vectorize_loop.cc 16.6 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
9
 *
10
 *   http://www.apache.org/licenses/LICENSE-2.0
11
 *
12 13 14 15 16 17 18 19
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

20 21 22 23
/*!
 *  Copyright (c) 2017 by Contributors
 * \file vectorize_loop.cc
 */
24
// Loop vectorizer as in Halide pipeline.
25 26 27 28 29 30 31 32 33 34 35 36 37
#include <tvm/ir.h>
#include <tvm/ir_pass.h>
#include <tvm/ir_mutator.h>
#include <unordered_set>
#include <unordered_map>
#include <vector>
#include "../arithmetic/compute_expr.h"

namespace tvm {
namespace ir {

inline Expr BroadcastTo(Expr e, int lanes) {
  if (e.type().lanes() == lanes) return e;
38 39 40 41 42
  if (const Broadcast* op = e.as<Broadcast>()) {
    if (lanes % op->lanes == 0) {
      return Broadcast::make(op->value, lanes);
    }
  }
43 44 45 46 47 48 49
  CHECK_EQ(e.type().lanes(), 1)
      << "Cannot broadcast lane=" << e.type().lanes()
      << " to " << lanes;
  return Broadcast::make(e, lanes);
}

// Rewrite vectorized allocation access
50 51 52
// This is necessary for making each vector component containing its own workspace.
// Originates from Halide's loop vectorizer
//
53
// s[i] = s[i * lanes + var]
54 55 56
//
// The same principle applies when using one thread to simulate multiple context.
//
57 58 59 60 61 62 63 64 65 66
class VecAllocAccess : public IRMutator {
 public:
  VecAllocAccess(const Variable* buf, Var var, int var_lanes)
      : buf_(buf), var_(var), var_lanes_(var_lanes) {}
  // Load
  Expr Mutate_(const Load* op, const Expr& e) final {
    Expr expr = IRMutator::Mutate_(op, e);
    op = expr.as<Load>();
    if (op->buffer_var.get() == buf_) {
      return Load::make(op->type, op->buffer_var,
67 68
                        op->index * var_lanes_ + var_,
                        op->predicate);
69 70 71 72 73 74 75 76 77 78 79
    } else {
      return expr;
    }
  }
  // Store
  Stmt Mutate_(const Store* op, const Stmt& s) final {
    Stmt stmt = IRMutator::Mutate_(op, s);
    op = stmt.as<Store>();
    if (op->buffer_var.get() == buf_) {
      return Store::make(op->buffer_var,
                         op->value,
80 81
                         op->index * var_lanes_ + var_,
                         op->predicate);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    } else {
      return stmt;
    }
  }

 private:
  // buffer var
  const Variable* buf_;
  // variable to be replaced
  Var var_;
  // the lanes.
  int var_lanes_;
};

class Vectorizer : public IRMutator {
 public:
  Vectorizer(Var var, int var_lanes)
      : var_(var), var_lanes_(var_lanes) {
    ramp_ = Ramp::make(0, 1, var_lanes);
  }
  // user mutate from parent.
  using IRMutator::Mutate;
104

105 106 107 108 109 110 111 112 113 114 115 116 117
  Stmt Mutate(Stmt stmt) final {
    CHECK(!need_scalarize_);

    Stmt ret = IRMutator::Mutate(stmt);
    if (need_scalarize_) {
      need_scalarize_ = false;
      return Scalarize(stmt);
    } else {
      return ret;
    }
  }


118 119 120 121 122 123 124
  Expr Mutate_(const Add* op, const Expr &e) final {
    return AddSubVec(op, e);
  }
  Expr Mutate_(const Sub* op, const Expr &e) final {
    return AddSubVec(op, e);
  }
  Expr Mutate_(const Mul* op, const Expr &e) final {
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    Expr a = this->Mutate(op->a);
    Expr b = this->Mutate(op->b);
    if (a.same_as(op->a) &&
        b.same_as(op->b)) {
      return e;
    } else {
      int lanes = std::max(a.type().lanes(), b.type().lanes());
      if (lanes != 1) {
        const Ramp* b_ramp = b.as<Ramp>();
        const Ramp* a_ramp = a.as<Ramp>();
        if (a_ramp && b.type().lanes() == 1 && can_prove(b > 0)) {
          return Ramp::make(
              a_ramp->base * b, a_ramp->stride * b, a_ramp->lanes);
        }
        if (b_ramp && a.type().lanes() == 1 && can_prove(a > 0)) {
          return Ramp::make(
              b_ramp->base * a, b_ramp->stride * a, b_ramp->lanes);
        }
      }
      return Mul::make(BroadcastTo(a, lanes), BroadcastTo(b, lanes));
    }
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    return BinaryVec(op, e);
  }
  Expr Mutate_(const Div* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const Mod* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const Min* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const Max* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const EQ* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const NE* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const LT* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
169 170 171
  Expr Mutate_(const LE* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
172 173 174 175 176 177 178 179 180 181 182 183
  Expr Mutate_(const GT* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const GE* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const And* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const Or* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
184 185 186 187 188 189 190 191 192 193 194 195 196
  Expr Mutate_(const Ramp* op, const Expr &e) final {
    Expr base = this->Mutate(op->base);
    Expr stride = this->Mutate(op->stride);
    if (base.type().lanes() > 1 && stride.type().lanes() == 1) {
      const Ramp* base_ramp = base.as<Ramp>();
      if (can_prove(base_ramp->stride == stride * make_const(stride.type(), op->lanes))) {
        return Ramp::make(base_ramp->base, stride, op->lanes * base_ramp->lanes);
      }
    }
    int lanes = std::max(base.type().lanes(), stride.type().lanes());
    base = BroadcastTo(base, lanes);
    stride = BroadcastTo(stride, lanes);
    Array<Expr> elems;
197
    for (int i = 0; i < lanes; ++i) {
198 199 200 201 202 203 204
      elems.push_back(
          Ramp::make(Shuffle::make_extract_element(base, i),
                     Shuffle::make_extract_element(stride, i),
                     op->lanes));
    }
    return Shuffle::make_concat(elems);
  }
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  Expr Mutate_(const Select *op, const Expr& e) final {
    Expr cond = this->Mutate(op->condition);
    Expr t = this->Mutate(op->true_value);
    Expr f = this->Mutate(op->false_value);
    if (cond.same_as(op->condition) &&
        t.same_as(op->true_value) &&
        f.same_as(op->false_value)) {
      return e;
    } else {
      int lanes = std::max(std::max(
          cond.type().lanes(),
          t.type().lanes()), f.type().lanes());
      return Select::make(cond, BroadcastTo(t, lanes), BroadcastTo(f, lanes));
    }
  }
  Expr Mutate_(const Cast *op, const Expr& e) final {
    Expr value = this->Mutate(op->value);
    if (value.same_as(op->value)) {
      return e;
    } else {
      return Cast::make(op->type.with_lanes(value.type().lanes()), value);
    }
227 228 229 230 231 232 233 234 235 236 237
  }
  // Variable
  Expr Mutate_(const Variable* v, const Expr& e) final {
    if (v == var_.get()) {
      return ramp_;
    } else if (lets_.count(v)) {
        return lets_[v];
    } else {
      return e;
    }
  }
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
  // IfThenElse expr
  Expr MutateIfThenElseExpr_(const Call *op, const Expr& e) {
    Expr cond = this->Mutate(op->args[0]);
    if (cond.type().is_vector())  {
      need_scalarize_ = true;
      return e;
    }
    Expr t = this->Mutate(op->args[1]);
    Expr f = this->Mutate(op->args[2]);
    if (cond.same_as(op->args[0]) &&
        t.same_as(op->args[1]) &&
        f.same_as(op->args[2])) {
      return e;
    } else {
      int lanes = std::max(t.type().lanes(), f.type().lanes());
      t = BroadcastTo(t, lanes);
      f = BroadcastTo(f, lanes);
      return Call::make(
          op->type.with_lanes(lanes), op->name,
          {cond, t, f}, op->call_type, op->func, op->value_index);
    }
  }
260 261
  // Call
  Expr Mutate_(const Call* op, const Expr& e) final {
262 263 264
    if (op->name == intrinsic::tvm_if_then_else) {
      return MutateIfThenElseExpr_(op, e);
    }
265 266
    int lane = 0;
    Array<Expr> new_args = MutateArray(op->args, &lane);
267 268

    // normal code path.
269 270 271 272 273 274 275 276 277 278 279
    if (op->args.same_as(new_args)) {
      return e;
    } else {
      return Call::make(
          op->type.with_lanes(lane), op->name, new_args,
          op->call_type, op->func, op->value_index);
    }
  }
  // Load
  Expr Mutate_(const Load* op, const Expr& e) final {
    Expr index = this->Mutate(op->index);
280 281
    Expr pred = this->Mutate(op->predicate);
    if (index.same_as(op->index) && pred.same_as(op->predicate)) {
282 283
      return e;
    } else {
284 285 286 287 288 289
      int lanes = std::max(index.type().lanes(), pred.type().lanes());
      return Load::make(
          op->type.with_lanes(lanes),
          op->buffer_var,
          BroadcastTo(index, lanes),
          BroadcastTo(pred, lanes));
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    }
  }
  // Let
  Expr Mutate_(const Let* op, const Expr& e) final {
    Expr value = this->Mutate(op->value);
    CHECK(!lets_.count(op->var.get())) << "not SSA";
    if (value.type().lanes() != op->value.type().lanes()) {
      Var v(op->var->name_hint, value.type());
      lets_[op->var.get()] = v;
      return Let::make(v, value, Mutate(op->body));
    } else {
      Expr body = this->Mutate(op->body);
      if (value.same_as(op->value) &&
          body.same_as(op->body)) {
        return e;
      } else {
        return Let::make(op->var, value, body);
      }
    }
  }
  // Provide
  Stmt Mutate_(const Provide* op, const Stmt& s) final {
    Expr new_value = this->Mutate(op->value);
    int lane = new_value.type().lanes();
    Array<Expr> new_args = MutateArray(op->args, &lane);
    if (op->args.same_as(new_args) && op->value.same_as(new_value)) {
      return s;
    } else {
      new_value = BroadcastTo(new_value, lane);
      return Provide::make(op->func, op->value_index, new_value, new_args);
    }
  }
  // Store
  Stmt Mutate_(const Store* op, const Stmt& s) final {
    Expr value = this->Mutate(op->value);
    Expr index = this->Mutate(op->index);
326
    Expr pred = this->Mutate(op->predicate);
327 328 329 330
    if (value.same_as(op->value) && index.same_as(op->index)) {
      return s;
    } else {
      int lanes = std::max(value.type().lanes(), index.type().lanes());
331
      lanes = std::max(lanes, pred.type().lanes());
332 333
      return Store::make(op->buffer_var,
                         BroadcastTo(value, lanes),
334 335
                         BroadcastTo(index, lanes),
                         BroadcastTo(pred, lanes));
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    }
  }
  // For
  Stmt Mutate_(const For* op, const Stmt& s) final {
    if (op->for_type == ForType::Vectorized) {
      LOG(WARNING) << "Detect vectorize inside vectorized loop, ignoring...";
    }
    CHECK(is_zero(op->min));
    CHECK(!op->extent.type().is_vector());
    Expr extent = Mutate(op->extent);
    if (extent.type().is_vector()) {
      LOG(WARNING) << "Detect vectorized extent type, scalarizing...";
      return Scalarize(s);
    }
    Stmt body = Mutate(op->body);
    if (extent.same_as(op->extent) &&
        body.same_as(op->body)) {
      return s;
    } else {
      return For::make(
          op->loop_var, op->min, extent,
          op->for_type, op->device_api, body);
    }
  }
  // IfThenElse
  Stmt Mutate_(const IfThenElse* op, const Stmt& s) final {
    CHECK(!op->condition.type().is_vector());
    Expr condition = this->Mutate(op->condition);
    if (condition.type().is_vector()) {
      LOG(WARNING) << "Detect vector condition in Vectorized Loop, scalarizing...";
      return Scalarize(s);
    }
    Stmt then_case = this->Mutate(op->then_case);
    Stmt else_case;
370
    if (op->else_case.defined()) {
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
      else_case = this->Mutate(op->else_case);
    }
    if (condition.same_as(op->condition) &&
        then_case.same_as(op->then_case) &&
        else_case.same_as(op->else_case)) {
      return s;
    } else {
      return IfThenElse::make(condition, then_case, else_case);
    }
  }
  // LetStmt
  Stmt Mutate_(const LetStmt* op, const Stmt& s) final {
    LOG(WARNING) << "Cannot vectorize with LetStmt, remove it with Simplify Before Vectorize";
    return Scalarize(s);
  }
  // Allocate
  Stmt Mutate_(const Allocate* op, const Stmt& s) final {
    if (op->new_expr.defined()) {
      LOG(WARNING) << "Cannot vectorize with new expr";
      return Scalarize(s);
    }
    Expr condition = Mutate(op->condition);
    if (condition.type().is_vector()) {
      LOG(WARNING) << "Cannot handle vector extent in alloc ";
      return Scalarize(s);
    }
    Array<Expr> extents;
    for (size_t i = 0; i < op->extents.size(); i++) {
      Expr new_ext = Mutate(op->extents[i]);
      if (new_ext.type().is_vector()) {
        LOG(WARNING) << "Cannot handle vector extent in alloc ";
        return Scalarize(s);
      }
      extents.push_back(new_ext);
    }
    // place the vector lanes in least significant dimension.
    extents.push_back(var_lanes_);
    // rewrite access to buffer internally.
    Stmt body = VecAllocAccess(
        op->buffer_var.get(), var_, var_lanes_).Mutate(op->body);
    body = Mutate(body);
    return Allocate::make(
        op->buffer_var, op->type,
        extents, condition, body,
        op->new_expr, op->free_function);
  }
  // scalarize the statment
  Stmt Scalarize(Stmt stmt) {
    Var idx(var_->name_hint + ".s", var_->type);
Changming Sun committed
420 421
    Map<Var, Expr> values{{var_, idx}};
    stmt = Substitute(stmt, values);
422 423 424 425 426 427 428 429 430 431
    return For::make(idx, 0, var_lanes_, ForType::Serial, DeviceAPI::None, stmt);
  }

 private:
  // variable to be replaced
  Var var_;
  // the lanes.
  int var_lanes_;
  // ramp representing the var.
  Expr ramp_;
432 433
  // flag to mark requirment of scalarization.
  bool need_scalarize_{false};
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
  // The lets
  std::unordered_map<const Variable*, Expr> lets_;
  // mutate array, with given lane requirement
  // when finished, p_lane updates the lane requirement.
  Array<Expr> MutateArray(Array<Expr> arr, int* p_lanes) {
    if (arr.size() == 0) return arr;
    int& lanes = *p_lanes;
    bool changed = false;
    std::vector<Expr> new_arr(arr.size());
    for (size_t i = 0; i < arr.size(); i++) {
      Expr old_elem = arr[i];
      Expr new_elem = this->Mutate(old_elem);
      if (!new_elem.same_as(old_elem)) changed = true;
      new_arr[i] = new_elem;
      lanes = std::max(lanes, new_elem.type().lanes());
    }

    for (size_t i = 0; i < arr.size(); ++i) {
      if (new_arr[i].type().lanes() != lanes) {
        new_arr[i] = BroadcastTo(new_arr[i], lanes);
        changed = true;
      }
    }
    if (!changed) return arr;
    return Array<Expr>(new_arr);
  }
460 461 462 463 464 465
  template<typename T>
  Expr BinaryVec(const T* op, const Expr& e) {
    Expr a = this->Mutate(op->a);
    Expr b = this->Mutate(op->b);
    if (a.same_as(op->a) &&
        b.same_as(op->b)) {
466 467
      return e;
    } else {
468 469
      int lanes = std::max(a.type().lanes(), b.type().lanes());
      return T::make(BroadcastTo(a, lanes), BroadcastTo(b, lanes));
470
    }
471 472 473 474 475 476 477
  }
  template<typename T>
  Expr AddSubVec(const T* op, const Expr& e) {
    Expr a = this->Mutate(op->a);
    Expr b = this->Mutate(op->b);
    if (a.same_as(op->a) &&
        b.same_as(op->b)) {
478 479
      return e;
    } else {
480 481 482 483 484 485
      int lanes = std::max(a.type().lanes(), b.type().lanes());
      if (lanes != 1) {
        const Ramp* b_ramp = b.as<Ramp>();
        const Ramp* a_ramp = a.as<Ramp>();
        if (a.type().lanes() == 1 && b_ramp) {
          return Ramp::make(
486 487 488
              arith::ComputeExpr<T>(a, b_ramp->base),
              arith::ComputeExpr<T>(make_zero(b_ramp->stride.type()), b_ramp->stride),
              b_ramp->lanes);
489 490 491 492 493 494 495
        }
        if (b.type().lanes() == 1 && a_ramp) {
          return Ramp::make(
              arith::ComputeExpr<T>(a_ramp->base, b), a_ramp->stride, a_ramp->lanes);
        }
      }
      return T::make(BroadcastTo(a, lanes), BroadcastTo(b, lanes));
496
    }
497 498
  }
};
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

class LoopVectorizer : public IRMutator {
 public:
  Stmt Mutate_(const For* op, const Stmt& s) final {
    if (op->for_type == ForType::Vectorized) {
      CHECK(is_zero(op->min));
      int lanes = 0;
      bool succ = arith::GetConstInt(op->extent, &lanes);
      if (!succ || lanes < 1) {
        LOG(FATAL) << "Failed to vectorize loop with extent " << op->extent;
      }
      Var var(op->loop_var.node_);
      return Vectorizer(var, lanes).Mutate(op->body);
    } else {
      return IRMutator::Mutate_(op, s);
    }
  }
};

Stmt VectorizeLoop(Stmt stmt) {
  return LoopVectorizer().Mutate(stmt);
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
class VectorizeSkipper : public IRMutator {
 public:
  Stmt Mutate_(const For* op, const Stmt& s) final {
    Stmt stmt = IRMutator::Mutate_(op, s);
    op = stmt.as<For>();
    if (op->for_type == ForType::Vectorized) {
      return For::make(op->loop_var, op->min, op->extent, ForType::Serial, op->device_api,
                       op->body);
    } else {
       return stmt;
    }
  }
};

Stmt SkipVectorize(Stmt stmt) {
  return VectorizeSkipper().Mutate(stmt);
}

540 541
}  // namespace ir
}  // namespace tvm