real.c 141 KB
Newer Older
Richard Stallman committed
1
/* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF,
2
   and support for XFmode IEEE extended real floating point arithmetic.
Jeff Law committed
3
   Copyright (C) 1993, 94-98, 1999 Free Software Foundation, Inc.
4
   Contributed by Stephen L. Moshier (moshier@world.std.com).
Richard Stallman committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
Richard Kenner committed
20 21
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */
Richard Stallman committed
22

23
#include "config.h"
24
#include "system.h"
Richard Stallman committed
25
#include "tree.h"
Robert Lipe committed
26
#include "toplev.h"
Richard Stallman committed
27 28 29 30

/* To enable support of XFmode extended real floating point, define
LONG_DOUBLE_TYPE_SIZE 96 in the tm.h file (m68k.h or i386.h).

31
To support cross compilation between IEEE, VAX and IBM floating
Richard Stallman committed
32 33 34 35 36 37 38 39 40 41 42 43
point formats, define REAL_ARITHMETIC in the tm.h file.

In either case the machine files (tm.h) must not contain any code
that tries to use host floating point arithmetic to convert
REAL_VALUE_TYPEs from `double' to `float', pass them to fprintf,
etc.  In cross-compile situations a REAL_VALUE_TYPE may not
be intelligible to the host computer's native arithmetic.

The emulator defaults to the host's floating point format so that
its decimal conversion functions can be used if desired (see
real.h).

44 45 46 47 48 49 50 51
The first part of this file interfaces gcc to a floating point
arithmetic suite that was not written with gcc in mind.  Avoid
changing the low-level arithmetic routines unless you have suitable
test programs available.  A special version of the PARANOIA floating
point arithmetic tester, modified for this purpose, can be found on
usc.edu: /pub/C-numanal/ieeetest.zoo.  Other tests, and libraries of
XFmode and TFmode transcendental functions, can be obtained by ftp from
netlib.att.com: netlib/cephes.   */
52

Richard Stallman committed
53
/* Type of computer arithmetic.
54
   Only one of DEC, IBM, IEEE, C4X, or UNK should get defined.
55

56
   `IEEE', when REAL_WORDS_BIG_ENDIAN is non-zero, refers generically
57 58 59 60 61 62 63
   to big-endian IEEE floating-point data structure.  This definition
   should work in SFmode `float' type and DFmode `double' type on
   virtually all big-endian IEEE machines.  If LONG_DOUBLE_TYPE_SIZE
   has been defined to be 96, then IEEE also invokes the particular
   XFmode (`long double' type) data structure used by the Motorola
   680x0 series processors.

64
   `IEEE', when REAL_WORDS_BIG_ENDIAN is zero, refers generally to
65 66 67 68
   little-endian IEEE machines. In this case, if LONG_DOUBLE_TYPE_SIZE
   has been defined to be 96, then IEEE also invokes the particular
   XFmode `long double' data structure used by the Intel 80x86 series
   processors.
69 70 71 72 73

   `DEC' refers specifically to the Digital Equipment Corp PDP-11
   and VAX floating point data structure.  This model currently
   supports no type wider than DFmode.

74 75 76 77 78
   `IBM' refers specifically to the IBM System/370 and compatible
   floating point data structure.  This model currently supports
   no type wider than DFmode.  The IBM conversions were contributed by
   frank@atom.ansto.gov.au (Frank Crawford).

79 80 81
   `C4X' refers specifically to the floating point format used on
   Texas Instruments TMS320C3x and TMS320C4x digital signal
   processors.  This supports QFmode (32-bit float, double) and HFmode
82 83 84 85
   (40-bit long double) where BITS_PER_BYTE is 32. Unlike IEEE
   floats, C4x floats are not rounded to be even. The C4x conversions
   were contributed by m.hayes@elec.canterbury.ac.nz (Michael Hayes) and
   Haj.Ten.Brugge@net.HCC.nl (Herman ten Brugge).
86

87 88 89 90 91
   If LONG_DOUBLE_TYPE_SIZE = 64 (the default, unless tm.h defines it)
   then `long double' and `double' are both implemented, but they
   both mean DFmode.  In this case, the software floating-point
   support available here is activated by writing
      #define REAL_ARITHMETIC
92
   in tm.h.
93 94

   The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support
95
   and may deactivate XFmode since `long double' is used to refer
96 97 98 99 100 101 102 103 104 105 106 107 108
   to both modes.

   The macros FLOAT_WORDS_BIG_ENDIAN, HOST_FLOAT_WORDS_BIG_ENDIAN,
   contributed by Richard Earnshaw <Richard.Earnshaw@cl.cam.ac.uk>,
   separate the floating point unit's endian-ness from that of
   the integer addressing.  This permits one to define a big-endian
   FPU on a little-endian machine (e.g., ARM).  An extension to
   BYTES_BIG_ENDIAN may be required for some machines in the future.
   These optional macros may be defined in tm.h.  In real.h, they
   default to WORDS_BIG_ENDIAN, etc., so there is no need to define
   them for any normal host or target machine on which the floats
   and the integers have the same endian-ness.   */

109 110 111

/* The following converts gcc macros into the ones used by this file.  */

Richard Stallman committed
112 113 114 115 116 117 118 119
/* REAL_ARITHMETIC defined means that macros in real.h are
   defined to call emulator functions.  */
#ifdef REAL_ARITHMETIC

#if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT
/* PDP-11, Pro350, VAX: */
#define DEC 1
#else /* it's not VAX */
120 121 122 123
#if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT
/* IBM System/370 style */
#define IBM 1
#else /* it's also not an IBM */
124 125 126 127
#if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
/* TMS320C3x/C4x style */
#define C4X 1
#else /* it's also not a C4X */
Richard Stallman committed
128
#if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
129
#define IEEE
Richard Stallman committed
130
#else /* it's not IEEE either */
Mike Stump committed
131
/* UNKnown arithmetic.  We don't support this and can't go on.  */
Richard Stallman committed
132 133 134
unknown arithmetic type
#define UNK 1
#endif /* not IEEE */
135
#endif /* not C4X */
136
#endif /* not IBM */
Richard Stallman committed
137 138
#endif /* not VAX */

139 140
#define REAL_WORDS_BIG_ENDIAN FLOAT_WORDS_BIG_ENDIAN

Richard Stallman committed
141 142 143 144 145 146
#else
/* REAL_ARITHMETIC not defined means that the *host's* data
   structure will be used.  It may differ by endian-ness from the
   target machine's structure and will get its ends swapped
   accordingly (but not here).  Probably only the decimal <-> binary
   functions in this file will actually be used in this case.  */
147

Richard Stallman committed
148 149 150
#if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT
#define DEC 1
#else /* it's not VAX */
151 152 153 154
#if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
/* IBM System/370 style */
#define IBM 1
#else /* it's also not an IBM */
Richard Stallman committed
155
#if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
156
#define IEEE
Richard Stallman committed
157 158 159 160
#else /* it's not IEEE either */
unknown arithmetic type
#define UNK 1
#endif /* not IEEE */
161
#endif /* not IBM */
Richard Stallman committed
162 163
#endif /* not VAX */

164 165
#define REAL_WORDS_BIG_ENDIAN HOST_FLOAT_WORDS_BIG_ENDIAN

Richard Stallman committed
166 167
#endif /* REAL_ARITHMETIC not defined */

168 169
/* Define INFINITY for support of infinity.
   Define NANS for support of Not-a-Number's (NaN's).  */
170
#if !defined(DEC) && !defined(IBM) && !defined(C4X)
Richard Stallman committed
171
#define INFINITY
172
#define NANS
Richard Stallman committed
173 174
#endif

Mike Stump committed
175
/* Support of NaNs requires support of infinity.  */
176 177 178 179 180
#ifdef NANS
#ifndef INFINITY
#define INFINITY
#endif
#endif
181

Richard Stallman committed
182
/* Find a host integer type that is at least 16 bits wide,
Mike Stump committed
183
   and another type at least twice whatever that size is.  */
Richard Stallman committed
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

#if HOST_BITS_PER_CHAR >= 16
#define EMUSHORT char
#define EMUSHORT_SIZE HOST_BITS_PER_CHAR
#define EMULONG_SIZE (2 * HOST_BITS_PER_CHAR)
#else
#if HOST_BITS_PER_SHORT >= 16
#define EMUSHORT short
#define EMUSHORT_SIZE HOST_BITS_PER_SHORT
#define EMULONG_SIZE (2 * HOST_BITS_PER_SHORT)
#else
#if HOST_BITS_PER_INT >= 16
#define EMUSHORT int
#define EMUSHORT_SIZE HOST_BITS_PER_INT
#define EMULONG_SIZE (2 * HOST_BITS_PER_INT)
#else
#if HOST_BITS_PER_LONG >= 16
#define EMUSHORT long
#define EMUSHORT_SIZE HOST_BITS_PER_LONG
#define EMULONG_SIZE (2 * HOST_BITS_PER_LONG)
#else
Mike Stump committed
205
/*  You will have to modify this program to have a smaller unit size.  */
Richard Stallman committed
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#define EMU_NON_COMPILE
#endif
#endif
#endif
#endif

#if HOST_BITS_PER_SHORT >= EMULONG_SIZE
#define EMULONG short
#else
#if HOST_BITS_PER_INT >= EMULONG_SIZE
#define EMULONG int
#else
#if HOST_BITS_PER_LONG >= EMULONG_SIZE
#define EMULONG long
#else
221
#if HOST_BITS_PER_LONGLONG >= EMULONG_SIZE
Richard Stallman committed
222 223
#define EMULONG long long int
#else
Mike Stump committed
224
/*  You will have to modify this program to have a smaller unit size.  */
Richard Stallman committed
225 226 227 228 229 230 231
#define EMU_NON_COMPILE
#endif
#endif
#endif
#endif


Mike Stump committed
232
/* The host interface doesn't work if no 16-bit size exists.  */
Richard Stallman committed
233 234 235 236
#if EMUSHORT_SIZE != 16
#define EMU_NON_COMPILE
#endif

Mike Stump committed
237
/* OK to continue compilation.  */
Richard Stallman committed
238 239 240 241 242 243 244 245
#ifndef EMU_NON_COMPILE

/* Construct macros to translate between REAL_VALUE_TYPE and e type.
   In GET_REAL and PUT_REAL, r and e are pointers.
   A REAL_VALUE_TYPE is guaranteed to occupy contiguous locations
   in memory, with no holes.  */

#if LONG_DOUBLE_TYPE_SIZE == 96
246 247 248 249
/* Number of 16 bit words in external e type format */
#define NE 6
#define MAXDECEXP 4932
#define MINDECEXP -4956
250
#define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE)
251 252 253 254 255 256
#define PUT_REAL(e,r)				\
do {						\
  if (2*NE < sizeof(*r))			\
    bzero((char *)r, sizeof(*r));		\
  bcopy ((char *) e, (char *) r, 2*NE);		\
} while (0)
Richard Stallman committed
257
#else /* no XFmode */
258 259 260 261
#if LONG_DOUBLE_TYPE_SIZE == 128
#define NE 10
#define MAXDECEXP 4932
#define MINDECEXP -4977
262 263
#define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE)
#define PUT_REAL(e,r) bcopy ((char *) e, (char *) r, 2*NE)
264 265 266 267
#else
#define NE 6
#define MAXDECEXP 4932
#define MINDECEXP -4956
Richard Stallman committed
268 269
#ifdef REAL_ARITHMETIC
/* Emulator uses target format internally
Mike Stump committed
270
   but host stores it in host endian-ness.  */
Richard Stallman committed
271

272 273
#define GET_REAL(r,e)						\
do {								\
274
     if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN)	\
Mike Stump committed
275
       e53toe ((unsigned EMUSHORT *) (r), (e));			\
276 277 278 279 280 281 282 283 284 285 286 287 288
     else							\
       {							\
	 unsigned EMUSHORT w[4];				\
	 w[3] = ((EMUSHORT *) r)[0];				\
	 w[2] = ((EMUSHORT *) r)[1];				\
	 w[1] = ((EMUSHORT *) r)[2];				\
	 w[0] = ((EMUSHORT *) r)[3];				\
	 e53toe (w, (e));					\
       }							\
   } while (0)

#define PUT_REAL(e,r)						\
do {								\
289
     if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN)	\
290 291 292 293 294 295 296 297 298 299 300
       etoe53 ((e), (unsigned EMUSHORT *) (r));			\
     else							\
       {							\
	 unsigned EMUSHORT w[4];				\
	 etoe53 ((e), w);					\
	 *((EMUSHORT *) r) = w[3];				\
	 *((EMUSHORT *) r + 1) = w[2];				\
	 *((EMUSHORT *) r + 2) = w[1];				\
	 *((EMUSHORT *) r + 3) = w[0];				\
       }							\
   } while (0)
Richard Stallman committed
301 302 303 304

#else /* not REAL_ARITHMETIC */

/* emulator uses host format */
305 306
#define GET_REAL(r,e) e53toe ((unsigned EMUSHORT *) (r), (e))
#define PUT_REAL(e,r) etoe53 ((e), (unsigned EMUSHORT *) (r))
Richard Stallman committed
307 308

#endif /* not REAL_ARITHMETIC */
309
#endif /* not TFmode */
310
#endif /* not XFmode */
Richard Stallman committed
311

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

/* Number of 16 bit words in internal format */
#define NI (NE+3)

/* Array offset to exponent */
#define E 1

/* Array offset to high guard word */
#define M 2

/* Number of bits of precision */
#define NBITS ((NI-4)*16)

/* Maximum number of decimal digits in ASCII conversion
 * = NBITS*log10(2)
 */
#define NDEC (NBITS*8/27)

/* The exponent of 1.0 */
#define EXONE (0x3fff)

333
extern int extra_warnings;
334 335
extern unsigned EMUSHORT ezero[], ehalf[], eone[], etwo[];
extern unsigned EMUSHORT elog2[], esqrt2[];
336 337 338 339 340

static void endian	PROTO((unsigned EMUSHORT *, long *,
			       enum machine_mode));
static void eclear	PROTO((unsigned EMUSHORT *));
static void emov	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
341
#if 0
342
static void eabs	PROTO((unsigned EMUSHORT *));
343
#endif
344 345 346 347 348 349 350 351 352 353 354 355 356 357
static void eneg	PROTO((unsigned EMUSHORT *));
static int eisneg	PROTO((unsigned EMUSHORT *));
static int eisinf	PROTO((unsigned EMUSHORT *));
static int eisnan	PROTO((unsigned EMUSHORT *));
static void einfin	PROTO((unsigned EMUSHORT *));
static void enan	PROTO((unsigned EMUSHORT *, int));
static void emovi	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void emovo	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void ecleaz	PROTO((unsigned EMUSHORT *));
static void ecleazs	PROTO((unsigned EMUSHORT *));
static void emovz	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void einan	PROTO((unsigned EMUSHORT *));
static int eiisnan	PROTO((unsigned EMUSHORT *));
static int eiisneg	PROTO((unsigned EMUSHORT *));
358
#if 0
359
static void eiinfin	PROTO((unsigned EMUSHORT *));
360
#endif
361 362 363 364 365 366 367 368 369 370
static int eiisinf	PROTO((unsigned EMUSHORT *));
static int ecmpm	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void eshdn1	PROTO((unsigned EMUSHORT *));
static void eshup1	PROTO((unsigned EMUSHORT *));
static void eshdn8	PROTO((unsigned EMUSHORT *));
static void eshup8	PROTO((unsigned EMUSHORT *));
static void eshup6	PROTO((unsigned EMUSHORT *));
static void eshdn6	PROTO((unsigned EMUSHORT *));
static void eaddm	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void esubm	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
371
static void m16m	PROTO((unsigned int, unsigned short *,
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
			       unsigned short *));
static int edivm	PROTO((unsigned short *, unsigned short *));
static int emulm	PROTO((unsigned short *, unsigned short *));
static void emdnorm	PROTO((unsigned EMUSHORT *, int, int, EMULONG, int));
static void esub	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
			       unsigned EMUSHORT *));
static void eadd	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
			       unsigned EMUSHORT *));
static void eadd1	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
			       unsigned EMUSHORT *));
static void ediv	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
			       unsigned EMUSHORT *));
static void emul	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
			       unsigned EMUSHORT *));
static void e53toe	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void e64toe	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void e113toe	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void e24toe	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void etoe113	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void toe113	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void etoe64	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void toe64	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void etoe53	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void toe53	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void etoe24	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void toe24	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static int ecmp		PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
399
#if 0
400
static void eround	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
401
#endif
402 403 404 405 406 407 408 409
static void ltoe	PROTO((HOST_WIDE_INT *, unsigned EMUSHORT *));
static void ultoe	PROTO((unsigned HOST_WIDE_INT *, unsigned EMUSHORT *));
static void eifrac	PROTO((unsigned EMUSHORT *, HOST_WIDE_INT *,
			       unsigned EMUSHORT *));
static void euifrac	PROTO((unsigned EMUSHORT *, unsigned HOST_WIDE_INT *,
			       unsigned EMUSHORT *));
static int eshift	PROTO((unsigned EMUSHORT *, int));
static int enormlz	PROTO((unsigned EMUSHORT *));
410
#if 0
411 412 413 414
static void e24toasc	PROTO((unsigned EMUSHORT *, char *, int));
static void e53toasc	PROTO((unsigned EMUSHORT *, char *, int));
static void e64toasc	PROTO((unsigned EMUSHORT *, char *, int));
static void e113toasc	PROTO((unsigned EMUSHORT *, char *, int));
415
#endif /* 0 */
416
static void etoasc	PROTO((unsigned EMUSHORT *, char *, int));
417 418 419 420 421 422
static void asctoe24	PROTO((const char *, unsigned EMUSHORT *));
static void asctoe53	PROTO((const char *, unsigned EMUSHORT *));
static void asctoe64	PROTO((const char *, unsigned EMUSHORT *));
static void asctoe113	PROTO((const char *, unsigned EMUSHORT *));
static void asctoe	PROTO((const char *, unsigned EMUSHORT *));
static void asctoeg	PROTO((const char *, unsigned EMUSHORT *, int));
423
static void efloor	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
Manfred Hollstein committed
424
#if 0
425 426
static void efrexp	PROTO((unsigned EMUSHORT *, int *,
			       unsigned EMUSHORT *));
Manfred Hollstein committed
427
#endif
428
static void eldexp	PROTO((unsigned EMUSHORT *, int, unsigned EMUSHORT *));
Manfred Hollstein committed
429
#if 0
430 431
static void eremain	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
			       unsigned EMUSHORT *));
Manfred Hollstein committed
432
#endif
433
static void eiremain	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
434
static void mtherr	PROTO((const char *, int));
435
#ifdef DEC
436 437 438
static void dectoe	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void etodec	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void todec	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
439 440
#endif
#ifdef IBM
441 442 443 444 445 446
static void ibmtoe	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
			       enum machine_mode));
static void etoibm	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
			       enum machine_mode));
static void toibm	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
			       enum machine_mode));
447
#endif
448 449 450 451 452 453 454 455
#ifdef C4X
static void c4xtoe	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
 			       enum machine_mode));
static void etoc4x	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
 			       enum machine_mode));
static void toc4x	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
 			       enum machine_mode));
#endif
456
static void make_nan	PROTO((unsigned EMUSHORT *, int, enum machine_mode));
Manfred Hollstein committed
457
#if 0
458 459 460 461 462
static void uditoe	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void ditoe	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void etoudi	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void etodi	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void esqrt	PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
Manfred Hollstein committed
463
#endif
464

465 466 467
/* Copy 32-bit numbers obtained from array containing 16-bit numbers,
   swapping ends if required, into output array of longs.  The
   result is normally passed to fprintf by the ASM_OUTPUT_ macros.   */
468

469
static void
Richard Stallman committed
470 471 472 473 474 475 476
endian (e, x, mode)
     unsigned EMUSHORT e[];
     long x[];
     enum machine_mode mode;
{
  unsigned long th, t;

477
  if (REAL_WORDS_BIG_ENDIAN)
Richard Stallman committed
478
    {
479 480 481
      switch (mode)
	{
	case TFmode:
Mike Stump committed
482
	  /* Swap halfwords in the fourth long.  */
483 484 485 486 487 488
	  th = (unsigned long) e[6] & 0xffff;
	  t = (unsigned long) e[7] & 0xffff;
	  t |= th << 16;
	  x[3] = (long) t;

	case XFmode:
Mike Stump committed
489
	  /* Swap halfwords in the third long.  */
490 491 492 493 494 495 496
	  th = (unsigned long) e[4] & 0xffff;
	  t = (unsigned long) e[5] & 0xffff;
	  t |= th << 16;
	  x[2] = (long) t;
	  /* fall into the double case */

	case DFmode:
497
	  /* Swap halfwords in the second word.  */
498 499 500 501 502 503 504
	  th = (unsigned long) e[2] & 0xffff;
	  t = (unsigned long) e[3] & 0xffff;
	  t |= th << 16;
	  x[1] = (long) t;
	  /* fall into the float case */

	case SFmode:
505 506
	case HFmode:
	  /* Swap halfwords in the first word.  */
507 508 509
	  th = (unsigned long) e[0] & 0xffff;
	  t = (unsigned long) e[1] & 0xffff;
	  t |= th << 16;
510
	  x[0] = (long) t;
511
	  break;
Richard Stallman committed
512

513 514 515
	default:
	  abort ();
	}
Richard Stallman committed
516
    }
517
  else
Richard Stallman committed
518
    {
Mike Stump committed
519
      /* Pack the output array without swapping.  */
Richard Stallman committed
520

521 522 523
      switch (mode)
	{
	case TFmode:
Mike Stump committed
524
	  /* Pack the fourth long.  */
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	  th = (unsigned long) e[7] & 0xffff;
	  t = (unsigned long) e[6] & 0xffff;
	  t |= th << 16;
	  x[3] = (long) t;

	case XFmode:
	  /* Pack the third long.
	     Each element of the input REAL_VALUE_TYPE array has 16 useful bits
	     in it.  */
	  th = (unsigned long) e[5] & 0xffff;
	  t = (unsigned long) e[4] & 0xffff;
	  t |= th << 16;
	  x[2] = (long) t;
	  /* fall into the double case */

	case DFmode:
541
	  /* Pack the second long */
542 543 544 545 546 547 548
	  th = (unsigned long) e[3] & 0xffff;
	  t = (unsigned long) e[2] & 0xffff;
	  t |= th << 16;
	  x[1] = (long) t;
	  /* fall into the float case */

	case SFmode:
549 550
	case HFmode:
	  /* Pack the first long */
551 552 553
	  th = (unsigned long) e[1] & 0xffff;
	  t = (unsigned long) e[0] & 0xffff;
	  t |= th << 16;
554
	  x[0] = (long) t;
555
	  break;
Richard Stallman committed
556

557 558 559
	default:
	  abort ();
	}
Richard Stallman committed
560 561 562 563
    }
}


564
/* This is the implementation of the REAL_ARITHMETIC macro.  */
565

566
void
Richard Stallman committed
567 568 569 570 571 572 573 574 575 576 577
earith (value, icode, r1, r2)
     REAL_VALUE_TYPE *value;
     int icode;
     REAL_VALUE_TYPE *r1;
     REAL_VALUE_TYPE *r2;
{
  unsigned EMUSHORT d1[NE], d2[NE], v[NE];
  enum tree_code code;

  GET_REAL (r1, d1);
  GET_REAL (r2, d2);
578
#ifdef NANS
Mike Stump committed
579
/*  Return NaN input back to the caller.  */
580 581 582 583 584 585 586 587 588 589 590
  if (eisnan (d1))
    {
      PUT_REAL (d1, value);
      return;
    }
  if (eisnan (d2))
    {
      PUT_REAL (d2, value);
      return;
    }
#endif
Richard Stallman committed
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
  code = (enum tree_code) icode;
  switch (code)
    {
    case PLUS_EXPR:
      eadd (d2, d1, v);
      break;

    case MINUS_EXPR:
      esub (d2, d1, v);		/* d1 - d2 */
      break;

    case MULT_EXPR:
      emul (d2, d1, v);
      break;

    case RDIV_EXPR:
#ifndef REAL_INFINITY
      if (ecmp (d2, ezero) == 0)
609 610
	{
#ifdef NANS
611
	enan (v, eisneg (d1) ^ eisneg (d2));
612 613
	break;
#else
Richard Stallman committed
614 615
	abort ();
#endif
616 617
	}
#endif
Richard Stallman committed
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
      ediv (d2, d1, v);	/* d1/d2 */
      break;

    case MIN_EXPR:		/* min (d1,d2) */
      if (ecmp (d1, d2) < 0)
	emov (d1, v);
      else
	emov (d2, v);
      break;

    case MAX_EXPR:		/* max (d1,d2) */
      if (ecmp (d1, d2) > 0)
	emov (d1, v);
      else
	emov (d2, v);
      break;
    default:
      emov (ezero, v);
      break;
    }
PUT_REAL (v, value);
}


642 643 644
/* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT.
   implements REAL_VALUE_RNDZINT (x) (etrunci (x)).  */

645
REAL_VALUE_TYPE
Richard Stallman committed
646 647 648 649 650
etrunci (x)
     REAL_VALUE_TYPE x;
{
  unsigned EMUSHORT f[NE], g[NE];
  REAL_VALUE_TYPE r;
651
  HOST_WIDE_INT l;
Richard Stallman committed
652 653

  GET_REAL (&x, g);
654 655 656 657
#ifdef NANS
  if (eisnan (g))
    return (x);
#endif
Richard Stallman committed
658 659 660 661 662 663 664
  eifrac (g, &l, f);
  ltoe (&l, g);
  PUT_REAL (g, &r);
  return (r);
}


665 666 667
/* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT;
   implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)).  */

668
REAL_VALUE_TYPE
Richard Stallman committed
669 670 671 672 673
etruncui (x)
     REAL_VALUE_TYPE x;
{
  unsigned EMUSHORT f[NE], g[NE];
  REAL_VALUE_TYPE r;
674
  unsigned HOST_WIDE_INT l;
Richard Stallman committed
675 676

  GET_REAL (&x, g);
677 678 679 680
#ifdef NANS
  if (eisnan (g))
    return (x);
#endif
Richard Stallman committed
681 682 683 684 685 686 687
  euifrac (g, &l, f);
  ultoe (&l, g);
  PUT_REAL (g, &r);
  return (r);
}


688 689 690
/* This is the REAL_VALUE_ATOF function.  It converts a decimal or hexadecimal
   string to binary, rounding off as indicated by the machine_mode argument.
   Then it promotes the rounded value to REAL_VALUE_TYPE.  */
691

692
REAL_VALUE_TYPE
Richard Stallman committed
693
ereal_atof (s, t)
694
     const char *s;
Richard Stallman committed
695 696 697 698 699 700 701
     enum machine_mode t;
{
  unsigned EMUSHORT tem[NE], e[NE];
  REAL_VALUE_TYPE r;

  switch (t)
    {
702 703
#ifdef C4X
    case QFmode:
704
    case HFmode:
705 706 707 708 709 710 711
      asctoe53 (s, tem);
      e53toe (tem, e);
      break;
#else
    case HFmode:
#endif

Richard Stallman committed
712 713 714 715
    case SFmode:
      asctoe24 (s, tem);
      e24toe (tem, e);
      break;
716

Richard Stallman committed
717 718 719 720
    case DFmode:
      asctoe53 (s, tem);
      e53toe (tem, e);
      break;
721

Richard Stallman committed
722 723 724 725
    case XFmode:
      asctoe64 (s, tem);
      e64toe (tem, e);
      break;
726

727 728 729 730
    case TFmode:
      asctoe113 (s, tem);
      e113toe (tem, e);
      break;
731

Richard Stallman committed
732 733 734 735 736 737 738 739
    default:
      asctoe (s, e);
    }
  PUT_REAL (e, &r);
  return (r);
}


740 741
/* Expansion of REAL_NEGATE.  */

742
REAL_VALUE_TYPE
Richard Stallman committed
743 744 745 746 747 748 749 750 751 752 753 754 755
ereal_negate (x)
     REAL_VALUE_TYPE x;
{
  unsigned EMUSHORT e[NE];
  REAL_VALUE_TYPE r;

  GET_REAL (&x, e);
  eneg (e);
  PUT_REAL (e, &r);
  return (r);
}


756 757 758
/* Round real toward zero to HOST_WIDE_INT;
   implements REAL_VALUE_FIX (x).  */

759
HOST_WIDE_INT
760
efixi (x)
Richard Stallman committed
761 762 763
     REAL_VALUE_TYPE x;
{
  unsigned EMUSHORT f[NE], g[NE];
764
  HOST_WIDE_INT l;
Richard Stallman committed
765 766

  GET_REAL (&x, f);
767 768 769 770 771 772 773
#ifdef NANS
  if (eisnan (f))
    {
      warning ("conversion from NaN to int");
      return (-1);
    }
#endif
774 775
  eifrac (f, &l, g);
  return l;
Richard Stallman committed
776 777
}

778
/* Round real toward zero to unsigned HOST_WIDE_INT
779 780 781
   implements  REAL_VALUE_UNSIGNED_FIX (x).
   Negative input returns zero.  */

782
unsigned HOST_WIDE_INT
783
efixui (x)
Richard Stallman committed
784 785 786
     REAL_VALUE_TYPE x;
{
  unsigned EMUSHORT f[NE], g[NE];
787
  unsigned HOST_WIDE_INT l;
Richard Stallman committed
788 789

  GET_REAL (&x, f);
790 791 792 793 794 795 796
#ifdef NANS
  if (eisnan (f))
    {
      warning ("conversion from NaN to unsigned int");
      return (-1);
    }
#endif
797 798
  euifrac (f, &l, g);
  return l;
Richard Stallman committed
799 800 801
}


802 803
/* REAL_VALUE_FROM_INT macro.  */

804
void
805
ereal_from_int (d, i, j, mode)
Richard Stallman committed
806
     REAL_VALUE_TYPE *d;
807
     HOST_WIDE_INT i, j;
808
     enum machine_mode mode;
Richard Stallman committed
809 810
{
  unsigned EMUSHORT df[NE], dg[NE];
811
  HOST_WIDE_INT low, high;
Richard Stallman committed
812 813
  int sign;

814 815
  if (GET_MODE_CLASS (mode) != MODE_FLOAT)
    abort ();
Richard Stallman committed
816 817 818 819 820 821 822 823 824 825 826 827
  sign = 0;
  low = i;
  if ((high = j) < 0)
    {
      sign = 1;
      /* complement and add 1 */
      high = ~high;
      if (low)
	low = -low;
      else
	high += 1;
    }
828
  eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
829
  ultoe ((unsigned HOST_WIDE_INT *) &high, dg);
Richard Stallman committed
830
  emul (dg, df, dg);
831
  ultoe ((unsigned HOST_WIDE_INT *) &low, df);
Richard Stallman committed
832 833 834
  eadd (df, dg, dg);
  if (sign)
    eneg (dg);
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

  /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS.
     Avoid double-rounding errors later by rounding off now from the
     extra-wide internal format to the requested precision.  */
  switch (GET_MODE_BITSIZE (mode))
    {
    case 32:
      etoe24 (dg, df);
      e24toe (df, dg);
      break;

    case 64:
      etoe53 (dg, df);
      e53toe (df, dg);
      break;

    case 96:
      etoe64 (dg, df);
      e64toe (df, dg);
      break;

    case 128:
      etoe113 (dg, df);
      e113toe (df, dg);
      break;

    default:
      abort ();
  }

Richard Stallman committed
865 866 867 868
  PUT_REAL (dg, d);
}


869
/* REAL_VALUE_FROM_UNSIGNED_INT macro.   */
870

871
void
872
ereal_from_uint (d, i, j, mode)
Richard Stallman committed
873
     REAL_VALUE_TYPE *d;
874
     unsigned HOST_WIDE_INT i, j;
875
     enum machine_mode mode;
Richard Stallman committed
876 877
{
  unsigned EMUSHORT df[NE], dg[NE];
878
  unsigned HOST_WIDE_INT low, high;
Richard Stallman committed
879

880 881
  if (GET_MODE_CLASS (mode) != MODE_FLOAT)
    abort ();
Richard Stallman committed
882 883
  low = i;
  high = j;
884
  eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
Richard Stallman committed
885 886 887 888
  ultoe (&high, dg);
  emul (dg, df, dg);
  ultoe (&low, df);
  eadd (df, dg, dg);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918

  /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS.
     Avoid double-rounding errors later by rounding off now from the
     extra-wide internal format to the requested precision.  */
  switch (GET_MODE_BITSIZE (mode))
    {
    case 32:
      etoe24 (dg, df);
      e24toe (df, dg);
      break;

    case 64:
      etoe53 (dg, df);
      e53toe (df, dg);
      break;

    case 96:
      etoe64 (dg, df);
      e64toe (df, dg);
      break;

    case 128:
      etoe113 (dg, df);
      e113toe (df, dg);
      break;

    default:
      abort ();
  }

Richard Stallman committed
919 920 921 922
  PUT_REAL (dg, d);
}


923 924
/* REAL_VALUE_TO_INT macro.  */

925
void
Richard Stallman committed
926
ereal_to_int (low, high, rr)
927
     HOST_WIDE_INT *low, *high;
Richard Stallman committed
928 929 930 931 932 933
     REAL_VALUE_TYPE rr;
{
  unsigned EMUSHORT d[NE], df[NE], dg[NE], dh[NE];
  int s;

  GET_REAL (&rr, d);
934
#ifdef NANS
935
  if (eisnan (d))
936 937 938 939 940 941 942
    {
      warning ("conversion from NaN to int");
      *low = -1;
      *high = -1;
      return;
    }
#endif
Richard Stallman committed
943 944 945 946 947 948 949
  /* convert positive value */
  s = 0;
  if (eisneg (d))
    {
      eneg (d);
      s = 1;
    }
950
  eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
Richard Stallman committed
951
  ediv (df, d, dg);		/* dg = d / 2^32 is the high word */
952
  euifrac (dg, (unsigned HOST_WIDE_INT *) high, dh);
Richard Stallman committed
953
  emul (df, dh, dg);		/* fractional part is the low word */
954
  euifrac (dg, (unsigned HOST_WIDE_INT *)low, dh);
Richard Stallman committed
955 956 957 958 959 960 961 962 963 964 965 966
  if (s)
    {
      /* complement and add 1 */
      *high = ~(*high);
      if (*low)
	*low = -(*low);
      else
	*high += 1;
    }
}


967 968
/* REAL_VALUE_LDEXP macro.  */

Richard Stallman committed
969 970 971 972 973 974 975 976 977
REAL_VALUE_TYPE
ereal_ldexp (x, n)
     REAL_VALUE_TYPE x;
     int n;
{
  unsigned EMUSHORT e[NE], y[NE];
  REAL_VALUE_TYPE r;

  GET_REAL (&x, e);
978 979 980 981
#ifdef NANS
  if (eisnan (e))
    return (x);
#endif
Richard Stallman committed
982 983 984 985 986 987
  eldexp (e, n, y);
  PUT_REAL (y, &r);
  return (r);
}

/* These routines are conditionally compiled because functions
988 989
   of the same names may be defined in fold-const.c.  */

Richard Stallman committed
990 991
#ifdef REAL_ARITHMETIC

Mike Stump committed
992
/* Check for infinity in a REAL_VALUE_TYPE.  */
993

Richard Stallman committed
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
int
target_isinf (x)
     REAL_VALUE_TYPE x;
{
  unsigned EMUSHORT e[NE];

#ifdef INFINITY
  GET_REAL (&x, e);
  return (eisinf (e));
#else
  return 0;
#endif
}

Mike Stump committed
1008
/* Check whether a REAL_VALUE_TYPE item is a NaN.  */
Richard Stallman committed
1009 1010 1011 1012 1013

int
target_isnan (x)
     REAL_VALUE_TYPE x;
{
1014 1015
  unsigned EMUSHORT e[NE];

1016
#ifdef NANS
1017 1018
  GET_REAL (&x, e);
  return (eisnan (e));
1019
#else
Richard Stallman committed
1020
  return (0);
1021
#endif
Richard Stallman committed
1022 1023 1024
}


1025
/* Check for a negative REAL_VALUE_TYPE number.
Mike Stump committed
1026
   This just checks the sign bit, so that -0 counts as negative.  */
Richard Stallman committed
1027 1028 1029 1030 1031

int
target_negative (x)
     REAL_VALUE_TYPE x;
{
1032
  return ereal_isneg (x);
Richard Stallman committed
1033 1034 1035
}

/* Expansion of REAL_VALUE_TRUNCATE.
1036 1037
   The result is in floating point, rounded to nearest or even.  */

Richard Stallman committed
1038 1039 1040 1041 1042 1043 1044 1045 1046
REAL_VALUE_TYPE
real_value_truncate (mode, arg)
     enum machine_mode mode;
     REAL_VALUE_TYPE arg;
{
  unsigned EMUSHORT e[NE], t[NE];
  REAL_VALUE_TYPE r;

  GET_REAL (&arg, e);
1047 1048 1049 1050
#ifdef NANS
  if (eisnan (e))
    return (arg);
#endif
Richard Stallman committed
1051 1052 1053
  eclear (t);
  switch (mode)
    {
1054 1055 1056 1057 1058
    case TFmode:
      etoe113 (e, t);
      e113toe (t, t);
      break;

Richard Stallman committed
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
    case XFmode:
      etoe64 (e, t);
      e64toe (t, t);
      break;

    case DFmode:
      etoe53 (e, t);
      e53toe (t, t);
      break;

    case SFmode:
1070
#ifndef C4X
1071
    case HFmode:
1072
#endif
Richard Stallman committed
1073 1074 1075 1076
      etoe24 (e, t);
      e24toe (t, t);
      break;

1077 1078 1079 1080 1081 1082 1083 1084
#ifdef C4X
    case HFmode:
    case QFmode:
      etoe53 (e, t);
      e53toe (t, t);
      break;
#endif

Richard Stallman committed
1085
    case SImode:
1086
      r = etrunci (arg);
Richard Stallman committed
1087 1088
      return (r);

1089 1090 1091
    /* If an unsupported type was requested, presume that
       the machine files know something useful to do with
       the unmodified value.  */
1092

Richard Stallman committed
1093
    default:
1094
      return (arg);
Richard Stallman committed
1095 1096 1097 1098 1099
    }
  PUT_REAL (t, &r);
  return (r);
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/* Try to change R into its exact multiplicative inverse in machine mode
   MODE.  Return nonzero function value if successful.  */

int
exact_real_inverse (mode, r)
     enum machine_mode mode;
     REAL_VALUE_TYPE *r;
{
  unsigned EMUSHORT e[NE], einv[NE];
  REAL_VALUE_TYPE rinv;
  int i;

  GET_REAL (r, e);

  /* Test for input in range.  Don't transform IEEE special values.  */
  if (eisinf (e) || eisnan (e) || (ecmp (e, ezero) == 0))
    return 0;

  /* Test for a power of 2: all significand bits zero except the MSB.
     We are assuming the target has binary (or hex) arithmetic.  */
  if (e[NE - 2] != 0x8000)
    return 0;

  for (i = 0; i < NE - 2; i++)
    {
      if (e[i] != 0)
	return 0;
    }

  /* Compute the inverse and truncate it to the required mode.  */
  ediv (e, eone, einv);
  PUT_REAL (einv, &rinv);
  rinv = real_value_truncate (mode, rinv);

#ifdef CHECK_FLOAT_VALUE
  /* This check is not redundant.  It may, for example, flush
     a supposedly IEEE denormal value to zero.  */
  i = 0;
  if (CHECK_FLOAT_VALUE (mode, rinv, i))
    return 0;
#endif
  GET_REAL (&rinv, einv);

  /* Check the bits again, because the truncation might have
     generated an arbitrary saturation value on overflow.  */
  if (einv[NE - 2] != 0x8000)
    return 0;

  for (i = 0; i < NE - 2; i++)
    {
      if (einv[i] != 0)
	return 0;
    }

  /* Fail if the computed inverse is out of range.  */
  if (eisinf (einv) || eisnan (einv) || (ecmp (einv, ezero) == 0))
    return 0;

  /* Output the reciprocal and return success flag.  */
  PUT_REAL (einv, r);
  return 1;
}
Richard Stallman committed
1162 1163
#endif /* REAL_ARITHMETIC defined */

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/* Used for debugging--print the value of R in human-readable format
   on stderr.  */

void
debug_real (r)
     REAL_VALUE_TYPE r;
{
  char dstr[30];

  REAL_VALUE_TO_DECIMAL (r, "%.20g", dstr);
  fprintf (stderr, "%s", dstr);
1175
}
1176 1177


1178 1179 1180
/* The following routines convert REAL_VALUE_TYPE to the various floating
   point formats that are meaningful to supported computers.

1181
   The results are returned in 32-bit pieces, each piece stored in a `long'.
1182
   This is so they can be printed by statements like
1183

1184 1185 1186
      fprintf (file, "%lx, %lx", L[0],  L[1]);

   that will work on both narrow- and wide-word host computers.  */
1187

1188 1189 1190
/* Convert R to a 128-bit long double precision value.  The output array L
   contains four 32-bit pieces of the result, in the order they would appear
   in memory.  */
1191

1192
void
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
etartdouble (r, l)
     REAL_VALUE_TYPE r;
     long l[];
{
  unsigned EMUSHORT e[NE];

  GET_REAL (&r, e);
  etoe113 (e, e);
  endian (e, l, TFmode);
}

1204 1205 1206
/* Convert R to a double extended precision value.  The output array L
   contains three 32-bit pieces of the result, in the order they would
   appear in memory.  */
1207

1208
void
Richard Stallman committed
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
etarldouble (r, l)
     REAL_VALUE_TYPE r;
     long l[];
{
  unsigned EMUSHORT e[NE];

  GET_REAL (&r, e);
  etoe64 (e, e);
  endian (e, l, XFmode);
}

1220 1221 1222
/* Convert R to a double precision value.  The output array L contains two
   32-bit pieces of the result, in the order they would appear in memory.  */

1223
void
Richard Stallman committed
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
etardouble (r, l)
     REAL_VALUE_TYPE r;
     long l[];
{
  unsigned EMUSHORT e[NE];

  GET_REAL (&r, e);
  etoe53 (e, e);
  endian (e, l, DFmode);
}

1235 1236 1237
/* Convert R to a single precision float value stored in the least-significant
   bits of a `long'.  */

Richard Stallman committed
1238 1239 1240 1241 1242
long
etarsingle (r)
     REAL_VALUE_TYPE r;
{
  unsigned EMUSHORT e[NE];
1243
  long l;
Richard Stallman committed
1244 1245 1246 1247 1248 1249 1250

  GET_REAL (&r, e);
  etoe24 (e, e);
  endian (e, &l, SFmode);
  return ((long) l);
}

1251 1252 1253 1254 1255
/* Convert X to a decimal ASCII string S for output to an assembly
   language file.  Note, there is no standard way to spell infinity or
   a NaN, so these values may require special treatment in the tm.h
   macros.  */

Richard Stallman committed
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
void
ereal_to_decimal (x, s)
     REAL_VALUE_TYPE x;
     char *s;
{
  unsigned EMUSHORT e[NE];

  GET_REAL (&x, e);
  etoasc (e, s, 20);
}

1267 1268 1269
/* Compare X and Y.  Return 1 if X > Y, 0 if X == Y, -1 if X < Y,
   or -2 if either is a NaN.   */

Richard Stallman committed
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
int
ereal_cmp (x, y)
     REAL_VALUE_TYPE x, y;
{
  unsigned EMUSHORT ex[NE], ey[NE];

  GET_REAL (&x, ex);
  GET_REAL (&y, ey);
  return (ecmp (ex, ey));
}

1281 1282
/*  Return 1 if the sign bit of X is set, else return 0.  */

Richard Stallman committed
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
int
ereal_isneg (x)
     REAL_VALUE_TYPE x;
{
  unsigned EMUSHORT ex[NE];

  GET_REAL (&x, ex);
  return (eisneg (ex));
}

/* End of REAL_ARITHMETIC interface */
1294

1295 1296 1297 1298 1299 1300 1301
/*
  Extended precision IEEE binary floating point arithmetic routines

  Numbers are stored in C language as arrays of 16-bit unsigned
  short integers.  The arguments of the routines are pointers to
  the arrays.

1302
  External e type data structure, similar to Intel 8087 chip
1303 1304 1305 1306 1307 1308 1309 1310
  temporary real format but possibly with a larger significand:

	NE-1 significand words	(least significant word first,
				 most significant bit is normally set)
	exponent		(value = EXONE for 1.0,
				top bit is the sign)


1311
  Internal exploded e-type data structure of a number (a "word" is 16 bits):
1312 1313 1314 1315 1316 1317 1318 1319 1320

  ei[0]	sign word	(0 for positive, 0xffff for negative)
  ei[1]	biased exponent	(value = EXONE for the number 1.0)
  ei[2]	high guard word	(always zero after normalization)
  ei[3]
  to ei[NI-2]	significand	(NI-4 significand words,
 				 most significant word first,
 				 most significant bit is set)
  ei[NI-1]	low guard word	(0x8000 bit is rounding place)
1321 1322 1323



1324
 		Routines for external format e-type numbers
1325

1326 1327 1328 1329 1330 1331 1332 1333 1334
 	asctoe (string, e)	ASCII string to extended double e type
 	asctoe64 (string, &d)	ASCII string to long double
 	asctoe53 (string, &d)	ASCII string to double
 	asctoe24 (string, &f)	ASCII string to single
 	asctoeg (string, e, prec) ASCII string to specified precision
 	e24toe (&f, e)		IEEE single precision to e type
 	e53toe (&d, e)		IEEE double precision to e type
 	e64toe (&d, e)		IEEE long double precision to e type
 	e113toe (&d, e)		128-bit long double precision to e type
1335
#if 0
1336
 	eabs (e)			absolute value
1337
#endif
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
 	eadd (a, b, c)		c = b + a
 	eclear (e)		e = 0
 	ecmp (a, b)		Returns 1 if a > b, 0 if a == b,
 				-1 if a < b, -2 if either a or b is a NaN.
 	ediv (a, b, c)		c = b / a
 	efloor (a, b)		truncate to integer, toward -infinity
 	efrexp (a, exp, s)	extract exponent and significand
 	eifrac (e, &l, frac)    e to HOST_WIDE_INT and e type fraction
 	euifrac (e, &l, frac)   e to unsigned HOST_WIDE_INT and e type fraction
 	einfin (e)		set e to infinity, leaving its sign alone
 	eldexp (a, n, b)	multiply by 2**n
 	emov (a, b)		b = a
 	emul (a, b, c)		c = b * a
 	eneg (e)			e = -e
1352
#if 0
1353
 	eround (a, b)		b = nearest integer value to a
1354
#endif
1355
 	esub (a, b, c)		c = b - a
1356
#if 0
1357 1358 1359 1360
 	e24toasc (&f, str, n)	single to ASCII string, n digits after decimal
 	e53toasc (&d, str, n)	double to ASCII string, n digits after decimal
 	e64toasc (&d, str, n)	80-bit long double to ASCII string
 	e113toasc (&d, str, n)	128-bit long double to ASCII string
1361
#endif
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
 	etoasc (e, str, n)	e to ASCII string, n digits after decimal
 	etoe24 (e, &f)		convert e type to IEEE single precision
 	etoe53 (e, &d)		convert e type to IEEE double precision
 	etoe64 (e, &d)		convert e type to IEEE long double precision
 	ltoe (&l, e)		HOST_WIDE_INT to e type
 	ultoe (&l, e)		unsigned HOST_WIDE_INT to e type
	eisneg (e)              1 if sign bit of e != 0, else 0
	eisinf (e)              1 if e has maximum exponent (non-IEEE)
 				or is infinite (IEEE)
        eisnan (e)              1 if e is a NaN
1372

1373

1374
 		Routines for internal format exploded e-type numbers
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
 	eaddm (ai, bi)		add significands, bi = bi + ai
 	ecleaz (ei)		ei = 0
 	ecleazs (ei)		set ei = 0 but leave its sign alone
 	ecmpm (ai, bi)		compare significands, return 1, 0, or -1
 	edivm (ai, bi)		divide  significands, bi = bi / ai
 	emdnorm (ai,l,s,exp)	normalize and round off
 	emovi (a, ai)		convert external a to internal ai
 	emovo (ai, a)		convert internal ai to external a
 	emovz (ai, bi)		bi = ai, low guard word of bi = 0
 	emulm (ai, bi)		multiply significands, bi = bi * ai
 	enormlz (ei)		left-justify the significand
 	eshdn1 (ai)		shift significand and guards down 1 bit
 	eshdn8 (ai)		shift down 8 bits
 	eshdn6 (ai)		shift down 16 bits
 	eshift (ai, n)		shift ai n bits up (or down if n < 0)
 	eshup1 (ai)		shift significand and guards up 1 bit
 	eshup8 (ai)		shift up 8 bits
 	eshup6 (ai)		shift up 16 bits
 	esubm (ai, bi)		subtract significands, bi = bi - ai
        eiisinf (ai)            1 if infinite
        eiisnan (ai)            1 if a NaN
 	eiisneg (ai)		1 if sign bit of ai != 0, else 0
        einan (ai)              set ai = NaN
1399
#if 0
1400
        eiinfin (ai)            set ai = infinity
1401
#endif
1402 1403 1404 1405 1406

  The result is always normalized and rounded to NI-4 word precision
  after each arithmetic operation.

  Exception flags are NOT fully supported.
1407

1408 1409
  Signaling NaN's are NOT supported; they are treated the same
  as quiet NaN's.
1410

1411 1412
  Define INFINITY for support of infinity; otherwise a
  saturation arithmetic is implemented.
1413

1414 1415 1416 1417 1418 1419 1420
  Define NANS for support of Not-a-Number items; otherwise the
  arithmetic will never produce a NaN output, and might be confused
  by a NaN input.
  If NaN's are supported, the output of `ecmp (a,b)' is -2 if
  either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)'
  may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than'
  if in doubt.
1421

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
  Denormals are always supported here where appropriate (e.g., not
  for conversion to DEC numbers).  */

/* Definitions for error codes that are passed to the common error handling
   routine mtherr.

   For Digital Equipment PDP-11 and VAX computers, certain
  IBM systems, and others that use numbers with a 56-bit
  significand, the symbol DEC should be defined.  In this
  mode, most floating point constants are given as arrays
  of octal integers to eliminate decimal to binary conversion
  errors that might be introduced by the compiler.
1434

1435 1436
  For computers, such as IBM PC, that follow the IEEE
  Standard for Binary Floating Point Arithmetic (ANSI/IEEE
1437
  Std 754-1985), the symbol IEEE should be defined.
1438 1439
  These numbers have 53-bit significands.  In this mode, constants
  are provided as arrays of hexadecimal 16 bit integers.
1440 1441
  The endian-ness of generated values is controlled by
  REAL_WORDS_BIG_ENDIAN.
1442

1443 1444 1445 1446 1447
  To accommodate other types of computer arithmetic, all
  constants are also provided in a normal decimal radix
  which one can hope are correctly converted to a suitable
  format by the available C language compiler.  To invoke
  this mode, the symbol UNK is defined.
1448

1449 1450 1451 1452 1453 1454
  An important difference among these modes is a predefined
  set of machine arithmetic constants for each.  The numbers
  MACHEP (the machine roundoff error), MAXNUM (largest number
  represented), and several other parameters are preset by
  the configuration symbol.  Check the file const.c to
  ensure that these values are correct for your computer.
1455

1456
  For ANSI C compatibility, define ANSIC equal to 1.  Currently
Mike Stump committed
1457
  this affects only the atan2 function and others that use it.  */
Richard Stallman committed
1458

Richard Stallman committed
1459
/* Constant definitions for math error conditions.  */
Richard Stallman committed
1460 1461 1462 1463 1464 1465 1466

#define DOMAIN		1	/* argument domain error */
#define SING		2	/* argument singularity */
#define OVERFLOW	3	/* overflow range error */
#define UNDERFLOW	4	/* underflow range error */
#define TLOSS		5	/* total loss of precision */
#define PLOSS		6	/* partial loss of precision */
1467
#define INVALID		7	/* NaN-producing operation */
Richard Stallman committed
1468 1469 1470

/*  e type constants used by high precision check routines */

1471
#if LONG_DOUBLE_TYPE_SIZE == 128
Richard Stallman committed
1472 1473
/* 0.0 */
unsigned EMUSHORT ezero[NE] =
1474 1475
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,};
Richard Stallman committed
1476 1477 1478 1479
extern unsigned EMUSHORT ezero[];

/* 5.0E-1 */
unsigned EMUSHORT ehalf[NE] =
1480 1481
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3ffe,};
Richard Stallman committed
1482 1483 1484 1485
extern unsigned EMUSHORT ehalf[];

/* 1.0E0 */
unsigned EMUSHORT eone[NE] =
1486 1487
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,};
Richard Stallman committed
1488 1489 1490 1491
extern unsigned EMUSHORT eone[];

/* 2.0E0 */
unsigned EMUSHORT etwo[NE] =
1492 1493
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4000,};
Richard Stallman committed
1494 1495 1496 1497
extern unsigned EMUSHORT etwo[];

/* 3.2E1 */
unsigned EMUSHORT e32[NE] =
1498 1499
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4004,};
Richard Stallman committed
1500 1501 1502 1503
extern unsigned EMUSHORT e32[];

/* 6.93147180559945309417232121458176568075500134360255E-1 */
unsigned EMUSHORT elog2[NE] =
1504 1505
 {0x40f3, 0xf6af, 0x03f2, 0xb398,
  0xc9e3, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,};
Richard Stallman committed
1506 1507 1508 1509
extern unsigned EMUSHORT elog2[];

/* 1.41421356237309504880168872420969807856967187537695E0 */
unsigned EMUSHORT esqrt2[NE] =
1510 1511
 {0x1d6f, 0xbe9f, 0x754a, 0x89b3,
  0x597d, 0x6484, 0174736, 0171463, 0132404, 0x3fff,};
Richard Stallman committed
1512 1513 1514 1515
extern unsigned EMUSHORT esqrt2[];

/* 3.14159265358979323846264338327950288419716939937511E0 */
unsigned EMUSHORT epi[NE] =
1516
 {0x2902, 0x1cd1, 0x80dc, 0x628b,
Richard Stallman committed
1517 1518 1519
  0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,};
extern unsigned EMUSHORT epi[];

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
#else
/* LONG_DOUBLE_TYPE_SIZE is other than 128 */
unsigned EMUSHORT ezero[NE] =
 {0, 0000000, 0000000, 0000000, 0000000, 0000000,};
unsigned EMUSHORT ehalf[NE] =
 {0, 0000000, 0000000, 0000000, 0100000, 0x3ffe,};
unsigned EMUSHORT eone[NE] =
 {0, 0000000, 0000000, 0000000, 0100000, 0x3fff,};
unsigned EMUSHORT etwo[NE] =
 {0, 0000000, 0000000, 0000000, 0100000, 0040000,};
unsigned EMUSHORT e32[NE] =
 {0, 0000000, 0000000, 0000000, 0100000, 0040004,};
unsigned EMUSHORT elog2[NE] =
 {0xc9e4, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,};
unsigned EMUSHORT esqrt2[NE] =
 {0x597e, 0x6484, 0174736, 0171463, 0132404, 0x3fff,};
unsigned EMUSHORT epi[NE] =
 {0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,};
#endif
Richard Stallman committed
1539 1540

/* Control register for rounding precision.
1541 1542
   This can be set to 113 (if NE=10), 80 (if NE=6), 64, 56, 53, or 24 bits.  */

Richard Stallman committed
1543 1544 1545
int rndprc = NBITS;
extern int rndprc;

1546
/*  Clear out entire e-type number X.  */
Richard Stallman committed
1547

1548
static void
Richard Stallman committed
1549 1550 1551 1552 1553 1554 1555 1556 1557
eclear (x)
     register unsigned EMUSHORT *x;
{
  register int i;

  for (i = 0; i < NE; i++)
    *x++ = 0;
}

1558
/* Move e-type number from A to B.  */
Richard Stallman committed
1559

1560
static void
Richard Stallman committed
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
emov (a, b)
     register unsigned EMUSHORT *a, *b;
{
  register int i;

  for (i = 0; i < NE; i++)
    *b++ = *a++;
}


1571
#if 0
1572
/* Absolute value of e-type X.  */
Richard Stallman committed
1573

1574
static void
Richard Stallman committed
1575
eabs (x)
1576
     unsigned EMUSHORT x[];
Richard Stallman committed
1577
{
1578
  /* sign is top bit of last word of external format */
1579
  x[NE - 1] &= 0x7fff;
Richard Stallman committed
1580
}
1581
#endif /* 0 */
Richard Stallman committed
1582

1583
/* Negate the e-type number X.  */
Richard Stallman committed
1584

1585
static void
Richard Stallman committed
1586 1587 1588 1589 1590 1591 1592
eneg (x)
     unsigned EMUSHORT x[];
{

  x[NE - 1] ^= 0x8000;		/* Toggle the sign bit */
}

1593
/* Return 1 if sign bit of e-type number X is nonzero, else zero.  */
1594

1595
static int
Richard Stallman committed
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
eisneg (x)
     unsigned EMUSHORT x[];
{

  if (x[NE - 1] & 0x8000)
    return (1);
  else
    return (0);
}

1606
/* Return 1 if e-type number X is infinity, else return zero.  */
1607

1608
static int
Richard Stallman committed
1609 1610 1611 1612
eisinf (x)
     unsigned EMUSHORT x[];
{

1613 1614 1615 1616
#ifdef NANS
  if (eisnan (x))
    return (0);
#endif
Richard Stallman committed
1617 1618 1619 1620 1621 1622
  if ((x[NE - 1] & 0x7fff) == 0x7fff)
    return (1);
  else
    return (0);
}

1623 1624
/* Check if e-type number is not a number.  The bit pattern is one that we
   defined, so we know for sure how to detect it.  */
1625

1626
static int
1627 1628 1629 1630 1631
eisnan (x)
     unsigned EMUSHORT x[];
{
#ifdef NANS
  int i;
1632 1633

  /* NaN has maximum exponent */
1634 1635
  if ((x[NE - 1] & 0x7fff) != 0x7fff)
    return (0);
Mike Stump committed
1636
  /* ... and non-zero significand field.  */
1637 1638 1639 1640 1641 1642
  for (i = 0; i < NE - 1; i++)
    {
      if (*x++ != 0)
        return (1);
    }
#endif
1643

1644 1645 1646
  return (0);
}

1647
/*  Fill e-type number X with infinity pattern (IEEE)
Mike Stump committed
1648
    or largest possible number (non-IEEE).  */
Richard Stallman committed
1649

1650
static void
Richard Stallman committed
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
einfin (x)
     register unsigned EMUSHORT *x;
{
  register int i;

#ifdef INFINITY
  for (i = 0; i < NE - 1; i++)
    *x++ = 0;
  *x |= 32767;
#else
  for (i = 0; i < NE - 1; i++)
    *x++ = 0xffff;
  *x |= 32766;
  if (rndprc < NBITS)
    {
1666 1667 1668 1669 1670
      if (rndprc == 113)
	{
	  *(x - 9) = 0;
	  *(x - 8) = 0;
	}
Richard Stallman committed
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
      if (rndprc == 64)
	{
	  *(x - 5) = 0;
	}
      if (rndprc == 53)
	{
	  *(x - 4) = 0xf800;
	}
      else
	{
	  *(x - 4) = 0;
	  *(x - 3) = 0;
	  *(x - 2) = 0xff00;
	}
    }
#endif
}

1689 1690 1691 1692
/* Output an e-type NaN.
   This generates Intel's quiet NaN pattern for extended real.
   The exponent is 7fff, the leading mantissa word is c000.  */

1693
static void
1694
enan (x, sign)
1695
     register unsigned EMUSHORT *x;
1696
     int sign;
1697 1698 1699 1700 1701 1702
{
  register int i;

  for (i = 0; i < NE - 2; i++)
    *x++ = 0;
  *x++ = 0xc000;
1703
  *x = (sign << 15) | 0x7fff;
1704 1705
}

1706
/* Move in an e-type number A, converting it to exploded e-type B.  */
1707

1708
static void
Richard Stallman committed
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
emovi (a, b)
     unsigned EMUSHORT *a, *b;
{
  register unsigned EMUSHORT *p, *q;
  int i;

  q = b;
  p = a + (NE - 1);		/* point to last word of external number */
  /* get the sign bit */
  if (*p & 0x8000)
    *q++ = 0xffff;
  else
    *q++ = 0;
  /* get the exponent */
  *q = *p--;
  *q++ &= 0x7fff;		/* delete the sign bit */
#ifdef INFINITY
  if ((*(q - 1) & 0x7fff) == 0x7fff)
    {
1728 1729 1730 1731 1732 1733 1734 1735 1736
#ifdef NANS
      if (eisnan (a))
	{
	  *q++ = 0;
	  for (i = 3; i < NI; i++)
	    *q++ = *p--;
	  return;
	}
#endif
1737

Richard Stallman committed
1738 1739 1740 1741 1742
      for (i = 2; i < NI; i++)
	*q++ = 0;
      return;
    }
#endif
1743

Richard Stallman committed
1744 1745 1746 1747 1748 1749 1750 1751 1752
  /* clear high guard word */
  *q++ = 0;
  /* move in the significand */
  for (i = 0; i < NE - 1; i++)
    *q++ = *p--;
  /* clear low guard word */
  *q = 0;
}

1753
/* Move out exploded e-type number A, converting it to e type B.  */
1754

1755
static void
Richard Stallman committed
1756 1757 1758 1759 1760
emovo (a, b)
     unsigned EMUSHORT *a, *b;
{
  register unsigned EMUSHORT *p, *q;
  unsigned EMUSHORT i;
1761
  int j;
Richard Stallman committed
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

  p = a;
  q = b + (NE - 1);		/* point to output exponent */
  /* combine sign and exponent */
  i = *p++;
  if (i)
    *q-- = *p++ | 0x8000;
  else
    *q-- = *p++;
#ifdef INFINITY
  if (*(p - 1) == 0x7fff)
    {
1774 1775 1776
#ifdef NANS
      if (eiisnan (a))
	{
1777
	  enan (b, eiisneg (a));
1778 1779 1780
	  return;
	}
#endif
Richard Stallman committed
1781
      einfin (b);
1782
	return;
Richard Stallman committed
1783 1784 1785 1786 1787
    }
#endif
  /* skip over guard word */
  ++p;
  /* move the significand */
1788
  for (j = 0; j < NE - 1; j++)
Richard Stallman committed
1789 1790 1791
    *q-- = *p++;
}

1792
/* Clear out exploded e-type number XI.  */
Richard Stallman committed
1793

1794
static void
Richard Stallman committed
1795 1796 1797 1798 1799 1800 1801 1802 1803
ecleaz (xi)
     register unsigned EMUSHORT *xi;
{
  register int i;

  for (i = 0; i < NI; i++)
    *xi++ = 0;
}

Mike Stump committed
1804
/* Clear out exploded e-type XI, but don't touch the sign.  */
Richard Stallman committed
1805

1806
static void
Richard Stallman committed
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
ecleazs (xi)
     register unsigned EMUSHORT *xi;
{
  register int i;

  ++xi;
  for (i = 0; i < NI - 1; i++)
    *xi++ = 0;
}

1817
/* Move exploded e-type number from A to B.  */
1818

1819
static void
Richard Stallman committed
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
emovz (a, b)
     register unsigned EMUSHORT *a, *b;
{
  register int i;

  for (i = 0; i < NI - 1; i++)
    *b++ = *a++;
  /* clear low guard word */
  *b = 0;
}

1831
/* Generate exploded e-type NaN.
1832
   The explicit pattern for this is maximum exponent and
1833
   top two significant bits set.  */
1834

1835
static void
1836 1837 1838 1839 1840 1841 1842 1843 1844
einan (x)
     unsigned EMUSHORT x[];
{

  ecleaz (x);
  x[E] = 0x7fff;
  x[M + 1] = 0xc000;
}

Mike Stump committed
1845
/* Return nonzero if exploded e-type X is a NaN.  */
1846

1847
static int
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
eiisnan (x)
     unsigned EMUSHORT x[];
{
  int i;

  if ((x[E] & 0x7fff) == 0x7fff)
    {
      for (i = M + 1; i < NI; i++)
	{
	  if (x[i] != 0)
	    return (1);
	}
    }
  return (0);
}

1864
/* Return nonzero if sign of exploded e-type X is nonzero.  */
1865

1866
static int
1867 1868 1869 1870 1871 1872 1873
eiisneg (x)
     unsigned EMUSHORT x[];
{

  return x[0] != 0;
}

1874
#if 0
1875
/* Fill exploded e-type X with infinity pattern.
1876 1877
   This has maximum exponent and significand all zeros.  */

1878
static void
1879 1880 1881 1882 1883 1884 1885
eiinfin (x)
     unsigned EMUSHORT x[];
{

  ecleaz (x);
  x[E] = 0x7fff;
}
1886
#endif /* 0 */
1887

Mike Stump committed
1888
/* Return nonzero if exploded e-type X is infinite.  */
1889

1890
static int
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
eiisinf (x)
     unsigned EMUSHORT x[];
{

#ifdef NANS
  if (eiisnan (x))
    return (0);
#endif
  if ((x[E] & 0x7fff) == 0x7fff)
    return (1);
  return (0);
}

Richard Stallman committed
1904

1905
/* Compare significands of numbers in internal exploded e-type format.
1906 1907 1908 1909 1910
   Guard words are included in the comparison.

   Returns	+1 if a > b
		 0 if a == b
		-1 if a < b   */
1911 1912

static int
Richard Stallman committed
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
ecmpm (a, b)
     register unsigned EMUSHORT *a, *b;
{
  int i;

  a += M;			/* skip up to significand area */
  b += M;
  for (i = M; i < NI; i++)
    {
      if (*a++ != *b++)
	goto difrnt;
    }
  return (0);

 difrnt:
  if (*(--a) > *(--b))
    return (1);
  else
    return (-1);
}

1934
/* Shift significand of exploded e-type X down by 1 bit.  */
Richard Stallman committed
1935

1936
static void
Richard Stallman committed
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
eshdn1 (x)
     register unsigned EMUSHORT *x;
{
  register unsigned EMUSHORT bits;
  int i;

  x += M;			/* point to significand area */

  bits = 0;
  for (i = M; i < NI; i++)
    {
      if (*x & 1)
	bits |= 1;
      *x >>= 1;
      if (bits & 2)
	*x |= 0x8000;
      bits <<= 1;
      ++x;
    }
}

1958
/* Shift significand of exploded e-type X up by 1 bit.  */
Richard Stallman committed
1959

1960
static void
Richard Stallman committed
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
eshup1 (x)
     register unsigned EMUSHORT *x;
{
  register unsigned EMUSHORT bits;
  int i;

  x += NI - 1;
  bits = 0;

  for (i = M; i < NI; i++)
    {
      if (*x & 0x8000)
	bits |= 1;
      *x <<= 1;
      if (bits & 2)
	*x |= 1;
      bits <<= 1;
      --x;
    }
}


1983
/* Shift significand of exploded e-type X down by 8 bits.  */
Richard Stallman committed
1984

1985
static void
Richard Stallman committed
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
eshdn8 (x)
     register unsigned EMUSHORT *x;
{
  register unsigned EMUSHORT newbyt, oldbyt;
  int i;

  x += M;
  oldbyt = 0;
  for (i = M; i < NI; i++)
    {
      newbyt = *x << 8;
      *x >>= 8;
      *x |= oldbyt;
      oldbyt = newbyt;
      ++x;
    }
}

2004
/* Shift significand of exploded e-type X up by 8 bits.  */
Richard Stallman committed
2005

2006
static void
Richard Stallman committed
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
eshup8 (x)
     register unsigned EMUSHORT *x;
{
  int i;
  register unsigned EMUSHORT newbyt, oldbyt;

  x += NI - 1;
  oldbyt = 0;

  for (i = M; i < NI; i++)
    {
      newbyt = *x >> 8;
      *x <<= 8;
      *x |= oldbyt;
      oldbyt = newbyt;
      --x;
    }
}

2026
/* Shift significand of exploded e-type X up by 16 bits.  */
Richard Stallman committed
2027

2028
static void
Richard Stallman committed
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
eshup6 (x)
     register unsigned EMUSHORT *x;
{
  int i;
  register unsigned EMUSHORT *p;

  p = x + M;
  x += M + 1;

  for (i = M; i < NI - 1; i++)
    *p++ = *x++;

  *p = 0;
}

2044
/* Shift significand of exploded e-type X down by 16 bits.  */
Richard Stallman committed
2045

2046
static void
Richard Stallman committed
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
eshdn6 (x)
     register unsigned EMUSHORT *x;
{
  int i;
  register unsigned EMUSHORT *p;

  x += NI - 1;
  p = x + 1;

  for (i = M; i < NI - 1; i++)
    *(--p) = *(--x);

  *(--p) = 0;
}
2061 2062

/* Add significands of exploded e-type X and Y.  X + Y replaces Y.  */
Richard Stallman committed
2063

2064
static void
Richard Stallman committed
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
eaddm (x, y)
     unsigned EMUSHORT *x, *y;
{
  register unsigned EMULONG a;
  int i;
  unsigned int carry;

  x += NI - 1;
  y += NI - 1;
  carry = 0;
  for (i = M; i < NI; i++)
    {
      a = (unsigned EMULONG) (*x) + (unsigned EMULONG) (*y) + carry;
      if (a & 0x10000)
	carry = 1;
      else
	carry = 0;
      *y = (unsigned EMUSHORT) a;
      --x;
      --y;
    }
}

2088
/* Subtract significands of exploded e-type X and Y.  Y - X replaces Y.  */
Richard Stallman committed
2089

2090
static void
Richard Stallman committed
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
esubm (x, y)
     unsigned EMUSHORT *x, *y;
{
  unsigned EMULONG a;
  int i;
  unsigned int carry;

  x += NI - 1;
  y += NI - 1;
  carry = 0;
  for (i = M; i < NI; i++)
    {
      a = (unsigned EMULONG) (*y) - (unsigned EMULONG) (*x) - carry;
      if (a & 0x10000)
	carry = 1;
      else
	carry = 0;
      *y = (unsigned EMUSHORT) a;
      --x;
      --y;
    }
}


static unsigned EMUSHORT equot[NI];

2117 2118 2119 2120 2121 2122 2123

#if 0
/* Radix 2 shift-and-add versions of multiply and divide  */


/* Divide significands */

2124
int
Richard Stallman committed
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
edivm (den, num)
     unsigned EMUSHORT den[], num[];
{
  int i;
  register unsigned EMUSHORT *p, *q;
  unsigned EMUSHORT j;

  p = &equot[0];
  *p++ = num[0];
  *p++ = num[1];

  for (i = M; i < NI; i++)
    {
      *p++ = 0;
    }

2141 2142 2143
  /* Use faster compare and subtraction if denominator has only 15 bits of
     significance.  */

Richard Stallman committed
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
  p = &den[M + 2];
  if (*p++ == 0)
    {
      for (i = M + 3; i < NI; i++)
	{
	  if (*p++ != 0)
	    goto fulldiv;
	}
      if ((den[M + 1] & 1) != 0)
	goto fulldiv;
      eshdn1 (num);
      eshdn1 (den);

      p = &den[M + 1];
      q = &num[M + 1];

      for (i = 0; i < NBITS + 2; i++)
	{
	  if (*p <= *q)
	    {
	      *q -= *p;
	      j = 1;
	    }
	  else
	    {
	      j = 0;
	    }
	  eshup1 (equot);
	  equot[NI - 2] |= j;
	  eshup1 (num);
	}
      goto divdon;
    }

2178 2179 2180
  /* The number of quotient bits to calculate is NBITS + 1 scaling guard
     bit + 1 roundoff bit.  */

Richard Stallman committed
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
 fulldiv:

  p = &equot[NI - 2];
  for (i = 0; i < NBITS + 2; i++)
    {
      if (ecmpm (den, num) <= 0)
	{
	  esubm (den, num);
	  j = 1;		/* quotient bit = 1 */
	}
      else
	j = 0;
      eshup1 (equot);
      *p |= j;
      eshup1 (num);
    }

 divdon:

  eshdn1 (equot);
  eshdn1 (equot);

  /* test for nonzero remainder after roundoff bit */
  p = &num[M];
  j = 0;
  for (i = M; i < NI; i++)
    {
      j |= *p++;
    }
  if (j)
    j = 1;


  for (i = 0; i < NI; i++)
    num[i] = equot[i];
  return ((int) j);
}


/* Multiply significands */
Mike Stump committed
2221

2222
int
Richard Stallman committed
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
emulm (a, b)
     unsigned EMUSHORT a[], b[];
{
  unsigned EMUSHORT *p, *q;
  int i, j, k;

  equot[0] = b[0];
  equot[1] = b[1];
  for (i = M; i < NI; i++)
    equot[i] = 0;

  p = &a[NI - 2];
  k = NBITS;
2236
  while (*p == 0)		/* significand is not supposed to be zero */
Richard Stallman committed
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
    {
      eshdn6 (a);
      k -= 16;
    }
  if ((*p & 0xff) == 0)
    {
      eshdn8 (a);
      k -= 8;
    }

  q = &equot[NI - 1];
  j = 0;
  for (i = 0; i < k; i++)
    {
      if (*p & 1)
	eaddm (b, equot);
      /* remember if there were any nonzero bits shifted out */
      if (*q & 1)
	j |= 1;
      eshdn1 (a);
      eshdn1 (equot);
    }

  for (i = 0; i < NI; i++)
    b[i] = equot[i];

  /* return flag for lost nonzero bits */
  return (j);
}

2267 2268
#else

2269
/* Radix 65536 versions of multiply and divide.  */
2270

2271
/* Multiply significand of e-type number B
Mike Stump committed
2272
   by 16-bit quantity A, return e-type result to C.  */
2273

2274
static void
Richard Stallman committed
2275
m16m (a, b, c)
2276
     unsigned int a;
2277
     unsigned EMUSHORT b[], c[];
2278
{
2279 2280 2281 2282 2283
  register unsigned EMUSHORT *pp;
  register unsigned EMULONG carry;
  unsigned EMUSHORT *ps;
  unsigned EMUSHORT p[NI];
  unsigned EMULONG aa, m;
Richard Stallman committed
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
  int i;

  aa = a;
  pp = &p[NI-2];
  *pp++ = 0;
  *pp = 0;
  ps = &b[NI-1];

  for (i=M+1; i<NI; i++)
    {
      if (*ps == 0)
2295
	{
Richard Stallman committed
2296 2297 2298
	  --ps;
	  --pp;
	  *(pp-1) = 0;
2299
	}
Richard Stallman committed
2300 2301
      else
	{
2302
	  m = (unsigned EMULONG) aa * *ps--;
Richard Stallman committed
2303
	  carry = (m & 0xffff) + *pp;
2304
	  *pp-- = (unsigned EMUSHORT)carry;
Richard Stallman committed
2305
	  carry = (carry >> 16) + (m >> 16) + *pp;
2306
	  *pp = (unsigned EMUSHORT)carry;
Richard Stallman committed
2307 2308 2309 2310 2311
	  *(pp-1) = carry >> 16;
	}
    }
  for (i=M; i<NI; i++)
    c[i] = p[i];
2312 2313
}

2314 2315 2316
/* Divide significands of exploded e-types NUM / DEN.  Neither the
   numerator NUM nor the denominator DEN is permitted to have its high guard
   word nonzero.  */
2317

2318
static int
Richard Stallman committed
2319
edivm (den, num)
2320
     unsigned EMUSHORT den[], num[];
2321
{
Richard Stallman committed
2322
  int i;
2323 2324 2325 2326
  register unsigned EMUSHORT *p;
  unsigned EMULONG tnum;
  unsigned EMUSHORT j, tdenm, tquot;
  unsigned EMUSHORT tprod[NI+1];
2327

Richard Stallman committed
2328 2329 2330
  p = &equot[0];
  *p++ = num[0];
  *p++ = num[1];
2331

Richard Stallman committed
2332 2333 2334 2335 2336 2337 2338 2339
  for (i=M; i<NI; i++)
    {
      *p++ = 0;
    }
  eshdn1 (num);
  tdenm = den[M+1];
  for (i=M; i<NI; i++)
    {
Mike Stump committed
2340
      /* Find trial quotient digit (the radix is 65536).  */
2341
      tnum = (((unsigned EMULONG) num[M]) << 16) + num[M+1];
Richard Stallman committed
2342

Mike Stump committed
2343
      /* Do not execute the divide instruction if it will overflow.  */
Kaveh R. Ghazi committed
2344
      if ((tdenm * (unsigned long)0xffff) < tnum)
Richard Stallman committed
2345 2346 2347
	tquot = 0xffff;
      else
	tquot = tnum / tdenm;
Mike Stump committed
2348
      /* Multiply denominator by trial quotient digit.  */
2349
      m16m ((unsigned int)tquot, den, tprod);
Mike Stump committed
2350
      /* The quotient digit may have been overestimated.  */
Richard Stallman committed
2351
      if (ecmpm (tprod, num) > 0)
2352
	{
Richard Stallman committed
2353 2354 2355 2356 2357 2358 2359
	  tquot -= 1;
	  esubm (den, tprod);
	  if (ecmpm (tprod, num) > 0)
	    {
	      tquot -= 1;
	      esubm (den, tprod);
	    }
2360
	}
Richard Stallman committed
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
      esubm (tprod, num);
      equot[i] = tquot;
      eshup6(num);
    }
  /* test for nonzero remainder after roundoff bit */
  p = &num[M];
  j = 0;
  for (i=M; i<NI; i++)
    {
      j |= *p++;
    }
  if (j)
    j = 1;
2374

Richard Stallman committed
2375 2376
  for (i=0; i<NI; i++)
    num[i] = equot[i];
2377

Richard Stallman committed
2378
  return ((int)j);
2379 2380
}

2381
/* Multiply significands of exploded e-type A and B, result in B.  */
2382

2383
static int
Richard Stallman committed
2384
emulm (a, b)
2385
     unsigned EMUSHORT a[], b[];
2386
{
2387 2388 2389
  unsigned EMUSHORT *p, *q;
  unsigned EMUSHORT pprod[NI];
  unsigned EMUSHORT j;
Richard Stallman committed
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
  int i;

  equot[0] = b[0];
  equot[1] = b[1];
  for (i=M; i<NI; i++)
    equot[i] = 0;

  j = 0;
  p = &a[NI-1];
  q = &equot[NI-1];
  for (i=M+1; i<NI; i++)
    {
      if (*p == 0)
2403
	{
Richard Stallman committed
2404 2405 2406 2407
	  --p;
	}
      else
	{
2408
	  m16m ((unsigned int) *p--, b, pprod);
Richard Stallman committed
2409
	  eaddm(pprod, equot);
2410
	}
Richard Stallman committed
2411 2412 2413
      j |= *q;
      eshdn6(equot);
    }
2414

Richard Stallman committed
2415 2416
  for (i=0; i<NI; i++)
    b[i] = equot[i];
2417

Richard Stallman committed
2418 2419
  /* return flag for lost nonzero bits */
  return ((int)j);
2420 2421
}
#endif
Richard Stallman committed
2422 2423


2424
/* Normalize and round off.
Richard Stallman committed
2425

2426 2427
  The internal format number to be rounded is S.
  Input LOST is 0 if the value is exact.  This is the so-called sticky bit.
2428

2429 2430
  Input SUBFLG indicates whether the number was obtained
  by a subtraction operation.  In that case if LOST is nonzero
2431
  then the number is slightly smaller than indicated.
2432

2433 2434 2435
  Input EXP is the biased exponent, which may be negative.
  the exponent field of S is ignored but is replaced by
  EXP as adjusted by normalization and rounding.
2436

2437 2438
  Input RCNTRL is the rounding control.  If it is nonzero, the
  returned value will be rounded to RNDPRC bits.
2439 2440

  For future reference:  In order for emdnorm to round off denormal
2441 2442 2443 2444
   significands at the right point, the input exponent must be
   adjusted to be the actual value it would have after conversion to
   the final floating point type.  This adjustment has been
   implemented for all type conversions (etoe53, etc.) and decimal
2445
   conversions, but not for the arithmetic functions (eadd, etc.).
2446 2447 2448 2449 2450
   Data types having standard 15-bit exponents are not affected by
   this, but SFmode and DFmode are affected. For example, ediv with
   rndprc = 24 will not round correctly to 24-bit precision if the
   result is denormal.   */

Richard Stallman committed
2451 2452 2453 2454 2455 2456 2457 2458
static int rlast = -1;
static int rw = 0;
static unsigned EMUSHORT rmsk = 0;
static unsigned EMUSHORT rmbit = 0;
static unsigned EMUSHORT rebit = 0;
static int re = 0;
static unsigned EMUSHORT rbit[NI];

2459
static void
Richard Stallman committed
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
emdnorm (s, lost, subflg, exp, rcntrl)
     unsigned EMUSHORT s[];
     int lost;
     int subflg;
     EMULONG exp;
     int rcntrl;
{
  int i, j;
  unsigned EMUSHORT r;

  /* Normalize */
  j = enormlz (s);

Mike Stump committed
2473
  /* a blank significand could mean either zero or infinity.  */
Richard Stallman committed
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
#ifndef INFINITY
  if (j > NBITS)
    {
      ecleazs (s);
      return;
    }
#endif
  exp -= j;
#ifndef INFINITY
  if (exp >= 32767L)
    goto overf;
#else
  if ((j > NBITS) && (exp < 32767))
    {
      ecleazs (s);
      return;
    }
#endif
  if (exp < 0L)
    {
      if (exp > (EMULONG) (-NBITS - 1))
	{
	  j = (int) exp;
	  i = eshift (s, j);
	  if (i)
	    lost = 1;
	}
      else
	{
	  ecleazs (s);
	  return;
	}
    }
Mike Stump committed
2507
  /* Round off, unless told not to by rcntrl.  */
Richard Stallman committed
2508 2509
  if (rcntrl == 0)
    goto mdfin;
Mike Stump committed
2510
  /* Set up rounding parameters if the control register changed.  */
Richard Stallman committed
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
  if (rndprc != rlast)
    {
      ecleaz (rbit);
      switch (rndprc)
	{
	default:
	case NBITS:
	  rw = NI - 1;		/* low guard word */
	  rmsk = 0xffff;
	  rmbit = 0x8000;
2521
	  re = rw - 1;
Richard Stallman committed
2522 2523
	  rebit = 1;
	  break;
2524

2525 2526 2527 2528 2529 2530 2531
	case 113:
	  rw = 10;
	  rmsk = 0x7fff;
	  rmbit = 0x4000;
	  rebit = 0x8000;
	  re = rw;
	  break;
2532

Richard Stallman committed
2533 2534 2535 2536 2537 2538 2539
	case 64:
	  rw = 7;
	  rmsk = 0xffff;
	  rmbit = 0x8000;
	  re = rw - 1;
	  rebit = 1;
	  break;
2540

2541
	  /* For DEC or IBM arithmetic */
Richard Stallman committed
2542 2543 2544 2545 2546
	case 56:
	  rw = 6;
	  rmsk = 0xff;
	  rmbit = 0x80;
	  rebit = 0x100;
2547
	  re = rw;
Richard Stallman committed
2548
	  break;
2549

Richard Stallman committed
2550 2551 2552 2553 2554
	case 53:
	  rw = 6;
	  rmsk = 0x7ff;
	  rmbit = 0x0400;
	  rebit = 0x800;
2555
	  re = rw;
Richard Stallman committed
2556
	  break;
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

	  /* For C4x arithmetic */
	case 32:
	  rw = 5;
	  rmsk = 0xffff;
	  rmbit = 0x8000;
	  rebit = 1;
	  re = rw - 1;
	  break;

Richard Stallman committed
2567 2568 2569 2570 2571
	case 24:
	  rw = 4;
	  rmsk = 0xff;
	  rmbit = 0x80;
	  rebit = 0x100;
2572
	  re = rw;
Richard Stallman committed
2573 2574
	  break;
	}
2575
      rbit[re] = rebit;
Richard Stallman committed
2576 2577 2578
      rlast = rndprc;
    }

2579
  /* Shift down 1 temporarily if the data structure has an implied
2580 2581 2582 2583
     most significant bit and the number is denormal.
     Intel long double denormals also lose one bit of precision.  */
  if ((exp <= 0) && (rndprc != NBITS)
      && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN)))
Richard Stallman committed
2584
    {
2585 2586
      lost |= s[NI - 1] & 1;
      eshdn1 (s);
Richard Stallman committed
2587
    }
2588 2589 2590 2591
  /* Clear out all bits below the rounding bit,
     remembering in r if any were nonzero.  */
  r = s[rw] & rmsk;
  if (rndprc < NBITS)
Richard Stallman committed
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
    {
      i = rw + 1;
      while (i < NI)
	{
	  if (s[i])
	    r |= 1;
	  s[i] = 0;
	  ++i;
	}
    }
2602
  s[rw] &= ~rmsk;
Richard Stallman committed
2603 2604
  if ((r & rmbit) != 0)
    {
2605
#ifndef C4X
Richard Stallman committed
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
      if (r == rmbit)
	{
	  if (lost == 0)
	    {			/* round to even */
	      if ((s[re] & rebit) == 0)
		goto mddone;
	    }
	  else
	    {
	      if (subflg != 0)
		goto mddone;
	    }
	}
2619
#endif
Richard Stallman committed
2620 2621 2622
      eaddm (rbit, s);
    }
 mddone:
Mike Stump committed
2623
/* Undo the temporary shift for denormal values.  */
2624 2625
  if ((exp <= 0) && (rndprc != NBITS)
      && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN)))
Richard Stallman committed
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
    {
      eshup1 (s);
    }
  if (s[2] != 0)
    {				/* overflow on roundoff */
      eshdn1 (s);
      exp += 1;
    }
 mdfin:
  s[NI - 1] = 0;
  if (exp >= 32767L)
    {
#ifndef INFINITY
    overf:
#endif
#ifdef INFINITY
      s[1] = 32767;
      for (i = 2; i < NI - 1; i++)
	s[i] = 0;
2645 2646
      if (extra_warnings)
	warning ("floating point overflow");
Richard Stallman committed
2647 2648 2649 2650 2651 2652
#else
      s[1] = 32766;
      s[2] = 0;
      for (i = M + 1; i < NI - 1; i++)
	s[i] = 0xffff;
      s[NI - 1] = 0;
2653
      if ((rndprc < 64) || (rndprc == 113))
Richard Stallman committed
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	{
	  s[rw] &= ~rmsk;
	  if (rndprc == 24)
	    {
	      s[5] = 0;
	      s[6] = 0;
	    }
	}
#endif
      return;
    }
  if (exp < 0)
    s[1] = 0;
  else
    s[1] = (unsigned EMUSHORT) exp;
}

2671
/*  Subtract.  C = B - A, all e type numbers.  */
Richard Stallman committed
2672 2673 2674

static int subflg = 0;

2675
static void
Richard Stallman committed
2676 2677 2678 2679
esub (a, b, c)
     unsigned EMUSHORT *a, *b, *c;
{

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
#ifdef NANS
  if (eisnan (a))
    {
      emov (a, c);
      return;
    }
  if (eisnan (b))
    {
      emov (b, c);
      return;
    }
/* Infinity minus infinity is a NaN.
Mike Stump committed
2692
   Test for subtracting infinities of the same sign.  */
2693 2694 2695 2696
  if (eisinf (a) && eisinf (b)
      && ((eisneg (a) ^ eisneg (b)) == 0))
    {
      mtherr ("esub", INVALID);
2697
      enan (c, 0);
2698 2699 2700
      return;
    }
#endif
Richard Stallman committed
2701 2702 2703 2704
  subflg = 1;
  eadd1 (a, b, c);
}

Mike Stump committed
2705
/* Add.  C = A + B, all e type.  */
2706

2707
static void
Richard Stallman committed
2708 2709 2710 2711
eadd (a, b, c)
     unsigned EMUSHORT *a, *b, *c;
{

2712
#ifdef NANS
Mike Stump committed
2713
/* NaN plus anything is a NaN.  */
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
  if (eisnan (a))
    {
      emov (a, c);
      return;
    }
  if (eisnan (b))
    {
      emov (b, c);
      return;
    }
/* Infinity minus infinity is a NaN.
Mike Stump committed
2725
   Test for adding infinities of opposite signs.  */
2726 2727 2728 2729
  if (eisinf (a) && eisinf (b)
      && ((eisneg (a) ^ eisneg (b)) != 0))
    {
      mtherr ("esub", INVALID);
2730
      enan (c, 0);
2731 2732 2733
      return;
    }
#endif
Richard Stallman committed
2734 2735 2736 2737
  subflg = 0;
  eadd1 (a, b, c);
}

2738 2739
/* Arithmetic common to both addition and subtraction.  */

2740
static void
Richard Stallman committed
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
eadd1 (a, b, c)
     unsigned EMUSHORT *a, *b, *c;
{
  unsigned EMUSHORT ai[NI], bi[NI], ci[NI];
  int i, lost, j, k;
  EMULONG lt, lta, ltb;

#ifdef INFINITY
  if (eisinf (a))
    {
      emov (a, c);
      if (subflg)
	eneg (c);
      return;
    }
  if (eisinf (b))
    {
      emov (b, c);
      return;
    }
#endif
  emovi (a, ai);
  emovi (b, bi);
  if (subflg)
    ai[0] = ~ai[0];

  /* compare exponents */
  lta = ai[E];
  ltb = bi[E];
  lt = lta - ltb;
  if (lt > 0L)
    {				/* put the larger number in bi */
      emovz (bi, ci);
      emovz (ai, bi);
      emovz (ci, ai);
      ltb = bi[E];
      lt = -lt;
    }
  lost = 0;
  if (lt != 0L)
    {
      if (lt < (EMULONG) (-NBITS - 1))
	goto done;		/* answer same as larger addend */
      k = (int) lt;
      lost = eshift (ai, k);	/* shift the smaller number down */
    }
  else
    {
      /* exponents were the same, so must compare significands */
      i = ecmpm (ai, bi);
      if (i == 0)
	{			/* the numbers are identical in magnitude */
	  /* if different signs, result is zero */
	  if (ai[0] != bi[0])
	    {
	      eclear (c);
	      return;
	    }
	  /* if same sign, result is double */
Richard Kenner committed
2800
	  /* double denormalized tiny number */
Richard Stallman committed
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
	  if ((bi[E] == 0) && ((bi[3] & 0x8000) == 0))
	    {
	      eshup1 (bi);
	      goto done;
	    }
	  /* add 1 to exponent unless both are zero! */
	  for (j = 1; j < NI - 1; j++)
	    {
	      if (bi[j] != 0)
		{
		  ltb += 1;
2812 2813 2814 2815 2816 2817 2818 2819
		  if (ltb >= 0x7fff)
		    {
		      eclear (c);
		      if (ai[0] != 0)
			eneg (c);
		      einfin (c);
		      return;
		    }
Richard Stallman committed
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		  break;
		}
	    }
	  bi[E] = (unsigned EMUSHORT) ltb;
	  goto done;
	}
      if (i > 0)
	{			/* put the larger number in bi */
	  emovz (bi, ci);
	  emovz (ai, bi);
	  emovz (ci, ai);
	}
    }
  if (ai[0] == bi[0])
    {
      eaddm (ai, bi);
      subflg = 0;
    }
  else
    {
      esubm (ai, bi);
      subflg = 1;
    }
  emdnorm (bi, lost, subflg, ltb, 64);

 done:
  emovo (bi, c);
}

2849
/* Divide: C = B/A, all e type.  */
2850

2851
static void
Richard Stallman committed
2852 2853 2854 2855
ediv (a, b, c)
     unsigned EMUSHORT *a, *b, *c;
{
  unsigned EMUSHORT ai[NI], bi[NI];
2856
  int i, sign;
Richard Stallman committed
2857 2858
  EMULONG lt, lta, ltb;

2859 2860 2861 2862
/* IEEE says if result is not a NaN, the sign is "-" if and only if
   operands have opposite signs -- but flush -0 to 0 later if not IEEE.  */
  sign = eisneg(a) ^ eisneg(b);

2863
#ifdef NANS
Mike Stump committed
2864
/* Return any NaN input.  */
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
  if (eisnan (a))
    {
    emov (a, c);
    return;
    }
  if (eisnan (b))
    {
    emov (b, c);
    return;
    }
Mike Stump committed
2875
/* Zero over zero, or infinity over infinity, is a NaN.  */
2876 2877 2878 2879
  if (((ecmp (a, ezero) == 0) && (ecmp (b, ezero) == 0))
      || (eisinf (a) && eisinf (b)))
    {
    mtherr ("ediv", INVALID);
2880
    enan (c, sign);
2881 2882 2883
    return;
    }
#endif
Mike Stump committed
2884
/* Infinity over anything else is infinity.  */
Richard Stallman committed
2885 2886 2887 2888
#ifdef INFINITY
  if (eisinf (b))
    {
      einfin (c);
2889
      goto divsign;
Richard Stallman committed
2890
    }
Mike Stump committed
2891
/* Anything else over infinity is zero.  */
Richard Stallman committed
2892 2893 2894
  if (eisinf (a))
    {
      eclear (c);
2895
      goto divsign;
Richard Stallman committed
2896 2897 2898 2899 2900 2901 2902
    }
#endif
  emovi (a, ai);
  emovi (b, bi);
  lta = ai[E];
  ltb = bi[E];
  if (bi[E] == 0)
Mike Stump committed
2903
    {				/* See if numerator is zero.  */
Richard Stallman committed
2904 2905 2906 2907 2908 2909 2910 2911 2912
      for (i = 1; i < NI - 1; i++)
	{
	  if (bi[i] != 0)
	    {
	      ltb -= enormlz (bi);
	      goto dnzro1;
	    }
	}
      eclear (c);
2913
      goto divsign;
Richard Stallman committed
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
    }
 dnzro1:

  if (ai[E] == 0)
    {				/* possible divide by zero */
      for (i = 1; i < NI - 1; i++)
	{
	  if (ai[i] != 0)
	    {
	      lta -= enormlz (ai);
	      goto dnzro2;
	    }
	}
2927 2928
/* Divide by zero is not an invalid operation.
   It is a divide-by-zero operation!   */
Richard Stallman committed
2929 2930
      einfin (c);
      mtherr ("ediv", SING);
2931
      goto divsign;
Richard Stallman committed
2932 2933 2934 2935 2936 2937 2938 2939
    }
 dnzro2:

  i = edivm (ai, bi);
  /* calculate exponent */
  lt = ltb - lta + EXONE;
  emdnorm (bi, i, 0, lt, 64);
  emovo (bi, c);
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950

 divsign:

  if (sign
#ifndef IEEE
      && (ecmp (c, ezero) != 0)
#endif
      )
     *(c+(NE-1)) |= 0x8000;
  else
     *(c+(NE-1)) &= ~0x8000;
Richard Stallman committed
2951 2952
}

2953
/* Multiply e-types A and B, return e-type product C.   */
2954

2955
static void
Richard Stallman committed
2956 2957 2958 2959
emul (a, b, c)
     unsigned EMUSHORT *a, *b, *c;
{
  unsigned EMUSHORT ai[NI], bi[NI];
2960
  int i, j, sign;
Richard Stallman committed
2961 2962
  EMULONG lt, lta, ltb;

2963 2964 2965 2966
/* IEEE says if result is not a NaN, the sign is "-" if and only if
   operands have opposite signs -- but flush -0 to 0 later if not IEEE.  */
  sign = eisneg(a) ^ eisneg(b);

2967
#ifdef NANS
Mike Stump committed
2968
/* NaN times anything is the same NaN.  */
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
  if (eisnan (a))
    {
    emov (a, c);
    return;
    }
  if (eisnan (b))
    {
    emov (b, c);
    return;
    }
Mike Stump committed
2979
/* Zero times infinity is a NaN.  */
2980 2981 2982 2983
  if ((eisinf (a) && (ecmp (b, ezero) == 0))
      || (eisinf (b) && (ecmp (a, ezero) == 0)))
    {
    mtherr ("emul", INVALID);
2984
    enan (c, sign);
2985 2986 2987
    return;
    }
#endif
Mike Stump committed
2988
/* Infinity times anything else is infinity.  */
Richard Stallman committed
2989 2990 2991 2992
#ifdef INFINITY
  if (eisinf (a) || eisinf (b))
    {
      einfin (c);
2993
      goto mulsign;
Richard Stallman committed
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
    }
#endif
  emovi (a, ai);
  emovi (b, bi);
  lta = ai[E];
  ltb = bi[E];
  if (ai[E] == 0)
    {
      for (i = 1; i < NI - 1; i++)
	{
	  if (ai[i] != 0)
	    {
	      lta -= enormlz (ai);
	      goto mnzer1;
	    }
	}
      eclear (c);
3011
      goto mulsign;
Richard Stallman committed
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
    }
 mnzer1:

  if (bi[E] == 0)
    {
      for (i = 1; i < NI - 1; i++)
	{
	  if (bi[i] != 0)
	    {
	      ltb -= enormlz (bi);
	      goto mnzer2;
	    }
	}
      eclear (c);
3026
      goto mulsign;
Richard Stallman committed
3027 3028 3029 3030 3031 3032 3033 3034 3035
    }
 mnzer2:

  /* Multiply significands */
  j = emulm (ai, bi);
  /* calculate exponent */
  lt = lta + ltb - (EXONE - 1);
  emdnorm (bi, j, 0, lt, 64);
  emovo (bi, c);
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046

 mulsign:

  if (sign
#ifndef IEEE
      && (ecmp (c, ezero) != 0)
#endif
      )
     *(c+(NE-1)) |= 0x8000;
  else
     *(c+(NE-1)) &= ~0x8000;
Richard Stallman committed
3047 3048
}

3049
/* Convert double precision PE to e-type Y.  */
3050 3051

static void
3052 3053
e53toe (pe, y)
     unsigned EMUSHORT *pe, *y;
Richard Stallman committed
3054 3055 3056
{
#ifdef DEC

3057
  dectoe (pe, y);
Richard Stallman committed
3058 3059

#else
3060 3061 3062
#ifdef IBM

  ibmtoe (pe, y, DFmode);
Richard Stallman committed
3063

3064
#else
3065 3066 3067 3068 3069
#ifdef C4X

  c4xtoe (pe, y, HFmode);

#else
Richard Stallman committed
3070
  register unsigned EMUSHORT r;
3071
  register unsigned EMUSHORT *e, *p;
Richard Stallman committed
3072 3073 3074
  unsigned EMUSHORT yy[NI];
  int denorm, k;

3075
  e = pe;
Richard Stallman committed
3076 3077
  denorm = 0;			/* flag if denormalized number */
  ecleaz (yy);
3078
  if (! REAL_WORDS_BIG_ENDIAN)
3079
    e += 3;
Richard Stallman committed
3080 3081 3082 3083 3084 3085 3086 3087 3088
  r = *e;
  yy[0] = 0;
  if (r & 0x8000)
    yy[0] = 0xffff;
  yy[M] = (r & 0x0f) | 0x10;
  r &= ~0x800f;			/* strip sign and 4 significand bits */
#ifdef INFINITY
  if (r == 0x7ff0)
    {
3089
#ifdef NANS
3090
      if (! REAL_WORDS_BIG_ENDIAN)
3091
	{
3092 3093 3094 3095 3096 3097
	  if (((pe[3] & 0xf) != 0) || (pe[2] != 0)
	      || (pe[1] != 0) || (pe[0] != 0))
	    {
	      enan (y, yy[0] != 0);
	      return;
	    }
3098
	}
3099
      else
3100
	{
3101 3102 3103 3104 3105 3106
	  if (((pe[0] & 0xf) != 0) || (pe[1] != 0)
	      || (pe[2] != 0) || (pe[3] != 0))
	    {
	      enan (y, yy[0] != 0);
	      return;
	    }
3107 3108
	}
#endif  /* NANS */
3109
      eclear (y);
Richard Stallman committed
3110
      einfin (y);
3111
      if (yy[0])
Richard Stallman committed
3112 3113 3114
	eneg (y);
      return;
    }
3115
#endif  /* INFINITY */
Richard Stallman committed
3116 3117
  r >>= 4;
  /* If zero exponent, then the significand is denormalized.
Mike Stump committed
3118
     So take back the understood high significand bit.  */
3119

Richard Stallman committed
3120 3121 3122 3123 3124 3125 3126 3127
  if (r == 0)
    {
      denorm = 1;
      yy[M] &= ~0x10;
    }
  r += EXONE - 01777;
  yy[E] = r;
  p = &yy[M + 1];
3128
#ifdef IEEE
3129
  if (! REAL_WORDS_BIG_ENDIAN)
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
    {
      *p++ = *(--e);
      *p++ = *(--e);
      *p++ = *(--e);
    }
  else
    {
      ++e;
      *p++ = *e++;
      *p++ = *e++;
      *p++ = *e++;
    }
Richard Stallman committed
3142
#endif
3143
  eshift (yy, -5);
Richard Stallman committed
3144
  if (denorm)
3145
    {
3146
	/* If zero exponent, then normalize the significand.  */
Richard Stallman committed
3147 3148 3149 3150 3151 3152
      if ((k = enormlz (yy)) > NBITS)
	ecleazs (yy);
      else
	yy[E] -= (unsigned EMUSHORT) (k - 1);
    }
  emovo (yy, y);
3153
#endif /* not C4X */
3154
#endif /* not IBM */
Richard Stallman committed
3155 3156 3157
#endif /* not DEC */
}

3158 3159
/* Convert double extended precision float PE to e type Y.  */

3160
static void
3161 3162
e64toe (pe, y)
     unsigned EMUSHORT *pe, *y;
Richard Stallman committed
3163 3164
{
  unsigned EMUSHORT yy[NI];
3165
  unsigned EMUSHORT *e, *p, *q;
Richard Stallman committed
3166 3167
  int i;

3168
  e = pe;
Richard Stallman committed
3169 3170 3171
  p = yy;
  for (i = 0; i < NE - 5; i++)
    *p++ = 0;
Mike Stump committed
3172
/* This precision is not ordinarily supported on DEC or IBM.  */
Richard Stallman committed
3173 3174 3175 3176
#ifdef DEC
  for (i = 0; i < 5; i++)
    *p++ = *e++;
#endif
3177 3178 3179 3180 3181 3182 3183
#ifdef IBM
  p = &yy[0] + (NE - 1);
  *p-- = *e++;
  ++e;
  for (i = 0; i < 5; i++)
    *p-- = *e++;
#endif
3184
#ifdef IEEE
3185
  if (! REAL_WORDS_BIG_ENDIAN)
3186 3187 3188
    {
      for (i = 0; i < 5; i++)
	*p++ = *e++;
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

      /* For denormal long double Intel format, shift significand up one
	 -- but only if the top significand bit is zero.  A top bit of 1
	 is "pseudodenormal" when the exponent is zero.  */
      if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0)
	{
	  unsigned EMUSHORT temp[NI];

	  emovi(yy, temp);
	  eshup1(temp);
	  emovo(temp,y);
	  return;
	}
3202 3203 3204 3205
    }
  else
    {
      p = &yy[0] + (NE - 1);
3206 3207 3208 3209 3210
#ifdef ARM_EXTENDED_IEEE_FORMAT
      /* For ARMs, the exponent is in the lowest 15 bits of the word.  */
      *p-- = (e[0] & 0x8000) | (e[1] & 0x7ffff);
      e += 2;
#else
3211 3212
      *p-- = *e++;
      ++e;
3213
#endif
3214 3215 3216
      for (i = 0; i < 4; i++)
	*p-- = *e++;
    }
Richard Stallman committed
3217 3218
#endif
#ifdef INFINITY
3219 3220
  /* Point to the exponent field and check max exponent cases.  */
  p = &yy[NE - 1];
3221
  if ((*p & 0x7fff) == 0x7fff)
Richard Stallman committed
3222
    {
3223
#ifdef NANS
3224
      if (! REAL_WORDS_BIG_ENDIAN)
3225
	{
3226
	  for (i = 0; i < 4; i++)
3227
	    {
3228 3229 3230
	      if ((i != 3 && pe[i] != 0)
		  /* Anything but 0x8000 here, including 0, is a NaN.  */
		  || (i == 3 && pe[i] != 0x8000))
3231 3232 3233 3234
		{
		  enan (y, (*p & 0x8000) != 0);
		  return;
		}
3235 3236
	    }
	}
3237
      else
3238
	{
3239 3240
#ifdef ARM_EXTENDED_IEEE_FORMAT
	  for (i = 2; i <= 5; i++)
3241
	    {
3242 3243 3244 3245 3246
	      if (pe[i] != 0)
		{
		  enan (y, (*p & 0x8000) != 0);
		  return;
		}
3247
	    }
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
#else /* not ARM */
	  /* In Motorola extended precision format, the most significant
	     bit of an infinity mantissa could be either 1 or 0.  It is
	     the lower order bits that tell whether the value is a NaN.  */
	  if ((pe[2] & 0x7fff) != 0)
	    goto bigend_nan;

	  for (i = 3; i <= 5; i++)
	    {
	      if (pe[i] != 0)
		{
bigend_nan:
		  enan (y, (*p & 0x8000) != 0);
		  return;
		}
	    }
#endif /* not ARM */
3265 3266
	}
#endif /* NANS */
3267
      eclear (y);
Richard Stallman committed
3268 3269 3270 3271 3272
      einfin (y);
      if (*p & 0x8000)
	eneg (y);
      return;
    }
3273
#endif  /* INFINITY */
3274 3275
  p = yy;
  q = y;
Richard Stallman committed
3276 3277 3278 3279
  for (i = 0; i < NE; i++)
    *q++ = *p++;
}

3280
/* Convert 128-bit long double precision float PE to e type Y.  */
Richard Stallman committed
3281

3282
static void
3283
e113toe (pe, y)
3284
     unsigned EMUSHORT *pe, *y;
Richard Stallman committed
3285 3286
{
  register unsigned EMUSHORT r;
3287
  unsigned EMUSHORT *e, *p;
Richard Stallman committed
3288
  unsigned EMUSHORT yy[NI];
3289
  int denorm, i;
Richard Stallman committed
3290

3291
  e = pe;
3292
  denorm = 0;
Richard Stallman committed
3293
  ecleaz (yy);
3294
#ifdef IEEE
3295
  if (! REAL_WORDS_BIG_ENDIAN)
3296
    e += 7;
Richard Stallman committed
3297 3298 3299 3300 3301
#endif
  r = *e;
  yy[0] = 0;
  if (r & 0x8000)
    yy[0] = 0xffff;
3302
  r &= 0x7fff;
Richard Stallman committed
3303
#ifdef INFINITY
3304
  if (r == 0x7fff)
Richard Stallman committed
3305
    {
3306
#ifdef NANS
3307
      if (! REAL_WORDS_BIG_ENDIAN)
3308
	{
3309
	  for (i = 0; i < 7; i++)
3310
	    {
3311 3312 3313 3314 3315
	      if (pe[i] != 0)
		{
		  enan (y, yy[0] != 0);
		  return;
		}
3316
	    }
3317
	}
3318
      else
3319
	{
3320
	  for (i = 1; i < 8; i++)
3321
	    {
3322 3323 3324 3325 3326
	      if (pe[i] != 0)
		{
		  enan (y, yy[0] != 0);
		  return;
		}
3327
	    }
3328
	}
3329
#endif /* NANS */
3330
      eclear (y);
Richard Stallman committed
3331
      einfin (y);
3332
      if (yy[0])
Richard Stallman committed
3333 3334 3335
	eneg (y);
      return;
    }
3336
#endif  /* INFINITY */
Richard Stallman committed
3337 3338
  yy[E] = r;
  p = &yy[M + 1];
3339
#ifdef IEEE
3340
  if (! REAL_WORDS_BIG_ENDIAN)
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
    {
      for (i = 0; i < 7; i++)
	*p++ = *(--e);
    }
  else
    {
      ++e;
      for (i = 0; i < 7; i++)
	*p++ = *e++;
    }
Richard Stallman committed
3351
#endif
Mike Stump committed
3352
/* If denormal, remove the implied bit; else shift down 1.  */
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
  if (r == 0)
    {
      yy[M] = 0;
    }
  else
    {
      yy[M] = 1;
      eshift (yy, -1);
    }
  emovo (yy, y);
}

3365
/* Convert single precision float PE to e type Y.  */
3366

3367
static void
3368 3369 3370 3371 3372 3373 3374 3375
e24toe (pe, y)
     unsigned EMUSHORT *pe, *y;
{
#ifdef IBM

  ibmtoe (pe, y, SFmode);

#else
3376 3377 3378 3379 3380 3381 3382

#ifdef C4X

  c4xtoe (pe, y, QFmode);

#else

3383 3384 3385 3386 3387 3388 3389 3390
  register unsigned EMUSHORT r;
  register unsigned EMUSHORT *e, *p;
  unsigned EMUSHORT yy[NI];
  int denorm, k;

  e = pe;
  denorm = 0;			/* flag if denormalized number */
  ecleaz (yy);
3391
#ifdef IEEE
3392
  if (! REAL_WORDS_BIG_ENDIAN)
3393
    e += 1;
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
#endif
#ifdef DEC
  e += 1;
#endif
  r = *e;
  yy[0] = 0;
  if (r & 0x8000)
    yy[0] = 0xffff;
  yy[M] = (r & 0x7f) | 0200;
  r &= ~0x807f;			/* strip sign and 7 significand bits */
#ifdef INFINITY
  if (r == 0x7f80)
    {
#ifdef NANS
3408
      if (REAL_WORDS_BIG_ENDIAN)
3409
	{
3410 3411 3412 3413 3414
	  if (((pe[0] & 0x7f) != 0) || (pe[1] != 0))
	    {
	      enan (y, yy[0] != 0);
	      return;
	    }
3415
	}
3416
      else
3417
	{
3418 3419 3420 3421 3422
	  if (((pe[1] & 0x7f) != 0) || (pe[0] != 0))
	    {
	      enan (y, yy[0] != 0);
	      return;
	    }
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
	}
#endif  /* NANS */
      eclear (y);
      einfin (y);
      if (yy[0])
	eneg (y);
      return;
    }
#endif  /* INFINITY */
  r >>= 7;
  /* If zero exponent, then the significand is denormalized.
Mike Stump committed
3434
     So take back the understood high significand bit.  */
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
  if (r == 0)
    {
      denorm = 1;
      yy[M] &= ~0200;
    }
  r += EXONE - 0177;
  yy[E] = r;
  p = &yy[M + 1];
#ifdef DEC
  *p++ = *(--e);
#endif
3446
#ifdef IEEE
3447
  if (! REAL_WORDS_BIG_ENDIAN)
3448 3449 3450 3451 3452 3453
    *p++ = *(--e);
  else
    {
      ++e;
      *p++ = *e++;
    }
3454 3455 3456 3457 3458 3459 3460 3461
#endif
  eshift (yy, -8);
  if (denorm)
    {				/* if zero exponent, then normalize the significand */
      if ((k = enormlz (yy)) > NBITS)
	ecleazs (yy);
      else
	yy[E] -= (unsigned EMUSHORT) (k - 1);
Richard Stallman committed
3462 3463
    }
  emovo (yy, y);
3464
#endif /* not C4X */
3465 3466 3467
#endif /* not IBM */
}

3468
/* Convert e-type X to IEEE 128-bit long double format E.  */
3469

3470
static void
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
etoe113 (x, e)
     unsigned EMUSHORT *x, *e;
{
  unsigned EMUSHORT xi[NI];
  EMULONG exp;
  int rndsav;

#ifdef NANS
  if (eisnan (x))
    {
3481
      make_nan (e, eisneg (x), TFmode);
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
      return;
    }
#endif
  emovi (x, xi);
  exp = (EMULONG) xi[E];
#ifdef INFINITY
  if (eisinf (x))
    goto nonorm;
#endif
  /* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 113;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
 nonorm:
  toe113 (xi, e);
Richard Stallman committed
3498 3499
}

3500 3501
/* Convert exploded e-type X, that has already been rounded to
   113-bit precision, to IEEE 128-bit long double format Y.  */
3502

3503
static void
3504 3505 3506 3507 3508 3509 3510 3511 3512
toe113 (a, b)
     unsigned EMUSHORT *a, *b;
{
  register unsigned EMUSHORT *p, *q;
  unsigned EMUSHORT i;

#ifdef NANS
  if (eiisnan (a))
    {
3513
      make_nan (b, eiisneg (a), TFmode);
3514 3515 3516 3517
      return;
    }
#endif
  p = a;
3518
  if (REAL_WORDS_BIG_ENDIAN)
3519 3520 3521
    q = b;
  else
    q = b + 7;			/* point to output exponent */
3522

Mike Stump committed
3523
  /* If not denormal, delete the implied bit.  */
3524 3525 3526 3527 3528 3529
  if (a[E] != 0)
    {
      eshup1 (a);
    }
  /* combine sign and exponent */
  i = *p++;
3530
  if (REAL_WORDS_BIG_ENDIAN)
3531 3532 3533 3534 3535 3536
    {
      if (i)
	*q++ = *p++ | 0x8000;
      else
	*q++ = *p++;
    }
3537
  else
3538 3539 3540 3541 3542 3543
    {
      if (i)
	*q-- = *p++ | 0x8000;
      else
	*q-- = *p++;
    }
3544 3545 3546
  /* skip over guard word */
  ++p;
  /* move the significand */
3547
  if (REAL_WORDS_BIG_ENDIAN)
3548 3549 3550 3551 3552 3553 3554 3555 3556
    {
      for (i = 0; i < 7; i++)
	*q++ = *p++;
    }
  else
    {
      for (i = 0; i < 7; i++)
	*q-- = *p++;
    }
3557
}
Richard Stallman committed
3558

3559 3560
/* Convert e-type X to IEEE double extended format E.  */

3561
static void
Richard Stallman committed
3562 3563 3564 3565 3566 3567 3568
etoe64 (x, e)
     unsigned EMUSHORT *x, *e;
{
  unsigned EMUSHORT xi[NI];
  EMULONG exp;
  int rndsav;

3569 3570 3571
#ifdef NANS
  if (eisnan (x))
    {
3572
      make_nan (e, eisneg (x), XFmode);
3573 3574 3575
      return;
    }
#endif
Richard Stallman committed
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
  emovi (x, xi);
  /* adjust exponent for offset */
  exp = (EMULONG) xi[E];
#ifdef INFINITY
  if (eisinf (x))
    goto nonorm;
#endif
  /* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 64;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
 nonorm:
  toe64 (xi, e);
}

3592 3593
/* Convert exploded e-type X, that has already been rounded to
   64-bit precision, to IEEE double extended format Y.  */
3594

3595
static void
Richard Stallman committed
3596 3597 3598 3599 3600 3601
toe64 (a, b)
     unsigned EMUSHORT *a, *b;
{
  register unsigned EMUSHORT *p, *q;
  unsigned EMUSHORT i;

3602 3603 3604
#ifdef NANS
  if (eiisnan (a))
    {
3605
      make_nan (b, eiisneg (a), XFmode);
3606 3607 3608
      return;
    }
#endif
3609 3610 3611
  /* Shift denormal long double Intel format significand down one bit.  */
  if ((a[E] == 0) && ! REAL_WORDS_BIG_ENDIAN)
    eshdn1 (a);
Richard Stallman committed
3612
  p = a;
3613
#ifdef IBM
Richard Stallman committed
3614
  q = b;
3615 3616 3617 3618 3619
#endif
#ifdef DEC
  q = b + 4;
#endif
#ifdef IEEE
3620
  if (REAL_WORDS_BIG_ENDIAN)
3621 3622 3623 3624
    q = b;
  else
    {
      q = b + 4;			/* point to output exponent */
Richard Stallman committed
3625
#if LONG_DOUBLE_TYPE_SIZE == 96
3626 3627
      /* Clear the last two bytes of 12-byte Intel format */
      *(q+1) = 0;
Richard Stallman committed
3628
#endif
3629
    }
Richard Stallman committed
3630 3631 3632 3633
#endif

  /* combine sign and exponent */
  i = *p++;
3634
#ifdef IBM
Richard Stallman committed
3635 3636 3637 3638 3639
  if (i)
    *q++ = *p++ | 0x8000;
  else
    *q++ = *p++;
  *q++ = 0;
3640 3641
#endif
#ifdef DEC
Richard Stallman committed
3642 3643 3644 3645 3646
  if (i)
    *q-- = *p++ | 0x8000;
  else
    *q-- = *p++;
#endif
3647
#ifdef IEEE
3648
  if (REAL_WORDS_BIG_ENDIAN)
3649
    {
3650 3651 3652 3653 3654
#ifdef ARM_EXTENDED_IEEE_FORMAT
      /* The exponent is in the lowest 15 bits of the first word.  */
      *q++ = i ? 0x8000 : 0;
      *q++ = *p++;
#else
3655 3656 3657 3658 3659
      if (i)
	*q++ = *p++ | 0x8000;
      else
	*q++ = *p++;
      *q++ = 0;
3660
#endif
3661 3662 3663 3664 3665 3666 3667 3668 3669
    }
  else
    {
      if (i)
	*q-- = *p++ | 0x8000;
      else
	*q-- = *p++;
    }
#endif
Richard Stallman committed
3670 3671 3672
  /* skip over guard word */
  ++p;
  /* move the significand */
3673
#ifdef IBM
Richard Stallman committed
3674 3675
  for (i = 0; i < 4; i++)
    *q++ = *p++;
3676 3677
#endif
#ifdef DEC
Richard Stallman committed
3678 3679 3680
  for (i = 0; i < 4; i++)
    *q-- = *p++;
#endif
3681
#ifdef IEEE
3682
  if (REAL_WORDS_BIG_ENDIAN)
3683 3684 3685 3686 3687 3688
    {
      for (i = 0; i < 4; i++)
	*q++ = *p++;
    }
  else
    {
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
#ifdef INFINITY
      if (eiisinf (a))
	{
	  /* Intel long double infinity significand.  */
	  *q-- = 0x8000;
	  *q-- = 0;
	  *q-- = 0;
	  *q = 0;
	  return;
	}
#endif
3700 3701 3702 3703
      for (i = 0; i < 4; i++)
	*q-- = *p++;
    }
#endif
Richard Stallman committed
3704 3705
}

3706
/* e type to double precision.  */
Richard Stallman committed
3707 3708

#ifdef DEC
3709
/* Convert e-type X to DEC-format double E.  */
Richard Stallman committed
3710

3711
static void
Richard Stallman committed
3712 3713 3714 3715 3716 3717
etoe53 (x, e)
     unsigned EMUSHORT *x, *e;
{
  etodec (x, e);		/* see etodec.c */
}

3718 3719 3720
/* Convert exploded e-type X, that has already been rounded to
   56-bit double precision, to DEC double Y.  */

3721
static void
Richard Stallman committed
3722 3723 3724 3725 3726 3727 3728
toe53 (x, y)
     unsigned EMUSHORT *x, *y;
{
  todec (x, y);
}

#else
3729
#ifdef IBM
3730
/* Convert e-type X to IBM 370-format double E.  */
3731

3732
static void
3733 3734 3735 3736 3737 3738
etoe53 (x, e)
     unsigned EMUSHORT *x, *e;
{
  etoibm (x, e, DFmode);
}

3739 3740 3741
/* Convert exploded e-type X, that has already been rounded to
   56-bit precision, to IBM 370 double Y.  */

3742
static void
3743 3744 3745 3746 3747 3748
toe53 (x, y)
     unsigned EMUSHORT *x, *y;
{
  toibm (x, y, DFmode);
}

3749 3750
#else /* it's neither DEC nor IBM */
#ifdef C4X
3751
/* Convert e-type X to C4X-format long double E.  */
3752

3753
static void
3754 3755 3756 3757 3758 3759 3760 3761 3762
etoe53 (x, e)
     unsigned EMUSHORT *x, *e;
{
  etoc4x (x, e, HFmode);
}

/* Convert exploded e-type X, that has already been rounded to
   56-bit precision, to IBM 370 double Y.  */

3763
static void
3764 3765 3766 3767 3768 3769 3770
toe53 (x, y)
     unsigned EMUSHORT *x, *y;
{
  toc4x (x, y, HFmode);
}

#else  /* it's neither DEC nor IBM nor C4X */
Richard Stallman committed
3771

3772 3773
/* Convert e-type X to IEEE double E.  */

3774
static void
Richard Stallman committed
3775 3776 3777 3778 3779 3780 3781
etoe53 (x, e)
     unsigned EMUSHORT *x, *e;
{
  unsigned EMUSHORT xi[NI];
  EMULONG exp;
  int rndsav;

3782 3783 3784
#ifdef NANS
  if (eisnan (x))
    {
3785
      make_nan (e, eisneg (x), DFmode);
3786 3787 3788
      return;
    }
#endif
Richard Stallman committed
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
  emovi (x, xi);
  /* adjust exponent for offsets */
  exp = (EMULONG) xi[E] - (EXONE - 0x3ff);
#ifdef INFINITY
  if (eisinf (x))
    goto nonorm;
#endif
  /* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 53;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
 nonorm:
  toe53 (xi, e);
}

3805 3806
/* Convert exploded e-type X, that has already been rounded to
   53-bit precision, to IEEE double Y.  */
Richard Stallman committed
3807

3808
static void
Richard Stallman committed
3809 3810 3811 3812 3813 3814
toe53 (x, y)
     unsigned EMUSHORT *x, *y;
{
  unsigned EMUSHORT i;
  unsigned EMUSHORT *p;

3815 3816 3817
#ifdef NANS
  if (eiisnan (x))
    {
3818
      make_nan (y, eiisneg (x), DFmode);
3819 3820 3821
      return;
    }
#endif
Richard Stallman committed
3822
  p = &x[0];
3823
#ifdef IEEE
3824
  if (! REAL_WORDS_BIG_ENDIAN)
3825
    y += 3;
Richard Stallman committed
3826 3827 3828 3829 3830 3831 3832
#endif
  *y = 0;			/* output high order */
  if (*p++)
    *y = 0x8000;		/* output sign bit */

  i = *p++;
  if (i >= (unsigned int) 2047)
Mike Stump committed
3833 3834
    {
      /* Saturate at largest number less than infinity.  */
Richard Stallman committed
3835 3836
#ifdef INFINITY
      *y |= 0x7ff0;
3837
      if (! REAL_WORDS_BIG_ENDIAN)
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
	{
	  *(--y) = 0;
	  *(--y) = 0;
	  *(--y) = 0;
	}
      else
	{
	  ++y;
	  *y++ = 0;
	  *y++ = 0;
	  *y++ = 0;
	}
Richard Stallman committed
3850 3851
#else
      *y |= (unsigned EMUSHORT) 0x7fef;
3852
      if (! REAL_WORDS_BIG_ENDIAN)
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
	{
	  *(--y) = 0xffff;
	  *(--y) = 0xffff;
	  *(--y) = 0xffff;
	}
      else
	{
	  ++y;
	  *y++ = 0xffff;
	  *y++ = 0xffff;
	  *y++ = 0xffff;
	}
Richard Stallman committed
3865 3866 3867 3868 3869
#endif
      return;
    }
  if (i == 0)
    {
3870
      eshift (x, 4);
Richard Stallman committed
3871 3872 3873 3874
    }
  else
    {
      i <<= 4;
3875
      eshift (x, 5);
Richard Stallman committed
3876 3877 3878
    }
  i |= *p++ & (unsigned EMUSHORT) 0x0f;	/* *p = xi[M] */
  *y |= (unsigned EMUSHORT) i;	/* high order output already has sign bit set */
3879
  if (! REAL_WORDS_BIG_ENDIAN)
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
    {
      *(--y) = *p++;
      *(--y) = *p++;
      *(--y) = *p;
    }
  else
    {
      ++y;
      *y++ = *p++;
      *y++ = *p++;
      *y++ = *p++;
    }
Richard Stallman committed
3892 3893
}

3894
#endif /* not C4X */
3895
#endif /* not IBM */
Richard Stallman committed
3896 3897 3898 3899
#endif /* not DEC */



3900
/* e type to single precision.  */
3901

3902
#ifdef IBM
3903
/* Convert e-type X to IBM 370 float E.  */
3904

3905
static void
3906 3907 3908 3909 3910 3911
etoe24 (x, e)
     unsigned EMUSHORT *x, *e;
{
  etoibm (x, e, SFmode);
}

3912 3913 3914
/* Convert exploded e-type X, that has already been rounded to
   float precision, to IBM 370 float Y.  */

3915
static void
3916 3917 3918 3919 3920 3921 3922
toe24 (x, y)
     unsigned EMUSHORT *x, *y;
{
  toibm (x, y, SFmode);
}

#else
3923 3924 3925 3926

#ifdef C4X
/* Convert e-type X to C4X float E.  */

3927
static void
3928 3929 3930 3931 3932 3933 3934 3935 3936
etoe24 (x, e)
     unsigned EMUSHORT *x, *e;
{
  etoc4x (x, e, QFmode);
}

/* Convert exploded e-type X, that has already been rounded to
   float precision, to IBM 370 float Y.  */

3937
static void
3938 3939 3940 3941 3942 3943 3944 3945
toe24 (x, y)
     unsigned EMUSHORT *x, *y;
{
  toc4x (x, y, QFmode);
}

#else

3946
/* Convert e-type X to IEEE float E.  DEC float is the same as IEEE float.  */
3947

3948
static void
Richard Stallman committed
3949 3950 3951 3952 3953 3954 3955
etoe24 (x, e)
     unsigned EMUSHORT *x, *e;
{
  EMULONG exp;
  unsigned EMUSHORT xi[NI];
  int rndsav;

3956 3957 3958
#ifdef NANS
  if (eisnan (x))
    {
3959
      make_nan (e, eisneg (x), SFmode);
3960 3961 3962
      return;
    }
#endif
Richard Stallman committed
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
  emovi (x, xi);
  /* adjust exponent for offsets */
  exp = (EMULONG) xi[E] - (EXONE - 0177);
#ifdef INFINITY
  if (eisinf (x))
    goto nonorm;
#endif
  /* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 24;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
 nonorm:
  toe24 (xi, e);
}

3979 3980 3981
/* Convert exploded e-type X, that has already been rounded to
   float precision, to IEEE float Y.  */

3982
static void
Richard Stallman committed
3983 3984 3985 3986 3987 3988
toe24 (x, y)
     unsigned EMUSHORT *x, *y;
{
  unsigned EMUSHORT i;
  unsigned EMUSHORT *p;

3989 3990 3991
#ifdef NANS
  if (eiisnan (x))
    {
3992
      make_nan (y, eiisneg (x), SFmode);
3993 3994 3995
      return;
    }
#endif
Richard Stallman committed
3996
  p = &x[0];
3997
#ifdef IEEE
3998
  if (! REAL_WORDS_BIG_ENDIAN)
3999
    y += 1;
Richard Stallman committed
4000 4001 4002 4003 4004 4005 4006 4007 4008
#endif
#ifdef DEC
  y += 1;
#endif
  *y = 0;			/* output high order */
  if (*p++)
    *y = 0x8000;		/* output sign bit */

  i = *p++;
Mike Stump committed
4009
/* Handle overflow cases.  */
Richard Stallman committed
4010
  if (i >= 255)
4011
    {
Richard Stallman committed
4012 4013 4014 4015 4016
#ifdef INFINITY
      *y |= (unsigned EMUSHORT) 0x7f80;
#ifdef DEC
      *(--y) = 0;
#endif
4017
#ifdef IEEE
4018
      if (! REAL_WORDS_BIG_ENDIAN)
4019 4020 4021 4022 4023 4024
	*(--y) = 0;
      else
	{
	  ++y;
	  *y = 0;
	}
Richard Stallman committed
4025
#endif
4026
#else  /* no INFINITY */
Richard Stallman committed
4027 4028 4029 4030
      *y |= (unsigned EMUSHORT) 0x7f7f;
#ifdef DEC
      *(--y) = 0xffff;
#endif
4031
#ifdef IEEE
4032
      if (! REAL_WORDS_BIG_ENDIAN)
4033 4034 4035 4036 4037 4038
	*(--y) = 0xffff;
      else
	{
	  ++y;
	  *y = 0xffff;
	}
Richard Stallman committed
4039
#endif
4040 4041
#ifdef ERANGE
      errno = ERANGE;
Richard Stallman committed
4042
#endif
4043
#endif  /* no INFINITY */
Richard Stallman committed
4044 4045 4046 4047
      return;
    }
  if (i == 0)
    {
4048
      eshift (x, 7);
Richard Stallman committed
4049 4050 4051 4052
    }
  else
    {
      i <<= 7;
4053
      eshift (x, 8);
Richard Stallman committed
4054 4055
    }
  i |= *p++ & (unsigned EMUSHORT) 0x7f;	/* *p = xi[M] */
4056 4057
  /* High order output already has sign bit set.  */
  *y |= i;
Richard Stallman committed
4058 4059 4060
#ifdef DEC
  *(--y) = *p;
#endif
4061
#ifdef IEEE
4062
  if (! REAL_WORDS_BIG_ENDIAN)
4063 4064 4065 4066 4067 4068
    *(--y) = *p;
  else
    {
      ++y;
      *y = *p;
    }
Richard Stallman committed
4069 4070
#endif
}
4071
#endif  /* not C4X */
4072
#endif  /* not IBM */
Richard Stallman committed
4073

4074
/* Compare two e type numbers.
4075 4076 4077 4078
   Return +1 if a > b
           0 if a == b
          -1 if a < b
          -2 if either a or b is a NaN.  */
4079

4080
static int
Richard Stallman committed
4081 4082 4083 4084 4085 4086 4087 4088
ecmp (a, b)
     unsigned EMUSHORT *a, *b;
{
  unsigned EMUSHORT ai[NI], bi[NI];
  register unsigned EMUSHORT *p, *q;
  register int i;
  int msign;

4089 4090 4091 4092
#ifdef NANS
  if (eisnan (a)  || eisnan (b))
      return (-2);
#endif
Richard Stallman committed
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
  emovi (a, ai);
  p = ai;
  emovi (b, bi);
  q = bi;

  if (*p != *q)
    {				/* the signs are different */
      /* -0 equals + 0 */
      for (i = 1; i < NI - 1; i++)
	{
	  if (ai[i] != 0)
	    goto nzro;
	  if (bi[i] != 0)
	    goto nzro;
	}
      return (0);
    nzro:
      if (*p == 0)
	return (1);
      else
	return (-1);
    }
  /* both are the same sign */
  if (*p == 0)
    msign = 1;
  else
    msign = -1;
  i = NI - 1;
  do
    {
      if (*p++ != *q++)
	{
	  goto diff;
	}
    }
  while (--i > 0);

  return (0);			/* equality */

 diff:

  if (*(--p) > *(--q))
    return (msign);		/* p is bigger */
  else
    return (-msign);		/* p is littler */
}

4140
#if 0
4141
/* Find e-type nearest integer to X, as floor (X + 0.5).  */
4142

4143
static void
Richard Stallman committed
4144 4145 4146 4147 4148 4149
eround (x, y)
     unsigned EMUSHORT *x, *y;
{
  eadd (ehalf, x, y);
  efloor (y, y);
}
4150
#endif /* 0 */
Richard Stallman committed
4151

4152
/* Convert HOST_WIDE_INT LP to e type Y.  */
4153

4154
static void
Richard Stallman committed
4155
ltoe (lp, y)
4156 4157
     HOST_WIDE_INT *lp;
     unsigned EMUSHORT *y;
Richard Stallman committed
4158 4159
{
  unsigned EMUSHORT yi[NI];
4160
  unsigned HOST_WIDE_INT ll;
Richard Stallman committed
4161 4162 4163 4164 4165 4166
  int k;

  ecleaz (yi);
  if (*lp < 0)
    {
      /* make it positive */
4167
      ll = (unsigned HOST_WIDE_INT) (-(*lp));
Richard Stallman committed
4168 4169 4170 4171
      yi[0] = 0xffff;		/* put correct sign in the e type number */
    }
  else
    {
4172
      ll = (unsigned HOST_WIDE_INT) (*lp);
Richard Stallman committed
4173 4174
    }
  /* move the long integer to yi significand area */
4175
#if HOST_BITS_PER_WIDE_INT == 64
4176 4177 4178 4179 4180 4181
  yi[M] = (unsigned EMUSHORT) (ll >> 48);
  yi[M + 1] = (unsigned EMUSHORT) (ll >> 32);
  yi[M + 2] = (unsigned EMUSHORT) (ll >> 16);
  yi[M + 3] = (unsigned EMUSHORT) ll;
  yi[E] = EXONE + 47;		/* exponent if normalize shift count were 0 */
#else
Richard Stallman committed
4182 4183 4184
  yi[M] = (unsigned EMUSHORT) (ll >> 16);
  yi[M + 1] = (unsigned EMUSHORT) ll;
  yi[E] = EXONE + 15;		/* exponent if normalize shift count were 0 */
4185 4186
#endif

Richard Stallman committed
4187 4188 4189 4190 4191 4192 4193
  if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
    ecleaz (yi);		/* it was zero */
  else
    yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */
  emovo (yi, y);		/* output the answer */
}

4194
/* Convert unsigned HOST_WIDE_INT LP to e type Y.  */
4195

4196
static void
Richard Stallman committed
4197
ultoe (lp, y)
4198 4199
     unsigned HOST_WIDE_INT *lp;
     unsigned EMUSHORT *y;
Richard Stallman committed
4200 4201
{
  unsigned EMUSHORT yi[NI];
4202
  unsigned HOST_WIDE_INT ll;
Richard Stallman committed
4203 4204 4205 4206 4207 4208
  int k;

  ecleaz (yi);
  ll = *lp;

  /* move the long integer to ayi significand area */
4209
#if HOST_BITS_PER_WIDE_INT == 64
4210 4211 4212 4213 4214 4215
  yi[M] = (unsigned EMUSHORT) (ll >> 48);
  yi[M + 1] = (unsigned EMUSHORT) (ll >> 32);
  yi[M + 2] = (unsigned EMUSHORT) (ll >> 16);
  yi[M + 3] = (unsigned EMUSHORT) ll;
  yi[E] = EXONE + 47;		/* exponent if normalize shift count were 0 */
#else
Richard Stallman committed
4216 4217 4218
  yi[M] = (unsigned EMUSHORT) (ll >> 16);
  yi[M + 1] = (unsigned EMUSHORT) ll;
  yi[E] = EXONE + 15;		/* exponent if normalize shift count were 0 */
4219 4220
#endif

Richard Stallman committed
4221 4222 4223 4224 4225 4226 4227 4228
  if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
    ecleaz (yi);		/* it was zero */
  else
    yi[E] -= (unsigned EMUSHORT) k;  /* subtract shift count from exponent */
  emovo (yi, y);		/* output the answer */
}


4229 4230
/* Find signed HOST_WIDE_INT integer I and floating point fractional
   part FRAC of e-type (packed internal format) floating point input X.
4231 4232 4233 4234
   The integer output I has the sign of the input, except that
   positive overflow is permitted if FIXUNS_TRUNC_LIKE_FIX_TRUNC.
   The output e-type fraction FRAC is the positive fractional
   part of abs (X).  */
Richard Stallman committed
4235

4236
static void
Richard Stallman committed
4237 4238
eifrac (x, i, frac)
     unsigned EMUSHORT *x;
4239
     HOST_WIDE_INT *i;
Richard Stallman committed
4240 4241 4242
     unsigned EMUSHORT *frac;
{
  unsigned EMUSHORT xi[NI];
4243
  int j, k;
4244
  unsigned HOST_WIDE_INT ll;
Richard Stallman committed
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254

  emovi (x, xi);
  k = (int) xi[E] - (EXONE - 1);
  if (k <= 0)
    {
      /* if exponent <= 0, integer = 0 and real output is fraction */
      *i = 0L;
      emovo (xi, frac);
      return;
    }
4255
  if (k > (HOST_BITS_PER_WIDE_INT - 1))
Richard Stallman committed
4256
    {
4257 4258
      /* long integer overflow: output large integer
	 and correct fraction  */
Richard Stallman committed
4259
      if (xi[0])
4260
	*i = ((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1);
Richard Stallman committed
4261
      else
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
	{
#ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
	  /* In this case, let it overflow and convert as if unsigned.  */
	  euifrac (x, &ll, frac);
	  *i = (HOST_WIDE_INT) ll;
	  return;
#else
	  /* In other cases, return the largest positive integer.  */
	  *i = (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)) - 1;
#endif
	}
4273 4274 4275
      eshift (xi, k);
      if (extra_warnings)
	warning ("overflow on truncation to integer");
Richard Stallman committed
4276
    }
4277
  else if (k > 16)
Richard Stallman committed
4278
    {
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
      /* Shift more than 16 bits: first shift up k-16 mod 16,
	 then shift up by 16's.  */
      j = k - ((k >> 4) << 4);
      eshift (xi, j);
      ll = xi[M];
      k -= j;
      do
	{
	  eshup6 (xi);
	  ll = (ll << 16) | xi[M];
	}
      while ((k -= 16) > 0);
      *i = ll;
      if (xi[0])
	*i = -(*i);
    }
  else
4296 4297 4298
      {
        /* shift not more than 16 bits */
          eshift (xi, k);
4299
        *i = (HOST_WIDE_INT) xi[M] & 0xffff;
4300 4301 4302
        if (xi[0])
	  *i = -(*i);
      }
Richard Stallman committed
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
  xi[0] = 0;
  xi[E] = EXONE - 1;
  xi[M] = 0;
  if ((k = enormlz (xi)) > NBITS)
    ecleaz (xi);
  else
    xi[E] -= (unsigned EMUSHORT) k;

  emovo (xi, frac);
}


4315 4316 4317
/* Find unsigned HOST_WIDE_INT integer I and floating point fractional part
   FRAC of e-type X.  A negative input yields integer output = 0 but
   correct fraction.  */
Richard Stallman committed
4318

4319
static void
Richard Stallman committed
4320 4321
euifrac (x, i, frac)
     unsigned EMUSHORT *x;
4322
     unsigned HOST_WIDE_INT *i;
Richard Stallman committed
4323 4324
     unsigned EMUSHORT *frac;
{
4325
  unsigned HOST_WIDE_INT ll;
Richard Stallman committed
4326
  unsigned EMUSHORT xi[NI];
4327
  int j, k;
Richard Stallman committed
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337

  emovi (x, xi);
  k = (int) xi[E] - (EXONE - 1);
  if (k <= 0)
    {
      /* if exponent <= 0, integer = 0 and argument is fraction */
      *i = 0L;
      emovo (xi, frac);
      return;
    }
4338
  if (k > HOST_BITS_PER_WIDE_INT)
Richard Stallman committed
4339
    {
4340 4341 4342 4343
      /* Long integer overflow: output large integer
	 and correct fraction.
	 Note, the BSD microvax compiler says that ~(0UL)
	 is a syntax error.  */
Richard Stallman committed
4344
      *i = ~(0L);
4345 4346 4347
      eshift (xi, k);
      if (extra_warnings)
	warning ("overflow on truncation to unsigned integer");
Richard Stallman committed
4348
    }
4349
  else if (k > 16)
Richard Stallman committed
4350
    {
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
      /* Shift more than 16 bits: first shift up k-16 mod 16,
	 then shift up by 16's.  */
      j = k - ((k >> 4) << 4);
      eshift (xi, j);
      ll = xi[M];
      k -= j;
      do
	{
	  eshup6 (xi);
	  ll = (ll << 16) | xi[M];
	}
      while ((k -= 16) > 0);
      *i = ll;
    }
  else
    {
      /* shift not more than 16 bits */
4368
      eshift (xi, k);
4369
      *i = (HOST_WIDE_INT) xi[M] & 0xffff;
Richard Stallman committed
4370 4371
    }

Mike Stump committed
4372
  if (xi[0])  /* A negative value yields unsigned integer 0.  */
Richard Stallman committed
4373
    *i = 0L;
4374

Richard Stallman committed
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
  xi[0] = 0;
  xi[E] = EXONE - 1;
  xi[M] = 0;
  if ((k = enormlz (xi)) > NBITS)
    ecleaz (xi);
  else
    xi[E] -= (unsigned EMUSHORT) k;

  emovo (xi, frac);
}

4386
/* Shift the significand of exploded e-type X up or down by SC bits.  */
4387

4388
static int
Richard Stallman committed
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
eshift (x, sc)
     unsigned EMUSHORT *x;
     int sc;
{
  unsigned EMUSHORT lost;
  unsigned EMUSHORT *p;

  if (sc == 0)
    return (0);

  lost = 0;
  p = x + NI - 1;

  if (sc < 0)
    {
      sc = -sc;
      while (sc >= 16)
	{
	  lost |= *p;		/* remember lost bits */
	  eshdn6 (x);
	  sc -= 16;
	}

      while (sc >= 8)
	{
	  lost |= *p & 0xff;
	  eshdn8 (x);
	  sc -= 8;
	}

      while (sc > 0)
	{
	  lost |= *p & 1;
	  eshdn1 (x);
	  sc -= 1;
	}
    }
  else
    {
      while (sc >= 16)
	{
	  eshup6 (x);
	  sc -= 16;
	}

      while (sc >= 8)
	{
	  eshup8 (x);
	  sc -= 8;
	}

      while (sc > 0)
	{
	  eshup1 (x);
	  sc -= 1;
	}
    }
  if (lost)
    lost = 1;
  return ((int) lost);
}

4451 4452
/* Shift normalize the significand area of exploded e-type X.
   Return the shift count (up = positive).  */
4453

4454
static int
Richard Stallman committed
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
enormlz (x)
     unsigned EMUSHORT x[];
{
  register unsigned EMUSHORT *p;
  int sc;

  sc = 0;
  p = &x[M];
  if (*p != 0)
    goto normdn;
  ++p;
  if (*p & 0x8000)
    return (0);			/* already normalized */
  while (*p == 0)
    {
      eshup6 (x);
      sc += 16;
4472

Richard Stallman committed
4473
      /* With guard word, there are NBITS+16 bits available.
4474
       Return true if all are zero.  */
Richard Stallman committed
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
      if (sc > NBITS)
	return (sc);
    }
  /* see if high byte is zero */
  while ((*p & 0xff00) == 0)
    {
      eshup8 (x);
      sc += 8;
    }
  /* now shift 1 bit at a time */
  while ((*p & 0x8000) == 0)
    {
      eshup1 (x);
      sc += 1;
      if (sc > NBITS)
	{
	  mtherr ("enormlz", UNDERFLOW);
	  return (sc);
	}
    }
  return (sc);

  /* Normalize by shifting down out of the high guard word
     of the significand */
 normdn:

  if (*p & 0xff00)
    {
      eshdn8 (x);
      sc -= 8;
    }
  while (*p != 0)
    {
      eshdn1 (x);
      sc -= 1;

      if (sc < -NBITS)
	{
	  mtherr ("enormlz", OVERFLOW);
	  return (sc);
	}
    }
  return (sc);
}

4520
/* Powers of ten used in decimal <-> binary conversions.  */
Richard Stallman committed
4521 4522 4523 4524

#define NTEN 12
#define MAXP 4096

4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
#if LONG_DOUBLE_TYPE_SIZE == 128
static unsigned EMUSHORT etens[NTEN + 1][NE] =
{
  {0x6576, 0x4a92, 0x804a, 0x153f,
   0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,},	/* 10**4096 */
  {0x6a32, 0xce52, 0x329a, 0x28ce,
   0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,},	/* 10**2048 */
  {0x526c, 0x50ce, 0xf18b, 0x3d28,
   0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,},
  {0x9c66, 0x58f8, 0xbc50, 0x5c54,
   0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,},
  {0x851e, 0xeab7, 0x98fe, 0x901b,
   0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,},
  {0x0235, 0x0137, 0x36b1, 0x336c,
   0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,},
  {0x50f8, 0x25fb, 0xc76b, 0x6b71,
   0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,},	/* 10**1 */
};

static unsigned EMUSHORT emtens[NTEN + 1][NE] =
{
  {0x2030, 0xcffc, 0xa1c3, 0x8123,
   0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,},	/* 10**-4096 */
  {0x8264, 0xd2cb, 0xf2ea, 0x12d4,
   0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,},	/* 10**-2048 */
  {0xf53f, 0xf698, 0x6bd3, 0x0158,
   0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,},
  {0xe731, 0x04d4, 0xe3f2, 0xd332,
   0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,},
  {0xa23e, 0x5308, 0xfefb, 0x1155,
   0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,},
  {0xe26d, 0xdbde, 0xd05d, 0xb3f6,
   0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,},
  {0x2a20, 0x6224, 0x47b3, 0x98d7,
   0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,},
  {0x0b5b, 0x4af2, 0xa581, 0x18ed,
   0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,},
  {0xbf71, 0xa9b3, 0x7989, 0xbe68,
   0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,},
  {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b,
   0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,},
  {0xc155, 0xa4a8, 0x404e, 0x6113,
   0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,},
  {0xd70a, 0x70a3, 0x0a3d, 0xa3d7,
   0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,},
  {0xcccd, 0xcccc, 0xcccc, 0xcccc,
   0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,},	/* 10**-1 */
};
#else
/* LONG_DOUBLE_TYPE_SIZE is other than 128 */
Richard Stallman committed
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
static unsigned EMUSHORT etens[NTEN + 1][NE] =
{
  {0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,},	/* 10**4096 */
  {0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,},	/* 10**2048 */
  {0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,},
  {0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,},
  {0xddbc, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,},
  {0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,},
  {0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,},
  {0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,},
  {0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,},
  {0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,},
  {0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,},
  {0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,},
  {0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,},	/* 10**1 */
};

static unsigned EMUSHORT emtens[NTEN + 1][NE] =
{
  {0x2de4, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,},	/* 10**-4096 */
  {0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,},	/* 10**-2048 */
  {0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,},
  {0x7133, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,},
  {0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,},
  {0xac7d, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,},
  {0x3f24, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,},
  {0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,},
  {0x4c2f, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,},
  {0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,},
  {0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,},
  {0x3d71, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,},
  {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,},	/* 10**-1 */
};
4620
#endif
Richard Stallman committed
4621

4622
#if 0
4623 4624 4625
/* Convert float value X to ASCII string STRING with NDIG digits after
   the decimal point.  */

4626
static void
Richard Stallman committed
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
e24toasc (x, string, ndigs)
     unsigned EMUSHORT x[];
     char *string;
     int ndigs;
{
  unsigned EMUSHORT w[NI];

  e24toe (x, w);
  etoasc (w, string, ndigs);
}

4638 4639
/* Convert double value X to ASCII string STRING with NDIG digits after
   the decimal point.  */
Richard Stallman committed
4640

4641
static void
Richard Stallman committed
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
e53toasc (x, string, ndigs)
     unsigned EMUSHORT x[];
     char *string;
     int ndigs;
{
  unsigned EMUSHORT w[NI];

  e53toe (x, w);
  etoasc (w, string, ndigs);
}

4653 4654
/* Convert double extended value X to ASCII string STRING with NDIG digits
   after the decimal point.  */
Richard Stallman committed
4655

4656
static void
Richard Stallman committed
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
e64toasc (x, string, ndigs)
     unsigned EMUSHORT x[];
     char *string;
     int ndigs;
{
  unsigned EMUSHORT w[NI];

  e64toe (x, w);
  etoasc (w, string, ndigs);
}

4668 4669 4670
/* Convert 128-bit long double value X to ASCII string STRING with NDIG digits
   after the decimal point.  */

4671
static void
4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
e113toasc (x, string, ndigs)
     unsigned EMUSHORT x[];
     char *string;
     int ndigs;
{
  unsigned EMUSHORT w[NI];

  e113toe (x, w);
  etoasc (w, string, ndigs);
}
4682
#endif /* 0 */
4683

4684 4685
/* Convert e-type X to ASCII string STRING with NDIGS digits after
   the decimal point.  */
Richard Stallman committed
4686 4687 4688

static char wstring[80];	/* working storage for ASCII output */

4689
static void
Richard Stallman committed
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
etoasc (x, string, ndigs)
     unsigned EMUSHORT x[];
     char *string;
     int ndigs;
{
  EMUSHORT digit;
  unsigned EMUSHORT y[NI], t[NI], u[NI], w[NI];
  unsigned EMUSHORT *p, *r, *ten;
  unsigned EMUSHORT sign;
  int i, j, k, expon, rndsav;
  char *s, *ss;
  unsigned EMUSHORT m;

4703 4704

  rndsav = rndprc;
Richard Stallman committed
4705 4706
  ss = string;
  s = wstring;
4707 4708 4709 4710 4711 4712 4713 4714 4715
  *ss = '\0';
  *s = '\0';
#ifdef NANS
  if (eisnan (x))
    {
      sprintf (wstring, " NaN ");
      goto bxit;
    }
#endif
Richard Stallman committed
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
  rndprc = NBITS;		/* set to full precision */
  emov (x, y);			/* retain external format */
  if (y[NE - 1] & 0x8000)
    {
      sign = 0xffff;
      y[NE - 1] &= 0x7fff;
    }
  else
    {
      sign = 0;
    }
  expon = 0;
  ten = &etens[NTEN][0];
  emov (eone, t);
  /* Test for zero exponent */
  if (y[NE - 1] == 0)
    {
      for (k = 0; k < NE - 1; k++)
	{
	  if (y[k] != 0)
	    goto tnzro;		/* denormalized number */
	}
Richard Kenner committed
4738
      goto isone;		/* valid all zeros */
Richard Stallman committed
4739 4740 4741
    }
 tnzro:

Mike Stump committed
4742
  /* Test for infinity.  */
Richard Stallman committed
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
  if (y[NE - 1] == 0x7fff)
    {
      if (sign)
	sprintf (wstring, " -Infinity ");
      else
	sprintf (wstring, " Infinity ");
      goto bxit;
    }

  /* Test for exponent nonzero but significand denormalized.
   * This is an error condition.
   */
  if ((y[NE - 1] != 0) && ((y[NE - 2] & 0x8000) == 0))
    {
      mtherr ("etoasc", DOMAIN);
      sprintf (wstring, "NaN");
      goto bxit;
    }

  /* Compare to 1.0 */
  i = ecmp (eone, y);
  if (i == 0)
    goto isone;

4767 4768 4769
  if (i == -2)
    abort ();

Richard Stallman committed
4770 4771
  if (i < 0)
    {				/* Number is greater than 1 */
Mike Stump committed
4772
      /* Convert significand to an integer and strip trailing decimal zeros.  */
Richard Stallman committed
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
      emov (y, u);
      u[NE - 1] = EXONE + NBITS - 1;

      p = &etens[NTEN - 4][0];
      m = 16;
      do
	{
	  ediv (p, u, t);
	  efloor (t, w);
	  for (j = 0; j < NE - 1; j++)
	    {
	      if (t[j] != w[j])
		goto noint;
	    }
	  emov (t, u);
	  expon += (int) m;
	noint:
	  p += NE;
	  m >>= 1;
	}
      while (m != 0);

      /* Rescale from integer significand */
      u[NE - 1] += y[NE - 1] - (unsigned int) (EXONE + NBITS - 1);
      emov (u, y);
      /* Find power of 10 */
      emov (eone, t);
      m = MAXP;
      p = &etens[0][0];
Mike Stump committed
4802
      /* An unordered compare result shouldn't happen here.  */
Richard Stallman committed
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
      while (ecmp (ten, u) <= 0)
	{
	  if (ecmp (p, u) <= 0)
	    {
	      ediv (p, u, u);
	      emul (p, t, t);
	      expon += (int) m;
	    }
	  m >>= 1;
	  if (m == 0)
	    break;
	  p += NE;
	}
    }
  else
    {				/* Number is less than 1.0 */
Mike Stump committed
4819
      /* Pad significand with trailing decimal zeros.  */
Richard Stallman committed
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
      if (y[NE - 1] == 0)
	{
	  while ((y[NE - 2] & 0x8000) == 0)
	    {
	      emul (ten, y, y);
	      expon -= 1;
	    }
	}
      else
	{
	  emovi (y, w);
	  for (i = 0; i < NDEC + 1; i++)
	    {
	      if ((w[NI - 1] & 0x7) != 0)
		break;
	      /* multiply by 10 */
	      emovz (w, u);
	      eshdn1 (u);
	      eshdn1 (u);
	      eaddm (w, u);
	      u[1] += 3;
	      while (u[2] != 0)
		{
		  eshdn1 (u);
		  u[1] += 1;
		}
	      if (u[NI - 1] != 0)
		break;
	      if (eone[NE - 1] <= u[1])
		break;
	      emovz (u, w);
	      expon -= 1;
	    }
	  emovo (w, y);
	}
      k = -MAXP;
      p = &emtens[0][0];
      r = &etens[0][0];
      emov (y, w);
      emov (eone, t);
      while (ecmp (eone, w) > 0)
	{
	  if (ecmp (p, w) >= 0)
	    {
	      emul (r, w, w);
	      emul (r, t, t);
	      expon += k;
	    }
	  k /= 2;
	  if (k == 0)
	    break;
	  p += NE;
	  r += NE;
	}
      ediv (t, eone, t);
    }
 isone:
Mike Stump committed
4877
  /* Find the first (leading) digit.  */
Richard Stallman committed
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
  emovi (t, w);
  emovz (w, t);
  emovi (y, w);
  emovz (w, y);
  eiremain (t, y);
  digit = equot[NI - 1];
  while ((digit == 0) && (ecmp (y, ezero) != 0))
    {
      eshup1 (y);
      emovz (y, u);
      eshup1 (u);
      eshup1 (u);
      eaddm (u, y);
      eiremain (t, y);
      digit = equot[NI - 1];
      expon -= 1;
    }
  s = wstring;
  if (sign)
    *s++ = '-';
  else
    *s++ = ' ';
Mike Stump committed
4900
  /* Examine number of digits requested by caller.  */
Richard Stallman committed
4901 4902 4903 4904
  if (ndigs < 0)
    ndigs = 0;
  if (ndigs > NDEC)
    ndigs = NDEC;
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
  if (digit == 10)
    {
      *s++ = '1';
      *s++ = '.';
      if (ndigs > 0)
	{
	  *s++ = '0';
	  ndigs -= 1;
	}
      expon += 1;
    }
  else
    {
Richard Stallman committed
4918
      *s++ = (char)digit + '0';
4919 4920
      *s++ = '.';
    }
Mike Stump committed
4921
  /* Generate digits after the decimal point.  */
Richard Stallman committed
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
  for (k = 0; k <= ndigs; k++)
    {
      /* multiply current number by 10, without normalizing */
      eshup1 (y);
      emovz (y, u);
      eshup1 (u);
      eshup1 (u);
      eaddm (u, y);
      eiremain (t, y);
      *s++ = (char) equot[NI - 1] + '0';
    }
  digit = equot[NI - 1];
  --s;
  ss = s;
  /* round off the ASCII string */
  if (digit > 4)
    {
Mike Stump committed
4939
      /* Test for critical rounding case in ASCII output.  */
Richard Stallman committed
4940 4941 4942 4943 4944
      if (digit == 5)
	{
	  emovo (y, t);
	  if (ecmp (t, ezero) != 0)
	    goto roun;		/* round to nearest */
4945
#ifndef C4X
Richard Stallman committed
4946 4947
	  if ((*(s - 1) & 1) == 0)
	    goto doexp;		/* round to even */
4948
#endif
Richard Stallman committed
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
	}
      /* Round up and propagate carry-outs */
    roun:
      --s;
      k = *s & 0x7f;
      /* Carry out to most significant digit? */
      if (k == '.')
	{
	  --s;
	  k = *s;
	  k += 1;
	  *s = (char) k;
	  /* Most significant digit carries to 10? */
	  if (k > '9')
	    {
	      expon += 1;
	      *s = '1';
	    }
	  goto doexp;
	}
      /* Round up and carry out from less significant digits */
      k += 1;
      *s = (char) k;
      if (k > '9')
	{
	  *s = '0';
	  goto roun;
	}
    }
 doexp:
  /*
     if (expon >= 0)
     sprintf (ss, "e+%d", expon);
     else
     sprintf (ss, "e%d", expon);
     */
  sprintf (ss, "e%d", expon);
 bxit:
  rndprc = rndsav;
  /* copy out the working string */
  s = string;
  ss = wstring;
  while (*ss == ' ')		/* strip possible leading space */
    ++ss;
  while ((*s++ = *ss++) != '\0')
    ;
}


4998
/* Convert ASCII string to floating point.
Richard Stallman committed
4999

5000 5001 5002 5003
   Numeric input is a free format decimal number of any length, with
   or without decimal point.  Entering E after the number followed by an
   integer number causes the second number to be interpreted as a power of
   10 to be multiplied by the first number (i.e., "scientific" notation).  */
Richard Stallman committed
5004

5005
/* Convert ASCII string S to single precision float value Y.  */
5006

5007
static void
Richard Stallman committed
5008
asctoe24 (s, y)
5009
     const char *s;
Richard Stallman committed
5010 5011 5012 5013 5014 5015
     unsigned EMUSHORT *y;
{
  asctoeg (s, y, 24);
}


5016
/* Convert ASCII string S to double precision value Y.  */
5017

5018
static void
Richard Stallman committed
5019
asctoe53 (s, y)
5020
     const char *s;
Richard Stallman committed
5021 5022
     unsigned EMUSHORT *y;
{
5023
#if defined(DEC) || defined(IBM)
Richard Stallman committed
5024 5025
  asctoeg (s, y, 56);
#else
5026 5027 5028
#if defined(C4X)
  asctoeg (s, y, 32);
#else
Richard Stallman committed
5029 5030
  asctoeg (s, y, 53);
#endif
5031
#endif
Richard Stallman committed
5032 5033 5034
}


5035
/* Convert ASCII string S to double extended value Y.  */
5036

5037
static void
Richard Stallman committed
5038
asctoe64 (s, y)
5039
     const char *s;
Richard Stallman committed
5040 5041 5042 5043 5044
     unsigned EMUSHORT *y;
{
  asctoeg (s, y, 64);
}

5045
/* Convert ASCII string S to 128-bit long double Y.  */
5046

5047
static void
5048
asctoe113 (s, y)
5049
     const char *s;
5050 5051 5052 5053 5054
     unsigned EMUSHORT *y;
{
  asctoeg (s, y, 113);
}

5055
/* Convert ASCII string S to e type Y.  */
5056

5057
static void
Richard Stallman committed
5058
asctoe (s, y)
5059
     const char *s;
Richard Stallman committed
5060 5061 5062 5063 5064
     unsigned EMUSHORT *y;
{
  asctoeg (s, y, NBITS);
}

5065
/* Convert ASCII string SS to e type Y, with a specified rounding precision
5066
   of OPREC bits.  BASE is 16 for C9X hexadecimal floating constants.  */
5067

5068
static void
Richard Stallman committed
5069
asctoeg (ss, y, oprec)
5070
     const char *ss;
Richard Stallman committed
5071 5072 5073 5074 5075 5076 5077 5078
     unsigned EMUSHORT *y;
     int oprec;
{
  unsigned EMUSHORT yy[NI], xt[NI], tt[NI];
  int esign, decflg, sgnflg, nexp, exp, prec, lost;
  int k, trail, c, rndsav;
  EMULONG lexp;
  unsigned EMUSHORT nsign, *p;
5079
  char *sp, *s, *lstr;
5080
  int base = 10;
Richard Stallman committed
5081

Mike Stump committed
5082
  /* Copy the input string.  */
5083
  lstr = (char *) alloca (strlen (ss) + 1);
5084

5085 5086
  while (*ss == ' ')		/* skip leading spaces */
    ++ss;
5087

Richard Stallman committed
5088
  sp = lstr;
5089
  while ((*sp++ = *ss++) != '\0')
5090
    ;
Richard Stallman committed
5091 5092
  s = lstr;

5093 5094 5095 5096 5097 5098
  if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
    {
      base = 16;
      s += 2;
    }

Richard Stallman committed
5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
  rndsav = rndprc;
  rndprc = NBITS;		/* Set to full precision */
  lost = 0;
  nsign = 0;
  decflg = 0;
  sgnflg = 0;
  nexp = 0;
  exp = 0;
  prec = 0;
  ecleaz (yy);
  trail = 0;

 nxtcom:
5112
  if (*s >= '0' && *s <= '9')
5113
    k = *s - '0';
5114 5115 5116 5117 5118
  else if (*s >= 'a')
    k = 10 + *s - 'a';
  else
    k = 10 + *s - 'A';
  if ((k >= 0) && (k < base))
Richard Stallman committed
5119 5120 5121 5122
    {
      /* Ignore leading zeros */
      if ((prec == 0) && (decflg == 0) && (k == 0))
	goto donchr;
Mike Stump committed
5123
      /* Identify and strip trailing zeros after the decimal point.  */
Richard Stallman committed
5124 5125 5126
      if ((trail == 0) && (decflg != 0))
	{
	  sp = s;
5127 5128 5129
	  while ((*sp >= '0' && *sp <= '9')
		 || (base == 16 && ((*sp >= 'a' && *sp <= 'f')
				    || (*sp >= 'A' && *sp <= 'F'))))
Richard Stallman committed
5130 5131 5132
	    ++sp;
	  /* Check for syntax error */
	  c = *sp & 0x7f;
5133 5134 5135
	  if ((base != 10 || ((c != 'e') && (c != 'E')))
	      && (base != 16 || ((c != 'p') && (c != 'P')))
	      && (c != '\0')
Richard Stallman committed
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
	      && (c != '\n') && (c != '\r') && (c != ' ')
	      && (c != ','))
	    goto error;
	  --sp;
	  while (*sp == '0')
	    *sp-- = 'z';
	  trail = 1;
	  if (*s == 'z')
	    goto donchr;
	}
5146

Richard Stallman committed
5147
      /* If enough digits were given to more than fill up the yy register,
5148 5149 5150 5151
	 continuing until overflow into the high guard word yy[2]
	 guarantees that there will be a roundoff bit at the top
	 of the low guard word after normalization.  */

Richard Stallman committed
5152 5153
      if (yy[2] == 0)
	{
5154 5155
	  if (base == 16)
	    {
5156
	      if (decflg)
5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
		nexp += 4;	/* count digits after decimal point */

	      eshup1 (yy);	/* multiply current number by 16 */
	      eshup1 (yy);
	      eshup1 (yy);
	      eshup1 (yy);
	    }
	  else
	    {
	      if (decflg)
5167
		nexp += 1;	/* count digits after decimal point */
5168

5169 5170 5171 5172 5173
	      eshup1 (yy);	/* multiply current number by 10 */
	      emovz (yy, xt);
	      eshup1 (xt);
	      eshup1 (xt);
	      eaddm (xt, yy);
5174 5175
	    }
	  /* Insert the current digit.  */
Richard Stallman committed
5176 5177 5178 5179 5180 5181
	  ecleaz (xt);
	  xt[NI - 2] = (unsigned EMUSHORT) k;
	  eaddm (xt, yy);
	}
      else
	{
5182
	  /* Mark any lost non-zero digit.  */
Richard Stallman committed
5183
	  lost |= k;
5184 5185
	  /* Count lost digits before the decimal point.  */
	  if (decflg == 0)
5186 5187
	    {
	      if (base == 10)
5188
		nexp -= 1;
5189 5190
	      else
		nexp -= 4;
5191
	    }
Richard Stallman committed
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
	}
      prec += 1;
      goto donchr;
    }

  switch (*s)
    {
    case 'z':
      break;
    case 'E':
    case 'e':
5203 5204
    case 'P':
    case 'p':
Richard Stallman committed
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
      goto expnt;
    case '.':			/* decimal point */
      if (decflg)
	goto error;
      ++decflg;
      break;
    case '-':
      nsign = 0xffff;
      if (sgnflg)
	goto error;
      ++sgnflg;
      break;
    case '+':
      if (sgnflg)
	goto error;
      ++sgnflg;
      break;
    case ',':
    case ' ':
    case '\0':
    case '\n':
    case '\r':
      goto daldone;
    case 'i':
    case 'I':
5230
      goto infinite;
Richard Stallman committed
5231 5232
    default:
    error:
5233 5234 5235
#ifdef NANS
      einan (yy);
#else
Richard Stallman committed
5236
      mtherr ("asctoe", DOMAIN);
5237 5238
      eclear (yy);
#endif
Richard Stallman committed
5239 5240 5241 5242 5243 5244 5245 5246
      goto aexit;
    }
 donchr:
  ++s;
  goto nxtcom;

  /* Exponent interpretation */
 expnt:
5247 5248 5249 5250 5251 5252 5253
  /* 0.0eXXX is zero, regardless of XXX.  Check for the 0.0. */
  for (k = 0; k < NI; k++)
    {
      if (yy[k] != 0)
	goto read_expnt;
    }
  goto aexit;
Richard Stallman committed
5254

5255
read_expnt:
Richard Stallman committed
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
  esign = 1;
  exp = 0;
  ++s;
  /* check for + or - */
  if (*s == '-')
    {
      esign = -1;
      ++s;
    }
  if (*s == '+')
    ++s;
  while ((*s >= '0') && (*s <= '9'))
    {
      exp *= 10;
      exp += *s++ - '0';
5271 5272
      if (exp > 999999)
 	break;
Richard Stallman committed
5273 5274 5275
    }
  if (esign < 0)
    exp = -exp;
5276
  if ((exp > MAXDECEXP) && (base == 10))
5277 5278 5279 5280 5281 5282
    {
 infinite:
      ecleaz (yy);
      yy[E] = 0x7fff;		/* infinity */
      goto aexit;
    }
5283
  if ((exp < MINDECEXP) && (base == 10))
5284 5285 5286 5287 5288
    {
 zero:
      ecleaz (yy);
      goto aexit;
    }
Richard Stallman committed
5289 5290

 daldone:
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
  if (base == 16)
    {
      /* Base 16 hexadecimal floating constant.  */
      if ((k = enormlz (yy)) > NBITS)
	{
	  ecleaz (yy);
	  goto aexit;
	}
      /* Adjust the exponent.  NEXP is the number of hex digits,
         EXP is a power of 2.  */
      lexp = (EXONE - 1 + NBITS) - k + yy[E] + exp - nexp;
      if (lexp > 0x7fff)
	goto infinite;
      if (lexp < 0)
	goto zero;
      yy[E] = lexp;
      goto expdon;
    }

Richard Stallman committed
5310
  nexp = exp - nexp;
Mike Stump committed
5311
  /* Pad trailing zeros to minimize power of 10, per IEEE spec.  */
Richard Stallman committed
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
  while ((nexp > 0) && (yy[2] == 0))
    {
      emovz (yy, xt);
      eshup1 (xt);
      eshup1 (xt);
      eaddm (yy, xt);
      eshup1 (xt);
      if (xt[2] != 0)
	break;
      nexp -= 1;
      emovz (xt, yy);
    }
  if ((k = enormlz (yy)) > NBITS)
    {
      ecleaz (yy);
      goto aexit;
    }
  lexp = (EXONE - 1 + NBITS) - k;
  emdnorm (yy, lost, 0, lexp, 64);
5331
  lost = 0;
Richard Stallman committed
5332

5333 5334 5335 5336 5337 5338 5339
  /* Convert to external format:

     Multiply by 10**nexp.  If precision is 64 bits,
     the maximum relative error incurred in forming 10**n
     for 0 <= n <= 324 is 8.2e-20, at 10**180.
     For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947.
     For 0 >= n >= -999, it is -1.55e-19 at 10**-435.  */
Richard Stallman committed
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352

  lexp = yy[E];
  if (nexp == 0)
    {
      k = 0;
      goto expdon;
    }
  esign = 1;
  if (nexp < 0)
    {
      nexp = -nexp;
      esign = -1;
      if (nexp > 4096)
5353
	{
Mike Stump committed
5354
	  /* Punt.  Can't handle this without 2 divides.  */
Richard Stallman committed
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386
	  emovi (etens[0], tt);
	  lexp -= tt[E];
	  k = edivm (tt, yy);
	  lexp += EXONE;
	  nexp -= 4096;
	}
    }
  p = &etens[NTEN][0];
  emov (eone, xt);
  exp = 1;
  do
    {
      if (exp & nexp)
	emul (p, xt, xt);
      p -= NE;
      exp = exp + exp;
    }
  while (exp <= MAXP);

  emovi (xt, tt);
  if (esign < 0)
    {
      lexp -= tt[E];
      k = edivm (tt, yy);
      lexp += EXONE;
    }
  else
    {
      lexp += tt[E];
      k = emulm (tt, yy);
      lexp -= EXONE - 1;
    }
5387
  lost = k;
Richard Stallman committed
5388 5389 5390 5391 5392 5393

 expdon:

  /* Round and convert directly to the destination type */
  if (oprec == 53)
    lexp -= EXONE - 0x3ff;
5394 5395 5396 5397
#ifdef C4X
  else if (oprec == 24 || oprec == 32)
    lexp -= (EXONE - 0x7f);
#else
5398 5399 5400 5401
#ifdef IBM
  else if (oprec == 24 || oprec == 56)
    lexp -= EXONE - (0x41 << 2);
#else
Richard Stallman committed
5402 5403
  else if (oprec == 24)
    lexp -= EXONE - 0177;
5404 5405
#endif /* IBM */
#endif /* C4X */
Richard Stallman committed
5406 5407 5408 5409 5410
#ifdef DEC
  else if (oprec == 56)
    lexp -= EXONE - 0201;
#endif
  rndprc = oprec;
5411
  emdnorm (yy, lost, 0, lexp, 64);
Richard Stallman committed
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423

 aexit:

  rndprc = rndsav;
  yy[0] = nsign;
  switch (oprec)
    {
#ifdef DEC
    case 56:
      todec (yy, y);		/* see etodec.c */
      break;
#endif
5424 5425 5426 5427 5428
#ifdef IBM
    case 56:
      toibm (yy, y, DFmode);
      break;
#endif
5429 5430 5431 5432 5433 5434
#ifdef C4X
    case 32:
      toc4x (yy, y, HFmode);
      break;
#endif

Richard Stallman committed
5435 5436 5437 5438 5439 5440 5441 5442 5443
    case 53:
      toe53 (yy, y);
      break;
    case 24:
      toe24 (yy, y);
      break;
    case 64:
      toe64 (yy, y);
      break;
5444 5445 5446
    case 113:
      toe113 (yy, y);
      break;
Richard Stallman committed
5447 5448 5449 5450 5451 5452 5453 5454
    case NBITS:
      emovo (yy, y);
      break;
    }
}



5455 5456
/* Return Y = largest integer not greater than X (truncated toward minus
   infinity).  */
5457

Richard Stallman committed
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
static unsigned EMUSHORT bmask[] =
{
  0xffff,
  0xfffe,
  0xfffc,
  0xfff8,
  0xfff0,
  0xffe0,
  0xffc0,
  0xff80,
  0xff00,
  0xfe00,
  0xfc00,
  0xf800,
  0xf000,
  0xe000,
  0xc000,
  0x8000,
  0x0000,
};

5479
static void
Richard Stallman committed
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
efloor (x, y)
     unsigned EMUSHORT x[], y[];
{
  register unsigned EMUSHORT *p;
  int e, expon, i;
  unsigned EMUSHORT f[NE];

  emov (x, f);			/* leave in external format */
  expon = (int) f[NE - 1];
  e = (expon & 0x7fff) - (EXONE - 1);
  if (e <= 0)
    {
      eclear (y);
      goto isitneg;
    }
  /* number of bits to clear out */
  e = NBITS - e;
  emov (f, y);
  if (e <= 0)
    return;

  p = &y[0];
  while (e >= 16)
    {
      *p++ = 0;
      e -= 16;
    }
  /* clear the remaining bits */
  *p &= bmask[e];
  /* truncate negatives toward minus infinity */
 isitneg:

  if ((unsigned EMUSHORT) expon & (unsigned EMUSHORT) 0x8000)
    {
      for (i = 0; i < NE - 1; i++)
	{
	  if (f[i] != y[i])
	    {
	      esub (eone, y, y);
	      break;
	    }
	}
    }
}


Manfred Hollstein committed
5526
#if 0
5527 5528
/* Return S and EXP such that  S * 2^EXP = X and .5 <= S < 1.
   For example, 1.1 = 0.55 * 2^1.  */
5529

5530
static void
Richard Stallman committed
5531 5532 5533 5534 5535 5536 5537 5538 5539
efrexp (x, exp, s)
     unsigned EMUSHORT x[];
     int *exp;
     unsigned EMUSHORT s[];
{
  unsigned EMUSHORT xi[NI];
  EMULONG li;

  emovi (x, xi);
5540
  /*  Handle denormalized numbers properly using long integer exponent.  */
Richard Stallman committed
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
  li = (EMULONG) ((EMUSHORT) xi[1]);

  if (li == 0)
    {
      li -= enormlz (xi);
    }
  xi[1] = 0x3ffe;
  emovo (xi, s);
  *exp = (int) (li - 0x3ffe);
}
Manfred Hollstein committed
5551
#endif
Richard Stallman committed
5552

5553
/* Return e type Y = X * 2^PWR2.  */
5554

5555
static void
Richard Stallman committed
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
eldexp (x, pwr2, y)
     unsigned EMUSHORT x[];
     int pwr2;
     unsigned EMUSHORT y[];
{
  unsigned EMUSHORT xi[NI];
  EMULONG li;
  int i;

  emovi (x, xi);
  li = xi[1];
  li += pwr2;
  i = 0;
  emdnorm (xi, i, i, li, 64);
  emovo (xi, y);
}


Manfred Hollstein committed
5574
#if 0
5575 5576
/* C = remainder after dividing B by A, all e type values.
   Least significant integer quotient bits left in EQUOT.  */
5577

5578
static void
Richard Stallman committed
5579 5580 5581 5582 5583
eremain (a, b, c)
     unsigned EMUSHORT a[], b[], c[];
{
  unsigned EMUSHORT den[NI], num[NI];

5584
#ifdef NANS
Richard Stallman committed
5585 5586 5587 5588
  if (eisinf (b)
      || (ecmp (a, ezero) == 0)
      || eisnan (a)
      || eisnan (b))
5589
    {
5590
      enan (c, 0);
5591 5592 5593
      return;
    }
#endif
Richard Stallman committed
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
  if (ecmp (a, ezero) == 0)
    {
      mtherr ("eremain", SING);
      eclear (c);
      return;
    }
  emovi (a, den);
  emovi (b, num);
  eiremain (den, num);
  /* Sign of remainder = sign of quotient */
  if (a[0] == b[0])
    num[0] = 0;
  else
    num[0] = 0xffff;
  emovo (num, c);
}
Manfred Hollstein committed
5610
#endif
Richard Stallman committed
5611

5612 5613 5614
/*  Return quotient of exploded e-types NUM / DEN in EQUOT,
    remainder in NUM.  */

5615
static void
Richard Stallman committed
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
eiremain (den, num)
     unsigned EMUSHORT den[], num[];
{
  EMULONG ld, ln;
  unsigned EMUSHORT j;

  ld = den[E];
  ld -= enormlz (den);
  ln = num[E];
  ln -= enormlz (num);
  ecleaz (equot);
  while (ln >= ld)
    {
      if (ecmpm (den, num) <= 0)
	{
	  esubm (den, num);
	  j = 1;
	}
      else
	  j = 0;
      eshup1 (equot);
      equot[NI - 1] |= j;
      eshup1 (num);
      ln -= 1;
    }
  emdnorm (num, 0, 0, ln, 0);
}

5644
/* Report an error condition CODE encountered in function NAME.
5645 5646

    Mnemonic        Value          Significance
5647

5648 5649 5650 5651 5652 5653 5654 5655 5656
     DOMAIN            1       argument domain error
     SING              2       function singularity
     OVERFLOW          3       overflow range error
     UNDERFLOW         4       underflow range error
     TLOSS             5       total loss of precision
     PLOSS             6       partial loss of precision
     INVALID           7       NaN - producing operation
     EDOM             33       Unix domain error code
     ERANGE           34       Unix range error code
5657

5658
   The order of appearance of the following messages is bound to the
5659
   error codes defined above.  */
Richard Stallman committed
5660 5661 5662 5663

int merror = 0;
extern int merror;

5664
static void
Richard Stallman committed
5665
mtherr (name, code)
5666
     const char *name;
Richard Stallman committed
5667 5668
     int code;
{
5669
  /* The string passed by the calling program is supposed to be the
5670
     name of the function in which the error occurred.
5671
     The code argument selects which error message string will be printed.  */
Richard Stallman committed
5672

5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
  if (strcmp (name, "esub") == 0)
    name = "subtraction";
  else if (strcmp (name, "ediv") == 0)
    name = "division";
  else if (strcmp (name, "emul") == 0)
    name = "multiplication";
  else if (strcmp (name, "enormlz") == 0)
    name = "normalization";
  else if (strcmp (name, "etoasc") == 0)
    name = "conversion to text";
  else if (strcmp (name, "asctoe") == 0)
    name = "parsing";
  else if (strcmp (name, "eremain") == 0)
    name = "modulus";
  else if (strcmp (name, "esqrt") == 0)
    name = "square root";
5689
  if (extra_warnings)
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
    {
      switch (code)
	{
	case DOMAIN:    warning ("%s: argument domain error"    , name); break;
	case SING:      warning ("%s: function singularity"     , name); break;
	case OVERFLOW:  warning ("%s: overflow range error"     , name); break;
	case UNDERFLOW: warning ("%s: underflow range error"    , name); break;
	case TLOSS:     warning ("%s: total loss of precision"  , name); break;
	case PLOSS:     warning ("%s: partial loss of precision", name); break;
	case INVALID:   warning ("%s: NaN - producing operation", name); break;
	default:        abort ();
	}
    }

Richard Stallman committed
5704 5705 5706 5707
  /* Set global error message word */
  merror = code + 1;
}

5708
#ifdef DEC
5709
/* Convert DEC double precision D to e type E.  */
5710

5711
static void
Richard Stallman committed
5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
dectoe (d, e)
     unsigned EMUSHORT *d;
     unsigned EMUSHORT *e;
{
  unsigned EMUSHORT y[NI];
  register unsigned EMUSHORT r, *p;

  ecleaz (y);			/* start with a zero */
  p = y;			/* point to our number */
  r = *d;			/* get DEC exponent word */
  if (*d & (unsigned int) 0x8000)
    *p = 0xffff;		/* fill in our sign */
  ++p;				/* bump pointer to our exponent word */
  r &= 0x7fff;			/* strip the sign bit */
  if (r == 0)			/* answer = 0 if high order DEC word = 0 */
    goto done;


  r >>= 7;			/* shift exponent word down 7 bits */
  r += EXONE - 0201;		/* subtract DEC exponent offset */
  /* add our e type exponent offset */
  *p++ = r;			/* to form our exponent */

  r = *d++;			/* now do the high order mantissa */
  r &= 0177;			/* strip off the DEC exponent and sign bits */
  r |= 0200;			/* the DEC understood high order mantissa bit */
  *p++ = r;			/* put result in our high guard word */

  *p++ = *d++;			/* fill in the rest of our mantissa */
  *p++ = *d++;
  *p = *d;

  eshdn8 (y);			/* shift our mantissa down 8 bits */
 done:
  emovo (y, e);
}

5749
/* Convert e type X to DEC double precision D.  */
Richard Stallman committed
5750

5751
static void
Richard Stallman committed
5752 5753 5754 5755
etodec (x, d)
     unsigned EMUSHORT *x, *d;
{
  unsigned EMUSHORT xi[NI];
5756 5757
  EMULONG exp;
  int rndsav;
Richard Stallman committed
5758 5759

  emovi (x, xi);
5760 5761 5762
  /* Adjust exponent for offsets.  */
  exp = (EMULONG) xi[E] - (EXONE - 0201);
  /* Round off to nearest or even.  */
Richard Stallman committed
5763 5764 5765 5766 5767 5768 5769
  rndsav = rndprc;
  rndprc = 56;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
  todec (xi, d);
}

5770 5771 5772
/* Convert exploded e-type X, that has already been rounded to
   56-bit precision, to DEC format double Y.  */

5773
static void
Richard Stallman committed
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
todec (x, y)
     unsigned EMUSHORT *x, *y;
{
  unsigned EMUSHORT i;
  unsigned EMUSHORT *p;

  p = x;
  *y = 0;
  if (*p++)
    *y = 0100000;
  i = *p++;
  if (i == 0)
    {
      *y++ = 0;
      *y++ = 0;
      *y++ = 0;
      *y++ = 0;
      return;
    }
  if (i > 0377)
    {
      *y++ |= 077777;
      *y++ = 0xffff;
      *y++ = 0xffff;
      *y++ = 0xffff;
5799 5800 5801
#ifdef ERANGE
      errno = ERANGE;
#endif
Richard Stallman committed
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
      return;
    }
  i &= 0377;
  i <<= 7;
  eshup8 (x);
  x[M] &= 0177;
  i |= x[M];
  *y++ |= i;
  *y++ = x[M + 1];
  *y++ = x[M + 2];
  *y++ = x[M + 3];
}
5814 5815 5816
#endif /* DEC */

#ifdef IBM
5817
/* Convert IBM single/double precision to e type.  */
5818

5819
static void
5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
ibmtoe (d, e, mode)
     unsigned EMUSHORT *d;
     unsigned EMUSHORT *e;
     enum machine_mode mode;
{
  unsigned EMUSHORT y[NI];
  register unsigned EMUSHORT r, *p;
  int rndsav;

  ecleaz (y);			/* start with a zero */
  p = y;			/* point to our number */
  r = *d;			/* get IBM exponent word */
  if (*d & (unsigned int) 0x8000)
    *p = 0xffff;		/* fill in our sign */
  ++p;				/* bump pointer to our exponent word */
  r &= 0x7f00;			/* strip the sign bit */
  r >>= 6;			/* shift exponent word down 6 bits */
				/* in fact shift by 8 right and 2 left */
  r += EXONE - (0x41 << 2);	/* subtract IBM exponent offset */
  				/* add our e type exponent offset */
  *p++ = r;			/* to form our exponent */

  *p++ = *d++ & 0xff;		/* now do the high order mantissa */
				/* strip off the IBM exponent and sign bits */
  if (mode != SFmode)		/* there are only 2 words in SFmode */
    {
      *p++ = *d++;		/* fill in the rest of our mantissa */
      *p++ = *d++;
    }
  *p = *d;

  if (y[M] == 0 && y[M+1] == 0 && y[M+2] == 0 && y[M+3] == 0)
    y[0] = y[E] = 0;
  else
    y[E] -= 5 + enormlz (y);	/* now normalise the mantissa */
			      /* handle change in RADIX */
  emovo (y, e);
}

Richard Stallman committed
5859 5860


5861
/* Convert e type to IBM single/double precision.  */
5862

5863
static void
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
etoibm (x, d, mode)
     unsigned EMUSHORT *x, *d;
     enum machine_mode mode;
{
  unsigned EMUSHORT xi[NI];
  EMULONG exp;
  int rndsav;

  emovi (x, xi);
  exp = (EMULONG) xi[E] - (EXONE - (0x41 << 2));	/* adjust exponent for offsets */
							/* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 56;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
  toibm (xi, d, mode);
}

5882
static void
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
toibm (x, y, mode)
     unsigned EMUSHORT *x, *y;
     enum machine_mode mode;
{
  unsigned EMUSHORT i;
  unsigned EMUSHORT *p;
  int r;

  p = x;
  *y = 0;
  if (*p++)
    *y = 0x8000;
  i = *p++;
  if (i == 0)
    {
      *y++ = 0;
      *y++ = 0;
      if (mode != SFmode)
	{
	  *y++ = 0;
	  *y++ = 0;
	}
      return;
    }
  r = i & 0x3;
  i >>= 2;
  if (i > 0x7f)
    {
      *y++ |= 0x7fff;
      *y++ = 0xffff;
      if (mode != SFmode)
	{
	  *y++ = 0xffff;
	  *y++ = 0xffff;
	}
#ifdef ERANGE
      errno = ERANGE;
#endif
      return;
    }
  i &= 0x7f;
  *y |= (i << 8);
  eshift (x, r + 5);
  *y++ |= x[M];
  *y++ = x[M + 1];
  if (mode != SFmode)
    {
      *y++ = x[M + 2];
      *y++ = x[M + 3];
    }
}
#endif /* IBM */
5935

5936 5937 5938 5939

#ifdef C4X
/* Convert C4X single/double precision to e type.  */

5940
static void
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
c4xtoe (d, e, mode)
     unsigned EMUSHORT *d;
     unsigned EMUSHORT *e;
     enum machine_mode mode;
{
  unsigned EMUSHORT y[NI];
  int r;
  int isnegative;
  int size;
  int i;
  int carry;

  /* Short-circuit the zero case. */
  if ((d[0] == 0x8000)
      && (d[1] == 0x0000)
      && ((mode == QFmode) || ((d[2] == 0x0000) && (d[3] == 0x0000))))
    {
      e[0] = 0;
      e[1] = 0;
      e[2] = 0;
      e[3] = 0;
      e[4] = 0;
      e[5] = 0;
      return;
    }

  ecleaz (y);			/* start with a zero */
  r = d[0];			/* get sign/exponent part */
  if (r & (unsigned int) 0x0080)
  {
     y[0] = 0xffff;		/* fill in our sign */
     isnegative = TRUE;
  }
  else
  {
     isnegative = FALSE;
  }
5978

5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
  r >>= 8;			/* Shift exponent word down 8 bits.  */
  if (r & 0x80)			/* Make the exponent negative if it is. */
  {
     r = r | (~0 & ~0xff);
  }

  if (isnegative)
  {
     /* Now do the high order mantissa.  We don't "or" on the high bit
	because it is 2 (not 1) and is handled a little differently
	below.  */
5990
     y[M] = d[0] & 0x7f;
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034

     y[M+1] = d[1];
     if (mode != QFmode)	/* There are only 2 words in QFmode.  */
     {
	y[M+2] = d[2];		/* Fill in the rest of our mantissa.  */
	y[M+3] = d[3];
	size = 4;
     }
     else
     {
	size = 2;
     }
     eshift(y, -8);

     /* Now do the two's complement on the data.  */

     carry = 1;	/* Initially add 1 for the two's complement. */
     for (i=size + M; i > M; i--)
     {
	if (carry && (y[i] == 0x0000))
	{
	   /* We overflowed into the next word, carry is the same.  */
	   y[i] = carry ? 0x0000 : 0xffff;
	}
	else
	{
	   /* No overflow, just invert and add carry.  */
	   y[i] = ((~y[i]) + carry) & 0xffff;
	   carry = 0;
	}
     }

     if (carry)
     {
	eshift(y, -1);
	y[M+1] |= 0x8000;
	r++;
     }
     y[1] = r + EXONE;
  }
  else
  {
    /* Add our e type exponent offset to form our exponent.  */
     r += EXONE;
6035
     y[1] = r;
6036 6037 6038

     /* Now do the high order mantissa strip off the exponent and sign
	bits and add the high 1 bit.  */
6039
     y[M] = (d[0] & 0x7f) | 0x80;
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055

     y[M+1] = d[1];
     if (mode != QFmode)	/* There are only 2 words in QFmode.  */
     {
	y[M+2] = d[2];		/* Fill in the rest of our mantissa.  */
	y[M+3] = d[3];
     }
     eshift(y, -8);
  }

  emovo (y, e);
}


/* Convert e type to C4X single/double precision.  */

6056
static void
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
etoc4x (x, d, mode)
     unsigned EMUSHORT *x, *d;
     enum machine_mode mode;
{
  unsigned EMUSHORT xi[NI];
  EMULONG exp;
  int rndsav;

  emovi (x, xi);

  /* Adjust exponent for offsets. */
  exp = (EMULONG) xi[E] - (EXONE - 0x7f);

  /* Round off to nearest or even. */
  rndsav = rndprc;
  rndprc = mode == QFmode ? 24 : 32;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
  toc4x (xi, d, mode);
}

6078
static void
6079 6080 6081 6082 6083 6084 6085
toc4x (x, y, mode)
     unsigned EMUSHORT *x, *y;
     enum machine_mode mode;
{
  int i;
  int v;
  int carry;
6086

6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
  /* Short-circuit the zero case */
  if ((x[0] == 0)	/* Zero exponent and sign */
      && (x[1] == 0)
      && (x[M] == 0)	/* The rest is for zero mantissa */
      && (x[M+1] == 0)
      /* Only check for double if necessary */
      && ((mode == QFmode) || ((x[M+2] == 0) && (x[M+3] == 0))))
    {
      /* We have a zero.  Put it into the output and return. */
      *y++ = 0x8000;
      *y++ = 0x0000;
      if (mode != QFmode)
        {
          *y++ = 0x0000;
          *y++ = 0x0000;
        }
      return;
    }
6105

6106
  *y = 0;
6107

6108 6109 6110 6111 6112
  /* Negative number require a two's complement conversion of the
     mantissa. */
  if (x[0])
    {
      *y = 0x0080;
6113

6114
      i = ((int) x[1]) - 0x7f;
6115

6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
      /* Now add 1 to the inverted data to do the two's complement. */
      if (mode != QFmode)
	v = 4 + M;
      else
	v = 2 + M;
      carry = 1;
      while (v > M)
	{
	  if (x[v] == 0x0000)
	    {
	      x[v] = carry ? 0x0000 : 0xffff;
	    }
	  else
	    {
	      x[v] = ((~x[v]) + carry) & 0xffff;
	      carry = 0;
	    }
	  v--;
	}
6135

6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
      /* The following is a special case.  The C4X negative float requires
	 a zero in the high bit (because the format is (2 - x) x 2^m), so
	 if a one is in that bit, we have to shift left one to get rid
	 of it.  This only occurs if the number is -1 x 2^m. */
      if (x[M+1] & 0x8000)
	{
	  /* This is the case of -1 x 2^m, we have to rid ourselves of the
	     high sign bit and shift the exponent. */
	  eshift(x, 1);
	  i--;
	}
    }
  else
    {
      i = ((int) x[1]) - 0x7f;
    }

  if ((i < -128) || (i > 127))
    {
      y[0] |= 0xff7f;
      y[1] = 0xffff;
      if (mode != QFmode)
	{
	  y[2] = 0xffff;
	  y[3] = 0xffff;
	}
#ifdef ERANGE
      errno = ERANGE;
#endif
      return;
    }
6167

6168
  y[0] |= ((i & 0xff) << 8);
6169

6170
  eshift (x, 8);
6171

6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
  y[0] |= x[M] & 0x7f;
  y[1] = x[M + 1];
  if (mode != QFmode)
    {
      y[2] = x[M + 2];
      y[3] = x[M + 3];
    }
}
#endif /* C4X */

6182 6183 6184 6185
/* Output a binary NaN bit pattern in the target machine's format.  */

/* If special NaN bit patterns are required, define them in tm.h
   as arrays of unsigned 16-bit shorts.  Otherwise, use the default
Mike Stump committed
6186
   patterns here.  */
6187 6188 6189
#ifdef TFMODE_NAN
TFMODE_NAN;
#else
6190 6191
#ifdef IEEE
unsigned EMUSHORT TFbignan[8] =
6192
 {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff};
6193
unsigned EMUSHORT TFlittlenan[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0xffff};
6194 6195 6196
#endif
#endif

6197 6198 6199
#ifdef XFMODE_NAN
XFMODE_NAN;
#else
6200 6201 6202 6203
#ifdef IEEE
unsigned EMUSHORT XFbignan[6] =
 {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff};
unsigned EMUSHORT XFlittlenan[6] = {0, 0, 0, 0xc000, 0xffff, 0};
6204 6205 6206
#endif
#endif

6207 6208 6209
#ifdef DFMODE_NAN
DFMODE_NAN;
#else
6210 6211 6212
#ifdef IEEE
unsigned EMUSHORT DFbignan[4] = {0x7fff, 0xffff, 0xffff, 0xffff};
unsigned EMUSHORT DFlittlenan[4] = {0, 0, 0, 0xfff8};
6213 6214 6215
#endif
#endif

6216 6217 6218
#ifdef SFMODE_NAN
SFMODE_NAN;
#else
6219 6220 6221
#ifdef IEEE
unsigned EMUSHORT SFbignan[2] = {0x7fff, 0xffff};
unsigned EMUSHORT SFlittlenan[2] = {0, 0xffc0};
6222 6223 6224 6225
#endif
#endif


6226
static void
6227
make_nan (nan, sign, mode)
6228 6229 6230
     unsigned EMUSHORT *nan;
     int sign;
     enum machine_mode mode;
6231
{
6232
  int n;
6233 6234 6235 6236 6237
  unsigned EMUSHORT *p;

  switch (mode)
    {
/* Possibly the `reserved operand' patterns on a VAX can be
Mike Stump committed
6238
   used like NaN's, but probably not in the same way as IEEE.  */
6239
#if !defined(DEC) && !defined(IBM) && !defined(C4X)
6240 6241
    case TFmode:
      n = 8;
6242
      if (REAL_WORDS_BIG_ENDIAN)
6243 6244 6245
	p = TFbignan;
      else
	p = TFlittlenan;
6246
      break;
6247

6248 6249
    case XFmode:
      n = 6;
6250
      if (REAL_WORDS_BIG_ENDIAN)
6251 6252 6253
	p = XFbignan;
      else
	p = XFlittlenan;
6254
      break;
6255

6256 6257
    case DFmode:
      n = 4;
6258
      if (REAL_WORDS_BIG_ENDIAN)
6259 6260 6261
	p = DFbignan;
      else
	p = DFlittlenan;
6262
      break;
6263

6264
    case SFmode:
6265
    case HFmode:
6266
      n = 2;
6267
      if (REAL_WORDS_BIG_ENDIAN)
6268 6269 6270
	p = SFbignan;
      else
	p = SFlittlenan;
6271 6272
      break;
#endif
6273

6274 6275 6276
    default:
      abort ();
    }
6277
  if (REAL_WORDS_BIG_ENDIAN)
6278
    *nan++ = (sign << 15) | (*p++ & 0x7fff);
6279
  while (--n != 0)
6280
    *nan++ = *p++;
6281
  if (! REAL_WORDS_BIG_ENDIAN)
6282
    *nan = (sign << 15) | (*p & 0x7fff);
6283 6284
}

6285
/* This is the inverse of the function `etarsingle' invoked by
6286 6287 6288
   REAL_VALUE_TO_TARGET_SINGLE.  */

REAL_VALUE_TYPE
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
ereal_unto_float (f)
     long f;
{
  REAL_VALUE_TYPE r;
  unsigned EMUSHORT s[2];
  unsigned EMUSHORT e[NE];

  /* Convert 32 bit integer to array of 16 bit pieces in target machine order.
   This is the inverse operation to what the function `endian' does.  */
  if (REAL_WORDS_BIG_ENDIAN)
    {
      s[0] = (unsigned EMUSHORT) (f >> 16);
      s[1] = (unsigned EMUSHORT) f;
    }
  else
    {
      s[0] = (unsigned EMUSHORT) f;
      s[1] = (unsigned EMUSHORT) (f >> 16);
    }
  /* Convert and promote the target float to E-type. */
  e24toe (s, e);
  /* Output E-type to REAL_VALUE_TYPE. */
  PUT_REAL (e, &r);
  return r;
}


/* This is the inverse of the function `etardouble' invoked by
   REAL_VALUE_TO_TARGET_DOUBLE.  */

REAL_VALUE_TYPE
ereal_unto_double (d)
     long d[];
{
  REAL_VALUE_TYPE r;
  unsigned EMUSHORT s[4];
  unsigned EMUSHORT e[NE];

  /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces.  */
  if (REAL_WORDS_BIG_ENDIAN)
    {
      s[0] = (unsigned EMUSHORT) (d[0] >> 16);
      s[1] = (unsigned EMUSHORT) d[0];
      s[2] = (unsigned EMUSHORT) (d[1] >> 16);
      s[3] = (unsigned EMUSHORT) d[1];
    }
  else
    {
      /* Target float words are little-endian.  */
      s[0] = (unsigned EMUSHORT) d[0];
      s[1] = (unsigned EMUSHORT) (d[0] >> 16);
      s[2] = (unsigned EMUSHORT) d[1];
      s[3] = (unsigned EMUSHORT) (d[1] >> 16);
    }
  /* Convert target double to E-type. */
  e53toe (s, e);
  /* Output E-type to REAL_VALUE_TYPE. */
  PUT_REAL (e, &r);
  return r;
}


/* Convert an SFmode target `float' value to a REAL_VALUE_TYPE.
   This is somewhat like ereal_unto_float, but the input types
   for these are different.  */

REAL_VALUE_TYPE
6356
ereal_from_float (f)
6357
     HOST_WIDE_INT f;
6358 6359 6360 6361 6362 6363 6364
{
  REAL_VALUE_TYPE r;
  unsigned EMUSHORT s[2];
  unsigned EMUSHORT e[NE];

  /* Convert 32 bit integer to array of 16 bit pieces in target machine order.
   This is the inverse operation to what the function `endian' does.  */
6365
  if (REAL_WORDS_BIG_ENDIAN)
6366 6367 6368 6369 6370 6371 6372 6373 6374
    {
      s[0] = (unsigned EMUSHORT) (f >> 16);
      s[1] = (unsigned EMUSHORT) f;
    }
  else
    {
      s[0] = (unsigned EMUSHORT) f;
      s[1] = (unsigned EMUSHORT) (f >> 16);
    }
Mike Stump committed
6375
  /* Convert and promote the target float to E-type.  */
6376
  e24toe (s, e);
Mike Stump committed
6377
  /* Output E-type to REAL_VALUE_TYPE.  */
6378 6379 6380 6381
  PUT_REAL (e, &r);
  return r;
}

6382

6383
/* Convert a DFmode target `double' value to a REAL_VALUE_TYPE.
6384 6385
   This is somewhat like ereal_unto_double, but the input types
   for these are different.
6386

6387 6388
   The DFmode is stored as an array of HOST_WIDE_INT in the target's
   data format, with no holes in the bit packing.  The first element
6389 6390 6391 6392 6393
   of the input array holds the bits that would come first in the
   target computer's memory.  */

REAL_VALUE_TYPE
ereal_from_double (d)
6394
     HOST_WIDE_INT d[];
6395 6396 6397 6398 6399
{
  REAL_VALUE_TYPE r;
  unsigned EMUSHORT s[4];
  unsigned EMUSHORT e[NE];

6400
  /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces.  */
6401
  if (REAL_WORDS_BIG_ENDIAN)
6402 6403 6404
    {
      s[0] = (unsigned EMUSHORT) (d[0] >> 16);
      s[1] = (unsigned EMUSHORT) d[0];
6405
#if HOST_BITS_PER_WIDE_INT == 32
6406 6407
      s[2] = (unsigned EMUSHORT) (d[1] >> 16);
      s[3] = (unsigned EMUSHORT) d[1];
6408
#else
6409 6410 6411 6412 6413
      /* In this case the entire target double is contained in the
	 first array element.  The second element of the input is
	 ignored.  */
      s[2] = (unsigned EMUSHORT) (d[0] >> 48);
      s[3] = (unsigned EMUSHORT) (d[0] >> 32);
6414
#endif
6415 6416 6417 6418 6419 6420
    }
  else
    {
      /* Target float words are little-endian.  */
      s[0] = (unsigned EMUSHORT) d[0];
      s[1] = (unsigned EMUSHORT) (d[0] >> 16);
6421
#if HOST_BITS_PER_WIDE_INT == 32
6422 6423
      s[2] = (unsigned EMUSHORT) d[1];
      s[3] = (unsigned EMUSHORT) (d[1] >> 16);
6424
#else
6425 6426
      s[2] = (unsigned EMUSHORT) (d[0] >> 32);
      s[3] = (unsigned EMUSHORT) (d[0] >> 48);
6427
#endif
6428
    }
Mike Stump committed
6429
  /* Convert target double to E-type.  */
6430
  e53toe (s, e);
Mike Stump committed
6431
  /* Output E-type to REAL_VALUE_TYPE.  */
6432 6433 6434
  PUT_REAL (e, &r);
  return r;
}
6435 6436


Manfred Hollstein committed
6437
#if 0
6438 6439
/* Convert target computer unsigned 64-bit integer to e-type.
   The endian-ness of DImode follows the convention for integers,
6440
   so we use WORDS_BIG_ENDIAN here, not REAL_WORDS_BIG_ENDIAN.  */
6441

6442
static void
6443
uditoe (di, e)
Mike Stump committed
6444
     unsigned EMUSHORT *di;  /* Address of the 64-bit int.  */
6445 6446 6447 6448 6449 6450
     unsigned EMUSHORT *e;
{
  unsigned EMUSHORT yi[NI];
  int k;

  ecleaz (yi);
6451 6452 6453 6454 6455 6456 6457 6458 6459 6460
  if (WORDS_BIG_ENDIAN)
    {
      for (k = M; k < M + 4; k++)
	yi[k] = *di++;
    }
  else
    {
      for (k = M + 3; k >= M; k--)
	yi[k] = *di++;
    }
6461 6462 6463 6464 6465 6466 6467 6468
  yi[E] = EXONE + 47;	/* exponent if normalize shift count were 0 */
  if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
    ecleaz (yi);		/* it was zero */
  else
    yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */
  emovo (yi, e);
}

Mike Stump committed
6469
/* Convert target computer signed 64-bit integer to e-type.  */
6470

6471
static void
6472
ditoe (di, e)
Mike Stump committed
6473
     unsigned EMUSHORT *di;  /* Address of the 64-bit int.  */
6474 6475 6476 6477 6478 6479 6480 6481
     unsigned EMUSHORT *e;
{
  unsigned EMULONG acc;
  unsigned EMUSHORT yi[NI];
  unsigned EMUSHORT carry;
  int k, sign;

  ecleaz (yi);
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
  if (WORDS_BIG_ENDIAN)
    {
      for (k = M; k < M + 4; k++)
	yi[k] = *di++;
    }
  else
    {
      for (k = M + 3; k >= M; k--)
	yi[k] = *di++;
    }
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517
  /* Take absolute value */
  sign = 0;
  if (yi[M] & 0x8000)
    {
      sign = 1;
      carry = 0;
      for (k = M + 3; k >= M; k--)
	{
	  acc = (unsigned EMULONG) (~yi[k] & 0xffff) + carry;
	  yi[k] = acc;
	  carry = 0;
	  if (acc & 0x10000)
	    carry = 1;
	}
    }
  yi[E] = EXONE + 47;	/* exponent if normalize shift count were 0 */
  if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
    ecleaz (yi);		/* it was zero */
  else
    yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */
  emovo (yi, e);
  if (sign)
	eneg (e);
}


Mike Stump committed
6518
/* Convert e-type to unsigned 64-bit int.  */
6519

6520
static void
6521
etoudi (x, i)
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
     unsigned EMUSHORT *x;
     unsigned EMUSHORT *i;
{
  unsigned EMUSHORT xi[NI];
  int j, k;

  emovi (x, xi);
  if (xi[0])
    {
      xi[M] = 0;
      goto noshift;
    }
  k = (int) xi[E] - (EXONE - 1);
  if (k <= 0)
    {
      for (j = 0; j < 4; j++)
	*i++ = 0;
      return;
    }
  if (k > 64)
    {
      for (j = 0; j < 4; j++)
	*i++ = 0xffff;
      if (extra_warnings)
	warning ("overflow on truncation to integer");
      return;
    }
  if (k > 16)
    {
      /* Shift more than 16 bits: first shift up k-16 mod 16,
	 then shift up by 16's.  */
      j = k - ((k >> 4) << 4);
      if (j == 0)
	j = 16;
      eshift (xi, j);
6557 6558 6559 6560 6561 6562 6563
      if (WORDS_BIG_ENDIAN)
	*i++ = xi[M];
      else
	{
	  i += 3;
	  *i-- = xi[M];
	}
6564 6565 6566 6567
      k -= j;
      do
	{
	  eshup6 (xi);
6568 6569 6570 6571
	  if (WORDS_BIG_ENDIAN)
	    *i++ = xi[M];
	  else
	    *i-- = xi[M];
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581
	}
      while ((k -= 16) > 0);
    }
  else
    {
        /* shift not more than 16 bits */
      eshift (xi, k);

noshift:

6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
      if (WORDS_BIG_ENDIAN)
	{
	  i += 3;
	  *i-- = xi[M];
	  *i-- = 0;
	  *i-- = 0;
	  *i = 0;
	}
      else
	{
	  *i++ = xi[M];
	  *i++ = 0;
	  *i++ = 0;
	  *i = 0;
	}
6597 6598 6599 6600
    }
}


Mike Stump committed
6601
/* Convert e-type to signed 64-bit int.  */
6602

6603
static void
6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638
etodi (x, i)
     unsigned EMUSHORT *x;
     unsigned EMUSHORT *i;
{
  unsigned EMULONG acc;
  unsigned EMUSHORT xi[NI];
  unsigned EMUSHORT carry;
  unsigned EMUSHORT *isave;
  int j, k;

  emovi (x, xi);
  k = (int) xi[E] - (EXONE - 1);
  if (k <= 0)
    {
      for (j = 0; j < 4; j++)
	*i++ = 0;
      return;
    }
  if (k > 64)
    {
      for (j = 0; j < 4; j++)
	*i++ = 0xffff;
      if (extra_warnings)
	warning ("overflow on truncation to integer");
      return;
    }
  isave = i;
  if (k > 16)
    {
      /* Shift more than 16 bits: first shift up k-16 mod 16,
	 then shift up by 16's.  */
      j = k - ((k >> 4) << 4);
      if (j == 0)
	j = 16;
      eshift (xi, j);
6639 6640 6641 6642 6643 6644 6645
      if (WORDS_BIG_ENDIAN)
	*i++ = xi[M];
      else
	{
	  i += 3;
	  *i-- = xi[M];
	}
6646 6647 6648 6649
      k -= j;
      do
	{
	  eshup6 (xi);
6650 6651 6652 6653
	  if (WORDS_BIG_ENDIAN)
	    *i++ = xi[M];
	  else
	    *i-- = xi[M];
6654 6655 6656 6657 6658 6659 6660 6661
	}
      while ((k -= 16) > 0);
    }
  else
    {
        /* shift not more than 16 bits */
      eshift (xi, k);

6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
      if (WORDS_BIG_ENDIAN)
	{
	  i += 3;
	  *i = xi[M];
	  *i-- = 0;
	  *i-- = 0;
	  *i = 0;
	}
      else
	{
	  *i++ = xi[M];
	  *i++ = 0;
	  *i++ = 0;
	  *i = 0;
	}
6677 6678 6679 6680 6681
    }
  /* Negate if negative */
  if (xi[0])
    {
      carry = 0;
6682 6683
      if (WORDS_BIG_ENDIAN)
	isave += 3;
6684 6685 6686
      for (k = 0; k < 4; k++)
	{
	  acc = (unsigned EMULONG) (~(*isave) & 0xffff) + carry;
6687 6688 6689 6690
	  if (WORDS_BIG_ENDIAN)
	    *isave-- = acc;
	  else
	    *isave++ = acc;
6691 6692 6693 6694 6695 6696 6697 6698
	  carry = 0;
	  if (acc & 0x10000)
	    carry = 1;
	}
    }
}


Mike Stump committed
6699
/* Longhand square root routine.  */
6700 6701 6702 6703 6704


static int esqinited = 0;
static unsigned short sqrndbit[NI];

6705
static void
6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722
esqrt (x, y)
     unsigned EMUSHORT *x, *y;
{
  unsigned EMUSHORT temp[NI], num[NI], sq[NI], xx[NI];
  EMULONG m, exp;
  int i, j, k, n, nlups;

  if (esqinited == 0)
    {
      ecleaz (sqrndbit);
      sqrndbit[NI - 2] = 1;
      esqinited = 1;
    }
  /* Check for arg <= 0 */
  i = ecmp (x, ezero);
  if (i <= 0)
    {
6723
      if (i == -1)
6724
	{
6725 6726
	  mtherr ("esqrt", DOMAIN);
	  eclear (y);
6727
	}
6728 6729
      else
	emov (x, y);
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
      return;
    }

#ifdef INFINITY
  if (eisinf (x))
    {
      eclear (y);
      einfin (y);
      return;
    }
#endif
Mike Stump committed
6741
  /* Bring in the arg and renormalize if it is denormal.  */
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
  emovi (x, xx);
  m = (EMULONG) xx[1];		/* local long word exponent */
  if (m == 0)
    m -= enormlz (xx);

  /* Divide exponent by 2 */
  m -= 0x3ffe;
  exp = (unsigned short) ((m / 2) + 0x3ffe);

  /* Adjust if exponent odd */
  if ((m & 1) != 0)
    {
      if (m > 0)
	exp += 1;
      eshdn1 (xx);
    }

  ecleaz (sq);
  ecleaz (num);
  n = 8;			/* get 8 bits of result per inner loop */
  nlups = rndprc;
  j = 0;

  while (nlups > 0)
    {
      /* bring in next word of arg */
      if (j < NE)
	num[NI - 1] = xx[j + 3];
Mike Stump committed
6770
      /* Do additional bit on last outer loop, for roundoff.  */
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
      if (nlups <= 8)
	n = nlups + 1;
      for (i = 0; i < n; i++)
	{
	  /* Next 2 bits of arg */
	  eshup1 (num);
	  eshup1 (num);
	  /* Shift up answer */
	  eshup1 (sq);
	  /* Make trial divisor */
	  for (k = 0; k < NI; k++)
	    temp[k] = sq[k];
	  eshup1 (temp);
	  eaddm (sqrndbit, temp);
	  /* Subtract and insert answer bit if it goes in */
	  if (ecmpm (temp, num) <= 0)
	    {
	      esubm (temp, num);
	      sq[NI - 2] |= 1;
	    }
	}
      nlups -= n;
      j += 1;
    }

Mike Stump committed
6796
  /* Adjust for extra, roundoff loop done.  */
6797 6798
  exp += (NBITS - 1) - rndprc;

Mike Stump committed
6799
  /* Sticky bit = 1 if the remainder is nonzero.  */
6800 6801 6802 6803
  k = 0;
  for (i = 3; i < NI; i++)
    k |= (int) num[i];

Mike Stump committed
6804
  /* Renormalize and round off.  */
6805 6806 6807
  emdnorm (sq, k, 0, exp, 64);
  emovo (sq, y);
}
Manfred Hollstein committed
6808
#endif
Richard Stallman committed
6809
#endif /* EMU_NON_COMPILE not defined */
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819

/* Return the binary precision of the significand for a given
   floating point mode.  The mode can hold an integer value
   that many bits wide, without losing any bits.  */

int
significand_size (mode)
     enum machine_mode mode;
{

6820 6821 6822 6823
/* Don't test the modes, but their sizes, lest this
   code won't work for BITS_PER_UNIT != 8 .  */

switch (GET_MODE_BITSIZE (mode))
6824
  {
6825
  case 32:
6826

6827 6828 6829 6830
#if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
    return 56;
#endif

6831 6832
    return 24;

6833
  case 64:
6834 6835 6836 6837 6838 6839 6840 6841 6842
#if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
    return 53;
#else
#if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT
    return 56;
#else
#if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT
    return 56;
#else
6843 6844 6845
#if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
    return 56;
#else
6846 6847 6848 6849
    abort ();
#endif
#endif
#endif
6850
#endif
6851

6852
  case 96:
6853
    return 64;
6854
  case 128:
6855 6856 6857 6858 6859 6860
    return 113;

  default:
    abort ();
  }
}