int));
Richard Kenner committed
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
  for (i = 0; i < max_reg; i++)
    all_reset[i] = -1;
    
  while (changed)
    {
      changed = 0;

      for (b1 = f; b1; b1 = NEXT_INSN (b1))
	{
	  /* Get to a candidate branch insn.  */
	  if (GET_CODE (b1) != JUMP_INSN
	      || ! condjump_p (b1) || simplejump_p (b1)
	      || JUMP_LABEL (b1) == 0)
	    continue;

	  bzero (modified_regs, max_reg * sizeof (char));
	  modified_mem = 0;

4795 4796
	  bcopy ((char *) all_reset, (char *) same_regs,
		 max_reg * sizeof (int));
Richard Kenner committed
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
	  num_same_regs = 0;

	  label = JUMP_LABEL (b1);

	  /* Look for a branch after the target.  Record any registers and
	     memory modified between the target and the branch.  Stop when we
	     get to a label since we can't know what was changed there.  */
	  for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
	    {
	      if (GET_CODE (b2) == CODE_LABEL)
		break;

	      else if (GET_CODE (b2) == JUMP_INSN)
		{
		  /* If this is an unconditional jump and is the only use of
		     its target label, we can follow it.  */
		  if (simplejump_p (b2)
		      && JUMP_LABEL (b2) != 0
		      && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
		    {
		      b2 = JUMP_LABEL (b2);
		      continue;
		    }
		  else
		    break;
		}

	      if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
		continue;

	      if (GET_CODE (b2) == CALL_INSN)
		{
		  modified_mem = 1;
		  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		    if (call_used_regs[i] && ! fixed_regs[i]
			&& i != STACK_POINTER_REGNUM
			&& i != FRAME_POINTER_REGNUM
4834
			&& i != HARD_FRAME_POINTER_REGNUM
Richard Kenner committed
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
			&& i != ARG_POINTER_REGNUM)
		      modified_regs[i] = 1;
		}

	      note_stores (PATTERN (b2), mark_modified_reg);
	    }

	  /* Check the next candidate branch insn from the label
	     of the first.  */
	  if (b2 == 0
	      || GET_CODE (b2) != JUMP_INSN
	      || b2 == b1
	      || ! condjump_p (b2)
	      || simplejump_p (b2))
	    continue;

	  /* Get the comparison codes and operands, reversing the
	     codes if appropriate.  If we don't have comparison codes,
	     we can't do anything.  */
	  b1op0 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 0);
	  b1op1 = XEXP (XEXP (SET_SRC (PATTERN (b1)), 0), 1);
	  code1 = GET_CODE (XEXP (SET_SRC (PATTERN (b1)), 0));
	  if (XEXP (SET_SRC (PATTERN (b1)), 1) == pc_rtx)
	    code1 = reverse_condition (code1);

	  b2op0 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 0);
	  b2op1 = XEXP (XEXP (SET_SRC (PATTERN (b2)), 0), 1);
	  code2 = GET_CODE (XEXP (SET_SRC (PATTERN (b2)), 0));
	  if (XEXP (SET_SRC (PATTERN (b2)), 1) == pc_rtx)
	    code2 = reverse_condition (code2);

	  /* If they test the same things and knowing that B1 branches
	     tells us whether or not B2 branches, check if we
	     can thread the branch.  */
	  if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
	      && rtx_equal_for_thread_p (b1op1, b2op1, b2)
	      && (comparison_dominates_p (code1, code2)
4872 4873 4874 4875
		  || (comparison_dominates_p (code1, reverse_condition (code2))
		      && can_reverse_comparison_p (XEXP (SET_SRC (PATTERN (b1)),
							 0),
						   b1))))
Richard Kenner committed
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
	    {
	      t1 = prev_nonnote_insn (b1);
	      t2 = prev_nonnote_insn (b2);
	      
	      while (t1 != 0 && t2 != 0)
		{
		  if (t2 == label)
		    {
		      /* We have reached the target of the first branch.
		         If there are no pending register equivalents,
			 we know that this branch will either always
			 succeed (if the senses of the two branches are
			 the same) or always fail (if not).  */
		      rtx new_label;

		      if (num_same_regs != 0)
			break;

		      if (comparison_dominates_p (code1, code2))
		      	new_label = JUMP_LABEL (b2);
		      else
			new_label = get_label_after (b2);

4899 4900 4901 4902 4903
		      if (JUMP_LABEL (b1) != new_label)
			{
			  rtx prev = PREV_INSN (new_label);

			  if (flag_before_loop
4904
			      && GET_CODE (prev) == NOTE
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
			      && NOTE_LINE_NUMBER (prev) == NOTE_INSN_LOOP_BEG)
			    {
			      /* Don't thread to the loop label.  If a loop
				 label is reused, loop optimization will
				 be disabled for that loop.  */
			      new_label = gen_label_rtx ();
			      emit_label_after (new_label, PREV_INSN (prev));
			    }
			  changed |= redirect_jump (b1, new_label);
			}
Richard Kenner committed
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
		      break;
		    }
		    
		  /* If either of these is not a normal insn (it might be
		     a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail.  (NOTEs
		     have already been skipped above.)  Similarly, fail
		     if the insns are different.  */
		  if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
		      || recog_memoized (t1) != recog_memoized (t2)
		      || ! rtx_equal_for_thread_p (PATTERN (t1),
						   PATTERN (t2), t2))
		    break;
		    
		  t1 = prev_nonnote_insn (t1);
		  t2 = prev_nonnote_insn (t2);
		}
	    }
	}
    }
}

/* This is like RTX_EQUAL_P except that it knows about our handling of
   possibly equivalent registers and knows to consider volatile and
   modified objects as not equal.
   
   YINSN is the insn containing Y.  */

int
rtx_equal_for_thread_p (x, y, yinsn)
     rtx x, y;
     rtx yinsn;
{
  register int i;
  register int j;
  register enum rtx_code code;
  register char *fmt;

  code = GET_CODE (x);
  /* Rtx's of different codes cannot be equal.  */
  if (code != GET_CODE (y))
    return 0;

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
     (REG:SI x) and (REG:HI x) are NOT equivalent.  */

  if (GET_MODE (x) != GET_MODE (y))
    return 0;

4963 4964 4965 4966 4967 4968 4969
  /* For floating-point, consider everything unequal.  This is a bit
     pessimistic, but this pass would only rarely do anything for FP
     anyway.  */
  if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
      && FLOAT_MODE_P (GET_MODE (x)) && ! flag_fast_math)
    return 0;

4970 4971 4972
  /* For commutative operations, the RTX match if the operand match in any
     order.  Also handle the simple binary and unary cases without a loop.  */
  if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
4973 4974 4975 4976
    return ((rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
	     && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn))
	    || (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 1), yinsn)
		&& rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 0), yinsn)));
4977
  else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
4978 4979
    return (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
	    && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn));
4980
  else if (GET_RTX_CLASS (code) == '1')
4981
    return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4982

Richard Kenner committed
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
  /* Handle special-cases first.  */
  switch (code)
    {
    case REG:
      if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
        return 1;

      /* If neither is user variable or hard register, check for possible
	 equivalence.  */
      if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
	  || REGNO (x) < FIRST_PSEUDO_REGISTER
	  || REGNO (y) < FIRST_PSEUDO_REGISTER)
	return 0;

      if (same_regs[REGNO (x)] == -1)
	{
	  same_regs[REGNO (x)] = REGNO (y);
	  num_same_regs++;

	  /* If this is the first time we are seeing a register on the `Y'
	     side, see if it is the last use.  If not, we can't thread the 
	     jump, so mark it as not equivalent.  */
5005
	  if (REGNO_LAST_UID (REGNO (y)) != INSN_UID (yinsn))
Richard Kenner committed
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
	    return 0;

	  return 1;
	}
      else
	return (same_regs[REGNO (x)] == REGNO (y));

      break;

    case MEM:
5016
      /* If memory modified or either volatile, not equivalent.
Mike Stump committed
5017
	 Else, check address.  */
Richard Kenner committed
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
      if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
	return 0;

      return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);

    case ASM_INPUT:
      if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
	return 0;

      break;

    case SET:
      /* Cancel a pending `same_regs' if setting equivalenced registers.
	 Then process source.  */
      if (GET_CODE (SET_DEST (x)) == REG
          && GET_CODE (SET_DEST (y)) == REG)
	{
          if (same_regs[REGNO (SET_DEST (x))] == REGNO (SET_DEST (y)))
	    {
	      same_regs[REGNO (SET_DEST (x))] = -1;
	      num_same_regs--;
	    }
	  else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
	    return 0;
	}
      else
	if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
	  return 0;

      return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);

    case LABEL_REF:
      return XEXP (x, 0) == XEXP (y, 0);

    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);
5054 5055 5056
      
    default:
      break;
Richard Kenner committed
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
    }

  if (x == y)
    return 1;

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      switch (fmt[i])
	{
5067 5068 5069 5070 5071
	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
	  break;

Richard Kenner committed
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
	case 'n':
	case 'i':
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
	  break;

	case 'V':
	case 'E':
	  /* Two vectors must have the same length.  */
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;

	  /* And the corresponding elements must match.  */
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
	    			        XVECEXP (y, i, j), yinsn) == 0)
	      return 0;
	  break;

	case 'e':
	  if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
	    return 0;
	  break;

	case 'S':
	case 's':
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
	  break;

	case 'u':
	  /* These are just backpointers, so they don't matter.  */
	  break;

	case '0':
	  break;

	  /* It is believed that rtx's at this level will never
	     contain anything but integers and other rtx's,
	     except for within LABEL_REFs and SYMBOL_REFs.  */
	default:
	  abort ();
	}
    }
  return 1;
}
Jeff Law committed
5118 5119


5120
#ifndef HAVE_cc0
Jeff Law committed
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
/* Return the insn that NEW can be safely inserted in front of starting at
   the jump insn INSN.  Return 0 if it is not safe to do this jump
   optimization.  Note that NEW must contain a single set. */

static rtx
find_insert_position (insn, new)
     rtx insn;
     rtx new;
{
  int i;
  rtx prev;

  /* If NEW does not clobber, it is safe to insert NEW before INSN. */
  if (GET_CODE (PATTERN (new)) != PARALLEL)
    return insn;

  for (i = XVECLEN (PATTERN (new), 0) - 1; i >= 0; i--)
    if (GET_CODE (XVECEXP (PATTERN (new), 0, i)) == CLOBBER
	&& reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (new), 0, i), 0),
				    insn))
      break;

  if (i < 0)
    return insn;

  /* There is a good chance that the previous insn PREV sets the thing
     being clobbered (often the CC in a hard reg).  If PREV does not
     use what NEW sets, we can insert NEW before PREV. */

  prev = prev_active_insn (insn);
  for (i = XVECLEN (PATTERN (new), 0) - 1; i >= 0; i--)
    if (GET_CODE (XVECEXP (PATTERN (new), 0, i)) == CLOBBER
	&& reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (new), 0, i), 0),
				    insn)
	&& ! modified_in_p (XEXP (XVECEXP (PATTERN (new), 0, i), 0),
			    prev))
      return 0;

  return reg_mentioned_p (SET_DEST (single_set (new)), prev) ? 0 : prev;
}
5161
#endif /* !HAVE_cc0 */