function.c 242 KB
Newer Older
Richard Stallman committed
1
/* Expands front end tree to back end RTL for GNU C-Compiler
Jeff Law committed
2
   Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3
   1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
Richard Stallman committed
4

5
This file is part of GCC.
Richard Stallman committed
6

7 8 9 10
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
Richard Stallman committed
11

12 13 14 15
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Stallman committed
16 17

You should have received a copy of the GNU General Public License
18 19 20
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */
Richard Stallman committed
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

/* This file handles the generation of rtl code from tree structure
   at the level of the function as a whole.
   It creates the rtl expressions for parameters and auto variables
   and has full responsibility for allocating stack slots.

   `expand_function_start' is called at the beginning of a function,
   before the function body is parsed, and `expand_function_end' is
   called after parsing the body.

   Call `assign_stack_local' to allocate a stack slot for a local variable.
   This is usually done during the RTL generation for the function body,
   but it can also be done in the reload pass when a pseudo-register does
   not get a hard register.

   Call `put_var_into_stack' when you learn, belatedly, that a variable
   previously given a pseudo-register must in fact go in the stack.
   This function changes the DECL_RTL to be a stack slot instead of a reg
   then scans all the RTL instructions so far generated to correct them.  */

#include "config.h"
42
#include "system.h"
43 44
#include "coretypes.h"
#include "tm.h"
Richard Stallman committed
45 46 47
#include "rtl.h"
#include "tree.h"
#include "flags.h"
Mike Stump committed
48
#include "except.h"
Richard Stallman committed
49 50
#include "function.h"
#include "expr.h"
51
#include "libfuncs.h"
Richard Stallman committed
52 53 54 55 56
#include "regs.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "recog.h"
#include "output.h"
Tom Wood committed
57
#include "basic-block.h"
Robert Lipe committed
58
#include "toplev.h"
59
#include "hashtab.h"
60
#include "ggc.h"
61
#include "tm_p.h"
62
#include "integrate.h"
Neil Booth committed
63
#include "langhooks.h"
Richard Stallman committed
64

65 66 67 68
#ifndef TRAMPOLINE_ALIGNMENT
#define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
#endif

69 70 71 72
#ifndef LOCAL_ALIGNMENT
#define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
#endif

73 74 75 76
#ifndef STACK_ALIGNMENT_NEEDED
#define STACK_ALIGNMENT_NEEDED 1
#endif

77 78 79
/* Some systems use __main in a way incompatible with its use in gcc, in these
   cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
   give the same symbol without quotes for an alternative entry point.  You
Mike Stump committed
80
   must define both, or neither.  */
81 82 83 84
#ifndef NAME__MAIN
#define NAME__MAIN "__main"
#endif

Richard Stallman committed
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/* Round a value to the lowest integer less than it that is a multiple of
   the required alignment.  Avoid using division in case the value is
   negative.  Assume the alignment is a power of two.  */
#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))

/* Similar, but round to the next highest integer that meets the
   alignment.  */
#define CEIL_ROUND(VALUE,ALIGN)	(((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))

/* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
   during rtl generation.  If they are different register numbers, this is
   always true.  It may also be true if
   FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
   generation.  See fix_lexical_addr for details.  */

#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
#define NEED_SEPARATE_AP
#endif

104 105 106
/* Nonzero if function being compiled doesn't contain any calls
   (ignoring the prologue and epilogue).  This is set prior to
   local register allocation and is valid for the remaining
Kazu Hirata committed
107
   compiler passes.  */
108 109
int current_function_is_leaf;

110 111 112 113 114
/* Nonzero if function being compiled doesn't contain any instructions
   that can throw an exception.  This is set prior to final.  */

int current_function_nothrow;

John Wehle committed
115 116
/* Nonzero if function being compiled doesn't modify the stack pointer
   (ignoring the prologue and epilogue).  This is only valid after
Kazu Hirata committed
117
   life_analysis has run.  */
John Wehle committed
118 119
int current_function_sp_is_unchanging;

120 121 122 123 124
/* Nonzero if the function being compiled is a leaf function which only
   uses leaf registers.  This is valid after reload (specifically after
   sched2) and is useful only if the port defines LEAF_REGISTERS.  */
int current_function_uses_only_leaf_regs;

Richard Stallman committed
125
/* Nonzero once virtual register instantiation has been done.
126 127 128 129
   assign_stack_local uses frame_pointer_rtx when this is nonzero.
   calls.c:emit_library_call_value_1 uses it to set up
   post-instantiation libcalls.  */
int virtuals_instantiated;
Richard Stallman committed
130

131
/* Assign unique numbers to labels generated for profiling, debugging, etc.  */
132
static GTY(()) int funcdef_no;
133

134 135
/* These variables hold pointers to functions to create and destroy
   target specific, per-function data structures.  */
136
struct machine_function * (*init_machine_status) PARAMS ((void));
137

138 139
/* The FUNCTION_DECL for an inline function currently being expanded.  */
tree inline_function_decl;
140 141

/* The currently compiled function.  */
Bernd Schmidt committed
142
struct function *cfun = 0;
143

144
/* These arrays record the INSN_UIDs of the prologue and epilogue insns.  */
145 146
static GTY(()) varray_type prologue;
static GTY(()) varray_type epilogue;
147 148 149

/* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
   in this function.  */
150
static GTY(()) varray_type sibcall_epilogue;
Richard Stallman committed
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

/* In order to evaluate some expressions, such as function calls returning
   structures in memory, we need to temporarily allocate stack locations.
   We record each allocated temporary in the following structure.

   Associated with each temporary slot is a nesting level.  When we pop up
   one level, all temporaries associated with the previous level are freed.
   Normally, all temporaries are freed after the execution of the statement
   in which they were created.  However, if we are inside a ({...}) grouping,
   the result may be in a temporary and hence must be preserved.  If the
   result could be in a temporary, we preserve it if we can determine which
   one it is in.  If we cannot determine which temporary may contain the
   result, all temporaries are preserved.  A temporary is preserved by
   pretending it was allocated at the previous nesting level.

   Automatic variables are also assigned temporary slots, at the nesting
   level where they are defined.  They are marked a "kept" so that
   free_temp_slots will not free them.  */

170
struct temp_slot GTY(())
Richard Stallman committed
171 172 173
{
  /* Points to next temporary slot.  */
  struct temp_slot *next;
Mike Stump committed
174
  /* The rtx to used to reference the slot.  */
Richard Stallman committed
175
  rtx slot;
176 177 178
  /* The rtx used to represent the address if not the address of the
     slot above.  May be an EXPR_LIST if multiple addresses exist.  */
  rtx address;
Kazu Hirata committed
179
  /* The alignment (in bits) of the slot.  */
180
  unsigned int align;
Richard Stallman committed
181
  /* The size, in units, of the slot.  */
182
  HOST_WIDE_INT size;
183 184 185 186 187
  /* The type of the object in the slot, or zero if it doesn't correspond
     to a type.  We use this to determine whether a slot can be reused.
     It can be reused if objects of the type of the new slot will always
     conflict with objects of the type of the old slot.  */
  tree type;
188 189
  /* The value of `sequence_rtl_expr' when this temporary is allocated.  */
  tree rtl_expr;
190
  /* Nonzero if this temporary is currently in use.  */
Richard Stallman committed
191
  char in_use;
192
  /* Nonzero if this temporary has its address taken.  */
193
  char addr_taken;
Richard Stallman committed
194 195
  /* Nesting level at which this slot is being used.  */
  int level;
196
  /* Nonzero if this should survive a call to free_temp_slots.  */
Richard Stallman committed
197
  int keep;
198 199
  /* The offset of the slot from the frame_pointer, including extra space
     for alignment.  This info is for combine_temp_slots.  */
200
  HOST_WIDE_INT base_offset;
201 202
  /* The size of the slot, including extra space for alignment.  This
     info is for combine_temp_slots.  */
203
  HOST_WIDE_INT full_size;
Richard Stallman committed
204 205
};

206 207 208 209 210
/* This structure is used to record MEMs or pseudos used to replace VAR, any
   SUBREGs of VAR, and any MEMs containing VAR as an address.  We need to
   maintain this list in case two operands of an insn were required to match;
   in that case we must ensure we use the same replacement.  */

211
struct fixup_replacement GTY(())
212 213 214 215 216
{
  rtx old;
  rtx new;
  struct fixup_replacement *next;
};
Kazu Hirata committed
217

218 219
struct insns_for_mem_entry
{
220 221 222
  /* A MEM.  */
  rtx key;
  /* These are the INSNs which reference the MEM.  */
223 224 225
  rtx insns;
};

226 227
/* Forward declarations.  */

228 229 230 231 232
static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
					 int, struct function *));
static struct temp_slot *find_temp_slot_from_address  PARAMS ((rtx));
static void put_reg_into_stack	PARAMS ((struct function *, rtx, tree,
					 enum machine_mode, enum machine_mode,
233
					 int, unsigned int, int,
234
					 htab_t));
235 236
static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
					     enum machine_mode,
237
					     htab_t));
238
static void fixup_var_refs	PARAMS ((rtx, enum machine_mode, int, rtx,
239
					 htab_t));
240
static struct fixup_replacement
241
  *find_fixup_replacement	PARAMS ((struct fixup_replacement **, rtx));
Zack Weinberg committed
242
static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
243
					  int, int, rtx));
Zack Weinberg committed
244
static void fixup_var_refs_insns_with_hash
245
				PARAMS ((htab_t, rtx,
246
					 enum machine_mode, int, rtx));
Zack Weinberg committed
247
static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
248
					 int, int, rtx));
249
static void fixup_var_refs_1	PARAMS ((rtx, enum machine_mode, rtx *, rtx,
250
					 struct fixup_replacement **, rtx));
251
static rtx fixup_memory_subreg	PARAMS ((rtx, rtx, enum machine_mode, int));
252
static rtx walk_fixup_memory_subreg  PARAMS ((rtx, rtx, enum machine_mode,
253
					      int));
254 255 256 257
static rtx fixup_stack_1	PARAMS ((rtx, rtx));
static void optimize_bit_field	PARAMS ((rtx, rtx, rtx *));
static void instantiate_decls	PARAMS ((tree, int));
static void instantiate_decls_1	PARAMS ((tree, int));
258
static void instantiate_decl	PARAMS ((rtx, HOST_WIDE_INT, int));
259
static rtx instantiate_new_reg	PARAMS ((rtx, HOST_WIDE_INT *));
260 261 262 263 264 265 266
static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
static void delete_handlers	PARAMS ((void));
static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
					  struct args_size *));
static void pad_below		PARAMS ((struct args_size *, enum machine_mode,
					 tree));
static rtx round_trampoline_addr PARAMS ((rtx));
267
static rtx adjust_trampoline_addr PARAMS ((rtx));
268
static tree *identify_blocks_1	PARAMS ((rtx, tree *, tree *, tree *));
269
static void reorder_blocks_0	PARAMS ((tree));
270
static void reorder_blocks_1	PARAMS ((rtx, tree, varray_type *));
271
static void reorder_fix_fragments PARAMS ((tree));
272 273
static tree blocks_nreverse	PARAMS ((tree));
static int all_blocks		PARAMS ((tree, tree *));
274
static tree *get_block_vector   PARAMS ((tree, int *));
275
extern tree debug_find_var_in_block_tree PARAMS ((tree, tree));
276 277
/* We always define `record_insns' even if its not used so that we
   can always export `prologue_epilogue_contains'.  */
278 279
static void record_insns	PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
static int contains		PARAMS ((rtx, varray_type));
280
#ifdef HAVE_return
281
static void emit_return_into_block PARAMS ((basic_block, rtx));
282
#endif
283
static void put_addressof_into_stack PARAMS ((rtx, htab_t));
284
static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int, int, htab_t));
285
static void purge_single_hard_subreg_set PARAMS ((rtx));
286 287
#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
static rtx keep_stack_depressed PARAMS ((rtx));
288
#endif
289
static int is_addressof		PARAMS ((rtx *, void *));
290 291
static hashval_t insns_for_mem_hash PARAMS ((const void *));
static int insns_for_mem_comp PARAMS ((const void *, const void *));
292
static int insns_for_mem_walk   PARAMS ((rtx *, void *));
293
static void compute_insns_for_mem PARAMS ((rtx, rtx, htab_t));
294
static void prepare_function_start PARAMS ((void));
295 296
static void do_clobber_return_reg PARAMS ((rtx, void *));
static void do_use_return_reg PARAMS ((rtx, void *));
297
static void instantiate_virtual_regs_lossage PARAMS ((rtx));
Jan Brittenson committed
298

Richard Stallman committed
299
/* Pointer to chain of `struct function' for containing functions.  */
300
static GTY(()) struct function *outer_function_chain;
Richard Stallman committed
301

302 303 304
/* List of insns that were postponed by purge_addressof_1.  */
static rtx postponed_insns;

Richard Stallman committed
305 306 307 308 309 310 311 312
/* Given a function decl for a containing function,
   return the `struct function' for it.  */

struct function *
find_function_data (decl)
     tree decl;
{
  struct function *p;
313

314
  for (p = outer_function_chain; p; p = p->outer)
Richard Stallman committed
315 316
    if (p->decl == decl)
      return p;
317

Richard Stallman committed
318 319 320 321
  abort ();
}

/* Save the current context for compilation of a nested function.
322
   This is called from language-specific code.  The caller should use
Neil Booth committed
323
   the enter_nested langhook to save any language-specific state,
324 325
   since this function knows only about language-independent
   variables.  */
Richard Stallman committed
326 327

void
328 329
push_function_context_to (context)
     tree context;
Richard Stallman committed
330
{
331
  struct function *p;
332 333 334

  if (context)
    {
335 336 337 338 339 340 341
      if (context == current_function_decl)
	cfun->contains_functions = 1;
      else
	{
	  struct function *containing = find_function_data (context);
	  containing->contains_functions = 1;
	}
342
    }
343

Bernd Schmidt committed
344
  if (cfun == 0)
345
    init_dummy_function_start ();
Bernd Schmidt committed
346
  p = cfun;
Richard Stallman committed
347

348
  p->outer = outer_function_chain;
Richard Stallman committed
349 350 351
  outer_function_chain = p;
  p->fixup_var_refs_queue = 0;

Neil Booth committed
352
  (*lang_hooks.function.enter_nested) (p);
353

Bernd Schmidt committed
354
  cfun = 0;
Richard Stallman committed
355 356
}

357 358 359
void
push_function_context ()
{
360
  push_function_context_to (current_function_decl);
361 362
}

Richard Stallman committed
363 364 365 366
/* Restore the last saved context, at the end of a nested function.
   This function is called from language-specific code.  */

void
367
pop_function_context_from (context)
368
     tree context ATTRIBUTE_UNUSED;
Richard Stallman committed
369 370
{
  struct function *p = outer_function_chain;
371
  struct var_refs_queue *queue;
Richard Stallman committed
372

Bernd Schmidt committed
373
  cfun = p;
374
  outer_function_chain = p->outer;
Richard Stallman committed
375 376

  current_function_decl = p->decl;
377
  reg_renumber = 0;
Richard Stallman committed
378 379 380

  restore_emit_status (p);

Neil Booth committed
381
  (*lang_hooks.function.leave_nested) (p);
382

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
  /* Finish doing put_var_into_stack for any of our variables which became
     addressable during the nested function.  If only one entry has to be
     fixed up, just do that one.  Otherwise, first make a list of MEMs that
     are not to be unshared.  */
  if (p->fixup_var_refs_queue == 0)
    ;
  else if (p->fixup_var_refs_queue->next == 0)
    fixup_var_refs (p->fixup_var_refs_queue->modified,
		    p->fixup_var_refs_queue->promoted_mode,
		    p->fixup_var_refs_queue->unsignedp,
		    p->fixup_var_refs_queue->modified, 0);
  else
    {
      rtx list = 0;

      for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
	list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);

      for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
	fixup_var_refs (queue->modified, queue->promoted_mode,
			queue->unsignedp, list, 0);

    }
406

407
  p->fixup_var_refs_queue = 0;
Richard Stallman committed
408 409 410 411

  /* Reset variables that have known state during rtx generation.  */
  rtx_equal_function_value_matters = 1;
  virtuals_instantiated = 0;
412
  generating_concat_p = 1;
Richard Stallman committed
413
}
414

415 416
void
pop_function_context ()
417
{
418
  pop_function_context_from (current_function_decl);
419
}
420 421

/* Clear out all parts of the state in F that can safely be discarded
422 423 424 425 426 427 428 429 430 431 432 433
   after the function has been parsed, but not compiled, to let
   garbage collection reclaim the memory.  */

void
free_after_parsing (f)
     struct function *f;
{
  /* f->expr->forced_labels is used by code generation.  */
  /* f->emit->regno_reg_rtx is used by code generation.  */
  /* f->varasm is used by code generation.  */
  /* f->eh->eh_return_stub_label is used by code generation.  */

434 435
  (*lang_hooks.function.final) (f);
  f->stmt = NULL;
436 437 438
}

/* Clear out all parts of the state in F that can safely be discarded
439
   after the function has been compiled, to let garbage collection
440
   reclaim the memory.  */
441

442
void
443
free_after_compilation (f)
444 445
     struct function *f;
{
446 447 448 449 450
  f->eh = NULL;
  f->expr = NULL;
  f->emit = NULL;
  f->varasm = NULL;
  f->machine = NULL;
451

452
  f->x_temp_slots = NULL;
453 454 455 456 457 458 459 460 461
  f->arg_offset_rtx = NULL;
  f->return_rtx = NULL;
  f->internal_arg_pointer = NULL;
  f->x_nonlocal_labels = NULL;
  f->x_nonlocal_goto_handler_slots = NULL;
  f->x_nonlocal_goto_handler_labels = NULL;
  f->x_nonlocal_goto_stack_level = NULL;
  f->x_cleanup_label = NULL;
  f->x_return_label = NULL;
462 463
  f->computed_goto_common_label = NULL;
  f->computed_goto_common_reg = NULL;
464 465 466 467 468 469
  f->x_save_expr_regs = NULL;
  f->x_stack_slot_list = NULL;
  f->x_rtl_expr_chain = NULL;
  f->x_tail_recursion_label = NULL;
  f->x_tail_recursion_reentry = NULL;
  f->x_arg_pointer_save_area = NULL;
470
  f->x_clobber_return_insn = NULL;
471 472 473 474 475 476 477 478 479 480
  f->x_context_display = NULL;
  f->x_trampoline_list = NULL;
  f->x_parm_birth_insn = NULL;
  f->x_last_parm_insn = NULL;
  f->x_parm_reg_stack_loc = NULL;
  f->fixup_var_refs_queue = NULL;
  f->original_arg_vector = NULL;
  f->original_decl_initial = NULL;
  f->inl_last_parm_insn = NULL;
  f->epilogue_delay_list = NULL;
481
}
Richard Stallman committed
482 483 484

/* Allocate fixed slots in the stack frame of the current function.  */

485 486
/* Return size needed for stack frame based on slots so far allocated in
   function F.
487
   This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
Richard Stallman committed
488 489
   the caller may have to do that.  */

490
HOST_WIDE_INT
491 492
get_func_frame_size (f)
     struct function *f;
Richard Stallman committed
493 494
{
#ifdef FRAME_GROWS_DOWNWARD
495
  return -f->x_frame_offset;
Richard Stallman committed
496
#else
497
  return f->x_frame_offset;
Richard Stallman committed
498 499 500
#endif
}

501 502 503 504 505 506
/* Return size needed for stack frame based on slots so far allocated.
   This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
   the caller may have to do that.  */
HOST_WIDE_INT
get_frame_size ()
{
Bernd Schmidt committed
507
  return get_func_frame_size (cfun);
508 509
}

Richard Stallman committed
510 511
/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
   with machine mode MODE.
Kazu Hirata committed
512

Richard Stallman committed
513 514 515 516 517
   ALIGN controls the amount of alignment for the address of the slot:
   0 means according to MODE,
   -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
   positive specifies alignment boundary in bits.

518
   We do not round to stack_boundary here.
Richard Stallman committed
519

520 521 522 523
   FUNCTION specifies the function to allocate in.  */

static rtx
assign_stack_local_1 (mode, size, align, function)
Richard Stallman committed
524
     enum machine_mode mode;
525
     HOST_WIDE_INT size;
Richard Stallman committed
526
     int align;
527
     struct function *function;
Richard Stallman committed
528
{
529
  rtx x, addr;
Richard Stallman committed
530 531
  int bigend_correction = 0;
  int alignment;
532
  int frame_off, frame_alignment, frame_phase;
Richard Stallman committed
533 534 535

  if (align == 0)
    {
536 537
      tree type;

Richard Stallman committed
538
      if (mode == BLKmode)
539
	alignment = BIGGEST_ALIGNMENT;
540
      else
Kazu Hirata committed
541
	alignment = GET_MODE_ALIGNMENT (mode);
542 543 544

      /* Allow the target to (possibly) increase the alignment of this
	 stack slot.  */
545
      type = (*lang_hooks.types.type_for_mode) (mode, 0);
546 547 548 549
      if (type)
	alignment = LOCAL_ALIGNMENT (type, alignment);

      alignment /= BITS_PER_UNIT;
Richard Stallman committed
550 551 552 553 554 555 556 557 558
    }
  else if (align == -1)
    {
      alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
      size = CEIL_ROUND (size, alignment);
    }
  else
    alignment = align / BITS_PER_UNIT;

Jeff Law committed
559
#ifdef FRAME_GROWS_DOWNWARD
560
  function->x_frame_offset -= size;
Jeff Law committed
561 562
#endif

563 564 565 566 567 568 569
  /* Ignore alignment we can't do with expected alignment of the boundary.  */
  if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
    alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;

  if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
    function->stack_alignment_needed = alignment * BITS_PER_UNIT;

570 571 572 573 574 575
  /* Calculate how many bytes the start of local variables is off from
     stack alignment.  */
  frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
  frame_off = STARTING_FRAME_OFFSET % frame_alignment;
  frame_phase = frame_off ? frame_alignment - frame_off : 0;

576 577 578 579 580 581 582 583 584 585 586
  /* Round the frame offset to the specified alignment.  The default is
     to always honor requests to align the stack but a port may choose to
     do its own stack alignment by defining STACK_ALIGNMENT_NEEDED.  */
  if (STACK_ALIGNMENT_NEEDED
      || mode != BLKmode
      || size != 0)
    {
      /*  We must be careful here, since FRAME_OFFSET might be negative and
	  division with a negative dividend isn't as well defined as we might
	  like.  So we instead assume that ALIGNMENT is a power of two and
	  use logical operations which are unambiguous.  */
Richard Stallman committed
587
#ifdef FRAME_GROWS_DOWNWARD
588 589 590
      function->x_frame_offset
	= (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
	   + frame_phase);
Richard Stallman committed
591
#else
592 593 594
      function->x_frame_offset
	= (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
	   + frame_phase);
Richard Stallman committed
595
#endif
596
    }
Richard Stallman committed
597 598 599

  /* On a big-endian machine, if we are allocating more space than we will use,
     use the least significant bytes of those that are allocated.  */
600
  if (BYTES_BIG_ENDIAN && mode != BLKmode)
Richard Stallman committed
601 602 603 604
    bigend_correction = size - GET_MODE_SIZE (mode);

  /* If we have already instantiated virtual registers, return the actual
     address relative to the frame pointer.  */
Bernd Schmidt committed
605
  if (function == cfun && virtuals_instantiated)
Richard Stallman committed
606
    addr = plus_constant (frame_pointer_rtx,
607
			  trunc_int_for_mode
Richard Stallman committed
608
			  (frame_offset + bigend_correction
609
			   + STARTING_FRAME_OFFSET, Pmode));
Richard Stallman committed
610 611
  else
    addr = plus_constant (virtual_stack_vars_rtx,
612 613 614
			  trunc_int_for_mode
			  (function->x_frame_offset + bigend_correction,
			   Pmode));
Richard Stallman committed
615 616

#ifndef FRAME_GROWS_DOWNWARD
617
  function->x_frame_offset += size;
Richard Stallman committed
618 619
#endif

620
  x = gen_rtx_MEM (mode, addr);
Richard Stallman committed
621

622 623 624
  function->x_stack_slot_list
    = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);

Richard Stallman committed
625 626 627
  return x;
}

628 629
/* Wrapper around assign_stack_local_1;  assign a local stack slot for the
   current function.  */
630

631 632
rtx
assign_stack_local (mode, size, align)
Richard Stallman committed
633
     enum machine_mode mode;
634
     HOST_WIDE_INT size;
Richard Stallman committed
635 636
     int align;
{
Bernd Schmidt committed
637
  return assign_stack_local_1 (mode, size, align, cfun);
Richard Stallman committed
638 639 640 641 642 643 644 645 646 647
}

/* Allocate a temporary stack slot and record it for possible later
   reuse.

   MODE is the machine mode to be given to the returned rtx.

   SIZE is the size in units of the space required.  We do no rounding here
   since assign_stack_local will do any required rounding.

648 649
   KEEP is 1 if this slot is to be retained after a call to
   free_temp_slots.  Automatic variables for a block are allocated
650 651 652
   with this flag.  KEEP is 2 if we allocate a longer term temporary,
   whose lifetime is controlled by CLEANUP_POINT_EXPRs.  KEEP is 3
   if we are to allocate something at an inner level to be treated as
Kazu Hirata committed
653
   a variable in the block (e.g., a SAVE_EXPR).
654 655

   TYPE is the type that will be used for the stack slot.  */
Richard Stallman committed
656

657
rtx
658
assign_stack_temp_for_type (mode, size, keep, type)
Richard Stallman committed
659
     enum machine_mode mode;
660
     HOST_WIDE_INT size;
Richard Stallman committed
661
     int keep;
662
     tree type;
Richard Stallman committed
663
{
664
  unsigned int align;
Richard Stallman committed
665
  struct temp_slot *p, *best_p = 0;
666
  rtx slot;
Richard Stallman committed
667

668 669 670 671 672
  /* If SIZE is -1 it means that somebody tried to allocate a temporary
     of a variable size.  */
  if (size == -1)
    abort ();

673 674
  if (mode == BLKmode)
    align = BIGGEST_ALIGNMENT;
675 676
  else
    align = GET_MODE_ALIGNMENT (mode);
Richard Stallman committed
677

678
  if (! type)
679
    type = (*lang_hooks.types.type_for_mode) (mode, 0);
680

681 682 683 684 685 686 687 688 689
  if (type)
    align = LOCAL_ALIGNMENT (type, align);

  /* Try to find an available, already-allocated temporary of the proper
     mode which meets the size and alignment requirements.  Choose the
     smallest one with the closest alignment.  */
  for (p = temp_slots; p; p = p->next)
    if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
	&& ! p->in_use
690
	&& objects_must_conflict_p (p->type, type)
691 692 693 694 695 696 697 698
	&& (best_p == 0 || best_p->size > p->size
	    || (best_p->size == p->size && best_p->align > p->align)))
      {
	if (p->align == align && p->size == size)
	  {
	    best_p = 0;
	    break;
	  }
Richard Stallman committed
699
	best_p = p;
700
      }
Richard Stallman committed
701 702 703

  /* Make our best, if any, the one to use.  */
  if (best_p)
704 705 706 707
    {
      /* If there are enough aligned bytes left over, make them into a new
	 temp_slot so that the extra bytes don't get wasted.  Do this only
	 for BLKmode slots, so that we can be sure of the alignment.  */
708
      if (GET_MODE (best_p->slot) == BLKmode)
709
	{
710
	  int alignment = best_p->align / BITS_PER_UNIT;
711
	  HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
712 713 714

	  if (best_p->size - rounded_size >= alignment)
	    {
715
	      p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
716
	      p->in_use = p->addr_taken = 0;
717
	      p->size = best_p->size - rounded_size;
718 719
	      p->base_offset = best_p->base_offset + rounded_size;
	      p->full_size = best_p->full_size - rounded_size;
720 721 722
	      p->slot = gen_rtx_MEM (BLKmode,
				     plus_constant (XEXP (best_p->slot, 0),
						    rounded_size));
723
	      p->align = best_p->align;
724
	      p->address = 0;
Mark Mitchell committed
725
	      p->rtl_expr = 0;
726
	      p->type = best_p->type;
727 728 729
	      p->next = temp_slots;
	      temp_slots = p;

730 731
	      stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
						   stack_slot_list);
732 733

	      best_p->size = rounded_size;
734
	      best_p->full_size = rounded_size;
735 736 737 738 739
	    }
	}

      p = best_p;
    }
Kazu Hirata committed
740

Richard Stallman committed
741 742 743
  /* If we still didn't find one, make a new temporary.  */
  if (p == 0)
    {
744 745
      HOST_WIDE_INT frame_offset_old = frame_offset;

746
      p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
747

748 749 750 751 752 753 754
      /* We are passing an explicit alignment request to assign_stack_local.
	 One side effect of that is assign_stack_local will not round SIZE
	 to ensure the frame offset remains suitably aligned.

	 So for requests which depended on the rounding of SIZE, we go ahead
	 and round it now.  We also make sure ALIGNMENT is at least
	 BIGGEST_ALIGNMENT.  */
755
      if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
Kazu Hirata committed
756
	abort ();
757
      p->slot = assign_stack_local (mode,
758
				    (mode == BLKmode
759
				     ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
760
				     : size),
761
				    align);
762 763

      p->align = align;
764

765 766 767
      /* The following slot size computation is necessary because we don't
	 know the actual size of the temporary slot until assign_stack_local
	 has performed all the frame alignment and size rounding for the
768 769 770 771
	 requested temporary.  Note that extra space added for alignment
	 can be either above or below this stack slot depending on which
	 way the frame grows.  We include the extra space if and only if it
	 is above this slot.  */
772 773 774
#ifdef FRAME_GROWS_DOWNWARD
      p->size = frame_offset_old - frame_offset;
#else
775 776
      p->size = size;
#endif
777

778 779 780 781 782 783 784
      /* Now define the fields used by combine_temp_slots.  */
#ifdef FRAME_GROWS_DOWNWARD
      p->base_offset = frame_offset;
      p->full_size = frame_offset_old - frame_offset;
#else
      p->base_offset = frame_offset_old;
      p->full_size = frame_offset - frame_offset_old;
785
#endif
786
      p->address = 0;
Richard Stallman committed
787 788 789 790 791
      p->next = temp_slots;
      temp_slots = p;
    }

  p->in_use = 1;
792
  p->addr_taken = 0;
Mark Mitchell committed
793
  p->rtl_expr = seq_rtl_expr;
794
  p->type = type;
795

796 797 798 799 800
  if (keep == 2)
    {
      p->level = target_temp_slot_level;
      p->keep = 0;
    }
801 802 803 804 805
  else if (keep == 3)
    {
      p->level = var_temp_slot_level;
      p->keep = 0;
    }
806 807 808 809 810
  else
    {
      p->level = temp_slot_level;
      p->keep = keep;
    }
811

812 813 814 815

  /* Create a new MEM rtx to avoid clobbering MEM flags of old slots.  */
  slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
  stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
816

817 818 819
  /* If we know the alias set for the memory that will be used, use
     it.  If there's no TYPE, then we don't know anything about the
     alias set for the memory.  */
820 821
  set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
  set_mem_align (slot, align);
822

823
  /* If a type is specified, set the relevant flags.  */
824
  if (type != 0)
825
    {
826 827
      RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly 
				 && TYPE_READONLY (type));
828 829
      MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
      MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
830
    }
831

832
  return slot;
Richard Stallman committed
833
}
834 835 836 837 838 839 840 841 842 843 844 845

/* Allocate a temporary stack slot and record it for possible later
   reuse.  First three arguments are same as in preceding function.  */

rtx
assign_stack_temp (mode, size, keep)
     enum machine_mode mode;
     HOST_WIDE_INT size;
     int keep;
{
  return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
}
846

847 848 849 850
/* Assign a temporary.
   If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
   and so that should be used in error messages.  In either case, we
   allocate of the given type.
851 852
   KEEP is as for assign_stack_temp.
   MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
853 854 855
   it is 0 if a register is OK.
   DONT_PROMOTE is 1 if we should not promote values in register
   to wider modes.  */
856 857

rtx
858 859
assign_temp (type_or_decl, keep, memory_required, dont_promote)
     tree type_or_decl;
860 861
     int keep;
     int memory_required;
862
     int dont_promote ATTRIBUTE_UNUSED;
863
{
864 865
  tree type, decl;
  enum machine_mode mode;
866
#ifndef PROMOTE_FOR_CALL_ONLY
867 868 869 870 871 872 873 874 875 876 877
  int unsignedp;
#endif

  if (DECL_P (type_or_decl))
    decl = type_or_decl, type = TREE_TYPE (decl);
  else
    decl = NULL, type = type_or_decl;

  mode = TYPE_MODE (type);
#ifndef PROMOTE_FOR_CALL_ONLY
  unsignedp = TREE_UNSIGNED (type);
878
#endif
879

880 881
  if (mode == BLKmode || memory_required)
    {
882
      HOST_WIDE_INT size = int_size_in_bytes (type);
883 884
      rtx tmp;

885 886 887 888 889
      /* Zero sized arrays are GNU C extension.  Set size to 1 to avoid
	 problems with allocating the stack space.  */
      if (size == 0)
	size = 1;

890 891 892
      /* Unfortunately, we don't yet know how to allocate variable-sized
	 temporaries.  However, sometimes we have a fixed upper limit on
	 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
Mike Stump committed
893
	 instead.  This is the case for Chill variable-sized strings.  */
894 895
      if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
	  && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
896 897
	  && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
	size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
898

899 900
      /* The size of the temporary may be too large to fit into an integer.  */
      /* ??? Not sure this should happen except for user silliness, so limit
901
	 this to things that aren't compiler-generated temporaries.  The
902 903 904 905 906 907 908 909
	 rest of the time we'll abort in assign_stack_temp_for_type.  */
      if (decl && size == -1
	  && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
	{
	  error_with_decl (decl, "size of variable `%s' is too large");
	  size = 1;
	}

910
      tmp = assign_stack_temp_for_type (mode, size, keep, type);
911 912
      return tmp;
    }
913

914
#ifndef PROMOTE_FOR_CALL_ONLY
915 916
  if (! dont_promote)
    mode = promote_mode (type, mode, &unsignedp, 0);
917
#endif
918

919 920
  return gen_reg_rtx (mode);
}
921

922 923 924 925 926 927 928 929 930 931 932
/* Combine temporary stack slots which are adjacent on the stack.

   This allows for better use of already allocated stack space.  This is only
   done for BLKmode slots because we can be sure that we won't have alignment
   problems in this case.  */

void
combine_temp_slots ()
{
  struct temp_slot *p, *q;
  struct temp_slot *prev_p, *prev_q;
933 934
  int num_slots;

935 936 937 938 939
  /* We can't combine slots, because the information about which slot
     is in which alias set will be lost.  */
  if (flag_strict_aliasing)
    return;

Kazu Hirata committed
940
  /* If there are a lot of temp slots, don't do anything unless
941
     high levels of optimization.  */
942 943 944 945
  if (! flag_expensive_optimizations)
    for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
      if (num_slots > 100 || (num_slots > 10 && optimize == 0))
	return;
946

947 948 949
  for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
    {
      int delete_p = 0;
950

951 952
      if (! p->in_use && GET_MODE (p->slot) == BLKmode)
	for (q = p->next, prev_q = p; q; q = prev_q->next)
953
	  {
954 955
	    int delete_q = 0;
	    if (! q->in_use && GET_MODE (q->slot) == BLKmode)
956
	      {
957
		if (p->base_offset + p->full_size == q->base_offset)
958 959 960
		  {
		    /* Q comes after P; combine Q into P.  */
		    p->size += q->size;
961
		    p->full_size += q->full_size;
962 963
		    delete_q = 1;
		  }
964
		else if (q->base_offset + q->full_size == p->base_offset)
965 966 967
		  {
		    /* P comes after Q; combine P into Q.  */
		    q->size += p->size;
968
		    q->full_size += p->full_size;
969 970 971
		    delete_p = 1;
		    break;
		  }
972
	      }
973 974
	    /* Either delete Q or advance past it.  */
	    if (delete_q)
975
	      prev_q->next = q->next;
976 977
	    else
	      prev_q = q;
978
	  }
979 980 981 982 983 984 985 986 987 988 989
      /* Either delete P or advance past it.  */
      if (delete_p)
	{
	  if (prev_p)
	    prev_p->next = p->next;
	  else
	    temp_slots = p->next;
	}
      else
	prev_p = p;
    }
990
}
Richard Stallman committed
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/* Find the temp slot corresponding to the object at address X.  */

static struct temp_slot *
find_temp_slot_from_address (x)
     rtx x;
{
  struct temp_slot *p;
  rtx next;

  for (p = temp_slots; p; p = p->next)
    {
      if (! p->in_use)
	continue;
1005

1006
      else if (XEXP (p->slot, 0) == x
1007 1008 1009 1010 1011 1012
	       || p->address == x
	       || (GET_CODE (x) == PLUS
		   && XEXP (x, 0) == virtual_stack_vars_rtx
		   && GET_CODE (XEXP (x, 1)) == CONST_INT
		   && INTVAL (XEXP (x, 1)) >= p->base_offset
		   && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
1013 1014 1015 1016 1017 1018 1019 1020
	return p;

      else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
	for (next = p->address; next; next = XEXP (next, 1))
	  if (XEXP (next, 0) == x)
	    return p;
    }

Richard Kenner committed
1021 1022 1023 1024 1025 1026 1027 1028 1029
  /* If we have a sum involving a register, see if it points to a temp
     slot.  */
  if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
      && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
    return p;
  else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
	   && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
    return p;

1030 1031
  return 0;
}
Kazu Hirata committed
1032

Richard Kenner committed
1033
/* Indicate that NEW is an alternate way of referring to the temp slot
1034
   that previously was known by OLD.  */
1035 1036 1037 1038 1039

void
update_temp_slot_address (old, new)
     rtx old, new;
{
Richard Kenner committed
1040
  struct temp_slot *p;
1041

Richard Kenner committed
1042
  if (rtx_equal_p (old, new))
1043
    return;
Richard Kenner committed
1044 1045 1046

  p = find_temp_slot_from_address (old);

1047 1048 1049 1050 1051
  /* If we didn't find one, see if both OLD is a PLUS.  If so, and NEW
     is a register, see if one operand of the PLUS is a temporary
     location.  If so, NEW points into it.  Otherwise, if both OLD and
     NEW are a PLUS and if there is a register in common between them.
     If so, try a recursive call on those values.  */
Richard Kenner committed
1052 1053
  if (p == 0)
    {
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
      if (GET_CODE (old) != PLUS)
	return;

      if (GET_CODE (new) == REG)
	{
	  update_temp_slot_address (XEXP (old, 0), new);
	  update_temp_slot_address (XEXP (old, 1), new);
	  return;
	}
      else if (GET_CODE (new) != PLUS)
Richard Kenner committed
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	return;

      if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
	update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
      else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
	update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
      else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
	update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
      else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
	update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));

      return;
    }

Kazu Hirata committed
1078
  /* Otherwise add an alias for the temp's address.  */
1079 1080 1081 1082 1083
  else if (p->address == 0)
    p->address = new;
  else
    {
      if (GET_CODE (p->address) != EXPR_LIST)
1084
	p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1085

1086
      p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1087 1088 1089
    }
}

1090
/* If X could be a reference to a temporary slot, mark the fact that its
Richard Kenner committed
1091
   address was taken.  */
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

void
mark_temp_addr_taken (x)
     rtx x;
{
  struct temp_slot *p;

  if (x == 0)
    return;

  /* If X is not in memory or is at a constant address, it cannot be in
     a temporary slot.  */
  if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
    return;

  p = find_temp_slot_from_address (XEXP (x, 0));
  if (p != 0)
    p->addr_taken = 1;
}

1112 1113 1114 1115 1116
/* If X could be a reference to a temporary slot, mark that slot as
   belonging to the to one level higher than the current level.  If X
   matched one of our slots, just mark that one.  Otherwise, we can't
   easily predict which it is, so upgrade all of them.  Kept slots
   need not be touched.
Richard Stallman committed
1117 1118 1119 1120 1121 1122 1123 1124

   This is called when an ({...}) construct occurs and a statement
   returns a value in memory.  */

void
preserve_temp_slots (x)
     rtx x;
{
1125
  struct temp_slot *p = 0;
Richard Stallman committed
1126

1127 1128
  /* If there is no result, we still might have some objects whose address
     were taken, so we need to make sure they stay around.  */
1129
  if (x == 0)
1130 1131 1132 1133 1134 1135 1136
    {
      for (p = temp_slots; p; p = p->next)
	if (p->in_use && p->level == temp_slot_level && p->addr_taken)
	  p->level--;

      return;
    }
1137 1138 1139 1140 1141

  /* If X is a register that is being used as a pointer, see if we have
     a temporary slot we know it points to.  To be consistent with
     the code below, we really should preserve all non-kept slots
     if we can't find a match, but that seems to be much too costly.  */
1142
  if (GET_CODE (x) == REG && REG_POINTER (x))
1143 1144
    p = find_temp_slot_from_address (x);

Richard Stallman committed
1145
  /* If X is not in memory or is at a constant address, it cannot be in
1146 1147
     a temporary slot, but it can contain something whose address was
     taken.  */
1148
  if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1149 1150 1151 1152 1153 1154 1155
    {
      for (p = temp_slots; p; p = p->next)
	if (p->in_use && p->level == temp_slot_level && p->addr_taken)
	  p->level--;

      return;
    }
Richard Stallman committed
1156 1157

  /* First see if we can find a match.  */
1158
  if (p == 0)
1159 1160
    p = find_temp_slot_from_address (XEXP (x, 0));

1161 1162
  if (p != 0)
    {
1163 1164 1165 1166
      /* Move everything at our level whose address was taken to our new
	 level in case we used its address.  */
      struct temp_slot *q;

1167 1168 1169 1170 1171
      if (p->level == temp_slot_level)
	{
	  for (q = temp_slots; q; q = q->next)
	    if (q != p && q->addr_taken && q->level == p->level)
	      q->level--;
1172

1173 1174 1175
	  p->level--;
	  p->addr_taken = 0;
	}
1176 1177
      return;
    }
Richard Stallman committed
1178 1179 1180 1181 1182 1183 1184

  /* Otherwise, preserve all non-kept slots at this level.  */
  for (p = temp_slots; p; p = p->next)
    if (p->in_use && p->level == temp_slot_level && ! p->keep)
      p->level--;
}

Mark Mitchell committed
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
/* X is the result of an RTL_EXPR.  If it is a temporary slot associated
   with that RTL_EXPR, promote it into a temporary slot at the present
   level so it will not be freed when we free slots made in the
   RTL_EXPR.  */

void
preserve_rtl_expr_result (x)
     rtx x;
{
  struct temp_slot *p;

  /* If X is not in memory or is at a constant address, it cannot be in
     a temporary slot.  */
  if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
    return;

  /* If we can find a match, move it to our level unless it is already at
     an upper level.  */
  p = find_temp_slot_from_address (XEXP (x, 0));
1204 1205 1206 1207 1208
  if (p != 0)
    {
      p->level = MIN (p->level, temp_slot_level);
      p->rtl_expr = 0;
    }
Mark Mitchell committed
1209 1210 1211 1212

  return;
}

Richard Stallman committed
1213
/* Free all temporaries used so far.  This is normally called at the end
1214 1215 1216 1217 1218
   of generating code for a statement.  Don't free any temporaries
   currently in use for an RTL_EXPR that hasn't yet been emitted.
   We could eventually do better than this since it can be reused while
   generating the same RTL_EXPR, but this is complex and probably not
   worthwhile.  */
Richard Stallman committed
1219 1220 1221 1222 1223 1224 1225

void
free_temp_slots ()
{
  struct temp_slot *p;

  for (p = temp_slots; p; p = p->next)
Mark Mitchell committed
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    if (p->in_use && p->level == temp_slot_level && ! p->keep
	&& p->rtl_expr == 0)
      p->in_use = 0;

  combine_temp_slots ();
}

/* Free all temporary slots used in T, an RTL_EXPR node.  */

void
free_temps_for_rtl_expr (t)
     tree t;
{
  struct temp_slot *p;

  for (p = temp_slots; p; p = p->next)
    if (p->rtl_expr == t)
1243 1244 1245 1246
      {
	/* If this slot is below the current TEMP_SLOT_LEVEL, then it
	   needs to be preserved.  This can happen if a temporary in
	   the RTL_EXPR was addressed; preserve_temp_slots will move
Kazu Hirata committed
1247
	   the temporary into a higher level.  */
1248 1249 1250 1251 1252
	if (temp_slot_level <= p->level)
	  p->in_use = 0;
	else
	  p->rtl_expr = NULL_TREE;
      }
1253 1254

  combine_temp_slots ();
Richard Stallman committed
1255 1256
}

Jeff Law committed
1257
/* Mark all temporaries ever allocated in this function as not suitable
1258 1259 1260 1261 1262 1263 1264 1265 1266
   for reuse until the current level is exited.  */

void
mark_all_temps_used ()
{
  struct temp_slot *p;

  for (p = temp_slots; p; p = p->next)
    {
1267
      p->in_use = p->keep = 1;
1268
      p->level = MIN (p->level, temp_slot_level);
1269 1270 1271
    }
}

Richard Stallman committed
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/* Push deeper into the nesting level for stack temporaries.  */

void
push_temp_slots ()
{
  temp_slot_level++;
}

/* Pop a temporary nesting level.  All slots in use in the current level
   are freed.  */

void
pop_temp_slots ()
{
  struct temp_slot *p;

  for (p = temp_slots; p; p = p->next)
Mark Mitchell committed
1289
    if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
Richard Stallman committed
1290 1291
      p->in_use = 0;

1292 1293
  combine_temp_slots ();

Richard Stallman committed
1294 1295
  temp_slot_level--;
}
1296 1297 1298 1299 1300 1301 1302 1303 1304

/* Initialize temporary slots.  */

void
init_temp_slots ()
{
  /* We have not allocated any temporaries yet.  */
  temp_slots = 0;
  temp_slot_level = 0;
1305
  var_temp_slot_level = 0;
1306 1307
  target_temp_slot_level = 0;
}
Richard Stallman committed
1308

1309 1310 1311 1312 1313
/* Retroactively move an auto variable from a register to a stack
   slot.  This is done when an address-reference to the variable is
   seen.  If RESCAN is true, all previously emitted instructions are
   examined and modified to handle the fact that DECL is now
   addressable.  */
Richard Stallman committed
1314 1315

void
1316
put_var_into_stack (decl, rescan)
Richard Stallman committed
1317
     tree decl;
1318
     int rescan;
Richard Stallman committed
1319
{
1320
  rtx reg;
1321
  enum machine_mode promoted_mode, decl_mode;
Richard Stallman committed
1322
  struct function *function = 0;
Jan Brittenson committed
1323
  tree context;
1324
  int can_use_addressof;
1325 1326 1327
  int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
  int usedp = (TREE_USED (decl)
	       || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
Jan Brittenson committed
1328 1329

  context = decl_function_context (decl);
Richard Stallman committed
1330

1331
  /* Get the current rtl used for this object and its original mode.  */
1332 1333
  reg = (TREE_CODE (decl) == SAVE_EXPR
	 ? SAVE_EXPR_RTL (decl)
1334
	 : DECL_RTL_IF_SET (decl));
1335 1336 1337 1338 1339 1340

  /* No need to do anything if decl has no rtx yet
     since in that case caller is setting TREE_ADDRESSABLE
     and a stack slot will be assigned when the rtl is made.  */
  if (reg == 0)
    return;
1341 1342 1343 1344

  /* Get the declared mode for this object.  */
  decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
	       : DECL_MODE (decl));
1345 1346
  /* Get the mode it's actually stored in.  */
  promoted_mode = GET_MODE (reg);
Richard Stallman committed
1347

1348 1349 1350 1351 1352
  /* If this variable comes from an outer function, find that
     function's saved context.  Don't use find_function_data here,
     because it might not be in any active function.
     FIXME: Is that really supposed to happen?
     It does in ObjC at least.  */
1353
  if (context != current_function_decl && context != inline_function_decl)
1354
    for (function = outer_function_chain; function; function = function->outer)
Richard Stallman committed
1355 1356 1357 1358 1359
      if (function->decl == context)
	break;

  /* If this is a variable-size object with a pseudo to address it,
     put that pseudo into the stack, if the var is nonlocal.  */
1360
  if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
Richard Stallman committed
1361 1362 1363
      && GET_CODE (reg) == MEM
      && GET_CODE (XEXP (reg, 0)) == REG
      && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1364 1365 1366 1367
    {
      reg = XEXP (reg, 0);
      decl_mode = promoted_mode = GET_MODE (reg);
    }
1368

1369 1370
  can_use_addressof
    = (function == 0
1371
       && optimize > 0
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
       /* FIXME make it work for promoted modes too */
       && decl_mode == promoted_mode
#ifdef NON_SAVING_SETJMP
       && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
#endif
       );

  /* If we can't use ADDRESSOF, make sure we see through one we already
     generated.  */
  if (! can_use_addressof && GET_CODE (reg) == MEM
      && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
    reg = XEXP (XEXP (reg, 0), 0);

1385 1386 1387
  /* Now we should have a value that resides in one or more pseudo regs.  */

  if (GET_CODE (reg) == REG)
1388 1389 1390 1391 1392
    {
      /* If this variable lives in the current function and we don't need
	 to put things in the stack for the sake of setjmp, try to keep it
	 in a register until we know we actually need the address.  */
      if (can_use_addressof)
1393
	gen_mem_addressof (reg, decl, rescan);
1394
      else
1395 1396
	put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
			    decl_mode, volatilep, 0, usedp, 0);
1397
    }
1398 1399 1400
  else if (GET_CODE (reg) == CONCAT)
    {
      /* A CONCAT contains two pseudos; put them both in the stack.
1401 1402 1403 1404
	 We do it so they end up consecutive.
	 We fixup references to the parts only after we fixup references
	 to the whole CONCAT, lest we do double fixups for the latter
	 references.  */
1405
      enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1406
      tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1407 1408
      rtx lopart = XEXP (reg, 0);
      rtx hipart = XEXP (reg, 1);
1409
#ifdef FRAME_GROWS_DOWNWARD
1410
      /* Since part 0 should have a lower address, do it second.  */
1411 1412 1413 1414
      put_reg_into_stack (function, hipart, part_type, part_mode,
			  part_mode, volatilep, 0, 0, 0);
      put_reg_into_stack (function, lopart, part_type, part_mode,
			  part_mode, volatilep, 0, 0, 0);
1415
#else
1416 1417 1418 1419
      put_reg_into_stack (function, lopart, part_type, part_mode,
			  part_mode, volatilep, 0, 0, 0);
      put_reg_into_stack (function, hipart, part_type, part_mode,
			  part_mode, volatilep, 0, 0, 0);
1420 1421 1422 1423
#endif

      /* Change the CONCAT into a combined MEM for both parts.  */
      PUT_CODE (reg, MEM);
1424
      MEM_ATTRS (reg) = 0;
Jan Hubicka committed
1425 1426 1427 1428 1429

      /* set_mem_attributes uses DECL_RTL to avoid re-generating of
         already computed alias sets.  Here we want to re-generate.  */
      if (DECL_P (decl))
	SET_DECL_RTL (decl, NULL);
1430
      set_mem_attributes (reg, decl, 1);
Jan Hubicka committed
1431 1432
      if (DECL_P (decl))
	SET_DECL_RTL (decl, reg);
1433

1434 1435 1436 1437 1438 1439
      /* The two parts are in memory order already.
	 Use the lower parts address as ours.  */
      XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
      /* Prevent sharing of rtl that might lose.  */
      if (GET_CODE (XEXP (reg, 0)) == PLUS)
	XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1440
      if (usedp && rescan)
1441 1442 1443 1444 1445 1446
	{
	  schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
				   promoted_mode, 0);
	  schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
	  schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
	}
1447
    }
1448 1449
  else
    return;
1450 1451 1452 1453 1454
}

/* Subroutine of put_var_into_stack.  This puts a single pseudo reg REG
   into the stack frame of FUNCTION (0 means the current function).
   DECL_MODE is the machine mode of the user-level data type.
1455
   PROMOTED_MODE is the machine mode of the register.
1456 1457
   VOLATILE_P is nonzero if this is for a "volatile" decl.
   USED_P is nonzero if this reg might have already been used in an insn.  */
1458 1459

static void
1460
put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1461
		    original_regno, used_p, ht)
1462 1463 1464 1465
     struct function *function;
     rtx reg;
     tree type;
     enum machine_mode promoted_mode, decl_mode;
1466
     int volatile_p;
1467
     unsigned int original_regno;
1468
     int used_p;
1469
     htab_t ht;
1470
{
Bernd Schmidt committed
1471
  struct function *func = function ? function : cfun;
1472
  rtx new = 0;
1473
  unsigned int regno = original_regno;
1474 1475 1476

  if (regno == 0)
    regno = REGNO (reg);
Richard Stallman committed
1477

1478 1479
  if (regno < func->x_max_parm_reg)
    new = func->x_parm_reg_stack_loc[regno];
1480

1481 1482
  if (new == 0)
    new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
Richard Stallman committed
1483

1484
  PUT_CODE (reg, MEM);
1485
  PUT_MODE (reg, decl_mode);
Richard Stallman committed
1486
  XEXP (reg, 0) = XEXP (new, 0);
1487
  MEM_ATTRS (reg) = 0;
Richard Stallman committed
1488
  /* `volatil' bit means one thing for MEMs, another entirely for REGs.  */
1489
  MEM_VOLATILE_P (reg) = volatile_p;
Richard Stallman committed
1490 1491

  /* If this is a memory ref that contains aggregate components,
1492 1493 1494 1495
     mark it as such for cse and loop optimize.  If we are reusing a
     previously generated stack slot, then we need to copy the bit in
     case it was set for other reasons.  For instance, it is set for
     __builtin_va_alist.  */
1496 1497 1498 1499
  if (type)
    {
      MEM_SET_IN_STRUCT_P (reg,
			   AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1500
      set_mem_alias_set (reg, get_alias_set (type));
1501
    }
1502

1503 1504 1505
  if (used_p)
    schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
}
Richard Stallman committed
1506

1507 1508 1509
/* Make sure that all refs to the variable, previously made
   when it was a register, are fixed up to be valid again.
   See function above for meaning of arguments.  */
1510

1511 1512 1513 1514 1515 1516
static void
schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
     struct function *function;
     rtx reg;
     tree type;
     enum machine_mode promoted_mode;
1517
     htab_t ht;
1518
{
1519 1520
  int unsigned_p = type ? TREE_UNSIGNED (type) : 0;

1521
  if (function != 0)
Richard Stallman committed
1522 1523 1524 1525
    {
      struct var_refs_queue *temp;

      temp
1526
	= (struct var_refs_queue *) ggc_alloc (sizeof (struct var_refs_queue));
Richard Stallman committed
1527
      temp->modified = reg;
1528
      temp->promoted_mode = promoted_mode;
1529
      temp->unsignedp = unsigned_p;
Richard Stallman committed
1530 1531 1532
      temp->next = function->fixup_var_refs_queue;
      function->fixup_var_refs_queue = temp;
    }
1533
  else
Richard Stallman committed
1534
    /* Variable is local; fix it up now.  */
1535
    fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
Richard Stallman committed
1536 1537 1538
}

static void
1539
fixup_var_refs (var, promoted_mode, unsignedp, may_share, ht)
Richard Stallman committed
1540
     rtx var;
1541 1542
     enum machine_mode promoted_mode;
     int unsignedp;
1543
     htab_t ht;
1544
     rtx may_share;
Richard Stallman committed
1545 1546 1547
{
  tree pending;
  rtx first_insn = get_insns ();
1548
  struct sequence_stack *stack = seq_stack;
Richard Stallman committed
1549 1550
  tree rtl_exps = rtl_expr_chain;

1551 1552
  /* If there's a hash table, it must record all uses of VAR.  */
  if (ht)
Zack Weinberg committed
1553 1554 1555
    {
      if (stack != 0)
	abort ();
1556 1557
      fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
				      may_share);
Zack Weinberg committed
1558 1559 1560 1561
      return;
    }

  fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1562
			stack == 0, may_share);
Richard Stallman committed
1563 1564 1565 1566

  /* Scan all pending sequences too.  */
  for (; stack; stack = stack->next)
    {
1567
      push_to_full_sequence (stack->first, stack->last);
Zack Weinberg committed
1568
      fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1569
			    stack->next != 0, may_share);
Richard Stallman committed
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
      /* Update remembered end of sequence
	 in case we added an insn at the end.  */
      stack->last = get_last_insn ();
      end_sequence ();
    }

  /* Scan all waiting RTL_EXPRs too.  */
  for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
    {
      rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
      if (seq != const0_rtx && seq != 0)
	{
	  push_to_sequence (seq);
1583 1584
	  fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
				may_share);
Richard Stallman committed
1585 1586 1587 1588 1589
	  end_sequence ();
	}
    }
}

1590
/* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
Richard Stallman committed
1591
   some part of an insn.  Return a struct fixup_replacement whose OLD
Mike Stump committed
1592
   value is equal to X.  Allocate a new structure if no such entry exists.  */
Richard Stallman committed
1593 1594

static struct fixup_replacement *
1595
find_fixup_replacement (replacements, x)
Richard Stallman committed
1596 1597 1598 1599 1600 1601
     struct fixup_replacement **replacements;
     rtx x;
{
  struct fixup_replacement *p;

  /* See if we have already replaced this.  */
Jeff Law committed
1602
  for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
Richard Stallman committed
1603 1604 1605 1606
    ;

  if (p == 0)
    {
Mark Mitchell committed
1607
      p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
Richard Stallman committed
1608 1609 1610 1611 1612 1613 1614 1615 1616
      p->old = x;
      p->new = 0;
      p->next = *replacements;
      *replacements = p;
    }

  return p;
}

1617 1618 1619 1620
/* Scan the insn-chain starting with INSN for refs to VAR and fix them
   up.  TOPLEVEL is nonzero if this chain is the main chain of insns
   for the current function.  MAY_SHARE is either a MEM that is not
   to be unshared or a list of them.  */
Richard Stallman committed
1621 1622

static void
1623
fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel, may_share)
Zack Weinberg committed
1624
     rtx insn;
Richard Stallman committed
1625
     rtx var;
1626 1627
     enum machine_mode promoted_mode;
     int unsignedp;
Richard Stallman committed
1628
     int toplevel;
1629
     rtx may_share;
Zack Weinberg committed
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
{
  while (insn)
    {
      /* fixup_var_refs_insn might modify insn, so save its next
         pointer now.  */
      rtx next = NEXT_INSN (insn);

      /* CALL_PLACEHOLDERs are special; we have to switch into each of
	 the three sequences they (potentially) contain, and process
	 them recursively.  The CALL_INSN itself is not interesting.  */

      if (GET_CODE (insn) == CALL_INSN
	  && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
	{
	  int i;

	  /* Look at the Normal call, sibling call and tail recursion
	     sequences attached to the CALL_PLACEHOLDER.  */
	  for (i = 0; i < 3; i++)
	    {
	      rtx seq = XEXP (PATTERN (insn), i);
	      if (seq)
		{
		  push_to_sequence (seq);
1654 1655
		  fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
					may_share);
Zack Weinberg committed
1656 1657 1658 1659 1660 1661 1662
		  XEXP (PATTERN (insn), i) = get_insns ();
		  end_sequence ();
		}
	    }
	}

      else if (INSN_P (insn))
1663 1664
	fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
			     may_share);
Zack Weinberg committed
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

      insn = next;
    }
}

/* Look up the insns which reference VAR in HT and fix them up.  Other
   arguments are the same as fixup_var_refs_insns.

   N.B. No need for special processing of CALL_PLACEHOLDERs here,
   because the hash table will point straight to the interesting insn
   (inside the CALL_PLACEHOLDER).  */
1676

Zack Weinberg committed
1677
static void
1678
fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp, may_share)
1679
     htab_t ht;
Zack Weinberg committed
1680 1681 1682
     rtx var;
     enum machine_mode promoted_mode;
     int unsignedp;
1683
     rtx may_share;
Richard Stallman committed
1684
{
1685 1686
  struct insns_for_mem_entry tmp;
  struct insns_for_mem_entry *ime;
1687 1688
  rtx insn_list;

1689 1690
  tmp.key = var;
  ime = (struct insns_for_mem_entry *) htab_find (ht, &tmp);
1691 1692 1693 1694
  for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
    if (INSN_P (XEXP (insn_list, 0)))
      fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
			   unsignedp, 1, may_share);
Zack Weinberg committed
1695
}
1696

Zack Weinberg committed
1697 1698 1699 1700 1701 1702

/* Per-insn processing by fixup_var_refs_insns(_with_hash).  INSN is
   the insn under examination, VAR is the variable to fix up
   references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
   TOPLEVEL is nonzero if this is the main insn chain for this
   function.  */
1703

Zack Weinberg committed
1704
static void
1705
fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel, no_share)
Zack Weinberg committed
1706 1707 1708 1709 1710
     rtx insn;
     rtx var;
     enum machine_mode promoted_mode;
     int unsignedp;
     int toplevel;
1711
     rtx no_share;
Zack Weinberg committed
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
{
  rtx call_dest = 0;
  rtx set, prev, prev_set;
  rtx note;

  /* Remember the notes in case we delete the insn.  */
  note = REG_NOTES (insn);

  /* If this is a CLOBBER of VAR, delete it.

     If it has a REG_LIBCALL note, delete the REG_LIBCALL
     and REG_RETVAL notes too.  */
  if (GET_CODE (PATTERN (insn)) == CLOBBER
      && (XEXP (PATTERN (insn), 0) == var
	  || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
	      && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
		  || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
Richard Stallman committed
1729
    {
Zack Weinberg committed
1730 1731 1732 1733 1734 1735 1736 1737
      if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
	/* The REG_LIBCALL note will go away since we are going to
	   turn INSN into a NOTE, so just delete the
	   corresponding REG_RETVAL note.  */
	remove_note (XEXP (note, 0),
		     find_reg_note (XEXP (note, 0), REG_RETVAL,
				    NULL_RTX));

1738
      delete_insn (insn);
Zack Weinberg committed
1739
    }
1740

Zack Weinberg committed
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
  /* The insn to load VAR from a home in the arglist
     is now a no-op.  When we see it, just delete it.
     Similarly if this is storing VAR from a register from which
     it was loaded in the previous insn.  This will occur
     when an ADDRESSOF was made for an arglist slot.  */
  else if (toplevel
	   && (set = single_set (insn)) != 0
	   && SET_DEST (set) == var
	   /* If this represents the result of an insn group,
	      don't delete the insn.  */
	   && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
	   && (rtx_equal_p (SET_SRC (set), var)
	       || (GET_CODE (SET_SRC (set)) == REG
		   && (prev = prev_nonnote_insn (insn)) != 0
		   && (prev_set = single_set (prev)) != 0
		   && SET_DEST (prev_set) == SET_SRC (set)
		   && rtx_equal_p (SET_SRC (prev_set), var))))
    {
1759
      delete_insn (insn);
Zack Weinberg committed
1760 1761 1762 1763 1764 1765 1766
    }
  else
    {
      struct fixup_replacement *replacements = 0;
      rtx next_insn = NEXT_INSN (insn);

      if (SMALL_REGISTER_CLASSES)
Richard Stallman committed
1767
	{
Zack Weinberg committed
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	  /* If the insn that copies the results of a CALL_INSN
	     into a pseudo now references VAR, we have to use an
	     intermediate pseudo since we want the life of the
	     return value register to be only a single insn.

	     If we don't use an intermediate pseudo, such things as
	     address computations to make the address of VAR valid
	     if it is not can be placed between the CALL_INSN and INSN.

	     To make sure this doesn't happen, we record the destination
	     of the CALL_INSN and see if the next insn uses both that
	     and VAR.  */

	  if (call_dest != 0 && GET_CODE (insn) == INSN
	      && reg_mentioned_p (var, PATTERN (insn))
	      && reg_mentioned_p (call_dest, PATTERN (insn)))
1784
	    {
Zack Weinberg committed
1785
	      rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1786

Zack Weinberg committed
1787 1788 1789 1790
	      emit_insn_before (gen_move_insn (temp, call_dest), insn);

	      PATTERN (insn) = replace_rtx (PATTERN (insn),
					    call_dest, temp);
Richard Stallman committed
1791
	    }
1792

Zack Weinberg committed
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	  if (GET_CODE (insn) == CALL_INSN
	      && GET_CODE (PATTERN (insn)) == SET)
	    call_dest = SET_DEST (PATTERN (insn));
	  else if (GET_CODE (insn) == CALL_INSN
		   && GET_CODE (PATTERN (insn)) == PARALLEL
		   && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
	    call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
	  else
	    call_dest = 0;
	}
1803

Zack Weinberg committed
1804 1805 1806 1807 1808 1809 1810
      /* See if we have to do anything to INSN now that VAR is in
	 memory.  If it needs to be loaded into a pseudo, use a single
	 pseudo for the entire insn in case there is a MATCH_DUP
	 between two operands.  We pass a pointer to the head of
	 a list of struct fixup_replacements.  If fixup_var_refs_1
	 needs to allocate pseudos or replacement MEMs (for SUBREGs),
	 it will record them in this list.
1811

Zack Weinberg committed
1812 1813
	 If it allocated a pseudo for any replacement, we copy into
	 it here.  */
Kazu Hirata committed
1814

Zack Weinberg committed
1815
      fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1816
			&replacements, no_share);
1817

Zack Weinberg committed
1818 1819 1820 1821 1822
      /* If this is last_parm_insn, and any instructions were output
	 after it to fix it up, then we must set last_parm_insn to
	 the last such instruction emitted.  */
      if (insn == last_parm_insn)
	last_parm_insn = PREV_INSN (next_insn);
Kazu Hirata committed
1823

Zack Weinberg committed
1824 1825 1826
      while (replacements)
	{
	  struct fixup_replacement *next;
Richard Stallman committed
1827

Zack Weinberg committed
1828 1829 1830 1831
	  if (GET_CODE (replacements->new) == REG)
	    {
	      rtx insert_before;
	      rtx seq;
Richard Stallman committed
1832

Zack Weinberg committed
1833 1834 1835
	      /* OLD might be a (subreg (mem)).  */
	      if (GET_CODE (replacements->old) == SUBREG)
		replacements->old
1836
		  = fixup_memory_subreg (replacements->old, insn,
1837
					 promoted_mode, 0);
Zack Weinberg committed
1838 1839 1840
	      else
		replacements->old
		  = fixup_stack_1 (replacements->old, insn);
1841

Zack Weinberg committed
1842
	      insert_before = insn;
Mark Mitchell committed
1843

Zack Weinberg committed
1844 1845 1846
	      /* If we are changing the mode, do a conversion.
		 This might be wasteful, but combine.c will
		 eliminate much of the waste.  */
Richard Stallman committed
1847

Zack Weinberg committed
1848 1849 1850 1851 1852 1853
	      if (GET_MODE (replacements->new)
		  != GET_MODE (replacements->old))
		{
		  start_sequence ();
		  convert_move (replacements->new,
				replacements->old, unsignedp);
1854
		  seq = get_insns ();
Zack Weinberg committed
1855
		  end_sequence ();
Richard Stallman committed
1856
		}
Zack Weinberg committed
1857 1858 1859
	      else
		seq = gen_move_insn (replacements->new,
				     replacements->old);
Richard Stallman committed
1860

Zack Weinberg committed
1861
	      emit_insn_before (seq, insert_before);
1862
	    }
1863

Zack Weinberg committed
1864 1865 1866
	  next = replacements->next;
	  free (replacements);
	  replacements = next;
1867
	}
Zack Weinberg committed
1868 1869 1870 1871 1872 1873 1874 1875 1876
    }

  /* Also fix up any invalid exprs in the REG_NOTES of this insn.
     But don't touch other insns referred to by reg-notes;
     we will get them elsewhere.  */
  while (note)
    {
      if (GET_CODE (note) != INSN_LIST)
	XEXP (note, 0)
1877 1878
	  = walk_fixup_memory_subreg (XEXP (note, 0), insn,
				      promoted_mode, 1);
Zack Weinberg committed
1879
      note = XEXP (note, 1);
Richard Stallman committed
1880 1881 1882
    }
}

1883
/* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
Kazu Hirata committed
1884
   See if the rtx expression at *LOC in INSN needs to be changed.
Richard Stallman committed
1885 1886 1887 1888 1889 1890

   REPLACEMENTS is a pointer to a list head that starts out zero, but may
   contain a list of original rtx's and replacements. If we find that we need
   to modify this insn by replacing a memory reference with a pseudo or by
   making a new MEM to implement a SUBREG, we consult that list to see if
   we have already chosen a replacement. If none has already been allocated,
Zack Weinberg committed
1891
   we allocate it and update the list.  fixup_var_refs_insn will copy VAR
Richard Stallman committed
1892 1893 1894
   or the SUBREG, as appropriate, to the pseudo.  */

static void
1895
fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements, no_share)
1896
     rtx var;
1897
     enum machine_mode promoted_mode;
1898
     rtx *loc;
Richard Stallman committed
1899 1900
     rtx insn;
     struct fixup_replacement **replacements;
1901
     rtx no_share;
Richard Stallman committed
1902
{
1903 1904
  int i;
  rtx x = *loc;
Richard Stallman committed
1905
  RTX_CODE code = GET_CODE (x);
1906 1907
  const char *fmt;
  rtx tem, tem1;
Richard Stallman committed
1908 1909 1910 1911
  struct fixup_replacement *replacement;

  switch (code)
    {
1912 1913 1914
    case ADDRESSOF:
      if (XEXP (x, 0) == var)
	{
Jeff Law committed
1915 1916 1917 1918 1919
	  /* Prevent sharing of rtl that might lose.  */
	  rtx sub = copy_rtx (XEXP (var, 0));

	  if (! validate_change (insn, loc, sub, 0))
	    {
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	      rtx y = gen_reg_rtx (GET_MODE (sub));
	      rtx seq, new_insn;

	      /* We should be able to replace with a register or all is lost.
		 Note that we can't use validate_change to verify this, since
		 we're not caring for replacing all dups simultaneously.  */
	      if (! validate_replace_rtx (*loc, y, insn))
		abort ();

	      /* Careful!  First try to recognize a direct move of the
		 value, mimicking how things are done in gen_reload wrt
		 PLUS.  Consider what happens when insn is a conditional
		 move instruction and addsi3 clobbers flags.  */

	      start_sequence ();
	      new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1936
	      seq = get_insns ();
1937 1938 1939 1940 1941
	      end_sequence ();

	      if (recog_memoized (new_insn) < 0)
		{
		  /* That failed.  Fall back on force_operand and hope.  */
Jeff Law committed
1942

1943
		  start_sequence ();
1944 1945 1946
		  sub = force_operand (sub, y);
		  if (sub != y)
		    emit_insn (gen_move_insn (y, sub));
1947
		  seq = get_insns ();
1948 1949
		  end_sequence ();
		}
Jeff Law committed
1950

1951 1952 1953 1954 1955 1956 1957 1958
#ifdef HAVE_cc0
	      /* Don't separate setter from user.  */
	      if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
		insn = PREV_INSN (insn);
#endif

	      emit_insn_before (seq, insn);
	    }
1959 1960 1961
	}
      return;

Richard Stallman committed
1962 1963 1964
    case MEM:
      if (var == x)
	{
Kazu Hirata committed
1965
	  /* If we already have a replacement, use it.  Otherwise,
Richard Stallman committed
1966 1967
	     try to fix up this address in case it is invalid.  */

1968
	  replacement = find_fixup_replacement (replacements, var);
Richard Stallman committed
1969 1970 1971 1972 1973 1974 1975 1976
	  if (replacement->new)
	    {
	      *loc = replacement->new;
	      return;
	    }

	  *loc = replacement->new = x = fixup_stack_1 (x, insn);

1977 1978
	  /* Unless we are forcing memory to register or we changed the mode,
	     we can leave things the way they are if the insn is valid.  */
Kazu Hirata committed
1979

Richard Stallman committed
1980
	  INSN_CODE (insn) = -1;
1981 1982
	  if (! flag_force_mem && GET_MODE (x) == promoted_mode
	      && recog_memoized (insn) >= 0)
Richard Stallman committed
1983 1984
	    return;

1985
	  *loc = replacement->new = gen_reg_rtx (promoted_mode);
Richard Stallman committed
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	  return;
	}

      /* If X contains VAR, we need to unshare it here so that we update
	 each occurrence separately.  But all identical MEMs in one insn
	 must be replaced with the same rtx because of the possibility of
	 MATCH_DUPs.  */

      if (reg_mentioned_p (var, x))
	{
1996
	  replacement = find_fixup_replacement (replacements, x);
Richard Stallman committed
1997
	  if (replacement->new == 0)
1998
	    replacement->new = copy_most_rtx (x, no_share);
Richard Stallman committed
1999 2000

	  *loc = x = replacement->new;
2001
	  code = GET_CODE (x);
Richard Stallman committed
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	}
      break;

    case REG:
    case CC0:
    case PC:
    case CONST_INT:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
2013
    case CONST_VECTOR:
Richard Stallman committed
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
      return;

    case SIGN_EXTRACT:
    case ZERO_EXTRACT:
      /* Note that in some cases those types of expressions are altered
	 by optimize_bit_field, and do not survive to get here.  */
      if (XEXP (x, 0) == var
	  || (GET_CODE (XEXP (x, 0)) == SUBREG
	      && SUBREG_REG (XEXP (x, 0)) == var))
	{
	  /* Get TEM as a valid MEM in the mode presently in the insn.

	     We don't worry about the possibility of MATCH_DUP here; it
	     is highly unlikely and would be tricky to handle.  */

	  tem = XEXP (x, 0);
	  if (GET_CODE (tem) == SUBREG)
2031 2032 2033 2034 2035 2036 2037 2038
	    {
	      if (GET_MODE_BITSIZE (GET_MODE (tem))
		  > GET_MODE_BITSIZE (GET_MODE (var)))
		{
		  replacement = find_fixup_replacement (replacements, var);
		  if (replacement->new == 0)
		    replacement->new = gen_reg_rtx (GET_MODE (var));
		  SUBREG_REG (tem) = replacement->new;
2039 2040 2041 2042 2043 2044 2045 2046

		  /* The following code works only if we have a MEM, so we
		     need to handle the subreg here.  We directly substitute
		     it assuming that a subreg must be OK here.  We already
		     scheduled a replacement to copy the mem into the
		     subreg.  */
		  XEXP (x, 0) = tem;
		  return;
2047
		}
2048
	      else
2049
		tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2050 2051 2052
	    }
	  else
	    tem = fixup_stack_1 (tem, insn);
Richard Stallman committed
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064

	  /* Unless we want to load from memory, get TEM into the proper mode
	     for an extract from memory.  This can only be done if the
	     extract is at a constant position and length.  */

	  if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
	      && GET_CODE (XEXP (x, 2)) == CONST_INT
	      && ! mode_dependent_address_p (XEXP (tem, 0))
	      && ! MEM_VOLATILE_P (tem))
	    {
	      enum machine_mode wanted_mode = VOIDmode;
	      enum machine_mode is_mode = GET_MODE (tem);
2065
	      HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
Richard Stallman committed
2066 2067

	      if (GET_CODE (x) == ZERO_EXTRACT)
2068
		{
2069 2070 2071 2072
		  enum machine_mode new_mode
		    = mode_for_extraction (EP_extzv, 1);
		  if (new_mode != MAX_MACHINE_MODE)
		    wanted_mode = new_mode;
2073
		}
2074
	      else if (GET_CODE (x) == SIGN_EXTRACT)
2075
		{
2076 2077 2078 2079
		  enum machine_mode new_mode
		    = mode_for_extraction (EP_extv, 1);
		  if (new_mode != MAX_MACHINE_MODE)
		    wanted_mode = new_mode;
2080
		}
2081

2082
	      /* If we have a narrower mode, we can do something.  */
Richard Stallman committed
2083 2084 2085
	      if (wanted_mode != VOIDmode
		  && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
		{
2086
		  HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
Richard Stallman committed
2087 2088 2089 2090 2091
		  rtx old_pos = XEXP (x, 2);
		  rtx newmem;

		  /* If the bytes and bits are counted differently, we
		     must adjust the offset.  */
2092 2093 2094
		  if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
		    offset = (GET_MODE_SIZE (is_mode)
			      - GET_MODE_SIZE (wanted_mode) - offset);
Richard Stallman committed
2095 2096 2097

		  pos %= GET_MODE_BITSIZE (wanted_mode);

Richard Kenner committed
2098
		  newmem = adjust_address_nv (tem, wanted_mode, offset);
Richard Stallman committed
2099 2100 2101 2102

		  /* Make the change and see if the insn remains valid.  */
		  INSN_CODE (insn) = -1;
		  XEXP (x, 0) = newmem;
2103
		  XEXP (x, 2) = GEN_INT (pos);
Richard Stallman committed
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

		  if (recog_memoized (insn) >= 0)
		    return;

		  /* Otherwise, restore old position.  XEXP (x, 0) will be
		     restored later.  */
		  XEXP (x, 2) = old_pos;
		}
	    }

	  /* If we get here, the bitfield extract insn can't accept a memory
	     reference.  Copy the input into a register.  */

	  tem1 = gen_reg_rtx (GET_MODE (tem));
	  emit_insn_before (gen_move_insn (tem1, tem), insn);
	  XEXP (x, 0) = tem1;
	  return;
	}
      break;
Kazu Hirata committed
2123

Richard Stallman committed
2124 2125 2126
    case SUBREG:
      if (SUBREG_REG (x) == var)
	{
2127 2128 2129 2130 2131 2132 2133 2134
	  /* If this is a special SUBREG made because VAR was promoted
	     from a wider mode, replace it with VAR and call ourself
	     recursively, this time saying that the object previously
	     had its current mode (by virtue of the SUBREG).  */

	  if (SUBREG_PROMOTED_VAR_P (x))
	    {
	      *loc = var;
2135 2136
	      fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
				no_share);
2137 2138 2139
	      return;
	    }

Richard Stallman committed
2140
	  /* If this SUBREG makes VAR wider, it has become a paradoxical
Kazu Hirata committed
2141
	     SUBREG with VAR in memory, but these aren't allowed at this
Richard Stallman committed
2142 2143 2144 2145
	     stage of the compilation.  So load VAR into a pseudo and take
	     a SUBREG of that pseudo.  */
	  if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
	    {
2146
	      replacement = find_fixup_replacement (replacements, var);
Richard Stallman committed
2147
	      if (replacement->new == 0)
2148
		replacement->new = gen_reg_rtx (promoted_mode);
Richard Stallman committed
2149 2150 2151 2152 2153 2154 2155 2156
	      SUBREG_REG (x) = replacement->new;
	      return;
	    }

	  /* See if we have already found a replacement for this SUBREG.
	     If so, use it.  Otherwise, make a MEM and see if the insn
	     is recognized.  If not, or if we should force MEM into a register,
	     make a pseudo for this SUBREG.  */
2157
	  replacement = find_fixup_replacement (replacements, x);
Richard Stallman committed
2158 2159 2160 2161 2162
	  if (replacement->new)
	    {
	      *loc = replacement->new;
	      return;
	    }
Kazu Hirata committed
2163

2164
	  replacement->new = *loc = fixup_memory_subreg (x, insn,
2165
							 promoted_mode, 0);
Richard Stallman committed
2166

2167
	  INSN_CODE (insn) = -1;
Richard Stallman committed
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	  if (! flag_force_mem && recog_memoized (insn) >= 0)
	    return;

	  *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
	  return;
	}
      break;

    case SET:
      /* First do special simplification of bit-field references.  */
      if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
	  || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
	optimize_bit_field (x, insn, 0);
      if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
	  || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2183
	optimize_bit_field (x, insn, 0);
Richard Stallman committed
2184

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
      /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
	 into a register and then store it back out.  */
      if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
	  && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
	  && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
	  && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
	      > GET_MODE_SIZE (GET_MODE (var))))
	{
	  replacement = find_fixup_replacement (replacements, var);
	  if (replacement->new == 0)
	    replacement->new = gen_reg_rtx (GET_MODE (var));

	  SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
	  emit_insn_after (gen_move_insn (var, replacement->new), insn);
	}

Richard Stallman committed
2201
      /* If SET_DEST is now a paradoxical SUBREG, put the result of this
Mike Stump committed
2202
	 insn into a pseudo and store the low part of the pseudo into VAR.  */
Richard Stallman committed
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
      if (GET_CODE (SET_DEST (x)) == SUBREG
	  && SUBREG_REG (SET_DEST (x)) == var
	  && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
	      > GET_MODE_SIZE (GET_MODE (var))))
	{
	  SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
	  emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
							    tem)),
			   insn);
	  break;
	}
Kazu Hirata committed
2214

Richard Stallman committed
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
      {
	rtx dest = SET_DEST (x);
	rtx src = SET_SRC (x);
	rtx outerdest = dest;

	while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
	       || GET_CODE (dest) == SIGN_EXTRACT
	       || GET_CODE (dest) == ZERO_EXTRACT)
	  dest = XEXP (dest, 0);

	if (GET_CODE (src) == SUBREG)
2226
	  src = SUBREG_REG (src);
Richard Stallman committed
2227 2228 2229 2230

	/* If VAR does not appear at the top level of the SET
	   just scan the lower levels of the tree.  */

Kazu Hirata committed
2231
	if (src != var && dest != var)
Richard Stallman committed
2232 2233 2234 2235 2236
	  break;

	/* We will need to rerecognize this insn.  */
	INSN_CODE (insn) = -1;

2237 2238
	if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
	    && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
Richard Stallman committed
2239 2240 2241
	  {
	    /* Since this case will return, ensure we fixup all the
	       operands here.  */
2242
	    fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2243
			      insn, replacements, no_share);
2244
	    fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2245
			      insn, replacements, no_share);
2246
	    fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2247
			      insn, replacements, no_share);
Richard Stallman committed
2248 2249 2250 2251 2252 2253 2254 2255

	    tem = XEXP (outerdest, 0);

	    /* Clean up (SUBREG:SI (MEM:mode ...) 0)
	       that may appear inside a ZERO_EXTRACT.
	       This was legitimate when the MEM was a REG.  */
	    if (GET_CODE (tem) == SUBREG
		&& SUBREG_REG (tem) == var)
2256
	      tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
Richard Stallman committed
2257 2258 2259 2260 2261 2262 2263 2264
	    else
	      tem = fixup_stack_1 (tem, insn);

	    if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
		&& GET_CODE (XEXP (outerdest, 2)) == CONST_INT
		&& ! mode_dependent_address_p (XEXP (tem, 0))
		&& ! MEM_VOLATILE_P (tem))
	      {
2265
		enum machine_mode wanted_mode;
Richard Stallman committed
2266
		enum machine_mode is_mode = GET_MODE (tem);
2267
		HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
Richard Stallman committed
2268

2269
		wanted_mode = mode_for_extraction (EP_insv, 0);
2270

2271
		/* If we have a narrower mode, we can do something.  */
Richard Stallman committed
2272 2273
		if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
		  {
2274
		    HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
Richard Stallman committed
2275 2276 2277
		    rtx old_pos = XEXP (outerdest, 2);
		    rtx newmem;

2278 2279 2280
		    if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
		      offset = (GET_MODE_SIZE (is_mode)
				- GET_MODE_SIZE (wanted_mode) - offset);
Richard Stallman committed
2281 2282 2283

		    pos %= GET_MODE_BITSIZE (wanted_mode);

Richard Kenner committed
2284
		    newmem = adjust_address_nv (tem, wanted_mode, offset);
Richard Stallman committed
2285 2286 2287 2288

		    /* Make the change and see if the insn remains valid.  */
		    INSN_CODE (insn) = -1;
		    XEXP (outerdest, 0) = newmem;
2289
		    XEXP (outerdest, 2) = GEN_INT (pos);
Kazu Hirata committed
2290

Richard Stallman committed
2291 2292
		    if (recog_memoized (insn) >= 0)
		      return;
Kazu Hirata committed
2293

Richard Stallman committed
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
		    /* Otherwise, restore old position.  XEXP (x, 0) will be
		       restored later.  */
		    XEXP (outerdest, 2) = old_pos;
		  }
	      }

	    /* If we get here, the bit-field store doesn't allow memory
	       or isn't located at a constant position.  Load the value into
	       a register, do the store, and put it back into memory.  */

	    tem1 = gen_reg_rtx (GET_MODE (tem));
	    emit_insn_before (gen_move_insn (tem1, tem), insn);
	    emit_insn_after (gen_move_insn (tem, tem1), insn);
	    XEXP (outerdest, 0) = tem1;
	    return;
	  }

	/* STRICT_LOW_PART is a no-op on memory references
	   and it can cause combinations to be unrecognizable,
	   so eliminate it.  */

	if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
	  SET_DEST (x) = XEXP (SET_DEST (x), 0);

	/* A valid insn to copy VAR into or out of a register
	   must be left alone, to avoid an infinite loop here.
	   If the reference to VAR is by a subreg, fix that up,
	   since SUBREG is not valid for a memref.
2322 2323 2324 2325 2326 2327
	   Also fix up the address of the stack slot.

	   Note that we must not try to recognize the insn until
	   after we know that we have valid addresses and no
	   (subreg (mem ...) ...) constructs, since these interfere
	   with determining the validity of the insn.  */
Richard Stallman committed
2328 2329 2330 2331 2332 2333 2334

	if ((SET_SRC (x) == var
	     || (GET_CODE (SET_SRC (x)) == SUBREG
		 && SUBREG_REG (SET_SRC (x)) == var))
	    && (GET_CODE (SET_DEST (x)) == REG
		|| (GET_CODE (SET_DEST (x)) == SUBREG
		    && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2335
	    && GET_MODE (var) == promoted_mode
2336
	    && x == single_set (insn))
Richard Stallman committed
2337
	  {
2338
	    rtx pat, last;
2339

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	    if (GET_CODE (SET_SRC (x)) == SUBREG
		&& (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
		    > GET_MODE_SIZE (GET_MODE (var))))
	      {
		/* This (subreg VAR) is now a paradoxical subreg.  We need
		   to replace VAR instead of the subreg.  */
		replacement = find_fixup_replacement (replacements, var);
		if (replacement->new == NULL_RTX)
		  replacement->new = gen_reg_rtx (GET_MODE (var));
		SUBREG_REG (SET_SRC (x)) = replacement->new;
	      }
Richard Stallman committed
2351
	    else
2352 2353 2354 2355 2356 2357
	      {
		replacement = find_fixup_replacement (replacements, SET_SRC (x));
		if (replacement->new)
		  SET_SRC (x) = replacement->new;
		else if (GET_CODE (SET_SRC (x)) == SUBREG)
		  SET_SRC (x) = replacement->new
2358 2359
		    = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
					   0);
2360 2361 2362 2363
		else
		  SET_SRC (x) = replacement->new
		    = fixup_stack_1 (SET_SRC (x), insn);
	      }
2364 2365 2366 2367 2368 2369 2370 2371

	    if (recog_memoized (insn) >= 0)
	      return;

	    /* INSN is not valid, but we know that we want to
	       copy SET_SRC (x) to SET_DEST (x) in some way.  So
	       we generate the move and see whether it requires more
	       than one insn.  If it does, we emit those insns and
2372
	       delete INSN.  Otherwise, we can just replace the pattern
2373 2374 2375 2376
	       of INSN; we have already verified above that INSN has
	       no other function that to do X.  */

	    pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2377
	    if (NEXT_INSN (pat) != NULL_RTX)
2378
	      {
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
		last = emit_insn_before (pat, insn);

		/* INSN might have REG_RETVAL or other important notes, so
		   we need to store the pattern of the last insn in the
		   sequence into INSN similarly to the normal case.  LAST
		   should not have REG_NOTES, but we allow them if INSN has
		   no REG_NOTES.  */
		if (REG_NOTES (last) && REG_NOTES (insn))
		  abort ();
		if (REG_NOTES (last))
		  REG_NOTES (insn) = REG_NOTES (last);
		PATTERN (insn) = PATTERN (last);

2392
		delete_insn (last);
2393 2394
	      }
	    else
2395
	      PATTERN (insn) = PATTERN (pat);
2396

Richard Stallman committed
2397 2398 2399 2400 2401 2402 2403 2404 2405
	    return;
	  }

	if ((SET_DEST (x) == var
	     || (GET_CODE (SET_DEST (x)) == SUBREG
		 && SUBREG_REG (SET_DEST (x)) == var))
	    && (GET_CODE (SET_SRC (x)) == REG
		|| (GET_CODE (SET_SRC (x)) == SUBREG
		    && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2406
	    && GET_MODE (var) == promoted_mode
2407
	    && x == single_set (insn))
Richard Stallman committed
2408
	  {
2409
	    rtx pat, last;
2410

Richard Stallman committed
2411
	    if (GET_CODE (SET_DEST (x)) == SUBREG)
2412
	      SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2413
						  promoted_mode, 0);
Richard Stallman committed
2414 2415
	    else
	      SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2416 2417 2418 2419 2420

	    if (recog_memoized (insn) >= 0)
	      return;

	    pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2421
	    if (NEXT_INSN (pat) != NULL_RTX)
2422
	      {
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		last = emit_insn_before (pat, insn);

		/* INSN might have REG_RETVAL or other important notes, so
		   we need to store the pattern of the last insn in the
		   sequence into INSN similarly to the normal case.  LAST
		   should not have REG_NOTES, but we allow them if INSN has
		   no REG_NOTES.  */
		if (REG_NOTES (last) && REG_NOTES (insn))
		  abort ();
		if (REG_NOTES (last))
		  REG_NOTES (insn) = REG_NOTES (last);
		PATTERN (insn) = PATTERN (last);

2436
		delete_insn (last);
2437 2438
	      }
	    else
2439
	      PATTERN (insn) = PATTERN (pat);
2440

Richard Stallman committed
2441 2442 2443 2444 2445
	    return;
	  }

	/* Otherwise, storing into VAR must be handled specially
	   by storing into a temporary and copying that into VAR
2446 2447 2448 2449 2450 2451 2452
	   with a new insn after this one.  Note that this case
	   will be used when storing into a promoted scalar since
	   the insn will now have different modes on the input
	   and output and hence will be invalid (except for the case
	   of setting it to a constant, which does not need any
	   change if it is valid).  We generate extra code in that case,
	   but combine.c will eliminate it.  */
Richard Stallman committed
2453 2454 2455 2456

	if (dest == var)
	  {
	    rtx temp;
2457
	    rtx fixeddest = SET_DEST (x);
2458
	    enum machine_mode temp_mode;
2459

Richard Stallman committed
2460
	    /* STRICT_LOW_PART can be discarded, around a MEM.  */
2461 2462
	    if (GET_CODE (fixeddest) == STRICT_LOW_PART)
	      fixeddest = XEXP (fixeddest, 0);
Richard Stallman committed
2463
	    /* Convert (SUBREG (MEM)) to a MEM in a changed mode.  */
2464
	    if (GET_CODE (fixeddest) == SUBREG)
2465
	      {
2466
		fixeddest = fixup_memory_subreg (fixeddest, insn,
2467 2468
						 promoted_mode, 0);
		temp_mode = GET_MODE (fixeddest);
2469
	      }
Richard Stallman committed
2470
	    else
2471 2472 2473 2474
	      {
		fixeddest = fixup_stack_1 (fixeddest, insn);
		temp_mode = promoted_mode;
	      }
2475

2476
	    temp = gen_reg_rtx (temp_mode);
2477 2478 2479 2480 2481

	    emit_insn_after (gen_move_insn (fixeddest,
					    gen_lowpart (GET_MODE (fixeddest),
							 temp)),
			     insn);
Richard Stallman committed
2482 2483 2484 2485

	    SET_DEST (x) = temp;
	  }
      }
2486 2487 2488

    default:
      break;
Richard Stallman committed
2489 2490 2491 2492 2493 2494 2495 2496
    }

  /* Nothing special about this RTX; fix its operands.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
2497 2498
	fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
			  no_share);
2499
      else if (fmt[i] == 'E')
Richard Stallman committed
2500
	{
2501
	  int j;
Richard Stallman committed
2502
	  for (j = 0; j < XVECLEN (x, i); j++)
2503
	    fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2504
			      insn, replacements, no_share);
Richard Stallman committed
2505 2506 2507 2508
	}
    }
}

2509 2510
/* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
   The REG  was placed on the stack, so X now has the form (SUBREG:m1
2511
   (MEM:m2 ...)).
2512 2513 2514

   Return an rtx (MEM:m1 newaddr) which is equivalent.  If any insns
   must be emitted to compute NEWADDR, put them before INSN.
Richard Stallman committed
2515 2516

   UNCRITICAL nonzero means accept paradoxical subregs.
Mike Stump committed
2517
   This is used for subregs found inside REG_NOTES.  */
Richard Stallman committed
2518 2519

static rtx
2520
fixup_memory_subreg (x, insn, promoted_mode, uncritical)
Richard Stallman committed
2521 2522
     rtx x;
     rtx insn;
2523
     enum machine_mode promoted_mode;
Richard Stallman committed
2524 2525
     int uncritical;
{
2526 2527 2528
  int offset;
  rtx mem = SUBREG_REG (x);
  rtx addr = XEXP (mem, 0);
Richard Stallman committed
2529
  enum machine_mode mode = GET_MODE (x);
2530
  rtx result, seq;
Richard Stallman committed
2531 2532

  /* Paradoxical SUBREGs are usually invalid during RTL generation.  */
2533
  if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
Richard Stallman committed
2534 2535
    abort ();

2536 2537 2538 2539
  offset = SUBREG_BYTE (x);
  if (BYTES_BIG_ENDIAN)
    /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
       the offset so that it points to the right location within the
2540
       MEM.  */
2541 2542
    offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));

2543 2544
  if (!flag_force_addr
      && memory_address_p (mode, plus_constant (addr, offset)))
Richard Stallman committed
2545
    /* Shortcut if no insns need be emitted.  */
2546
    return adjust_address (mem, mode, offset);
2547

Richard Stallman committed
2548
  start_sequence ();
2549
  result = adjust_address (mem, mode, offset);
2550
  seq = get_insns ();
Richard Stallman committed
2551
  end_sequence ();
2552 2553

  emit_insn_before (seq, insn);
Richard Stallman committed
2554 2555 2556 2557 2558 2559 2560 2561
  return result;
}

/* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
   Replace subexpressions of X in place.
   If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
   Otherwise return X, with its contents possibly altered.

2562
   INSN, PROMOTED_MODE and UNCRITICAL are as for
2563
   fixup_memory_subreg.  */
Richard Stallman committed
2564 2565

static rtx
2566
walk_fixup_memory_subreg (x, insn, promoted_mode, uncritical)
2567
     rtx x;
Richard Stallman committed
2568
     rtx insn;
2569
     enum machine_mode promoted_mode;
2570
     int uncritical;
Richard Stallman committed
2571
{
2572 2573 2574
  enum rtx_code code;
  const char *fmt;
  int i;
Richard Stallman committed
2575 2576 2577 2578 2579 2580 2581

  if (x == 0)
    return 0;

  code = GET_CODE (x);

  if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2582
    return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
Richard Stallman committed
2583 2584 2585 2586 2587 2588 2589

  /* Nothing special about this RTX; fix its operands.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
2590
	XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2591
						promoted_mode, uncritical);
2592
      else if (fmt[i] == 'E')
Richard Stallman committed
2593
	{
2594
	  int j;
Richard Stallman committed
2595 2596
	  for (j = 0; j < XVECLEN (x, i); j++)
	    XVECEXP (x, i, j)
2597
	      = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2598
					  promoted_mode, uncritical);
Richard Stallman committed
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	}
    }
  return x;
}

/* For each memory ref within X, if it refers to a stack slot
   with an out of range displacement, put the address in a temp register
   (emitting new insns before INSN to load these registers)
   and alter the memory ref to use that register.
   Replace each such MEM rtx with a copy, to avoid clobberage.  */

static rtx
fixup_stack_1 (x, insn)
     rtx x;
     rtx insn;
{
2615 2616 2617
  int i;
  RTX_CODE code = GET_CODE (x);
  const char *fmt;
Richard Stallman committed
2618 2619 2620

  if (code == MEM)
    {
2621
      rtx ad = XEXP (x, 0);
Richard Stallman committed
2622 2623 2624 2625
      /* If we have address of a stack slot but it's not valid
	 (displacement is too large), compute the sum in a register.  */
      if (GET_CODE (ad) == PLUS
	  && GET_CODE (XEXP (ad, 0)) == REG
2626 2627
	  && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
	       && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2628 2629 2630 2631 2632
	      || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	      || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
#endif
	      || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
Jeff Law committed
2633
	      || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2634
	      || XEXP (ad, 0) == current_function_internal_arg_pointer)
Richard Stallman committed
2635 2636 2637 2638 2639 2640 2641 2642
	  && GET_CODE (XEXP (ad, 1)) == CONST_INT)
	{
	  rtx temp, seq;
	  if (memory_address_p (GET_MODE (x), ad))
	    return x;

	  start_sequence ();
	  temp = copy_to_reg (ad);
2643
	  seq = get_insns ();
Richard Stallman committed
2644 2645
	  end_sequence ();
	  emit_insn_before (seq, insn);
2646
	  return replace_equiv_address (x, temp);
Richard Stallman committed
2647 2648 2649 2650 2651 2652 2653 2654 2655
	}
      return x;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2656
      else if (fmt[i] == 'E')
Richard Stallman committed
2657
	{
2658
	  int j;
Richard Stallman committed
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	  for (j = 0; j < XVECLEN (x, i); j++)
	    XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
	}
    }
  return x;
}

/* Optimization: a bit-field instruction whose field
   happens to be a byte or halfword in memory
   can be changed to a move instruction.

   We call here when INSN is an insn to examine or store into a bit-field.
   BODY is the SET-rtx to be altered.

   EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
   (Currently this is called only from function.c, and EQUIV_MEM
   is always 0.)  */

static void
optimize_bit_field (body, insn, equiv_mem)
     rtx body;
     rtx insn;
     rtx *equiv_mem;
{
2683
  rtx bitfield;
Richard Stallman committed
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
  int destflag;
  rtx seq = 0;
  enum machine_mode mode;

  if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
      || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
    bitfield = SET_DEST (body), destflag = 1;
  else
    bitfield = SET_SRC (body), destflag = 0;

  /* First check that the field being stored has constant size and position
     and is in fact a byte or halfword suitably aligned.  */

  if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
      && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
      && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
	  != BLKmode)
      && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
    {
2703
      rtx memref = 0;
Richard Stallman committed
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

      /* Now check that the containing word is memory, not a register,
	 and that it is safe to change the machine mode.  */

      if (GET_CODE (XEXP (bitfield, 0)) == MEM)
	memref = XEXP (bitfield, 0);
      else if (GET_CODE (XEXP (bitfield, 0)) == REG
	       && equiv_mem != 0)
	memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
      else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
	       && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
	memref = SUBREG_REG (XEXP (bitfield, 0));
      else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
	       && equiv_mem != 0
	       && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
	memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];

      if (memref
	  && ! mode_dependent_address_p (XEXP (memref, 0))
	  && ! MEM_VOLATILE_P (memref))
	{
	  /* Now adjust the address, first for any subreg'ing
	     that we are now getting rid of,
	     and then for which byte of the word is wanted.  */

2729
	  HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2730 2731
	  rtx insns;

Richard Stallman committed
2732
	  /* Adjust OFFSET to count bits from low-address byte.  */
2733 2734 2735 2736
	  if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
	    offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
		      - offset - INTVAL (XEXP (bitfield, 1)));

Richard Stallman committed
2737 2738 2739 2740
	  /* Adjust OFFSET to count bytes from low-address byte.  */
	  offset /= BITS_PER_UNIT;
	  if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
	    {
2741 2742
	      offset += (SUBREG_BYTE (XEXP (bitfield, 0))
			 / UNITS_PER_WORD) * UNITS_PER_WORD;
2743 2744 2745 2746 2747
	      if (BYTES_BIG_ENDIAN)
		offset -= (MIN (UNITS_PER_WORD,
				GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
			   - MIN (UNITS_PER_WORD,
				  GET_MODE_SIZE (GET_MODE (memref))));
Richard Stallman committed
2748 2749
	    }

2750
	  start_sequence ();
2751
	  memref = adjust_address (memref, mode, offset);
2752 2753
	  insns = get_insns ();
	  end_sequence ();
2754
	  emit_insn_before (insns, insn);
Richard Stallman committed
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765

	  /* Store this memory reference where
	     we found the bit field reference.  */

	  if (destflag)
	    {
	      validate_change (insn, &SET_DEST (body), memref, 1);
	      if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
		{
		  rtx src = SET_SRC (body);
		  while (GET_CODE (src) == SUBREG
2766
			 && SUBREG_BYTE (src) == 0)
Richard Stallman committed
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
		    src = SUBREG_REG (src);
		  if (GET_MODE (src) != GET_MODE (memref))
		    src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
		  validate_change (insn, &SET_SRC (body), src, 1);
		}
	      else if (GET_MODE (SET_SRC (body)) != VOIDmode
		       && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
		/* This shouldn't happen because anything that didn't have
		   one of these modes should have got converted explicitly
		   and then referenced through a subreg.
		   This is so because the original bit-field was
		   handled by agg_mode and so its tree structure had
		   the same mode that memref now has.  */
		abort ();
	    }
	  else
	    {
	      rtx dest = SET_DEST (body);

	      while (GET_CODE (dest) == SUBREG
2787
		     && SUBREG_BYTE (dest) == 0
2788
		     && (GET_MODE_CLASS (GET_MODE (dest))
2789 2790 2791
			 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
		     && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
			 <= UNITS_PER_WORD))
Richard Stallman committed
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
		dest = SUBREG_REG (dest);

	      validate_change (insn, &SET_DEST (body), dest, 1);

	      if (GET_MODE (dest) == GET_MODE (memref))
		validate_change (insn, &SET_SRC (body), memref, 1);
	      else
		{
		  /* Convert the mem ref to the destination mode.  */
		  rtx newreg = gen_reg_rtx (GET_MODE (dest));

		  start_sequence ();
		  convert_move (newreg, memref,
				GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
		  seq = get_insns ();
		  end_sequence ();

		  validate_change (insn, &SET_SRC (body), newreg, 1);
		}
	    }

	  /* See if we can convert this extraction or insertion into
	     a simple move insn.  We might not be able to do so if this
	     was, for example, part of a PARALLEL.

	     If we succeed, write out any needed conversions.  If we fail,
	     it is hard to guess why we failed, so don't do anything
	     special; just let the optimization be suppressed.  */

	  if (apply_change_group () && seq)
2822
	    emit_insn_before (seq, insn);
Richard Stallman committed
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	}
    }
}

/* These routines are responsible for converting virtual register references
   to the actual hard register references once RTL generation is complete.

   The following four variables are used for communication between the
   routines.  They contain the offsets of the virtual registers from their
   respective hard registers.  */

static int in_arg_offset;
static int var_offset;
static int dynamic_offset;
static int out_arg_offset;
2838
static int cfa_offset;
Richard Stallman committed
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855

/* In most machines, the stack pointer register is equivalent to the bottom
   of the stack.  */

#ifndef STACK_POINTER_OFFSET
#define STACK_POINTER_OFFSET	0
#endif

/* If not defined, pick an appropriate default for the offset of dynamically
   allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
   REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE.  */

#ifndef STACK_DYNAMIC_OFFSET

/* The bottom of the stack points to the actual arguments.  If
   REG_PARM_STACK_SPACE is defined, this includes the space for the register
   parameters.  However, if OUTGOING_REG_PARM_STACK space is not defined,
Kazu Hirata committed
2856
   stack space for register parameters is not pushed by the caller, but
Richard Stallman committed
2857 2858 2859 2860 2861 2862
   rather part of the fixed stack areas and hence not included in
   `current_function_outgoing_args_size'.  Nevertheless, we must allow
   for it when allocating stack dynamic objects.  */

#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
#define STACK_DYNAMIC_OFFSET(FNDECL)	\
2863 2864 2865
((ACCUMULATE_OUTGOING_ARGS						      \
  ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
 + (STACK_POINTER_OFFSET))						      \
Richard Stallman committed
2866 2867 2868

#else
#define STACK_DYNAMIC_OFFSET(FNDECL)	\
2869 2870
((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0)	      \
 + (STACK_POINTER_OFFSET))
Richard Stallman committed
2871 2872 2873
#endif
#endif

2874
/* On most machines, the CFA coincides with the first incoming parm.  */
2875 2876

#ifndef ARG_POINTER_CFA_OFFSET
2877
#define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2878 2879
#endif

2880 2881 2882 2883 2884 2885 2886
/* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
   had its address taken.  DECL is the decl or SAVE_EXPR for the
   object stored in the register, for later use if we do need to force
   REG into the stack.  REG is overwritten by the MEM like in
   put_reg_into_stack.  RESCAN is true if previously emitted
   instructions must be rescanned and modified now that the REG has
   been transformed.  */
2887 2888

rtx
2889
gen_mem_addressof (reg, decl, rescan)
2890 2891
     rtx reg;
     tree decl;
2892
     int rescan;
2893
{
2894 2895
  rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
			     REGNO (reg), decl);
Richard Kenner committed
2896

2897
  /* Calculate this before we start messing with decl's RTL.  */
2898
  HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2899

2900
  /* If the original REG was a user-variable, then so is the REG whose
Richard Kenner committed
2901
     address is being taken.  Likewise for unchanging.  */
2902
  REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
Richard Kenner committed
2903
  RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2904 2905

  PUT_CODE (reg, MEM);
2906
  MEM_ATTRS (reg) = 0;
2907
  XEXP (reg, 0) = r;
2908

2909 2910 2911
  if (decl)
    {
      tree type = TREE_TYPE (decl);
2912
      enum machine_mode decl_mode
2913 2914 2915
	= (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
      rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
		      : DECL_RTL_IF_SET (decl));
2916

2917
      PUT_MODE (reg, decl_mode);
2918 2919 2920

      /* Clear DECL_RTL momentarily so functions below will work
	 properly, then set it again.  */
2921
      if (DECL_P (decl) && decl_rtl == reg)
2922 2923 2924
	SET_DECL_RTL (decl, 0);

      set_mem_attributes (reg, decl, 1);
2925
      set_mem_alias_set (reg, set);
2926

2927
      if (DECL_P (decl) && decl_rtl == reg)
2928 2929
	SET_DECL_RTL (decl, reg);

2930 2931
      if (rescan 
	  && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
2932
	fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2933
    }
2934
  else if (rescan)
2935
    fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2936

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
  return reg;
}

/* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack.  */

void
flush_addressof (decl)
     tree decl;
{
  if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
      && DECL_RTL (decl) != 0
      && GET_CODE (DECL_RTL (decl)) == MEM
      && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
      && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2951
    put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2952 2953 2954 2955 2956
}

/* Force the register pointed to by R, an ADDRESSOF rtx, into the stack.  */

static void
2957
put_addressof_into_stack (r, ht)
2958
     rtx r;
2959
     htab_t ht;
2960
{
2961 2962 2963
  tree decl, type;
  int volatile_p, used_p;

2964 2965 2966 2967 2968
  rtx reg = XEXP (r, 0);

  if (GET_CODE (reg) != REG)
    abort ();

2969 2970 2971 2972 2973 2974 2975
  decl = ADDRESSOF_DECL (r);
  if (decl)
    {
      type = TREE_TYPE (decl);
      volatile_p = (TREE_CODE (decl) != SAVE_EXPR
		    && TREE_THIS_VOLATILE (decl));
      used_p = (TREE_USED (decl)
2976
		|| (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
    }
  else
    {
      type = NULL_TREE;
      volatile_p = 0;
      used_p = 1;
    }

  put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
		      volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2987 2988
}

2989 2990
/* List of replacements made below in purge_addressof_1 when creating
   bitfield insertions.  */
2991 2992 2993 2994 2995 2996 2997
static rtx purge_bitfield_addressof_replacements;

/* List of replacements made below in purge_addressof_1 for patterns
   (MEM (ADDRESSOF (REG ...))).  The key of the list entry is the
   corresponding (ADDRESSOF (REG ...)) and value is a substitution for
   the all pattern.  List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
   enough in complex cases, e.g. when some field values can be
Kazu Hirata committed
2998
   extracted by usage MEM with narrower mode.  */
2999 3000
static rtx purge_addressof_replacements;

3001 3002
/* Helper function for purge_addressof.  See if the rtx expression at *LOC
   in INSN needs to be changed.  If FORCE, always put any ADDRESSOFs into
3003
   the stack.  If the function returns FALSE then the replacement could not
3004 3005
   be made.  If MAY_POSTPONE is true and we would not put the addressof
   to stack, postpone processing of the insn.  */
3006

3007
static bool
3008
purge_addressof_1 (loc, insn, force, store, may_postpone, ht)
3009 3010
     rtx *loc;
     rtx insn;
3011
     int force, store, may_postpone;
3012
     htab_t ht;
3013 3014 3015 3016
{
  rtx x;
  RTX_CODE code;
  int i, j;
3017
  const char *fmt;
3018
  bool result = true;
3019 3020 3021 3022 3023 3024

  /* Re-start here to avoid recursion in common cases.  */
 restart:

  x = *loc;
  if (x == 0)
3025
    return true;
3026 3027 3028

  code = GET_CODE (x);

Jeff Law committed
3029 3030 3031 3032 3033
  /* If we don't return in any of the cases below, we will recurse inside
     the RTX, which will normally result in any ADDRESSOF being forced into
     memory.  */
  if (code == SET)
    {
3034 3035 3036 3037
      result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
				  may_postpone, ht);
      result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
				   may_postpone, ht);
3038
      return result;
Jeff Law committed
3039
    }
3040
  else if (code == ADDRESSOF)
3041
    {
3042 3043 3044
      rtx sub, insns;

      if (GET_CODE (XEXP (x, 0)) != MEM)
3045
	put_addressof_into_stack (x, ht);
3046

Jeff Law committed
3047 3048
      /* We must create a copy of the rtx because it was created by
	 overwriting a REG rtx which is always shared.  */
3049
      sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3050 3051
      if (validate_change (insn, loc, sub, 0)
	  || validate_replace_rtx (x, sub, insn))
3052
	return true;
Kazu Hirata committed
3053

3054
      start_sequence ();
3055

Richard Kenner committed
3056
      /* If SUB is a hard or virtual register, try it as a pseudo-register. 
3057 3058 3059 3060 3061 3062 3063
	 Otherwise, perhaps SUB is an expression, so generate code to compute
	 it.  */
      if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
	sub = copy_to_reg (sub);
      else
	sub = force_operand (sub, NULL_RTX);

3064 3065
      if (! validate_change (insn, loc, sub, 0)
	  && ! validate_replace_rtx (x, sub, insn))
3066 3067
	abort ();

3068
      insns = get_insns ();
3069
      end_sequence ();
Jeff Law committed
3070
      emit_insn_before (insns, insn);
3071
      return true;
3072
    }
Jeff Law committed
3073

3074 3075 3076
  else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
    {
      rtx sub = XEXP (XEXP (x, 0), 0);
3077

3078
      if (GET_CODE (sub) == MEM)
Richard Kenner committed
3079
	sub = adjust_address_nv (sub, GET_MODE (x), 0);
Jeff Law committed
3080 3081 3082
      else if (GET_CODE (sub) == REG
	       && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
	;
3083
      else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3084
	{
3085 3086
	  int size_x, size_sub;

3087 3088 3089 3090 3091 3092 3093 3094 3095
	  if (may_postpone)
	    {
	      /* Postpone for now, so that we do not emit bitfield arithmetics
		 unless there is some benefit from it.  */
	      if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
		postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
	      return true;
	    }

3096 3097 3098 3099 3100 3101 3102
	  if (!insn)
	    {
	      /* When processing REG_NOTES look at the list of
		 replacements done on the insn to find the register that X
		 was replaced by.  */
	      rtx tem;

3103 3104
	      for (tem = purge_bitfield_addressof_replacements;
		   tem != NULL_RTX;
3105
		   tem = XEXP (XEXP (tem, 1), 1))
3106 3107 3108
		if (rtx_equal_p (x, XEXP (tem, 0)))
		  {
		    *loc = XEXP (XEXP (tem, 1), 0);
3109
		    return true;
3110
		  }
3111

Kazu Hirata committed
3112
	      /* See comment for purge_addressof_replacements.  */
3113 3114 3115 3116 3117 3118
	      for (tem = purge_addressof_replacements;
		   tem != NULL_RTX;
		   tem = XEXP (XEXP (tem, 1), 1))
		if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
		  {
		    rtx z = XEXP (XEXP (tem, 1), 0);
3119

3120 3121 3122 3123 3124 3125 3126 3127
		    if (GET_MODE (x) == GET_MODE (z)
			|| (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
			    && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
		      abort ();

		    /* It can happen that the note may speak of things
		       in a wider (or just different) mode than the
		       code did.  This is especially true of
Kazu Hirata committed
3128
		       REG_RETVAL.  */
3129

3130
		    if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3131
		      z = SUBREG_REG (z);
Kazu Hirata committed
3132

3133 3134 3135 3136 3137
		    if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
			&& (GET_MODE_SIZE (GET_MODE (x))
			    > GET_MODE_SIZE (GET_MODE (z))))
		      {
			/* This can occur as a result in invalid
Kazu Hirata committed
3138
			   pointer casts, e.g. float f; ...
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
			   *(long long int *)&f.
			   ??? We could emit a warning here, but
			   without a line number that wouldn't be
			   very helpful.  */
			z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
		      }
		    else
		      z = gen_lowpart (GET_MODE (x), z);

		    *loc = z;
3149
		    return true;
3150
		  }
3151

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
	      /* When we are processing the REG_NOTES of the last instruction
		 of a libcall, there will be typically no replacements
		 for that insn; the replacements happened before, piecemeal
		 fashion.  OTOH we are not interested in the details of
		 this for the REG_EQUAL note, we want to know the big picture,
		 which can be succinctly described with a simple SUBREG.
		 Note that removing the REG_EQUAL note is not an option
		 on the last insn of a libcall, so we must do a replacement.  */
	      if (! purge_addressof_replacements
		  && ! purge_bitfield_addressof_replacements)
		{
		  /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
		     we got
		     (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
		      [0 S8 A32]), which can be expressed with a simple
		     same-size subreg  */
		  if ((GET_MODE_SIZE (GET_MODE (x))
		       == GET_MODE_SIZE (GET_MODE (sub)))
		      /* Again, invalid pointer casts (as in
			 compile/990203-1.c) can require paradoxical
			 subregs.  */
		      || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
			  && (GET_MODE_SIZE (GET_MODE (x))
			      > GET_MODE_SIZE (GET_MODE (sub)))))
		    {
		      *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
		      return true;
		    }
		  /* ??? Are there other cases we should handle?  */
		}
3182 3183 3184 3185
	      /* Sometimes we may not be able to find the replacement.  For
		 example when the original insn was a MEM in a wider mode,
		 and the note is part of a sign extension of a narrowed
		 version of that MEM.  Gcc testcase compile/990829-1.c can
3186
		 generate an example of this situation.  Rather than complain
3187 3188 3189
		 we return false, which will prompt our caller to remove the
		 offending note.  */
	      return false;
3190 3191
	    }

3192 3193 3194
	  size_x = GET_MODE_BITSIZE (GET_MODE (x));
	  size_sub = GET_MODE_BITSIZE (GET_MODE (sub));

3195 3196 3197 3198 3199 3200
	  /* Do not frob unchanging MEMs.  If a later reference forces the
	     pseudo to the stack, we can wind up with multiple writes to
	     an unchanging memory, which is invalid.  */
	  if (RTX_UNCHANGING_P (x) && size_x != size_sub)
	    ;

3201 3202
	  /* Don't even consider working with paradoxical subregs,
	     or the moral equivalent seen here.  */
3203 3204
	  else if (size_x <= size_sub
	           && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3205
	    {
3206 3207 3208 3209 3210 3211 3212
	      /* Do a bitfield insertion to mirror what would happen
		 in memory.  */

	      rtx val, seq;

	      if (store)
		{
3213
		  rtx p = PREV_INSN (insn);
3214

3215 3216 3217
		  start_sequence ();
		  val = gen_reg_rtx (GET_MODE (x));
		  if (! validate_change (insn, loc, val, 0))
3218 3219 3220 3221 3222 3223
		    {
		      /* Discard the current sequence and put the
			 ADDRESSOF on stack.  */
		      end_sequence ();
		      goto give_up;
		    }
3224
		  seq = get_insns ();
3225 3226
		  end_sequence ();
		  emit_insn_before (seq, insn);
Kazu Hirata committed
3227
		  compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3228
					 insn, ht);
Kazu Hirata committed
3229

3230
		  start_sequence ();
3231
		  store_bit_field (sub, size_x, 0, GET_MODE (x),
3232
				   val, GET_MODE_SIZE (GET_MODE (sub)));
3233

3234 3235
		  /* Make sure to unshare any shared rtl that store_bit_field
		     might have created.  */
3236
		  unshare_all_rtl_again (get_insns ());
3237

3238
		  seq = get_insns ();
3239
		  end_sequence ();
3240 3241
		  p = emit_insn_after (seq, insn);
		  if (NEXT_INSN (insn))
Kazu Hirata committed
3242
		    compute_insns_for_mem (NEXT_INSN (insn),
3243 3244
					   p ? NEXT_INSN (p) : NULL_RTX,
					   ht);
3245 3246 3247
		}
	      else
		{
3248 3249
		  rtx p = PREV_INSN (insn);

3250
		  start_sequence ();
3251
		  val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3252 3253 3254 3255
					   GET_MODE (x), GET_MODE (x),
					   GET_MODE_SIZE (GET_MODE (sub)));

		  if (! validate_change (insn, loc, val, 0))
3256 3257 3258 3259 3260 3261
		    {
		      /* Discard the current sequence and put the
			 ADDRESSOF on stack.  */
		      end_sequence ();
		      goto give_up;
		    }
3262

3263
		  seq = get_insns ();
3264 3265
		  end_sequence ();
		  emit_insn_before (seq, insn);
3266 3267
		  compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
					 insn, ht);
3268 3269
		}

3270 3271
	      /* Remember the replacement so that the same one can be done
		 on the REG_NOTES.  */
3272
	      purge_bitfield_addressof_replacements
3273
		= gen_rtx_EXPR_LIST (VOIDmode, x,
3274 3275 3276
				     gen_rtx_EXPR_LIST
				     (VOIDmode, val,
				      purge_bitfield_addressof_replacements));
3277

3278
	      /* We replaced with a reg -- all done.  */
3279
	      return true;
3280 3281
	    }
	}
Jeff Law committed
3282

3283
      else if (validate_change (insn, loc, sub, 0))
3284 3285 3286
	{
	  /* Remember the replacement so that the same one can be done
	     on the REG_NOTES.  */
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	  if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
	    {
	      rtx tem;

	      for (tem = purge_addressof_replacements;
		   tem != NULL_RTX;
		   tem = XEXP (XEXP (tem, 1), 1))
		if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
		  {
		    XEXP (XEXP (tem, 1), 0) = sub;
3297
		    return true;
3298 3299 3300 3301 3302
		  }
	      purge_addressof_replacements
		= gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
			   gen_rtx_EXPR_LIST (VOIDmode, sub,
					      purge_addressof_replacements));
3303
	      return true;
3304
	    }
3305 3306
	  goto restart;
	}
3307
    }
3308

3309
 give_up:
Kazu Hirata committed
3310
  /* Scan all subexpressions.  */
3311 3312 3313 3314
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    {
      if (*fmt == 'e')
3315 3316
	result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
				     may_postpone, ht);
3317 3318
      else if (*fmt == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
3319 3320
	  result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
				       may_postpone, ht);
3321
    }
3322 3323

  return result;
3324 3325 3326 3327
}

/* Return a hash value for K, a REG.  */

3328
static hashval_t
3329
insns_for_mem_hash (k)
3330
     const void * k;
3331
{
3332 3333
  /* Use the address of the key for the hash value.  */
  struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3334
  return htab_hash_pointer (m->key);
3335 3336
}

3337
/* Return nonzero if K1 and K2 (two REGs) are the same.  */
3338

3339
static int
3340
insns_for_mem_comp (k1, k2)
3341 3342
     const void * k1;
     const void * k2;
3343
{
3344 3345 3346
  struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
  struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
  return m1->key == m2->key;
3347 3348
}

3349 3350
struct insns_for_mem_walk_info
{
3351 3352
  /* The hash table that we are using to record which INSNs use which
     MEMs.  */
3353
  htab_t ht;
3354

3355
  /* The INSN we are currently processing.  */
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
  rtx insn;

  /* Zero if we are walking to find ADDRESSOFs, one if we are walking
     to find the insns that use the REGs in the ADDRESSOFs.  */
  int pass;
};

/* Called from compute_insns_for_mem via for_each_rtx.  If R is a REG
   that might be used in an ADDRESSOF expression, record this INSN in
   the hash table given by DATA (which is really a pointer to an
   insns_for_mem_walk_info structure).  */

static int
insns_for_mem_walk (r, data)
     rtx *r;
     void *data;
{
Kazu Hirata committed
3373
  struct insns_for_mem_walk_info *ifmwi
3374
    = (struct insns_for_mem_walk_info *) data;
3375 3376
  struct insns_for_mem_entry tmp;
  tmp.insns = NULL_RTX;
3377 3378 3379

  if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
      && GET_CODE (XEXP (*r, 0)) == REG)
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
    {
      PTR *e;
      tmp.key = XEXP (*r, 0);
      e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
      if (*e == NULL)
	{
	  *e = ggc_alloc (sizeof (tmp));
	  memcpy (*e, &tmp, sizeof (tmp));
	}
    }
3390 3391
  else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
    {
3392 3393 3394
      struct insns_for_mem_entry *ifme;
      tmp.key = *r;
      ifme = (struct insns_for_mem_entry *) htab_find (ifmwi->ht, &tmp);
3395 3396 3397 3398 3399

      /* If we have not already recorded this INSN, do so now.  Since
	 we process the INSNs in order, we know that if we have
	 recorded it it must be at the front of the list.  */
      if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
Mark Mitchell committed
3400 3401
	ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
					 ifme->insns);
3402
    }
3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413

  return 0;
}

/* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
   which REGs in HT.  */

static void
compute_insns_for_mem (insns, last_insn, ht)
     rtx insns;
     rtx last_insn;
3414
     htab_t ht;
3415 3416 3417 3418 3419 3420 3421
{
  rtx insn;
  struct insns_for_mem_walk_info ifmwi;
  ifmwi.ht = ht;

  for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
    for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3422
      if (INSN_P (insn))
3423 3424 3425 3426
	{
	  ifmwi.insn = insn;
	  for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
	}
3427 3428
}

3429 3430
/* Helper function for purge_addressof called through for_each_rtx.
   Returns true iff the rtl is an ADDRESSOF.  */
3431

3432 3433
static int
is_addressof (rtl, data)
Kazu Hirata committed
3434 3435
     rtx *rtl;
     void *data ATTRIBUTE_UNUSED;
3436
{
Kazu Hirata committed
3437
  return GET_CODE (*rtl) == ADDRESSOF;
3438 3439
}

3440 3441 3442 3443 3444 3445 3446 3447
/* Eliminate all occurrences of ADDRESSOF from INSNS.  Elide any remaining
   (MEM (ADDRESSOF)) patterns, and force any needed registers into the
   stack.  */

void
purge_addressof (insns)
     rtx insns;
{
3448
  rtx insn, tmp;
3449
  htab_t ht;
Kazu Hirata committed
3450

3451 3452 3453
  /* When we actually purge ADDRESSOFs, we turn REGs into MEMs.  That
     requires a fixup pass over the instruction stream to correct
     INSNs that depended on the REG being a REG, and not a MEM.  But,
3454
     these fixup passes are slow.  Furthermore, most MEMs are not
3455 3456 3457
     mentioned in very many instructions.  So, we speed up the process
     by pre-calculating which REGs occur in which INSNs; that allows
     us to perform the fixup passes much more quickly.  */
3458 3459
  ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
  compute_insns_for_mem (insns, NULL_RTX, ht);
3460

3461 3462
  postponed_insns = NULL;

3463
  for (insn = insns; insn; insn = NEXT_INSN (insn))
3464
    if (INSN_P (insn))
3465
      {
3466
	if (! purge_addressof_1 (&PATTERN (insn), insn,
3467
				 asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
3468 3469 3470
	  /* If we could not replace the ADDRESSOFs in the insn,
	     something is wrong.  */
	  abort ();
Kazu Hirata committed
3471

3472
	if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	  {
	    /* If we could not replace the ADDRESSOFs in the insn's notes,
	       we can just remove the offending notes instead.  */
	    rtx note;

	    for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	      {
		/* If we find a REG_RETVAL note then the insn is a libcall.
		   Such insns must have REG_EQUAL notes as well, in order
		   for later passes of the compiler to work.  So it is not
		   safe to delete the notes here, and instead we abort.  */
		if (REG_NOTE_KIND (note) == REG_RETVAL)
		  abort ();
Kazu Hirata committed
3486
		if (for_each_rtx (&note, is_addressof, NULL))
3487 3488 3489
		  remove_note (insn, note);
	      }
	  }
3490
      }
3491

3492 3493 3494 3495 3496 3497
  /* Process the postponed insns.  */
  while (postponed_insns)
    {
      insn = XEXP (postponed_insns, 0);
      tmp = postponed_insns;
      postponed_insns = XEXP (postponed_insns, 1);
3498
      free_INSN_LIST_node (tmp);
3499 3500 3501 3502 3503 3504

      if (! purge_addressof_1 (&PATTERN (insn), insn,
			       asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
	abort ();
    }

3505
  /* Clean up.  */
3506
  purge_bitfield_addressof_replacements = 0;
3507
  purge_addressof_replacements = 0;
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521

  /* REGs are shared.  purge_addressof will destructively replace a REG
     with a MEM, which creates shared MEMs.

     Unfortunately, the children of put_reg_into_stack assume that MEMs
     referring to the same stack slot are shared (fixup_var_refs and
     the associated hash table code).

     So, we have to do another unsharing pass after we have flushed any
     REGs that had their address taken into the stack.

     It may be worth tracking whether or not we converted any REGs into
     MEMs to avoid this overhead when it is not needed.  */
  unshare_all_rtl_again (get_insns ());
3522 3523
}

3524
/* Convert a SET of a hard subreg to a set of the appropriate hard
3525 3526 3527 3528 3529 3530 3531 3532
   register.  A subroutine of purge_hard_subreg_sets.  */

static void
purge_single_hard_subreg_set (pattern)
     rtx pattern;
{
  rtx reg = SET_DEST (pattern);
  enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3533 3534 3535 3536
  int offset = 0;

  if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
      && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3537
    {
3538 3539 3540 3541
      offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
				    GET_MODE (SUBREG_REG (reg)),
				    SUBREG_BYTE (reg),
				    GET_MODE (reg));
3542 3543
      reg = SUBREG_REG (reg);
    }
3544

3545

3546
  if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3547
    {
3548
      reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
      SET_DEST (pattern) = reg;
    }
}

/* Eliminate all occurrences of SETs of hard subregs from INSNS.  The
   only such SETs that we expect to see are those left in because
   integrate can't handle sets of parts of a return value register.

   We don't use alter_subreg because we only want to eliminate subregs
   of hard registers.  */

void
purge_hard_subreg_sets (insn)
     rtx insn;
{
  for (; insn; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	{
	  rtx pattern = PATTERN (insn);
	  switch (GET_CODE (pattern))
	    {
	    case SET:
	      if (GET_CODE (SET_DEST (pattern)) == SUBREG)
		purge_single_hard_subreg_set (pattern);
3574
	      break;
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
	    case PARALLEL:
	      {
		int j;
		for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
		  {
		    rtx inner_pattern = XVECEXP (pattern, 0, j);
		    if (GET_CODE (inner_pattern) == SET
			&& GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
		      purge_single_hard_subreg_set (inner_pattern);
		  }
	      }
	      break;
	    default:
	      break;
	    }
	}
    }
}

Richard Stallman committed
3594 3595 3596 3597 3598 3599 3600 3601 3602
/* Pass through the INSNS of function FNDECL and convert virtual register
   references to hard register references.  */

void
instantiate_virtual_regs (fndecl, insns)
     tree fndecl;
     rtx insns;
{
  rtx insn;
3603
  unsigned int i;
Richard Stallman committed
3604 3605 3606 3607 3608 3609

  /* Compute the offsets to use for this function.  */
  in_arg_offset = FIRST_PARM_OFFSET (fndecl);
  var_offset = STARTING_FRAME_OFFSET;
  dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
  out_arg_offset = STACK_POINTER_OFFSET;
3610
  cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
Richard Stallman committed
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627

  /* Scan all variables and parameters of this function.  For each that is
     in memory, instantiate all virtual registers if the result is a valid
     address.  If not, we do it later.  That will handle most uses of virtual
     regs on many machines.  */
  instantiate_decls (fndecl, 1);

  /* Initialize recognition, indicating that volatile is OK.  */
  init_recog ();

  /* Scan through all the insns, instantiating every virtual register still
     present.  */
  for (insn = insns; insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
	|| GET_CODE (insn) == CALL_INSN)
      {
	instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3628 3629
	if (INSN_DELETED_P (insn))
	  continue;
3630
	instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3631 3632 3633 3634
	/* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE.  */
	if (GET_CODE (insn) == CALL_INSN)
	  instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
				      NULL_RTX, 0);
3635 3636 3637 3638 3639 3640

	/* Past this point all ASM statements should match.  Verify that
	   to avoid failures later in the compilation process.  */
        if (asm_noperands (PATTERN (insn)) >= 0
	    && ! check_asm_operands (PATTERN (insn)))
          instantiate_virtual_regs_lossage (insn);
Richard Stallman committed
3641 3642
      }

3643 3644 3645 3646 3647 3648
  /* Instantiate the stack slots for the parm registers, for later use in
     addressof elimination.  */
  for (i = 0; i < max_parm_reg; ++i)
    if (parm_reg_stack_loc[i])
      instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);

Richard Stallman committed
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
  /* Now instantiate the remaining register equivalences for debugging info.
     These will not be valid addresses.  */
  instantiate_decls (fndecl, 0);

  /* Indicate that, from now on, assign_stack_local should use
     frame_pointer_rtx.  */
  virtuals_instantiated = 1;
}

/* Scan all decls in FNDECL (both variables and parameters) and instantiate
   all virtual registers in their DECL_RTL's.

   If VALID_ONLY, do this only if the resulting address is still valid.
   Otherwise, always do it.  */

static void
instantiate_decls (fndecl, valid_only)
     tree fndecl;
     int valid_only;
{
  tree decl;

  /* Process all parameters of the function.  */
  for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
    {
3674
      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3675
      HOST_WIDE_INT size_rtl;
3676

Kazu Hirata committed
3677
      instantiate_decl (DECL_RTL (decl), size, valid_only);
3678 3679 3680 3681

      /* If the parameter was promoted, then the incoming RTL mode may be
	 larger than the declared type size.  We must use the larger of
	 the two sizes.  */
3682 3683
      size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
      size = MAX (size_rtl, size);
3684
      instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
Richard Stallman committed
3685 3686
    }

Mike Stump committed
3687
  /* Now process all variables defined in the function or its subblocks.  */
Richard Stallman committed
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
  instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
}

/* Subroutine of instantiate_decls: Process all decls in the given
   BLOCK node and all its subblocks.  */

static void
instantiate_decls_1 (let, valid_only)
     tree let;
     int valid_only;
{
  tree t;

  for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3702
    if (DECL_RTL_SET_P (t))
3703
      instantiate_decl (DECL_RTL (t),
3704 3705
			int_size_in_bytes (TREE_TYPE (t)),
			valid_only);
Richard Stallman committed
3706 3707 3708 3709 3710

  /* Process all subblocks.  */
  for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
    instantiate_decls_1 (t, valid_only);
}
3711

3712
/* Subroutine of the preceding procedures: Given RTL representing a
3713 3714
   decl and the size of the object, do any instantiation required.

3715
   If VALID_ONLY is nonzero, it means that the RTL should only be
3716 3717 3718 3719 3720
   changed if the new address is valid.  */

static void
instantiate_decl (x, size, valid_only)
     rtx x;
3721
     HOST_WIDE_INT size;
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
     int valid_only;
{
  enum machine_mode mode;
  rtx addr;

  /* If this is not a MEM, no need to do anything.  Similarly if the
     address is a constant or a register that is not a virtual register.  */

  if (x == 0 || GET_CODE (x) != MEM)
    return;

  addr = XEXP (x, 0);
  if (CONSTANT_P (addr)
Jeff Law committed
3735
      || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
      || (GET_CODE (addr) == REG
	  && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
	      || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
    return;

  /* If we should only do this if the address is valid, copy the address.
     We need to do this so we can undo any changes that might make the
     address invalid.  This copy is unfortunate, but probably can't be
     avoided.  */

  if (valid_only)
    addr = copy_rtx (addr);

  instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);

3751
  if (valid_only && size >= 0)
3752
    {
3753 3754
      unsigned HOST_WIDE_INT decl_size = size;

3755 3756 3757 3758 3759 3760
      /* Now verify that the resulting address is valid for every integer or
	 floating-point mode up to and including SIZE bytes long.  We do this
	 since the object might be accessed in any mode and frame addresses
	 are shared.  */

      for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3761
	   mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3762 3763 3764
	   mode = GET_MODE_WIDER_MODE (mode))
	if (! memory_address_p (mode, addr))
	  return;
3765

3766
      for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3767
	   mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3768 3769 3770 3771
	   mode = GET_MODE_WIDER_MODE (mode))
	if (! memory_address_p (mode, addr))
	  return;
    }
3772

3773 3774
  /* Put back the address now that we have updated it and we either know
     it is valid or we don't care whether it is valid.  */
3775 3776 3777

  XEXP (x, 0) = addr;
}
Richard Stallman committed
3778

3779
/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3780
   is a virtual register, return the equivalent hard register and set the
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
   offset indirectly through the pointer.  Otherwise, return 0.  */

static rtx
instantiate_new_reg (x, poffset)
     rtx x;
     HOST_WIDE_INT *poffset;
{
  rtx new;
  HOST_WIDE_INT offset;

  if (x == virtual_incoming_args_rtx)
    new = arg_pointer_rtx, offset = in_arg_offset;
  else if (x == virtual_stack_vars_rtx)
    new = frame_pointer_rtx, offset = var_offset;
  else if (x == virtual_stack_dynamic_rtx)
    new = stack_pointer_rtx, offset = dynamic_offset;
  else if (x == virtual_outgoing_args_rtx)
    new = stack_pointer_rtx, offset = out_arg_offset;
  else if (x == virtual_cfa_rtx)
    new = arg_pointer_rtx, offset = cfa_offset;
  else
    return 0;

  *poffset = offset;
  return new;
}

3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823

/* Called when instantiate_virtual_regs has failed to update the instruction.
   Usually this means that non-matching instruction has been emit, however for
   asm statements it may be the problem in the constraints.  */
static void
instantiate_virtual_regs_lossage (insn)
     rtx insn;
{
  if (asm_noperands (PATTERN (insn)) >= 0)
    {
      error_for_asm (insn, "impossible constraint in `asm'");
      delete_insn (insn);
    }
  else
    abort ();
}
Richard Stallman committed
3824 3825 3826 3827 3828 3829 3830 3831
/* Given a pointer to a piece of rtx and an optional pointer to the
   containing object, instantiate any virtual registers present in it.

   If EXTRA_INSNS, we always do the replacement and generate
   any extra insns before OBJECT.  If it zero, we do nothing if replacement
   is not valid.

   Return 1 if we either had nothing to do or if we were able to do the
Kazu Hirata committed
3832
   needed replacement.  Return 0 otherwise; we only return zero if
Richard Stallman committed
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
   EXTRA_INSNS is zero.

   We first try some simple transformations to avoid the creation of extra
   pseudos.  */

static int
instantiate_virtual_regs_1 (loc, object, extra_insns)
     rtx *loc;
     rtx object;
     int extra_insns;
{
  rtx x;
  RTX_CODE code;
  rtx new = 0;
3847
  HOST_WIDE_INT offset = 0;
Richard Stallman committed
3848 3849 3850
  rtx temp;
  rtx seq;
  int i, j;
3851
  const char *fmt;
Richard Stallman committed
3852 3853 3854 3855 3856 3857 3858 3859

  /* Re-start here to avoid recursion in common cases.  */
 restart:

  x = *loc;
  if (x == 0)
    return 1;

3860 3861 3862 3863
  /* We may have detected and deleted invalid asm statements.  */
  if (object && INSN_P (object) && INSN_DELETED_P (object))
    return 1;

Richard Stallman committed
3864 3865 3866 3867 3868 3869 3870
  code = GET_CODE (x);

  /* Check for some special cases.  */
  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
3871
    case CONST_VECTOR:
Richard Stallman committed
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
    case CONST:
    case SYMBOL_REF:
    case CODE_LABEL:
    case PC:
    case CC0:
    case ASM_INPUT:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case RETURN:
      return 1;

    case SET:
      /* We are allowed to set the virtual registers.  This means that
Jeff Law committed
3885
	 the actual register should receive the source minus the
Richard Stallman committed
3886 3887
	 appropriate offset.  This is used, for example, in the handling
	 of non-local gotos.  */
3888
      if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
Richard Stallman committed
3889
	{
Richard Kenner committed
3890 3891
	  rtx src = SET_SRC (x);

3892 3893 3894 3895
	  /* We are setting the register, not using it, so the relevant
	     offset is the negative of the offset to use were we using
	     the register.  */
	  offset = - offset;
Richard Kenner committed
3896 3897
	  instantiate_virtual_regs_1 (&src, NULL_RTX, 0);

Richard Stallman committed
3898 3899
	  /* The only valid sources here are PLUS or REG.  Just do
	     the simplest possible thing to handle them.  */
Richard Kenner committed
3900
	  if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3901 3902 3903 3904
	    {
	      instantiate_virtual_regs_lossage (object);
	      return 1;
	    }
Richard Stallman committed
3905 3906

	  start_sequence ();
Richard Kenner committed
3907 3908
	  if (GET_CODE (src) != REG)
	    temp = force_operand (src, NULL_RTX);
Richard Stallman committed
3909
	  else
Richard Kenner committed
3910
	    temp = src;
3911
	  temp = force_operand (plus_constant (temp, offset), NULL_RTX);
Richard Stallman committed
3912 3913 3914
	  seq = get_insns ();
	  end_sequence ();

3915
	  emit_insn_before (seq, object);
Richard Stallman committed
3916 3917
	  SET_DEST (x) = new;

3918
	  if (! validate_change (object, &SET_SRC (x), temp, 0)
Richard Stallman committed
3919
	      || ! extra_insns)
3920
	    instantiate_virtual_regs_lossage (object);
Richard Stallman committed
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932

	  return 1;
	}

      instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
      loc = &SET_SRC (x);
      goto restart;

    case PLUS:
      /* Handle special case of virtual register plus constant.  */
      if (CONSTANT_P (XEXP (x, 1)))
	{
3933
	  rtx old, new_offset;
Richard Stallman committed
3934 3935 3936 3937

	  /* Check for (plus (plus VIRT foo) (const_int)) first.  */
	  if (GET_CODE (XEXP (x, 0)) == PLUS)
	    {
3938 3939 3940 3941 3942 3943
	      if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
		{
		  instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
					      extra_insns);
		  new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
		}
Richard Stallman committed
3944 3945 3946 3947 3948 3949 3950
	      else
		{
		  loc = &XEXP (x, 0);
		  goto restart;
		}
	    }

3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
#ifdef POINTERS_EXTEND_UNSIGNED
	  /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
	     we can commute the PLUS and SUBREG because pointers into the
	     frame are well-behaved.  */
	  else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
		   && GET_CODE (XEXP (x, 1)) == CONST_INT
		   && 0 != (new
			    = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
						   &offset))
		   && validate_change (object, loc,
				       plus_constant (gen_lowpart (ptr_mode,
								   new),
						      offset
						      + INTVAL (XEXP (x, 1))),
				       0))
		return 1;
#endif
	  else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
Richard Stallman committed
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
	    {
	      /* We know the second operand is a constant.  Unless the
		 first operand is a REG (which has been already checked),
		 it needs to be checked.  */
	      if (GET_CODE (XEXP (x, 0)) != REG)
		{
		  loc = &XEXP (x, 0);
		  goto restart;
		}
	      return 1;
	    }

3981
	  new_offset = plus_constant (XEXP (x, 1), offset);
Richard Stallman committed
3982

3983 3984 3985 3986
	  /* If the new constant is zero, try to replace the sum with just
	     the register.  */
	  if (new_offset == const0_rtx
	      && validate_change (object, loc, new, 0))
Richard Stallman committed
3987 3988
	    return 1;

3989 3990 3991 3992 3993
	  /* Next try to replace the register and new offset.
	     There are two changes to validate here and we can't assume that
	     in the case of old offset equals new just changing the register
	     will yield a valid insn.  In the interests of a little efficiency,
	     however, we only call validate change once (we don't queue up the
Mike Stump committed
3994
	     changes and then call apply_change_group).  */
3995 3996 3997 3998 3999 4000

	  old = XEXP (x, 0);
	  if (offset == 0
	      ? ! validate_change (object, &XEXP (x, 0), new, 0)
	      : (XEXP (x, 0) = new,
		 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
Richard Stallman committed
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
	    {
	      if (! extra_insns)
		{
		  XEXP (x, 0) = old;
		  return 0;
		}

	      /* Otherwise copy the new constant into a register and replace
		 constant with that register.  */
	      temp = gen_reg_rtx (Pmode);
4011
	      XEXP (x, 0) = new;
Richard Stallman committed
4012
	      if (validate_change (object, &XEXP (x, 1), temp, 0))
4013
		emit_insn_before (gen_move_insn (temp, new_offset), object);
Richard Stallman committed
4014 4015 4016 4017 4018 4019
	      else
		{
		  /* If that didn't work, replace this expression with a
		     register containing the sum.  */

		  XEXP (x, 0) = old;
4020
		  new = gen_rtx_PLUS (Pmode, new, new_offset);
Richard Stallman committed
4021 4022

		  start_sequence ();
4023
		  temp = force_operand (new, NULL_RTX);
Richard Stallman committed
4024 4025 4026
		  seq = get_insns ();
		  end_sequence ();

4027
		  emit_insn_before (seq, object);
Richard Stallman committed
4028 4029
		  if (! validate_change (object, loc, temp, 0)
		      && ! validate_replace_rtx (x, temp, object))
4030 4031 4032 4033
		    {
		      instantiate_virtual_regs_lossage (object);
		      return 1;
		    }
Richard Stallman committed
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
		}
	    }

	  return 1;
	}

      /* Fall through to generic two-operand expression case.  */
    case EXPR_LIST:
    case CALL:
    case COMPARE:
    case MINUS:
    case MULT:
    case DIV:      case UDIV:
    case MOD:      case UMOD:
    case AND:      case IOR:      case XOR:
4049 4050
    case ROTATERT: case ROTATE:
    case ASHIFTRT: case LSHIFTRT: case ASHIFT:
Richard Stallman committed
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
    case NE:       case EQ:
    case GE:       case GT:       case GEU:    case GTU:
    case LE:       case LT:       case LEU:    case LTU:
      if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
	instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
      loc = &XEXP (x, 0);
      goto restart;

    case MEM:
      /* Most cases of MEM that convert to valid addresses have already been
4061
	 handled by our scan of decls.  The only special handling we
Richard Stallman committed
4062
	 need here is to make a copy of the rtx to ensure it isn't being
Kazu Hirata committed
4063
	 shared if we have to change it to a pseudo.
Richard Stallman committed
4064 4065 4066 4067

	 If the rtx is a simple reference to an address via a virtual register,
	 it can potentially be shared.  In such cases, first try to make it
	 a valid address, which can also be shared.  Otherwise, copy it and
Kazu Hirata committed
4068
	 proceed normally.
Richard Stallman committed
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078

	 First check for common cases that need no processing.  These are
	 usually due to instantiation already being done on a previous instance
	 of a shared rtx.  */

      temp = XEXP (x, 0);
      if (CONSTANT_ADDRESS_P (temp)
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	  || temp == arg_pointer_rtx
#endif
4079 4080 4081
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	  || temp == hard_frame_pointer_rtx
#endif
Richard Stallman committed
4082 4083 4084 4085 4086 4087
	  || temp == frame_pointer_rtx)
	return 1;

      if (GET_CODE (temp) == PLUS
	  && CONSTANT_ADDRESS_P (XEXP (temp, 1))
	  && (XEXP (temp, 0) == frame_pointer_rtx
4088 4089 4090
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	      || XEXP (temp, 0) == hard_frame_pointer_rtx
#endif
Richard Stallman committed
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	      || XEXP (temp, 0) == arg_pointer_rtx
#endif
	      ))
	return 1;

      if (temp == virtual_stack_vars_rtx
	  || temp == virtual_incoming_args_rtx
	  || (GET_CODE (temp) == PLUS
	      && CONSTANT_ADDRESS_P (XEXP (temp, 1))
	      && (XEXP (temp, 0) == virtual_stack_vars_rtx
		  || XEXP (temp, 0) == virtual_incoming_args_rtx)))
	{
	  /* This MEM may be shared.  If the substitution can be done without
	     the need to generate new pseudos, we want to do it in place
	     so all copies of the shared rtx benefit.  The call below will
	     only make substitutions if the resulting address is still
	     valid.

	     Note that we cannot pass X as the object in the recursive call
	     since the insn being processed may not allow all valid
4112 4113 4114
	     addresses.  However, if we were not passed on object, we can
	     only modify X without copying it if X will have a valid
	     address.
Richard Stallman committed
4115

4116 4117 4118
	     ??? Also note that this can still lose if OBJECT is an insn that
	     has less restrictions on an address that some other insn.
	     In that case, we will modify the shared address.  This case
4119 4120 4121
	     doesn't seem very likely, though.  One case where this could
	     happen is in the case of a USE or CLOBBER reference, but we
	     take care of that below.  */
4122 4123 4124

	  if (instantiate_virtual_regs_1 (&XEXP (x, 0),
					  object ? object : x, 0))
Richard Stallman committed
4125 4126 4127 4128 4129 4130 4131 4132 4133
	    return 1;

	  /* Otherwise make a copy and process that copy.  We copy the entire
	     RTL expression since it might be a PLUS which could also be
	     shared.  */
	  *loc = x = copy_rtx (x);
	}

      /* Fall through to generic unary operation case.  */
4134
    case PREFETCH:
Richard Stallman committed
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
    case SUBREG:
    case STRICT_LOW_PART:
    case NEG:          case NOT:
    case PRE_DEC:      case PRE_INC:      case POST_DEC:    case POST_INC:
    case SIGN_EXTEND:  case ZERO_EXTEND:
    case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
    case FLOAT:        case FIX:
    case UNSIGNED_FIX: case UNSIGNED_FLOAT:
    case ABS:
    case SQRT:
    case FFS:
Richard Henderson committed
4146 4147
    case CLZ:          case CTZ:
    case POPCOUNT:     case PARITY:
Richard Stallman committed
4148 4149 4150 4151 4152
      /* These case either have just one operand or we know that we need not
	 check the rest of the operands.  */
      loc = &XEXP (x, 0);
      goto restart;

4153 4154 4155 4156
    case USE:
    case CLOBBER:
      /* If the operand is a MEM, see if the change is a valid MEM.  If not,
	 go ahead and make the invalid one, but do it to a copy.  For a REG,
Kazu Hirata committed
4157
	 just make the recursive call, since there's no chance of a problem.  */
4158 4159 4160 4161 4162

      if ((GET_CODE (XEXP (x, 0)) == MEM
	   && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
					  0))
	  || (GET_CODE (XEXP (x, 0)) == REG
4163
	      && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4164 4165 4166 4167 4168 4169
	return 1;

      XEXP (x, 0) = copy_rtx (XEXP (x, 0));
      loc = &XEXP (x, 0);
      goto restart;

Richard Stallman committed
4170 4171 4172
    case REG:
      /* Try to replace with a PLUS.  If that doesn't work, compute the sum
	 in front of this insn and substitute the temporary.  */
4173
      if ((new = instantiate_new_reg (x, &offset)) != 0)
Richard Stallman committed
4174 4175 4176 4177 4178 4179 4180 4181
	{
	  temp = plus_constant (new, offset);
	  if (!validate_change (object, loc, temp, 0))
	    {
	      if (! extra_insns)
		return 0;

	      start_sequence ();
4182
	      temp = force_operand (temp, NULL_RTX);
Richard Stallman committed
4183 4184 4185
	      seq = get_insns ();
	      end_sequence ();

4186
	      emit_insn_before (seq, object);
Richard Stallman committed
4187 4188
	      if (! validate_change (object, loc, temp, 0)
		  && ! validate_replace_rtx (x, temp, object))
4189
	        instantiate_virtual_regs_lossage (object);
Richard Stallman committed
4190 4191 4192 4193
	    }
	}

      return 1;
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207

    case ADDRESSOF:
      if (GET_CODE (XEXP (x, 0)) == REG)
	return 1;

      else if (GET_CODE (XEXP (x, 0)) == MEM)
	{
	  /* If we have a (addressof (mem ..)), do any instantiation inside
	     since we know we'll be making the inside valid when we finally
	     remove the ADDRESSOF.  */
	  instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
	  return 1;
	}
      break;
Kazu Hirata committed
4208

4209 4210
    default:
      break;
Richard Stallman committed
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
    }

  /* Scan all subexpressions.  */
  fmt = GET_RTX_FORMAT (code);
  for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
    if (*fmt == 'e')
      {
	if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
	  return 0;
      }
    else if (*fmt == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
					  extra_insns))
	  return 0;

  return 1;
}

/* Optimization: assuming this function does not receive nonlocal gotos,
   delete the handlers for such, as well as the insns to establish
   and disestablish them.  */

static void
delete_handlers ()
{
  rtx insn;
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      /* Delete the handler by turning off the flag that would
	 prevent jump_optimize from deleting it.
	 Also permit deletion of the nonlocal labels themselves
	 if nothing local refers to them.  */
      if (GET_CODE (insn) == CODE_LABEL)
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
	{
	  tree t, last_t;

	  LABEL_PRESERVE_P (insn) = 0;

	  /* Remove it from the nonlocal_label list, to avoid confusing
	     flow.  */
	  for (t = nonlocal_labels, last_t = 0; t;
	       last_t = t, t = TREE_CHAIN (t))
	    if (DECL_RTL (TREE_VALUE (t)) == insn)
	      break;
	  if (t)
	    {
	      if (! last_t)
		nonlocal_labels = TREE_CHAIN (nonlocal_labels);
	      else
		TREE_CHAIN (last_t) = TREE_CHAIN (t);
	    }
	}
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
      if (GET_CODE (insn) == INSN)
	{
	  int can_delete = 0;
	  rtx t;
	  for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
	    if (reg_mentioned_p (t, PATTERN (insn)))
	      {
		can_delete = 1;
		break;
	      }
	  if (can_delete
4275 4276
	      || (nonlocal_goto_stack_level != 0
		  && reg_mentioned_p (nonlocal_goto_stack_level,
4277
				      PATTERN (insn))))
4278
	    delete_related_insns (insn);
4279
	}
Richard Stallman committed
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
    }
}

/* Return the first insn following those generated by `assign_parms'.  */

rtx
get_first_nonparm_insn ()
{
  if (last_parm_insn)
    return NEXT_INSN (last_parm_insn);
  return get_insns ();
}

4293 4294 4295 4296
/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
   This means a type for which function calls must pass an address to the
   function or get an address back from the function.
   EXP may be a type node or an expression (whose type is tested).  */
Richard Stallman committed
4297 4298 4299 4300 4301

int
aggregate_value_p (exp)
     tree exp;
{
4302 4303
  int i, regno, nregs;
  rtx reg;
4304 4305

  tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4306

4307 4308
  if (TREE_CODE (type) == VOID_TYPE)
    return 0;
4309
  if (RETURN_IN_MEMORY (type))
Richard Stallman committed
4310
    return 1;
Jeff Law committed
4311
  /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4312 4313 4314
     and thus can't be returned in registers.  */
  if (TREE_ADDRESSABLE (type))
    return 1;
4315
  if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
Richard Stallman committed
4316
    return 1;
4317 4318
  /* Make sure we have suitable call-clobbered regs to return
     the value in; if not, we must return it in memory.  */
4319
  reg = hard_function_value (type, 0, 0);
4320 4321 4322 4323 4324 4325

  /* If we have something other than a REG (e.g. a PARALLEL), then assume
     it is OK.  */
  if (GET_CODE (reg) != REG)
    return 0;

4326
  regno = REGNO (reg);
4327
  nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4328 4329 4330
  for (i = 0; i < nregs; i++)
    if (! call_used_regs[regno + i])
      return 1;
Richard Stallman committed
4331 4332 4333 4334 4335
  return 0;
}

/* Assign RTL expressions to the function's parameters.
   This may involve copying them into registers and using
4336
   those registers as the RTL for them.  */
Richard Stallman committed
4337 4338

void
4339
assign_parms (fndecl)
Richard Stallman committed
4340 4341
     tree fndecl;
{
4342
  tree parm;
Richard Stallman committed
4343 4344 4345 4346 4347 4348 4349 4350
  CUMULATIVE_ARGS args_so_far;
  /* Total space needed so far for args on the stack,
     given as a constant and a tree-expression.  */
  struct args_size stack_args_size;
  tree fntype = TREE_TYPE (fndecl);
  tree fnargs = DECL_ARGUMENTS (fndecl);
  /* This is used for the arg pointer when referring to stack args.  */
  rtx internal_arg_pointer;
Kazu Hirata committed
4351
  /* This is a dummy PARM_DECL that we used for the function result if
Richard Stallman committed
4352 4353
     the function returns a structure.  */
  tree function_result_decl = 0;
Kaveh R. Ghazi committed
4354
#ifdef SETUP_INCOMING_VARARGS
Richard Stallman committed
4355
  int varargs_setup = 0;
Kaveh R. Ghazi committed
4356
#endif
4357
  int reg_parm_stack_space = 0;
4358
  rtx conversion_insns = 0;
Richard Stallman committed
4359 4360 4361

  /* Nonzero if function takes extra anonymous args.
     This means the last named arg must be on the stack
Mike Stump committed
4362
     right before the anonymous ones.  */
Richard Stallman committed
4363 4364 4365 4366 4367
  int stdarg
    = (TYPE_ARG_TYPES (fntype) != 0
       && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
	   != void_type_node));

4368 4369
  current_function_stdarg = stdarg;

Richard Stallman committed
4370 4371 4372 4373 4374 4375 4376 4377 4378
  /* If the reg that the virtual arg pointer will be translated into is
     not a fixed reg or is the stack pointer, make a copy of the virtual
     arg pointer, and address parms via the copy.  The frame pointer is
     considered fixed even though it is not marked as such.

     The second time through, simply use ap to avoid generating rtx.  */

  if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
       || ! (fixed_regs[ARG_POINTER_REGNUM]
4379
	     || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
Richard Stallman committed
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
    internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
  else
    internal_arg_pointer = virtual_incoming_args_rtx;
  current_function_internal_arg_pointer = internal_arg_pointer;

  stack_args_size.constant = 0;
  stack_args_size.var = 0;

  /* If struct value address is treated as the first argument, make it so.  */
  if (aggregate_value_p (DECL_RESULT (fndecl))
      && ! current_function_returns_pcc_struct
      && struct_value_incoming_rtx == 0)
    {
4393
      tree type = build_pointer_type (TREE_TYPE (fntype));
Richard Stallman committed
4394

4395
      function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
Richard Stallman committed
4396 4397 4398 4399 4400

      DECL_ARG_TYPE (function_result_decl) = type;
      TREE_CHAIN (function_result_decl) = fnargs;
      fnargs = function_result_decl;
    }
Kazu Hirata committed
4401

4402
  max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4403
  parm_reg_stack_loc = (rtx *) ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
Richard Stallman committed
4404

4405 4406 4407 4408 4409 4410 4411 4412
#ifdef REG_PARM_STACK_SPACE
#ifdef MAYBE_REG_PARM_STACK_SPACE
  reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
#else
  reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
#endif
#endif

Richard Stallman committed
4413
#ifdef INIT_CUMULATIVE_INCOMING_ARGS
4414
  INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
Richard Stallman committed
4415
#else
4416
  INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl);
Richard Stallman committed
4417 4418 4419 4420 4421 4422 4423 4424
#endif

  /* We haven't yet found an argument that we must push and pretend the
     caller did.  */
  current_function_pretend_args_size = 0;

  for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
    {
4425 4426 4427 4428 4429 4430
      rtx entry_parm;
      rtx stack_parm;
      enum machine_mode promoted_mode, passed_mode;
      enum machine_mode nominal_mode, promoted_nominal_mode;
      int unsignedp;
      struct locate_and_pad_arg_data locate;
Richard Stallman committed
4431
      int passed_pointer = 0;
4432
      int did_conversion = 0;
Richard Stallman committed
4433
      tree passed_type = DECL_ARG_TYPE (parm);
4434
      tree nominal_type = TREE_TYPE (parm);
4435
      int last_named = 0, named_arg;
4436 4437
      int in_regs;
      int partial = 0;
Richard Stallman committed
4438

4439
      /* Set LAST_NAMED if this is last named arg before last
4440
	 anonymous args.  */
4441
      if (stdarg)
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
	{
	  tree tem;

	  for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
	    if (DECL_NAME (tem))
	      break;

	  if (tem == 0)
	    last_named = 1;
	}
4452 4453 4454
      /* Set NAMED_ARG if this arg should be treated as a named arg.  For
	 most machines, if this is a varargs/stdarg function, then we treat
	 the last named arg as if it were anonymous too.  */
4455
      named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
Richard Stallman committed
4456 4457 4458 4459 4460 4461 4462

      if (TREE_TYPE (parm) == error_mark_node
	  /* This can happen after weird syntax errors
	     or if an enum type is defined among the parms.  */
	  || TREE_CODE (parm) != PARM_DECL
	  || passed_type == NULL)
	{
4463 4464
	  SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
Richard Stallman committed
4465 4466 4467 4468 4469 4470 4471
	  TREE_USED (parm) = 1;
	  continue;
	}

      /* Find mode of arg as it is passed, and mode of arg
	 as it should be during execution of this function.  */
      passed_mode = TYPE_MODE (passed_type);
4472
      nominal_mode = TYPE_MODE (nominal_type);
Richard Stallman committed
4473

4474 4475 4476 4477
      /* If the parm's mode is VOID, its value doesn't matter,
	 and avoid the usual things like emit_move_insn that could crash.  */
      if (nominal_mode == VOIDmode)
	{
4478 4479
	  SET_DECL_RTL (parm, const0_rtx);
	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4480 4481 4482
	  continue;
	}

4483 4484 4485 4486
      /* If the parm is to be passed as a transparent union, use the
	 type of the first field for the tests below.  We have already
	 verified that the modes are the same.  */
      if (DECL_TRANSPARENT_UNION (parm)
4487 4488
	  || (TREE_CODE (passed_type) == UNION_TYPE
	      && TYPE_TRANSPARENT_UNION (passed_type)))
4489 4490
	passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));

4491 4492 4493 4494 4495 4496 4497
      /* See if this arg was passed by invisible reference.  It is if
	 it is an object whose size depends on the contents of the
	 object itself or if the machine requires these objects be passed
	 that way.  */

      if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
	   && contains_placeholder_p (TYPE_SIZE (passed_type)))
4498
	  || TREE_ADDRESSABLE (passed_type)
Richard Stallman committed
4499
#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4500
	  || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4501
					     passed_type, named_arg)
4502 4503
#endif
	  )
Richard Stallman committed
4504
	{
4505
	  passed_type = nominal_type = build_pointer_type (passed_type);
Richard Stallman committed
4506 4507 4508
	  passed_pointer = 1;
	  passed_mode = nominal_mode = Pmode;
	}
4509 4510 4511 4512 4513 4514 4515 4516 4517
      /* See if the frontend wants to pass this by invisible reference.  */
      else if (passed_type != nominal_type
	       && POINTER_TYPE_P (passed_type)
	       && TREE_TYPE (passed_type) == nominal_type)
	{
	  nominal_type = passed_type;
	  passed_pointer = 1;
	  passed_mode = nominal_mode = Pmode;
	}
Richard Stallman committed
4518

4519 4520 4521 4522
      promoted_mode = passed_mode;

#ifdef PROMOTE_FUNCTION_ARGS
      /* Compute the mode in which the arg is actually extended to.  */
4523
      unsignedp = TREE_UNSIGNED (passed_type);
4524
      promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4525 4526
#endif

Richard Stallman committed
4527 4528 4529
      /* Let machine desc say which reg (if any) the parm arrives in.
	 0 means it arrives on the stack.  */
#ifdef FUNCTION_INCOMING_ARG
4530
      entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4531
					  passed_type, named_arg);
Richard Stallman committed
4532
#else
4533
      entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4534
				 passed_type, named_arg);
Richard Stallman committed
4535 4536
#endif

4537 4538
      if (entry_parm == 0)
	promoted_mode = passed_mode;
4539

Richard Stallman committed
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
#ifdef SETUP_INCOMING_VARARGS
      /* If this is the last named parameter, do any required setup for
	 varargs or stdargs.  We need to know about the case of this being an
	 addressable type, in which case we skip the registers it
	 would have arrived in.

	 For stdargs, LAST_NAMED will be set for two parameters, the one that
	 is actually the last named, and the dummy parameter.  We only
	 want to do this action once.

	 Also, indicate when RTL generation is to be suppressed.  */
      if (last_named && !varargs_setup)
	{
4553
	  SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4554
				  current_function_pretend_args_size, 0);
Richard Stallman committed
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
	  varargs_setup = 1;
	}
#endif

      /* Determine parm's home in the stack,
	 in case it arrives in the stack or we should pretend it did.

	 Compute the stack position and rtx where the argument arrives
	 and its size.

	 There is one complexity here:  If this was a parameter that would
	 have been passed in registers, but wasn't only because it is
	 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
	 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
	 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
	 0 as it was the previous time.  */
4571
      in_regs = entry_parm != 0;
Richard Stallman committed
4572
#ifdef STACK_PARMS_IN_REG_PARM_AREA
4573 4574 4575 4576 4577 4578 4579
      in_regs = 1;
#endif
      if (!in_regs && !named_arg)
	{
	  int pretend_named = PRETEND_OUTGOING_VARARGS_NAMED;
	  if (pretend_named)
	    {
Richard Stallman committed
4580
#ifdef FUNCTION_INCOMING_ARG
4581 4582 4583
	      in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
					       passed_type,
					       pretend_named) != 0;
Richard Stallman committed
4584
#else
4585 4586 4587
	      in_regs = FUNCTION_ARG (args_so_far, promoted_mode,
				      passed_type,
				      pretend_named) != 0;
Richard Stallman committed
4588
#endif
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	    }
	}

      /* If this parameter was passed both in registers and in the stack,
	 use the copy on the stack.  */
      if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
	entry_parm = 0;

#ifdef FUNCTION_ARG_PARTIAL_NREGS
      if (entry_parm)
	partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
					      passed_type, named_arg);
Richard Stallman committed
4601
#endif
4602 4603 4604 4605 4606

      memset (&locate, 0, sizeof (locate));
      locate_and_pad_parm (promoted_mode, passed_type, in_regs,
			   entry_parm ? partial : 0, fndecl,
			   &stack_args_size, &locate);
Richard Stallman committed
4607

4608
      {
4609 4610 4611 4612 4613 4614 4615 4616
	rtx offset_rtx;

	/* If we're passing this arg using a reg, make its stack home
	   the aligned stack slot.  */
	if (entry_parm)
	  offset_rtx = ARGS_SIZE_RTX (locate.slot_offset);
	else
	  offset_rtx = ARGS_SIZE_RTX (locate.offset);
4617 4618 4619 4620 4621 4622 4623 4624 4625

	if (offset_rtx == const0_rtx)
	  stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
	else
	  stack_parm = gen_rtx_MEM (promoted_mode,
				    gen_rtx_PLUS (Pmode,
						  internal_arg_pointer,
						  offset_rtx));

4626
	set_mem_attributes (stack_parm, parm, 1);
4627 4628 4629

	/* Set also REG_ATTRS if parameter was passed in a register.  */
	if (entry_parm)
4630
	  set_reg_attrs_for_parm (entry_parm, stack_parm);
4631
      }
Richard Stallman committed
4632 4633 4634 4635 4636 4637 4638 4639 4640

      /* If this parm was passed part in regs and part in memory,
	 pretend it arrived entirely in memory
	 by pushing the register-part onto the stack.

	 In the special case of a DImode or DFmode that is split,
	 we could put it together in a pseudoreg directly,
	 but for now that's not worth bothering with.  */

4641
      if (partial)
Richard Stallman committed
4642
	{
4643 4644 4645 4646 4647
#ifndef MAYBE_REG_PARM_STACK_SPACE
	  /* When REG_PARM_STACK_SPACE is nonzero, stack space for
	     split parameters was allocated by our caller, so we
	     won't be pushing it in the prolog.  */
	  if (reg_parm_stack_space)
4648
#endif
4649 4650 4651 4652
	  current_function_pretend_args_size
	    = (((partial * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
	       / (PARM_BOUNDARY / BITS_PER_UNIT)
	       * (PARM_BOUNDARY / BITS_PER_UNIT));
Richard Stallman committed
4653

4654 4655 4656 4657 4658
	  /* Handle calls that pass values in multiple non-contiguous
	     locations.  The Irix 6 ABI has examples of this.  */
	  if (GET_CODE (entry_parm) == PARALLEL)
	    emit_group_store (validize_mem (stack_parm), entry_parm,
			      int_size_in_bytes (TREE_TYPE (parm)));
Kazu Hirata committed
4659

4660 4661 4662
	  else
	    move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
				 partial, int_size_in_bytes (TREE_TYPE (parm)));
4663

4664
	  entry_parm = stack_parm;
Richard Stallman committed
4665 4666 4667 4668 4669 4670 4671 4672
	}

      /* If we didn't decide this parm came in a register,
	 by default it came on the stack.  */
      if (entry_parm == 0)
	entry_parm = stack_parm;

      /* Record permanently how this parm was passed.  */
4673
      DECL_INCOMING_RTL (parm) = entry_parm;
Richard Stallman committed
4674 4675 4676 4677 4678 4679

      /* If there is actually space on the stack for this parm,
	 count it in stack_args_size; otherwise set stack_parm to 0
	 to indicate there is no preallocated stack slot for the parm.  */

      if (entry_parm == stack_parm
Kazu Hirata committed
4680 4681
	  || (GET_CODE (entry_parm) == PARALLEL
	      && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
Jim Wilson committed
4682
#if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
Richard Stallman committed
4683
	  /* On some machines, even if a parm value arrives in a register
Jim Wilson committed
4684 4685 4686 4687 4688
	     there is still an (uninitialized) stack slot allocated for it.

	     ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
	     whether this parameter already has a stack slot allocated,
	     because an arg block exists only if current_function_args_size
Richard Kenner committed
4689
	     is larger than some threshold, and we haven't calculated that
Jim Wilson committed
4690 4691
	     yet.  So, for now, we just assume that stack slots never exist
	     in this case.  */
Richard Stallman committed
4692 4693 4694 4695
	  || REG_PARM_STACK_SPACE (fndecl) > 0
#endif
	  )
	{
4696 4697 4698
	  stack_args_size.constant += locate.size.constant;
	  if (locate.size.var)
	    ADD_PARM_SIZE (stack_args_size, locate.size.var);
Richard Stallman committed
4699 4700 4701 4702 4703 4704 4705
	}
      else
	/* No stack slot was pushed for this parm.  */
	stack_parm = 0;

      /* Update info on where next arg arrives in registers.  */

4706
      FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4707
			    passed_type, named_arg);
Richard Stallman committed
4708

4709 4710 4711 4712
      /* If we can't trust the parm stack slot to be aligned enough
	 for its ultimate type, don't use that slot after entry.
	 We'll make another stack slot, if we need one.  */
      {
4713
	unsigned int thisparm_boundary
4714
	  = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4715 4716 4717 4718 4719

	if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
	  stack_parm = 0;
      }

4720 4721
      /* If parm was passed in memory, and we need to convert it on entry,
	 don't store it back in that same slot.  */
4722
      if (entry_parm == stack_parm
4723 4724 4725
	  && nominal_mode != BLKmode && nominal_mode != passed_mode)
	stack_parm = 0;

4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
      /* When an argument is passed in multiple locations, we can't
	 make use of this information, but we can save some copying if
	 the whole argument is passed in a single register.  */
      if (GET_CODE (entry_parm) == PARALLEL
	  && nominal_mode != BLKmode && passed_mode != BLKmode)
	{
	  int i, len = XVECLEN (entry_parm, 0);

	  for (i = 0; i < len; i++)
	    if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
		&& GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
		&& (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
		    == passed_mode)
4739
		&& INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4740 4741
	      {
		entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4742
		DECL_INCOMING_RTL (parm) = entry_parm;
4743 4744 4745 4746
		break;
	      }
	}

Richard Stallman committed
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
      /* ENTRY_PARM is an RTX for the parameter as it arrives,
	 in the mode in which it arrives.
	 STACK_PARM is an RTX for a stack slot where the parameter can live
	 during the function (in case we want to put it there).
	 STACK_PARM is 0 if no stack slot was pushed for it.

	 Now output code if necessary to convert ENTRY_PARM to
	 the type in which this function declares it,
	 and store that result in an appropriate place,
	 which may be a pseudo reg, may be STACK_PARM,
	 or may be a local stack slot if STACK_PARM is 0.

	 Set DECL_RTL to that place.  */

4761
      if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
Richard Stallman committed
4762
	{
4763 4764 4765 4766 4767
	  /* If a BLKmode arrives in registers, copy it to a stack slot.
	     Handle calls that pass values in multiple non-contiguous
	     locations.  The Irix 6 ABI has examples of this.  */
	  if (GET_CODE (entry_parm) == REG
	      || GET_CODE (entry_parm) == PARALLEL)
Richard Stallman committed
4768
	    {
4769 4770 4771
	      int size_stored
		= CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
			      UNITS_PER_WORD);
Richard Stallman committed
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781

	      /* Note that we will be storing an integral number of words.
		 So we have to be careful to ensure that we allocate an
		 integral number of words.  We do this below in the
		 assign_stack_local if space was not allocated in the argument
		 list.  If it was, this will not work if PARM_BOUNDARY is not
		 a multiple of BITS_PER_WORD.  It isn't clear how to fix this
		 if it becomes a problem.  */

	      if (stack_parm == 0)
4782 4783
		{
		  stack_parm
4784 4785
		    = assign_stack_local (GET_MODE (entry_parm),
					  size_stored, 0);
4786
		  set_mem_attributes (stack_parm, parm, 1);
4787 4788
		}

Richard Stallman committed
4789 4790 4791
	      else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
		abort ();

4792 4793 4794
	      /* Handle calls that pass values in multiple non-contiguous
		 locations.  The Irix 6 ABI has examples of this.  */
	      if (GET_CODE (entry_parm) == PARALLEL)
4795
		emit_group_store (validize_mem (stack_parm), entry_parm,
4796
				  int_size_in_bytes (TREE_TYPE (parm)));
4797 4798 4799 4800 4801
	      else
		move_block_from_reg (REGNO (entry_parm),
				     validize_mem (stack_parm),
				     size_stored / UNITS_PER_WORD,
				     int_size_in_bytes (TREE_TYPE (parm)));
Richard Stallman committed
4802
	    }
4803
	  SET_DECL_RTL (parm, stack_parm);
Richard Stallman committed
4804
	}
4805
      else if (! ((! optimize
4806
		   && ! DECL_REGISTER (parm))
Richard Stallman committed
4807 4808 4809 4810 4811 4812 4813 4814 4815
		  || TREE_SIDE_EFFECTS (parm)
		  /* If -ffloat-store specified, don't put explicit
		     float variables into registers.  */
		  || (flag_float_store
		      && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
	       /* Always assign pseudo to structure return or item passed
		  by invisible reference.  */
	       || passed_pointer || parm == function_result_decl)
	{
4816 4817 4818
	  /* Store the parm in a pseudoregister during the function, but we
	     may need to do it in a wider mode.  */

4819
	  rtx parmreg;
4820
	  unsigned int regno, regnoi = 0, regnor = 0;
4821 4822

	  unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4823

4824 4825
	  promoted_nominal_mode
	    = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
Richard Stallman committed
4826

4827
	  parmreg = gen_reg_rtx (promoted_nominal_mode);
4828
	  mark_user_reg (parmreg);
Richard Stallman committed
4829 4830 4831 4832 4833

	  /* If this was an item that we received a pointer to, set DECL_RTL
	     appropriately.  */
	  if (passed_pointer)
	    {
Jan Hubicka committed
4834
	      rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4835
				   parmreg);
Jan Hubicka committed
4836 4837
	      set_mem_attributes (x, parm, 1);
	      SET_DECL_RTL (parm, x);
Richard Stallman committed
4838 4839
	    }
	  else
4840
	    {
4841
	      SET_DECL_RTL (parm, parmreg);
4842 4843
	      maybe_set_unchanging (DECL_RTL (parm), parm);
	    }
4844

Richard Stallman committed
4845
	  /* Copy the value into the register.  */
4846 4847
	  if (nominal_mode != passed_mode
	      || promoted_nominal_mode != promoted_mode)
4848
	    {
4849
	      int save_tree_used;
4850
	      /* ENTRY_PARM has been converted to PROMOTED_MODE, its
Kazu Hirata committed
4851
		 mode, by the caller.  We now have to convert it to
4852
		 NOMINAL_MODE, if different.  However, PARMREG may be in
Jeff Law committed
4853
		 a different mode than NOMINAL_MODE if it is being stored
4854 4855 4856
		 promoted.

		 If ENTRY_PARM is a hard register, it might be in a register
4857 4858 4859 4860
		 not valid for operating in its mode (e.g., an odd-numbered
		 register for a DFmode).  In that case, moves are the only
		 thing valid, so we can't do a convert from there.  This
		 occurs when the calling sequence allow such misaligned
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
		 usages.

		 In addition, the conversion may involve a call, which could
		 clobber parameters which haven't been copied to pseudo
		 registers yet.  Therefore, we must first copy the parm to
		 a pseudo reg here, and save the conversion until after all
		 parameters have been moved.  */

	      rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));

	      emit_move_insn (tempreg, validize_mem (entry_parm));

	      push_to_sequence (conversion_insns);
4874 4875
	      tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);

4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886
	      if (GET_CODE (tempreg) == SUBREG
		  && GET_MODE (tempreg) == nominal_mode
		  && GET_CODE (SUBREG_REG (tempreg)) == REG
		  && nominal_mode == passed_mode
		  && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
		  && GET_MODE_SIZE (GET_MODE (tempreg))
		     < GET_MODE_SIZE (GET_MODE (entry_parm)))
		{
		  /* The argument is already sign/zero extended, so note it
		     into the subreg.  */
		  SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4887
		  SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4888 4889
		}

4890 4891
	      /* TREE_USED gets set erroneously during expand_assignment.  */
	      save_tree_used = TREE_USED (parm);
4892 4893
	      expand_assignment (parm,
				 make_tree (nominal_type, tempreg), 0, 0);
4894
	      TREE_USED (parm) = save_tree_used;
4895
	      conversion_insns = get_insns ();
4896
	      did_conversion = 1;
4897
	      end_sequence ();
4898
	    }
Richard Stallman committed
4899 4900 4901
	  else
	    emit_move_insn (parmreg, validize_mem (entry_parm));

Richard Stallman committed
4902 4903
	  /* If we were passed a pointer but the actual value
	     can safely live in a register, put it in one.  */
4904
	  if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4905 4906 4907 4908 4909 4910 4911 4912 4913
	      /* If by-reference argument was promoted, demote it.  */
	      && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
		  || ! ((! optimize
			 && ! DECL_REGISTER (parm))
			|| TREE_SIDE_EFFECTS (parm)
			/* If -ffloat-store specified, don't put explicit
			   float variables into registers.  */
			|| (flag_float_store
			    && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
Richard Stallman committed
4914
	    {
4915 4916 4917
	      /* We can't use nominal_mode, because it will have been set to
		 Pmode above.  We must use the actual mode of the parm.  */
	      parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4918
	      mark_user_reg (parmreg);
4919 4920 4921
	      if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
		{
		  rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4922
		  int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4923 4924
		  push_to_sequence (conversion_insns);
		  emit_move_insn (tempreg, DECL_RTL (parm));
4925
		  SET_DECL_RTL (parm,
4926
				convert_to_mode (GET_MODE (parmreg),
4927 4928
						 tempreg,
						 unsigned_p));
4929 4930 4931 4932 4933 4934 4935
		  emit_move_insn (parmreg, DECL_RTL (parm));
		  conversion_insns = get_insns();
		  did_conversion = 1;
		  end_sequence ();
		}
	      else
		emit_move_insn (parmreg, DECL_RTL (parm));
4936
	      SET_DECL_RTL (parm, parmreg);
4937 4938 4939
	      /* STACK_PARM is the pointer, not the parm, and PARMREG is
		 now the parm.  */
	      stack_parm = 0;
Richard Stallman committed
4940
	    }
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
#ifdef FUNCTION_ARG_CALLEE_COPIES
	  /* If we are passed an arg by reference and it is our responsibility
	     to make a copy, do it now.
	     PASSED_TYPE and PASSED mode now refer to the pointer, not the
	     original argument, so we must recreate them in the call to
	     FUNCTION_ARG_CALLEE_COPIES.  */
	  /* ??? Later add code to handle the case that if the argument isn't
	     modified, don't do the copy.  */

	  else if (passed_pointer
		   && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
						  TYPE_MODE (DECL_ARG_TYPE (parm)),
						  DECL_ARG_TYPE (parm),
4954
						  named_arg)
4955
		   && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4956 4957 4958 4959 4960 4961 4962 4963 4964
	    {
	      rtx copy;
	      tree type = DECL_ARG_TYPE (parm);

	      /* This sequence may involve a library call perhaps clobbering
		 registers that haven't been copied to pseudos yet.  */

	      push_to_sequence (conversion_insns);

4965
	      if (!COMPLETE_TYPE_P (type)
4966
		  || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4967
		/* This is a variable sized object.  */
4968 4969 4970 4971
		copy = gen_rtx_MEM (BLKmode,
				    allocate_dynamic_stack_space
				    (expr_size (parm), NULL_RTX,
				     TYPE_ALIGN (type)));
4972
	      else
4973 4974
		copy = assign_stack_temp (TYPE_MODE (type),
					  int_size_in_bytes (type), 1);
4975
	      set_mem_attributes (copy, parm, 1);
4976 4977 4978 4979

	      store_expr (parm, copy, 0);
	      emit_move_insn (parmreg, XEXP (copy, 0));
	      conversion_insns = get_insns ();
4980
	      did_conversion = 1;
4981 4982 4983
	      end_sequence ();
	    }
#endif /* FUNCTION_ARG_CALLEE_COPIES */
Richard Stallman committed
4984

Richard Stallman committed
4985
	  /* In any case, record the parm's desired stack location
Kazu Hirata committed
4986
	     in case we later discover it must live in the stack.
4987 4988 4989 4990 4991 4992 4993 4994 4995

	     If it is a COMPLEX value, store the stack location for both
	     halves.  */

	  if (GET_CODE (parmreg) == CONCAT)
	    regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
	  else
	    regno = REGNO (parmreg);

4996
	  if (regno >= max_parm_reg)
Richard Stallman committed
4997 4998
	    {
	      rtx *new;
4999
	      int old_max_parm_reg = max_parm_reg;
5000

5001 5002 5003 5004
	      /* It's slow to expand this one register at a time,
		 but it's also rare and we need max_parm_reg to be
		 precisely correct.  */
	      max_parm_reg = regno + 1;
5005
	      new = (rtx *) ggc_realloc (parm_reg_stack_loc,
5006
				      max_parm_reg * sizeof (rtx));
5007
	      memset ((char *) (new + old_max_parm_reg), 0,
5008
		     (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
Richard Stallman committed
5009 5010
	      parm_reg_stack_loc = new;
	    }
5011 5012 5013 5014 5015

	  if (GET_CODE (parmreg) == CONCAT)
	    {
	      enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));

5016 5017 5018
	      regnor = REGNO (gen_realpart (submode, parmreg));
	      regnoi = REGNO (gen_imagpart (submode, parmreg));

5019 5020
	      if (stack_parm != 0)
		{
5021
		  parm_reg_stack_loc[regnor]
5022
		    = gen_realpart (submode, stack_parm);
5023
		  parm_reg_stack_loc[regnoi]
5024
		    = gen_imagpart (submode, stack_parm);
5025 5026 5027
		}
	      else
		{
5028 5029
		  parm_reg_stack_loc[regnor] = 0;
		  parm_reg_stack_loc[regnoi] = 0;
5030
		}
5031 5032 5033
	    }
	  else
	    parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
Richard Stallman committed
5034 5035 5036 5037 5038 5039 5040 5041

	  /* Mark the register as eliminable if we did no conversion
	     and it was copied from memory at a fixed offset,
	     and the arg pointer was not copied to a pseudo-reg.
	     If the arg pointer is a pseudo reg or the offset formed
	     an invalid address, such memory-equivalences
	     as we make here would screw up life analysis for it.  */
	  if (nominal_mode == passed_mode
5042
	      && ! did_conversion
5043 5044
	      && stack_parm != 0
	      && GET_CODE (stack_parm) == MEM
5045
	      && locate.offset.var == 0
Richard Stallman committed
5046
	      && reg_mentioned_p (virtual_incoming_args_rtx,
5047
				  XEXP (stack_parm, 0)))
5048 5049
	    {
	      rtx linsn = get_last_insn ();
5050
	      rtx sinsn, set;
5051 5052 5053

	      /* Mark complex types separately.  */
	      if (GET_CODE (parmreg) == CONCAT)
5054 5055 5056 5057 5058 5059 5060 5061 5062
		/* Scan backwards for the set of the real and
		   imaginary parts.  */
		for (sinsn = linsn; sinsn != 0;
		     sinsn = prev_nonnote_insn (sinsn))
		  {
		    set = single_set (sinsn);
		    if (set != 0
			&& SET_DEST (set) == regno_reg_rtx [regnoi])
		      REG_NOTES (sinsn)
5063 5064 5065
			= gen_rtx_EXPR_LIST (REG_EQUIV,
					     parm_reg_stack_loc[regnoi],
					     REG_NOTES (sinsn));
5066 5067 5068
		    else if (set != 0
			     && SET_DEST (set) == regno_reg_rtx [regnor])
		      REG_NOTES (sinsn)
5069 5070 5071
			= gen_rtx_EXPR_LIST (REG_EQUIV,
					     parm_reg_stack_loc[regnor],
					     REG_NOTES (sinsn));
5072 5073 5074
		  }
	      else if ((set = single_set (linsn)) != 0
		       && SET_DEST (set) == parmreg)
Kazu Hirata committed
5075
		REG_NOTES (linsn)
5076 5077
		  = gen_rtx_EXPR_LIST (REG_EQUIV,
				       stack_parm, REG_NOTES (linsn));
5078
	    }
Richard Stallman committed
5079 5080

	  /* For pointer data type, suggest pointer register.  */
5081
	  if (POINTER_TYPE_P (TREE_TYPE (parm)))
5082
	    mark_reg_pointer (parmreg,
5083 5084
			      TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));

5085 5086
	  /* If something wants our address, try to use ADDRESSOF.  */
	  if (TREE_ADDRESSABLE (parm))
5087 5088 5089
	    {
	      /* If we end up putting something into the stack,
		 fixup_var_refs_insns will need to make a pass over
5090
		 all the instructions.  It looks through the pending
5091 5092 5093 5094 5095
		 sequences -- but it can't see the ones in the
		 CONVERSION_INSNS, if they're not on the sequence
		 stack.  So, we go back to that sequence, just so that
		 the fixups will happen.  */
	      push_to_sequence (conversion_insns);
5096
	      put_var_into_stack (parm, /*rescan=*/true);
5097 5098 5099
	      conversion_insns = get_insns ();
	      end_sequence ();
	    }
Richard Stallman committed
5100 5101 5102 5103 5104 5105
	}
      else
	{
	  /* Value must be stored in the stack slot STACK_PARM
	     during function execution.  */

5106
	  if (promoted_mode != nominal_mode)
5107
	    {
Kazu Hirata committed
5108
	      /* Conversion is required.  */
5109 5110 5111
	      rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));

	      emit_move_insn (tempreg, validize_mem (entry_parm));
5112

5113 5114
	      push_to_sequence (conversion_insns);
	      entry_parm = convert_to_mode (nominal_mode, tempreg,
5115
					    TREE_UNSIGNED (TREE_TYPE (parm)));
5116
	      if (stack_parm)
5117 5118 5119
		/* ??? This may need a big-endian conversion on sparc64.  */
		stack_parm = adjust_address (stack_parm, nominal_mode, 0);

5120
	      conversion_insns = get_insns ();
5121
	      did_conversion = 1;
5122
	      end_sequence ();
5123
	    }
Richard Stallman committed
5124 5125 5126 5127

	  if (entry_parm != stack_parm)
	    {
	      if (stack_parm == 0)
5128 5129 5130
		{
		  stack_parm
		    = assign_stack_local (GET_MODE (entry_parm),
5131 5132
					  GET_MODE_SIZE (GET_MODE (entry_parm)),
					  0);
5133
		  set_mem_attributes (stack_parm, parm, 1);
5134 5135
		}

5136
	      if (promoted_mode != nominal_mode)
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
		{
		  push_to_sequence (conversion_insns);
		  emit_move_insn (validize_mem (stack_parm),
				  validize_mem (entry_parm));
		  conversion_insns = get_insns ();
		  end_sequence ();
		}
	      else
		emit_move_insn (validize_mem (stack_parm),
				validize_mem (entry_parm));
Richard Stallman committed
5147 5148
	    }

5149
	  SET_DECL_RTL (parm, stack_parm);
Richard Stallman committed
5150 5151 5152
	}
    }

5153 5154
  /* Output all parameter conversion instructions (possibly including calls)
     now that all parameters have been copied out of hard registers.  */
5155
  emit_insn (conversion_insns);
5156

5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
  /* If we are receiving a struct value address as the first argument, set up
     the RTL for the function result. As this might require code to convert
     the transmitted address to Pmode, we do this here to ensure that possible
     preliminary conversions of the address have been emitted already.  */
  if (function_result_decl)
    {
      tree result = DECL_RESULT (fndecl);
      rtx addr = DECL_RTL (function_result_decl);
      rtx x;
      
#ifdef POINTERS_EXTEND_UNSIGNED
      if (GET_MODE (addr) != Pmode)
	addr = convert_memory_address (Pmode, addr);
#endif
      
      x = gen_rtx_MEM (DECL_MODE (result), addr);
      set_mem_attributes (x, result, 1);
      SET_DECL_RTL (result, x);
    }

Richard Stallman committed
5177 5178 5179 5180 5181 5182 5183 5184
  last_parm_insn = get_last_insn ();

  current_function_args_size = stack_args_size.constant;

  /* Adjust function incoming argument size for alignment and
     minimum length.  */

#ifdef REG_PARM_STACK_SPACE
Jim Wilson committed
5185
#ifndef MAYBE_REG_PARM_STACK_SPACE
Richard Stallman committed
5186 5187 5188
  current_function_args_size = MAX (current_function_args_size,
				    REG_PARM_STACK_SPACE (fndecl));
#endif
Jim Wilson committed
5189
#endif
Richard Stallman committed
5190

5191 5192 5193 5194 5195 5196
#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)

  current_function_args_size
    = ((current_function_args_size + STACK_BYTES - 1)
       / STACK_BYTES) * STACK_BYTES;

Richard Stallman committed
5197 5198
#ifdef ARGS_GROW_DOWNWARD
  current_function_arg_offset_rtx
5199
    = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
Kazu Hirata committed
5200 5201
       : expand_expr (size_diffop (stack_args_size.var,
				   size_int (-stack_args_size.constant)),
5202
		      NULL_RTX, VOIDmode, 0));
Richard Stallman committed
5203 5204 5205 5206 5207 5208 5209
#else
  current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
#endif

  /* See how many bytes, if any, of its args a function should try to pop
     on return.  */

5210
  current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
Richard Stallman committed
5211 5212
						 current_function_args_size);

5213 5214
  /* For stdarg.h function, save info about
     regs and stack space used by the named args.  */
Richard Stallman committed
5215

5216
  current_function_args_info = args_so_far;
Richard Stallman committed
5217 5218 5219 5220 5221 5222

  /* Set the rtx used for the function return value.  Put this in its
     own variable so any optimizers that need this information don't have
     to include tree.h.  Do this here so it gets done when an inlined
     function gets output.  */

5223 5224 5225
  current_function_return_rtx
    = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
       ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254

  /* If scalar return value was computed in a pseudo-reg, or was a named
     return value that got dumped to the stack, copy that to the hard
     return register.  */
  if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
    {
      tree decl_result = DECL_RESULT (fndecl);
      rtx decl_rtl = DECL_RTL (decl_result);

      if (REG_P (decl_rtl)
	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
	  : DECL_REGISTER (decl_result))
	{
	  rtx real_decl_rtl;

#ifdef FUNCTION_OUTGOING_VALUE
	  real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
						   fndecl);
#else
	  real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
					  fndecl);
#endif
	  REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
	  /* The delay slot scheduler assumes that current_function_return_rtx
	     holds the hard register containing the return value, not a
	     temporary pseudo.  */
	  current_function_return_rtx = real_decl_rtl;
	}
    }
Richard Stallman committed
5255 5256
}

5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
/* Indicate whether REGNO is an incoming argument to the current function
   that was promoted to a wider mode.  If so, return the RTX for the
   register (to get its mode).  PMODE and PUNSIGNEDP are set to the mode
   that REGNO is promoted from and whether the promotion was signed or
   unsigned.  */

#ifdef PROMOTE_FUNCTION_ARGS

rtx
promoted_input_arg (regno, pmode, punsignedp)
5267
     unsigned int regno;
5268 5269 5270 5271 5272 5273 5274 5275
     enum machine_mode *pmode;
     int *punsignedp;
{
  tree arg;

  for (arg = DECL_ARGUMENTS (current_function_decl); arg;
       arg = TREE_CHAIN (arg))
    if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5276 5277
	&& REGNO (DECL_INCOMING_RTL (arg)) == regno
	&& TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5278 5279 5280 5281
      {
	enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
	int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));

5282
	mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
	if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
	    && mode != DECL_MODE (arg))
	  {
	    *pmode = DECL_MODE (arg);
	    *punsignedp = unsignedp;
	    return DECL_INCOMING_RTL (arg);
	  }
      }

  return 0;
}

#endif

Richard Stallman committed
5297 5298 5299 5300 5301 5302
/* Compute the size and offset from the start of the stacked arguments for a
   parm passed in mode PASSED_MODE and with type TYPE.

   INITIAL_OFFSET_PTR points to the current offset into the stacked
   arguments.

5303 5304 5305 5306 5307
   The starting offset and size for this parm are returned in
   LOCATE->OFFSET and LOCATE->SIZE, respectively.  When IN_REGS is
   nonzero, the offset is that of stack slot, which is returned in
   LOCATE->SLOT_OFFSET.  LOCATE->ALIGNMENT_PAD is the amount of
   padding required from the initial offset ptr to the stack slot.
Richard Stallman committed
5308

5309
   IN_REGS is nonzero if the argument will be passed in registers.  It will
Richard Stallman committed
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
   never be set if REG_PARM_STACK_SPACE is not defined.

   FNDECL is the function in which the argument was defined.

   There are two types of rounding that are done.  The first, controlled by
   FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
   list to be aligned to the specific boundary (in bits).  This rounding
   affects the initial and starting offsets, but not the argument size.

   The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
   optionally rounds the size of the parm to PARM_BOUNDARY.  The
   initial offset is not affected by this rounding, while the size always
   is and the starting offset may be.  */

5324 5325
/*  LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
    INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
Richard Stallman committed
5326
    callers pass in the total size of args so far as
5327
    INITIAL_OFFSET_PTR.  LOCATE->SIZE is always positive.  */
Richard Stallman committed
5328 5329

void
5330 5331
locate_and_pad_parm (passed_mode, type, in_regs, partial, fndecl,
		     initial_offset_ptr, locate)
Richard Stallman committed
5332 5333
     enum machine_mode passed_mode;
     tree type;
5334 5335
     int in_regs;
     int partial;
Kaveh R. Ghazi committed
5336
     tree fndecl ATTRIBUTE_UNUSED;
Richard Stallman committed
5337
     struct args_size *initial_offset_ptr;
5338
     struct locate_and_pad_arg_data *locate;
Richard Stallman committed
5339
{
5340 5341 5342 5343 5344
  tree sizetree;
  enum direction where_pad;
  int boundary;
  int reg_parm_stack_space = 0;
  int part_size_in_regs;
Richard Stallman committed
5345 5346

#ifdef REG_PARM_STACK_SPACE
5347 5348 5349 5350 5351 5352
#ifdef MAYBE_REG_PARM_STACK_SPACE
  reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
#else
  reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
#endif

Richard Stallman committed
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
  /* If we have found a stack parm before we reach the end of the
     area reserved for registers, skip that area.  */
  if (! in_regs)
    {
      if (reg_parm_stack_space > 0)
	{
	  if (initial_offset_ptr->var)
	    {
	      initial_offset_ptr->var
		= size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5363
			      ssize_int (reg_parm_stack_space));
Richard Stallman committed
5364 5365 5366 5367 5368 5369 5370 5371
	      initial_offset_ptr->constant = 0;
	    }
	  else if (initial_offset_ptr->constant < reg_parm_stack_space)
	    initial_offset_ptr->constant = reg_parm_stack_space;
	}
    }
#endif /* REG_PARM_STACK_SPACE */

5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
  part_size_in_regs = 0;
  if (reg_parm_stack_space == 0)
    part_size_in_regs = ((partial * UNITS_PER_WORD)
			 / (PARM_BOUNDARY / BITS_PER_UNIT)
			 * (PARM_BOUNDARY / BITS_PER_UNIT));

  sizetree
    = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
  where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
  boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
Richard Stallman committed
5382 5383

#ifdef ARGS_GROW_DOWNWARD
5384
  locate->slot_offset.constant = -initial_offset_ptr->constant;
Richard Stallman committed
5385
  if (initial_offset_ptr->var)
5386 5387
    locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
					  initial_offset_ptr->var);
5388

5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
  {
    tree s2 = sizetree;
    if (where_pad != none
	&& (!host_integerp (sizetree, 1)
	    || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
      s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
    SUB_PARM_SIZE (locate->slot_offset, s2);
  }

  locate->slot_offset.constant += part_size_in_regs;
5399 5400 5401 5402 5403 5404

  if (!in_regs
#ifdef REG_PARM_STACK_SPACE
      || REG_PARM_STACK_SPACE (fndecl) > 0
#endif
     )
5405 5406
    pad_to_arg_alignment (&locate->slot_offset, boundary,
			  &locate->alignment_pad);
5407

5408 5409
  locate->size.constant = (-initial_offset_ptr->constant
			   - locate->slot_offset.constant);
Richard Stallman committed
5410
  if (initial_offset_ptr->var)
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
    locate->size.var = size_binop (MINUS_EXPR,
				   size_binop (MINUS_EXPR,
					       ssize_int (0),
					       initial_offset_ptr->var),
				   locate->slot_offset.var);

  /* Pad_below needs the pre-rounded size to know how much to pad
     below.  */
  locate->offset = locate->slot_offset;
  if (where_pad == downward)
    pad_below (&locate->offset, passed_mode, sizetree);
5422

Richard Stallman committed
5423
#else /* !ARGS_GROW_DOWNWARD */
5424 5425 5426 5427 5428
  if (!in_regs
#ifdef REG_PARM_STACK_SPACE
      || REG_PARM_STACK_SPACE (fndecl) > 0
#endif
      )
5429 5430 5431
    pad_to_arg_alignment (initial_offset_ptr, boundary,
			  &locate->alignment_pad);
  locate->slot_offset = *initial_offset_ptr;
Richard Stallman committed
5432 5433 5434 5435 5436 5437

#ifdef PUSH_ROUNDING
  if (passed_mode != BLKmode)
    sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
#endif

5438 5439
  /* Pad_below needs the pre-rounded size to know how much to pad below
     so this must be done before rounding up.  */
5440 5441 5442
  locate->offset = locate->slot_offset;
  if (where_pad == downward)
    pad_below (&locate->offset, passed_mode, sizetree);
5443

Richard Stallman committed
5444
  if (where_pad != none
5445 5446
      && (!host_integerp (sizetree, 1)
	  || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
Richard Stallman committed
5447 5448
    sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);

5449 5450 5451
  ADD_PARM_SIZE (locate->size, sizetree);

  locate->size.constant -= part_size_in_regs;
Richard Stallman committed
5452 5453 5454
#endif /* ARGS_GROW_DOWNWARD */
}

5455 5456 5457
/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
   BOUNDARY is measured in bits, but must be a multiple of a storage unit.  */

Richard Stallman committed
5458
static void
5459
pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
Richard Stallman committed
5460 5461
     struct args_size *offset_ptr;
     int boundary;
5462
     struct args_size *alignment_pad;
Richard Stallman committed
5463
{
5464 5465
  tree save_var = NULL_TREE;
  HOST_WIDE_INT save_constant = 0;
5466

Richard Stallman committed
5467
  int boundary_in_bytes = boundary / BITS_PER_UNIT;
Kazu Hirata committed
5468

5469
  if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5470 5471 5472 5473 5474 5475 5476 5477
    {
      save_var = offset_ptr->var;
      save_constant = offset_ptr->constant;
    }

  alignment_pad->var = NULL_TREE;
  alignment_pad->constant = 0;

Richard Stallman committed
5478 5479 5480 5481
  if (boundary > BITS_PER_UNIT)
    {
      if (offset_ptr->var)
	{
Kazu Hirata committed
5482
	  offset_ptr->var =
Richard Stallman committed
5483
#ifdef ARGS_GROW_DOWNWARD
Kazu Hirata committed
5484
	    round_down
Richard Stallman committed
5485 5486 5487 5488 5489
#else
	    round_up
#endif
	      (ARGS_SIZE_TREE (*offset_ptr),
	       boundary / BITS_PER_UNIT);
5490 5491
	  /* ARGS_SIZE_TREE includes constant term.  */
	  offset_ptr->constant = 0;
Kazu Hirata committed
5492 5493
	  if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
	    alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5494
					     save_var);
Richard Stallman committed
5495 5496
	}
      else
Kazu Hirata committed
5497
	{
Catherine Moore committed
5498
	  offset_ptr->constant =
Richard Stallman committed
5499
#ifdef ARGS_GROW_DOWNWARD
Catherine Moore committed
5500
	    FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
Richard Stallman committed
5501
#else
Catherine Moore committed
5502
	    CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
Richard Stallman committed
5503
#endif
Kazu Hirata committed
5504 5505 5506
	    if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
	      alignment_pad->constant = offset_ptr->constant - save_constant;
	}
Richard Stallman committed
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
    }
}

static void
pad_below (offset_ptr, passed_mode, sizetree)
     struct args_size *offset_ptr;
     enum machine_mode passed_mode;
     tree sizetree;
{
  if (passed_mode != BLKmode)
    {
      if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
	offset_ptr->constant
	  += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
	       / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
	      - GET_MODE_SIZE (passed_mode));
    }
  else
    {
      if (TREE_CODE (sizetree) != INTEGER_CST
	  || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
	{
	  /* Round the size up to multiple of PARM_BOUNDARY bits.  */
	  tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
	  /* Add it in.  */
	  ADD_PARM_SIZE (*offset_ptr, s2);
	  SUB_PARM_SIZE (*offset_ptr, sizetree);
	}
    }
}

/* Walk the tree of blocks describing the binding levels within a function
   and warn about uninitialized variables.
   This is done after calling flow_analysis and before global_alloc
   clobbers the pseudo-regs to hard regs.  */

void
uninitialized_vars_warning (block)
     tree block;
{
5547
  tree decl, sub;
Richard Stallman committed
5548 5549
  for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
    {
5550
      if (warn_uninitialized
Kazu Hirata committed
5551
	  && TREE_CODE (decl) == VAR_DECL
Richard Stallman committed
5552 5553 5554 5555
	  /* These warnings are unreliable for and aggregates
	     because assigning the fields one by one can fail to convince
	     flow.c that the entire aggregate was initialized.
	     Unions are troublesome because members may be shorter.  */
5556
	  && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
Richard Stallman committed
5557 5558
	  && DECL_RTL (decl) != 0
	  && GET_CODE (DECL_RTL (decl)) == REG
5559 5560 5561 5562 5563 5564 5565 5566
	  /* Global optimizations can make it difficult to determine if a
	     particular variable has been initialized.  However, a VAR_DECL
	     with a nonzero DECL_INITIAL had an initializer, so do not
	     claim it is potentially uninitialized.

	     We do not care about the actual value in DECL_INITIAL, so we do
	     not worry that it may be a dangling pointer.  */
	  && DECL_INITIAL (decl) == NULL_TREE
Richard Stallman committed
5567 5568
	  && regno_uninitialized (REGNO (DECL_RTL (decl))))
	warning_with_decl (decl,
5569
			   "`%s' might be used uninitialized in this function");
5570
      if (extra_warnings
5571
	  && TREE_CODE (decl) == VAR_DECL
Richard Stallman committed
5572 5573 5574 5575
	  && DECL_RTL (decl) != 0
	  && GET_CODE (DECL_RTL (decl)) == REG
	  && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
	warning_with_decl (decl,
5576
			   "variable `%s' might be clobbered by `longjmp' or `vfork'");
Richard Stallman committed
5577 5578 5579 5580 5581 5582 5583 5584 5585
    }
  for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
    uninitialized_vars_warning (sub);
}

/* Do the appropriate part of uninitialized_vars_warning
   but for arguments instead of local variables.  */

void
5586
setjmp_args_warning ()
Richard Stallman committed
5587
{
5588
  tree decl;
Richard Stallman committed
5589 5590 5591 5592 5593
  for (decl = DECL_ARGUMENTS (current_function_decl);
       decl; decl = TREE_CHAIN (decl))
    if (DECL_RTL (decl) != 0
	&& GET_CODE (DECL_RTL (decl)) == REG
	&& regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
Kazu Hirata committed
5594 5595
      warning_with_decl (decl,
			 "argument `%s' might be clobbered by `longjmp' or `vfork'");
Richard Stallman committed
5596 5597 5598 5599 5600 5601 5602 5603 5604
}

/* If this function call setjmp, put all vars into the stack
   unless they were declared `register'.  */

void
setjmp_protect (block)
     tree block;
{
5605
  tree decl, sub;
Richard Stallman committed
5606 5607 5608 5609
  for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
    if ((TREE_CODE (decl) == VAR_DECL
	 || TREE_CODE (decl) == PARM_DECL)
	&& DECL_RTL (decl) != 0
5610 5611 5612
	&& (GET_CODE (DECL_RTL (decl)) == REG
	    || (GET_CODE (DECL_RTL (decl)) == MEM
		&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
Tom Wood committed
5613
	/* If this variable came from an inline function, it must be
5614
	   that its life doesn't overlap the setjmp.  If there was a
Tom Wood committed
5615 5616 5617 5618
	   setjmp in the function, it would already be in memory.  We
	   must exclude such variable because their DECL_RTL might be
	   set to strange things such as virtual_stack_vars_rtx.  */
	&& ! DECL_FROM_INLINE (decl)
Richard Stallman committed
5619 5620 5621 5622 5623 5624 5625
	&& (
#ifdef NON_SAVING_SETJMP
	    /* If longjmp doesn't restore the registers,
	       don't put anything in them.  */
	    NON_SAVING_SETJMP
	    ||
#endif
5626
	    ! DECL_REGISTER (decl)))
5627
      put_var_into_stack (decl, /*rescan=*/true);
Richard Stallman committed
5628 5629 5630 5631 5632 5633 5634 5635 5636
  for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
    setjmp_protect (sub);
}

/* Like the previous function, but for args instead of local variables.  */

void
setjmp_protect_args ()
{
5637
  tree decl;
Richard Stallman committed
5638 5639 5640 5641 5642
  for (decl = DECL_ARGUMENTS (current_function_decl);
       decl; decl = TREE_CHAIN (decl))
    if ((TREE_CODE (decl) == VAR_DECL
	 || TREE_CODE (decl) == PARM_DECL)
	&& DECL_RTL (decl) != 0
5643 5644 5645
	&& (GET_CODE (DECL_RTL (decl)) == REG
	    || (GET_CODE (DECL_RTL (decl)) == MEM
		&& GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
Richard Stallman committed
5646 5647 5648 5649 5650 5651 5652
	&& (
	    /* If longjmp doesn't restore the registers,
	       don't put anything in them.  */
#ifdef NON_SAVING_SETJMP
	    NON_SAVING_SETJMP
	    ||
#endif
5653
	    ! DECL_REGISTER (decl)))
5654
      put_var_into_stack (decl, /*rescan=*/true);
Richard Stallman committed
5655 5656 5657 5658 5659 5660 5661 5662 5663
}

/* Return the context-pointer register corresponding to DECL,
   or 0 if it does not need one.  */

rtx
lookup_static_chain (decl)
     tree decl;
{
5664 5665
  tree context = decl_function_context (decl);
  tree link;
5666

5667 5668
  if (context == 0
      || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5669
    return 0;
5670

Richard Stallman committed
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
  /* We treat inline_function_decl as an alias for the current function
     because that is the inline function whose vars, types, etc.
     are being merged into the current function.
     See expand_inline_function.  */
  if (context == current_function_decl || context == inline_function_decl)
    return virtual_stack_vars_rtx;

  for (link = context_display; link; link = TREE_CHAIN (link))
    if (TREE_PURPOSE (link) == context)
      return RTL_EXPR_RTL (TREE_VALUE (link));

  abort ();
}

/* Convert a stack slot address ADDR for variable VAR
   (from a containing function)
   into an address valid in this function (using a static chain).  */

rtx
fix_lexical_addr (addr, var)
     rtx addr;
     tree var;
{
  rtx basereg;
5695
  HOST_WIDE_INT displacement;
Richard Stallman committed
5696 5697 5698 5699 5700 5701 5702 5703
  tree context = decl_function_context (var);
  struct function *fp;
  rtx base = 0;

  /* If this is the present function, we need not do anything.  */
  if (context == current_function_decl || context == inline_function_decl)
    return addr;

5704
  fp = find_function_data (context);
Richard Stallman committed
5705

5706 5707 5708
  if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
    addr = XEXP (XEXP (addr, 0), 0);

Richard Stallman committed
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
  /* Decode given address as base reg plus displacement.  */
  if (GET_CODE (addr) == REG)
    basereg = addr, displacement = 0;
  else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
    basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
  else
    abort ();

  /* We accept vars reached via the containing function's
     incoming arg pointer and via its stack variables pointer.  */
  if (basereg == fp->internal_arg_pointer)
    {
      /* If reached via arg pointer, get the arg pointer value
	 out of that function's stack frame.

	 There are two cases:  If a separate ap is needed, allocate a
	 slot in the outer function for it and dereference it that way.
	 This is correct even if the real ap is actually a pseudo.
	 Otherwise, just adjust the offset from the frame pointer to
	 compensate.  */

#ifdef NEED_SEPARATE_AP
      rtx addr;

5733 5734
      addr = get_arg_pointer_save_area (fp);
      addr = fix_lexical_addr (XEXP (addr, 0), var);
Richard Stallman committed
5735 5736
      addr = memory_address (Pmode, addr);

5737
      base = gen_rtx_MEM (Pmode, addr);
5738
      set_mem_alias_set (base, get_frame_alias_set ());
5739
      base = copy_to_reg (base);
Richard Stallman committed
5740 5741
#else
      displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5742
      base = lookup_static_chain (var);
Richard Stallman committed
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
#endif
    }

  else if (basereg == virtual_stack_vars_rtx)
    {
      /* This is the same code as lookup_static_chain, duplicated here to
	 avoid an extra call to decl_function_context.  */
      tree link;

      for (link = context_display; link; link = TREE_CHAIN (link))
	if (TREE_PURPOSE (link) == context)
	  {
	    base = RTL_EXPR_RTL (TREE_VALUE (link));
	    break;
	  }
    }

  if (base == 0)
    abort ();

  /* Use same offset, relative to appropriate static chain or argument
     pointer.  */
  return plus_constant (base, displacement);
}

/* Return the address of the trampoline for entering nested fn FUNCTION.
   If necessary, allocate a trampoline (in the stack frame)
   and emit rtl to initialize its contents (at entry to this function).  */

rtx
trampoline_address (function)
     tree function;
{
  tree link;
  tree rtlexp;
  rtx tramp;
  struct function *fp;
  tree fn_context;

  /* Find an existing trampoline and return it.  */
  for (link = trampoline_list; link; link = TREE_CHAIN (link))
    if (TREE_PURPOSE (link) == function)
5785
      return
5786
	adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5787

5788
  for (fp = outer_function_chain; fp; fp = fp->outer)
5789
    for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
Richard Stallman committed
5790 5791 5792 5793
      if (TREE_PURPOSE (link) == function)
	{
	  tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
				    function);
5794
	  return adjust_trampoline_addr (tramp);
Richard Stallman committed
5795 5796 5797 5798 5799 5800 5801
	}

  /* None exists; we must make one.  */

  /* Find the `struct function' for the function containing FUNCTION.  */
  fp = 0;
  fn_context = decl_function_context (function);
5802 5803
  if (fn_context != current_function_decl
      && fn_context != inline_function_decl)
5804
    fp = find_function_data (fn_context);
Richard Stallman committed
5805 5806 5807 5808 5809 5810 5811 5812

  /* Allocate run-time space for this trampoline
     (usually in the defining function's stack frame).  */
#ifdef ALLOCATE_TRAMPOLINE
  tramp = ALLOCATE_TRAMPOLINE (fp);
#else
  /* If rounding needed, allocate extra space
     to ensure we have TRAMPOLINE_SIZE bytes left after rounding up.  */
5813 5814
#define TRAMPOLINE_REAL_SIZE \
  (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5815
  tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
Bernd Schmidt committed
5816
				fp ? fp : cfun);
Richard Stallman committed
5817 5818 5819 5820 5821 5822 5823 5824
#endif

  /* Record the trampoline for reuse and note it for later initialization
     by expand_function_end.  */
  if (fp != 0)
    {
      rtlexp = make_node (RTL_EXPR);
      RTL_EXPR_RTL (rtlexp) = tramp;
5825 5826
      fp->x_trampoline_list = tree_cons (function, rtlexp,
					 fp->x_trampoline_list);
Richard Stallman committed
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
    }
  else
    {
      /* Make the RTL_EXPR node temporary, not momentary, so that the
	 trampoline_list doesn't become garbage.  */
      rtlexp = make_node (RTL_EXPR);

      RTL_EXPR_RTL (rtlexp) = tramp;
      trampoline_list = tree_cons (function, rtlexp, trampoline_list);
    }

  tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5839
  return adjust_trampoline_addr (tramp);
Richard Stallman committed
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
}

/* Given a trampoline address,
   round it to multiple of TRAMPOLINE_ALIGNMENT.  */

static rtx
round_trampoline_addr (tramp)
     rtx tramp;
{
  /* Round address up to desired boundary.  */
  rtx temp = gen_reg_rtx (Pmode);
5851 5852 5853 5854 5855 5856 5857
  rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
  rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);

  temp  = expand_simple_binop (Pmode, PLUS, tramp, addend,
			       temp, 0, OPTAB_LIB_WIDEN);
  tramp = expand_simple_binop (Pmode, AND, temp, mask,
			       temp, 0, OPTAB_LIB_WIDEN);
5858

Richard Stallman committed
5859 5860
  return tramp;
}
5861 5862 5863

/* Given a trampoline address, round it then apply any
   platform-specific adjustments so that the result can be used for a
5864
   function call .  */
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875

static rtx
adjust_trampoline_addr (tramp)
     rtx tramp;
{
  tramp = round_trampoline_addr (tramp);
#ifdef TRAMPOLINE_ADJUST_ADDRESS
  TRAMPOLINE_ADJUST_ADDRESS (tramp);
#endif
  return tramp;
}
Richard Stallman committed
5876

5877 5878
/* Put all this function's BLOCK nodes including those that are chained
   onto the first block into a vector, and return it.
5879 5880
   Also store in each NOTE for the beginning or end of a block
   the index of that block in the vector.
5881
   The arguments are BLOCK, the chain of top-level blocks of the function,
5882 5883
   and INSNS, the insn chain of the function.  */

5884
void
5885
identify_blocks ()
5886
{
5887
  int n_blocks;
5888
  tree *block_vector, *last_block_vector;
5889
  tree *block_stack;
5890
  tree block = DECL_INITIAL (current_function_decl);
5891

5892
  if (block == 0)
5893
    return;
5894

5895 5896
  /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
     depth-first order.  */
5897
  block_vector = get_block_vector (block, &n_blocks);
5898
  block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5899

Kazu Hirata committed
5900
  last_block_vector = identify_blocks_1 (get_insns (),
5901
					 block_vector + 1,
Kazu Hirata committed
5902
					 block_vector + n_blocks,
5903
					 block_stack);
5904 5905

  /* If we didn't use all of the subblocks, we've misplaced block notes.  */
5906 5907
  /* ??? This appears to happen all the time.  Latent bugs elsewhere?  */
  if (0 && last_block_vector != block_vector + n_blocks)
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
    abort ();

  free (block_vector);
  free (block_stack);
}

/* Subroutine of identify_blocks.  Do the block substitution on the
   insn chain beginning with INSNS.  Recurse for CALL_PLACEHOLDER chains.

   BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
   BLOCK_VECTOR is incremented for each block seen.  */

static tree *
identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
     rtx insns;
     tree *block_vector;
     tree *end_block_vector;
     tree *orig_block_stack;
{
  rtx insn;
  tree *block_stack = orig_block_stack;

5930
  for (insn = insns; insn; insn = NEXT_INSN (insn))
5931 5932 5933 5934 5935 5936
    {
      if (GET_CODE (insn) == NOTE)
	{
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
	    {
	      tree b;
5937

5938 5939 5940 5941
	      /* If there are more block notes than BLOCKs, something
		 is badly wrong.  */
	      if (block_vector == end_block_vector)
		abort ();
5942

5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
	      b = *block_vector++;
	      NOTE_BLOCK (insn) = b;
	      *block_stack++ = b;
	    }
	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
	    {
	      /* If there are more NOTE_INSN_BLOCK_ENDs than
		 NOTE_INSN_BLOCK_BEGs, something is badly wrong.  */
	      if (block_stack == orig_block_stack)
		abort ();
5953

5954 5955
	      NOTE_BLOCK (insn) = *--block_stack;
	    }
Kazu Hirata committed
5956
	}
5957 5958 5959 5960 5961
      else if (GET_CODE (insn) == CALL_INSN
	       && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
	{
	  rtx cp = PATTERN (insn);

Kazu Hirata committed
5962 5963
	  block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
					    end_block_vector, block_stack);
5964 5965 5966 5967 5968 5969 5970 5971
	  if (XEXP (cp, 1))
	    block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
					      end_block_vector, block_stack);
	  if (XEXP (cp, 2))
	    block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
					      end_block_vector, block_stack);
	}
    }
5972

5973 5974 5975 5976 5977 5978
  /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
     something is badly wrong.  */
  if (block_stack != orig_block_stack)
    abort ();

  return block_vector;
5979 5980
}

5981 5982 5983 5984 5985
/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
   and create duplicate blocks.  */
/* ??? Need an option to either create block fragments or to create
   abstract origin duplicates of a source block.  It really depends
   on what optimization has been performed.  */
5986

5987 5988
void
reorder_blocks ()
5989
{
5990
  tree block = DECL_INITIAL (current_function_decl);
5991
  varray_type block_stack;
5992

5993
  if (block == NULL_TREE)
5994
    return;
5995

5996 5997
  VARRAY_TREE_INIT (block_stack, 10, "block_stack");

5998 5999 6000
  /* Reset the TREE_ASM_WRITTEN bit for all blocks.  */
  reorder_blocks_0 (block);

6001 6002 6003
  /* Prune the old trees away, so that they don't get in the way.  */
  BLOCK_SUBBLOCKS (block) = NULL_TREE;
  BLOCK_CHAIN (block) = NULL_TREE;
6004

6005
  /* Recreate the block tree from the note nesting.  */
6006
  reorder_blocks_1 (get_insns (), block, &block_stack);
Kazu Hirata committed
6007
  BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
6008

6009 6010
  /* Remove deleted blocks from the block fragment chains.  */
  reorder_fix_fragments (block);
6011 6012
}

6013
/* Helper function for reorder_blocks.  Reset TREE_ASM_WRITTEN.  */
6014 6015

static void
6016 6017
reorder_blocks_0 (block)
     tree block;
6018
{
6019
  while (block)
6020
    {
6021 6022 6023
      TREE_ASM_WRITTEN (block) = 0;
      reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
      block = BLOCK_CHAIN (block);
6024 6025 6026 6027
    }
}

static void
6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
reorder_blocks_1 (insns, current_block, p_block_stack)
     rtx insns;
     tree current_block;
     varray_type *p_block_stack;
{
  rtx insn;

  for (insn = insns; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) == NOTE)
	{
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
	    {
	      tree block = NOTE_BLOCK (insn);
6042 6043 6044

	      /* If we have seen this block before, that means it now
		 spans multiple address regions.  Create a new fragment.  */
6045 6046
	      if (TREE_ASM_WRITTEN (block))
		{
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
		  tree new_block = copy_node (block);
		  tree origin;

		  origin = (BLOCK_FRAGMENT_ORIGIN (block)
			    ? BLOCK_FRAGMENT_ORIGIN (block)
			    : block);
		  BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
		  BLOCK_FRAGMENT_CHAIN (new_block)
		    = BLOCK_FRAGMENT_CHAIN (origin);
		  BLOCK_FRAGMENT_CHAIN (origin) = new_block;

		  NOTE_BLOCK (insn) = new_block;
		  block = new_block;
6060
		}
6061

6062 6063
	      BLOCK_SUBBLOCKS (block) = 0;
	      TREE_ASM_WRITTEN (block) = 1;
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
	      /* When there's only one block for the entire function,
		 current_block == block and we mustn't do this, it
		 will cause infinite recursion.  */
	      if (block != current_block)
		{
		  BLOCK_SUPERCONTEXT (block) = current_block;
		  BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
		  BLOCK_SUBBLOCKS (current_block) = block;
		  current_block = block;
		}
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097
	      VARRAY_PUSH_TREE (*p_block_stack, block);
	    }
	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
	    {
	      NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
	      VARRAY_POP (*p_block_stack);
	      BLOCK_SUBBLOCKS (current_block)
		= blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
	      current_block = BLOCK_SUPERCONTEXT (current_block);
	    }
	}
      else if (GET_CODE (insn) == CALL_INSN
	       && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
	{
	  rtx cp = PATTERN (insn);
	  reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
	  if (XEXP (cp, 1))
	    reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
	  if (XEXP (cp, 2))
	    reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
	}
    }
}

6098 6099 6100 6101 6102 6103
/* Rationalize BLOCK_FRAGMENT_ORIGIN.  If an origin block no longer
   appears in the block tree, select one of the fragments to become
   the new origin block.  */

static void
reorder_fix_fragments (block)
6104
     tree block;
6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115
{
  while (block)
    {
      tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
      tree new_origin = NULL_TREE;

      if (dup_origin)
	{
	  if (! TREE_ASM_WRITTEN (dup_origin))
	    {
	      new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6116

6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
	      /* Find the first of the remaining fragments.  There must
		 be at least one -- the current block.  */
	      while (! TREE_ASM_WRITTEN (new_origin))
		new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
	      BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
	    }
	}
      else if (! dup_origin)
	new_origin = block;

      /* Re-root the rest of the fragments to the new origin.  In the
	 case that DUP_ORIGIN was null, that means BLOCK was the origin
	 of a chain of fragments and we want to remove those fragments
	 that didn't make it to the output.  */
      if (new_origin)
	{
	  tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
	  tree chain = *pp;

	  while (chain)
	    {
	      if (TREE_ASM_WRITTEN (chain))
		{
		  BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
		  *pp = chain;
		  pp = &BLOCK_FRAGMENT_CHAIN (chain);
		}
	      chain = BLOCK_FRAGMENT_CHAIN (chain);
	    }
	  *pp = NULL_TREE;
	}

      reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
      block = BLOCK_CHAIN (block);
    }
}

6154 6155 6156 6157 6158 6159 6160
/* Reverse the order of elements in the chain T of blocks,
   and return the new head of the chain (old last element).  */

static tree
blocks_nreverse (t)
     tree t;
{
6161
  tree prev = 0, decl, next;
6162 6163 6164 6165 6166 6167 6168 6169 6170
  for (decl = t; decl; decl = next)
    {
      next = BLOCK_CHAIN (decl);
      BLOCK_CHAIN (decl) = prev;
      prev = decl;
    }
  return prev;
}

6171 6172 6173
/* Count the subblocks of the list starting with BLOCK.  If VECTOR is
   non-NULL, list them all into VECTOR, in a depth-first preorder
   traversal of the block tree.  Also clear TREE_ASM_WRITTEN in all
6174
   blocks.  */
6175 6176

static int
6177 6178
all_blocks (block, vector)
     tree block;
6179 6180
     tree *vector;
{
6181 6182
  int n_blocks = 0;

6183 6184 6185
  while (block)
    {
      TREE_ASM_WRITTEN (block) = 0;
6186

6187 6188 6189
      /* Record this block.  */
      if (vector)
	vector[n_blocks] = block;
6190

6191
      ++n_blocks;
Kazu Hirata committed
6192

6193 6194 6195 6196 6197
      /* Record the subblocks, and their subblocks...  */
      n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
			      vector ? vector + n_blocks : 0);
      block = BLOCK_CHAIN (block);
    }
6198 6199 6200

  return n_blocks;
}
6201 6202 6203 6204 6205

/* Return a vector containing all the blocks rooted at BLOCK.  The
   number of elements in the vector is stored in N_BLOCKS_P.  The
   vector is dynamically allocated; it is the caller's responsibility
   to call `free' on the pointer returned.  */
Kazu Hirata committed
6206

6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
static tree *
get_block_vector (block, n_blocks_p)
     tree block;
     int *n_blocks_p;
{
  tree *block_vector;

  *n_blocks_p = all_blocks (block, NULL);
  block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
  all_blocks (block, block_vector);

  return block_vector;
}

6221
static GTY(()) int next_block_index = 2;
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236

/* Set BLOCK_NUMBER for all the blocks in FN.  */

void
number_blocks (fn)
     tree fn;
{
  int i;
  int n_blocks;
  tree *block_vector;

  /* For SDB and XCOFF debugging output, we start numbering the blocks
     from 1 within each function, rather than keeping a running
     count.  */
#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6237 6238
  if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
    next_block_index = 1;
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251
#endif

  block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);

  /* The top-level BLOCK isn't numbered at all.  */
  for (i = 1; i < n_blocks; ++i)
    /* We number the blocks from two.  */
    BLOCK_NUMBER (block_vector[i]) = next_block_index++;

  free (block_vector);

  return;
}
6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274

/* If VAR is present in a subblock of BLOCK, return the subblock.  */

tree
debug_find_var_in_block_tree (var, block)
     tree var;
     tree block;
{
  tree t;

  for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
    if (t == var)
      return block;

  for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
    {
      tree ret = debug_find_var_in_block_tree (var, t);
      if (ret)
	return ret;
    }

  return NULL_TREE;
}
6275

6276
/* Allocate a function structure and reset its contents to the defaults.  */
6277

6278 6279
static void
prepare_function_start ()
Richard Stallman committed
6280
{
6281
  cfun = (struct function *) ggc_alloc_cleared (sizeof (struct function));
6282

Richard Stallman committed
6283
  init_stmt_for_function ();
6284
  init_eh_for_function ();
Richard Stallman committed
6285 6286 6287 6288 6289 6290 6291 6292 6293

  cse_not_expected = ! optimize;

  /* Caller save not needed yet.  */
  caller_save_needed = 0;

  /* No stack slots have been made yet.  */
  stack_slot_list = 0;

6294 6295 6296
  current_function_has_nonlocal_label = 0;
  current_function_has_nonlocal_goto = 0;

Richard Stallman committed
6297
  /* There is no stack slot for handling nonlocal gotos.  */
6298
  nonlocal_goto_handler_slots = 0;
Richard Stallman committed
6299 6300 6301 6302
  nonlocal_goto_stack_level = 0;

  /* No labels have been declared for nonlocal use.  */
  nonlocal_labels = 0;
6303
  nonlocal_goto_handler_labels = 0;
Richard Stallman committed
6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317

  /* No function calls so far in this function.  */
  function_call_count = 0;

  /* No parm regs have been allocated.
     (This is important for output_inline_function.)  */
  max_parm_reg = LAST_VIRTUAL_REGISTER + 1;

  /* Initialize the RTL mechanism.  */
  init_emit ();

  /* Initialize the queue of pending postincrement and postdecrements,
     and some other info in expr.c.  */
  init_expr ();
Kazu Hirata committed
6318

Richard Stallman committed
6319 6320 6321
  /* We haven't done register allocation yet.  */
  reg_renumber = 0;

Bernd Schmidt committed
6322
  init_varasm_status (cfun);
Richard Stallman committed
6323

6324
  /* Clear out data used for inlining.  */
Bernd Schmidt committed
6325 6326
  cfun->inlinable = 0;
  cfun->original_decl_initial = 0;
Kazu Hirata committed
6327
  cfun->original_arg_vector = 0;
6328

6329
  cfun->stack_alignment_needed = STACK_BOUNDARY;
6330
  cfun->preferred_stack_boundary = STACK_BOUNDARY;
6331

Richard Stallman committed
6332 6333 6334 6335 6336 6337 6338
  /* Set if a call to setjmp is seen.  */
  current_function_calls_setjmp = 0;

  /* Set if a call to longjmp is seen.  */
  current_function_calls_longjmp = 0;

  current_function_calls_alloca = 0;
6339 6340
  current_function_calls_eh_return = 0;
  current_function_calls_constant_p = 0;
Richard Stallman committed
6341
  current_function_contains_functions = 0;
6342
  current_function_is_leaf = 0;
6343
  current_function_nothrow = 0;
John Wehle committed
6344
  current_function_sp_is_unchanging = 0;
6345
  current_function_uses_only_leaf_regs = 0;
6346
  current_function_has_computed_jump = 0;
x  
Jason Merrill committed
6347
  current_function_is_thunk = 0;
Richard Stallman committed
6348 6349 6350 6351 6352 6353

  current_function_returns_pcc_struct = 0;
  current_function_returns_struct = 0;
  current_function_epilogue_delay_list = 0;
  current_function_uses_const_pool = 0;
  current_function_uses_pic_offset_table = 0;
6354
  current_function_cannot_inline = 0;
Richard Stallman committed
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370

  /* We have not yet needed to make a label to jump to for tail-recursion.  */
  tail_recursion_label = 0;

  /* We haven't had a need to make a save area for ap yet.  */
  arg_pointer_save_area = 0;

  /* No stack slots allocated yet.  */
  frame_offset = 0;

  /* No SAVE_EXPRs in this function yet.  */
  save_expr_regs = 0;

  /* No RTL_EXPRs in this function yet.  */
  rtl_expr_chain = 0;

6371 6372
  /* Set up to allocate temporaries.  */
  init_temp_slots ();
Richard Stallman committed
6373

6374 6375 6376 6377 6378 6379 6380
  /* Indicate that we need to distinguish between the return value of the
     present function and the return value of a function being called.  */
  rtx_equal_function_value_matters = 1;

  /* Indicate that we have not instantiated virtual registers yet.  */
  virtuals_instantiated = 0;

6381 6382 6383
  /* Indicate that we want CONCATs now.  */
  generating_concat_p = 1;

6384 6385 6386
  /* Indicate we have no need of a frame pointer yet.  */
  frame_pointer_needed = 0;

6387
  /* By default assume not stdarg.  */
6388
  current_function_stdarg = 0;
Richard Stallman committed
6389

6390 6391 6392
  /* We haven't made any trampolines for this function yet.  */
  trampoline_list = 0;

Richard Stallman committed
6393 6394 6395 6396
  init_pending_stack_adjust ();
  inhibit_defer_pop = 0;

  current_function_outgoing_args_size = 0;
6397

6398 6399
  current_function_funcdef_no = funcdef_no++;

6400 6401
  cfun->arc_profile = profile_arc_flag || flag_test_coverage;

6402 6403
  cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;

6404 6405
  cfun->max_jumptable_ents = 0;

Neil Booth committed
6406
  (*lang_hooks.function.init) (cfun);
6407
  if (init_machine_status)
6408
    cfun->machine = (*init_machine_status) ();
6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
}

/* Initialize the rtl expansion mechanism so that we can do simple things
   like generate sequences.  This is used to provide a context during global
   initialization of some passes.  */
void
init_dummy_function_start ()
{
  prepare_function_start ();
}

/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
   and initialize static variables for generating RTL for the statements
   of the function.  */

void
init_function_start (subr, filename, line)
     tree subr;
6427
     const char *filename;
6428 6429 6430 6431
     int line;
{
  prepare_function_start ();

Neil Booth committed
6432
  current_function_name = (*lang_hooks.decl_printable_name) (subr, 2);
Bernd Schmidt committed
6433
  cfun->decl = subr;
6434 6435 6436 6437 6438 6439 6440 6441 6442

  /* Nonzero if this is a nested function that uses a static chain.  */

  current_function_needs_context
    = (decl_function_context (current_function_decl) != 0
       && ! DECL_NO_STATIC_CHAIN (current_function_decl));

  /* Within function body, compute a type's size as soon it is laid out.  */
  immediate_size_expand++;
Richard Stallman committed
6443 6444

  /* Prevent ever trying to delete the first instruction of a function.
6445
     Also tell final how to output a linenum before the function prologue.
Kazu Hirata committed
6446
     Note linenums could be missing, e.g. when compiling a Java .class file.  */
6447 6448
  if (line > 0)
    emit_line_note (filename, line);
Richard Stallman committed
6449 6450 6451 6452

  /* Make sure first insn is a note even if we don't want linenums.
     This makes sure the first insn will never be deleted.
     Also, final expects a note to appear there.  */
6453
  emit_note (NULL, NOTE_INSN_DELETED);
Richard Stallman committed
6454 6455 6456 6457 6458

  /* Set flags used by final.c.  */
  if (aggregate_value_p (DECL_RESULT (subr)))
    {
#ifdef PCC_STATIC_STRUCT_RETURN
6459
      current_function_returns_pcc_struct = 1;
Richard Stallman committed
6460
#endif
6461
      current_function_returns_struct = 1;
Richard Stallman committed
6462 6463 6464 6465 6466
    }

  /* Warn if this value is an aggregate type,
     regardless of which calling convention we are using for it.  */
  if (warn_aggregate_return
6467
      && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
Richard Stallman committed
6468 6469 6470
    warning ("function returns an aggregate");

  current_function_returns_pointer
6471
    = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6472
}
6473

6474 6475 6476 6477 6478 6479
/* Make sure all values used by the optimization passes have sane
   defaults.  */
void
init_function_for_compilation ()
{
  reg_renumber = 0;
6480

6481
  /* No prologue/epilogue insns yet.  */
6482 6483 6484
  VARRAY_GROW (prologue, 0);
  VARRAY_GROW (epilogue, 0);
  VARRAY_GROW (sibcall_epilogue, 0);
Richard Stallman committed
6485 6486 6487 6488
}

/* Expand a call to __main at the beginning of a possible main function.  */

6489 6490 6491 6492 6493
#if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
#undef HAS_INIT_SECTION
#define HAS_INIT_SECTION
#endif

Richard Stallman committed
6494 6495 6496
void
expand_main_function ()
{
6497 6498 6499 6500
#ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
  if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
    {
      int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6501
      rtx tmp, seq;
6502

6503
      start_sequence ();
6504
      /* Forcibly align the stack.  */
6505
#ifdef STACK_GROWS_DOWNWARD
6506 6507
      tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
				 stack_pointer_rtx, 1, OPTAB_WIDEN);
6508
#else
6509 6510 6511 6512
      tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
				 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
      tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
				 stack_pointer_rtx, 1, OPTAB_WIDEN);
6513 6514 6515
#endif
      if (tmp != stack_pointer_rtx)
	emit_move_insn (stack_pointer_rtx, tmp);
6516

6517 6518 6519
      /* Enlist allocate_dynamic_stack_space to pick up the pieces.  */
      tmp = force_reg (Pmode, const0_rtx);
      allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6520
      seq = get_insns ();
6521 6522 6523 6524 6525 6526 6527 6528 6529
      end_sequence ();

      for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
	if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
	  break;
      if (tmp)
	emit_insn_before (seq, tmp);
      else
	emit_insn (seq);
6530 6531 6532 6533
    }
#endif

#ifndef HAS_INIT_SECTION
6534
  emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
6535
#endif
Richard Stallman committed
6536 6537
}

6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552
/* The PENDING_SIZES represent the sizes of variable-sized types.
   Create RTL for the various sizes now (using temporary variables),
   so that we can refer to the sizes from the RTL we are generating
   for the current function.  The PENDING_SIZES are a TREE_LIST.  The
   TREE_VALUE of each node is a SAVE_EXPR.  */

void
expand_pending_sizes (pending_sizes)
     tree pending_sizes;
{
  tree tem;

  /* Evaluate now the sizes of any types declared among the arguments.  */
  for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
    {
6553
      expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6554 6555 6556 6557 6558 6559
      /* Flush the queue in case this parameter declaration has
	 side-effects.  */
      emit_queue ();
    }
}

Richard Stallman committed
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571
/* Start the RTL for a new function, and set variables used for
   emitting RTL.
   SUBR is the FUNCTION_DECL node.
   PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
   the function's parameters, which must be run at any return statement.  */

void
expand_function_start (subr, parms_have_cleanups)
     tree subr;
     int parms_have_cleanups;
{
  tree tem;
6572
  rtx last_ptr = NULL_RTX;
Richard Stallman committed
6573 6574 6575 6576 6577

  /* Make sure volatile mem refs aren't considered
     valid operands of arithmetic insns.  */
  init_recog_no_volatile ();

6578 6579 6580 6581
  current_function_instrument_entry_exit
    = (flag_instrument_function_entry_exit
       && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));

6582 6583 6584 6585
  current_function_profile
    = (profile_flag
       && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));

6586 6587 6588
  current_function_limit_stack
    = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));

Richard Stallman committed
6589 6590 6591
  /* If function gets a static chain arg, store it in the stack frame.
     Do this first, so it gets the first stack slot offset.  */
  if (current_function_needs_context)
Jim Wilson committed
6592 6593
    {
      last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6594 6595 6596

      /* Delay copying static chain if it is not a register to avoid
	 conflicts with regs used for parameters.  */
6597 6598
      if (! SMALL_REGISTER_CLASSES
	  || GET_CODE (static_chain_incoming_rtx) == REG)
Kazu Hirata committed
6599
	emit_move_insn (last_ptr, static_chain_incoming_rtx);
Jim Wilson committed
6600
    }
Richard Stallman committed
6601 6602 6603 6604 6605 6606 6607 6608 6609

  /* If the parameters of this function need cleaning up, get a label
     for the beginning of the code which executes those cleanups.  This must
     be done before doing anything with return_label.  */
  if (parms_have_cleanups)
    cleanup_label = gen_label_rtx ();
  else
    cleanup_label = 0;

6610 6611 6612
  /* Make the label for return statements to jump to.  Do not special
     case machines with special return instructions -- they will be
     handled later during jump, ifcvt, or epilogue creation.  */
Richard Stallman committed
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622
  return_label = gen_label_rtx ();

  /* Initialize rtx used to return the value.  */
  /* Do this before assign_parms so that we copy the struct value address
     before any library calls that assign parms might generate.  */

  /* Decide whether to return the value in memory or in a register.  */
  if (aggregate_value_p (DECL_RESULT (subr)))
    {
      /* Returning something that won't go in a register.  */
6623
      rtx value_address = 0;
Richard Stallman committed
6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643

#ifdef PCC_STATIC_STRUCT_RETURN
      if (current_function_returns_pcc_struct)
	{
	  int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
	  value_address = assemble_static_space (size);
	}
      else
#endif
	{
	  /* Expect to be passed the address of a place to store the value.
	     If it is passed as an argument, assign_parms will take care of
	     it.  */
	  if (struct_value_incoming_rtx)
	    {
	      value_address = gen_reg_rtx (Pmode);
	      emit_move_insn (value_address, struct_value_incoming_rtx);
	    }
	}
      if (value_address)
6644
	{
Jan Hubicka committed
6645 6646 6647
	  rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
	  set_mem_attributes (x, DECL_RESULT (subr), 1);
	  SET_DECL_RTL (DECL_RESULT (subr), x);
6648
	}
Richard Stallman committed
6649 6650 6651
    }
  else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
    /* If return mode is void, this decl rtl should not be used.  */
6652
    SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6653
  else
6654
    {
6655 6656
      /* Compute the return values into a pseudo reg, which we will copy
	 into the true return register after the cleanups are done.  */
6657 6658 6659 6660 6661 6662 6663 6664

      /* In order to figure out what mode to use for the pseudo, we
	 figure out what the mode of the eventual return register will
	 actually be, and use that.  */
      rtx hard_reg
	= hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
			       subr, 1);

6665
      /* Structures that are returned in registers are not aggregate_value_p,
6666 6667 6668 6669 6670
	 so we may see a PARALLEL or a REG.  */
      if (REG_P (hard_reg))
	SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
      else if (GET_CODE (hard_reg) == PARALLEL)
	SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6671
      else
6672
	abort ();
6673

6674 6675 6676
      /* Set DECL_REGISTER flag so that expand_function_end will copy the
	 result to the real return register(s).  */
      DECL_REGISTER (DECL_RESULT (subr)) = 1;
6677
    }
Richard Stallman committed
6678 6679 6680 6681

  /* Initialize rtx for parameters and local variables.
     In some cases this requires emitting insns.  */

6682
  assign_parms (subr);
Richard Stallman committed
6683

6684 6685 6686
  /* Copy the static chain now if it wasn't a register.  The delay is to
     avoid conflicts with the parameter passing registers.  */

6687
  if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6688 6689
    if (GET_CODE (static_chain_incoming_rtx) != REG)
      emit_move_insn (last_ptr, static_chain_incoming_rtx);
6690

Richard Stallman committed
6691 6692 6693 6694
  /* The following was moved from init_function_start.
     The move is supposed to make sdb output more accurate.  */
  /* Indicate the beginning of the function body,
     as opposed to parm setup.  */
6695
  emit_note (NULL, NOTE_INSN_FUNCTION_BEG);
Richard Stallman committed
6696 6697

  if (GET_CODE (get_last_insn ()) != NOTE)
6698
    emit_note (NULL, NOTE_INSN_DELETED);
Richard Stallman committed
6699 6700
  parm_birth_insn = get_last_insn ();

6701 6702
  context_display = 0;
  if (current_function_needs_context)
6703
    {
6704 6705
      /* Fetch static chain values for containing functions.  */
      tem = decl_function_context (current_function_decl);
6706 6707 6708 6709
      /* Copy the static chain pointer into a pseudo.  If we have
	 small register classes, copy the value from memory if
	 static_chain_incoming_rtx is a REG.  */
      if (tem)
6710 6711 6712 6713
	{
	  /* If the static chain originally came in a register, put it back
	     there, then move it out in the next insn.  The reason for
	     this peculiar code is to satisfy function integration.  */
6714 6715
	  if (SMALL_REGISTER_CLASSES
	      && GET_CODE (static_chain_incoming_rtx) == REG)
6716 6717 6718
	    emit_move_insn (static_chain_incoming_rtx, last_ptr);
	  last_ptr = copy_to_reg (static_chain_incoming_rtx);
	}
6719

6720 6721 6722
      while (tem)
	{
	  tree rtlexp = make_node (RTL_EXPR);
Richard Stallman committed
6723

6724 6725 6726 6727 6728 6729 6730
	  RTL_EXPR_RTL (rtlexp) = last_ptr;
	  context_display = tree_cons (tem, rtlexp, context_display);
	  tem = decl_function_context (tem);
	  if (tem == 0)
	    break;
	  /* Chain thru stack frames, assuming pointer to next lexical frame
	     is found at the place we always store it.  */
Richard Stallman committed
6731
#ifdef FRAME_GROWS_DOWNWARD
6732 6733
	  last_ptr = plus_constant (last_ptr,
				    -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
Richard Stallman committed
6734
#endif
6735
	  last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6736
	  set_mem_alias_set (last_ptr, get_frame_alias_set ());
6737
	  last_ptr = copy_to_reg (last_ptr);
6738 6739 6740 6741

	  /* If we are not optimizing, ensure that we know that this
	     piece of context is live over the entire function.  */
	  if (! optimize)
6742 6743
	    save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
						save_expr_regs);
6744
	}
Richard Stallman committed
6745 6746
    }

6747 6748 6749 6750 6751 6752 6753
  if (current_function_instrument_entry_exit)
    {
      rtx fun = DECL_RTL (current_function_decl);
      if (GET_CODE (fun) == MEM)
	fun = XEXP (fun, 0);
      else
	abort ();
6754 6755
      emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
			 2, fun, Pmode,
6756 6757 6758 6759 6760 6761
			 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
						     0,
						     hard_frame_pointer_rtx),
			 Pmode);
    }

6762
  if (current_function_profile)
6763 6764
    {
#ifdef PROFILE_HOOK
6765
      PROFILE_HOOK (current_function_funcdef_no);
6766
#endif
6767
    }
6768

Richard Stallman committed
6769 6770 6771
  /* After the display initializations is where the tail-recursion label
     should go, if we end up needing one.   Ensure we have a NOTE here
     since some things (like trampolines) get placed before this.  */
6772
  tail_recursion_reentry = emit_note (NULL, NOTE_INSN_DELETED);
Richard Stallman committed
6773 6774

  /* Evaluate now the sizes of any types declared among the arguments.  */
6775
  expand_pending_sizes (nreverse (get_pending_sizes ()));
Richard Stallman committed
6776 6777 6778 6779 6780

  /* Make sure there is a line number after the function entry setup code.  */
  force_next_line_note ();
}

6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
/* Undo the effects of init_dummy_function_start.  */
void
expand_dummy_function_end ()
{
  /* End any sequences that failed to be closed due to syntax errors.  */
  while (in_sequence_p ())
    end_sequence ();

  /* Outside function body, can't compute type's actual size
     until next function's body starts.  */
6791

Bernd Schmidt committed
6792 6793 6794
  free_after_parsing (cfun);
  free_after_compilation (cfun);
  cfun = 0;
6795 6796
}

6797 6798
/* Call DOIT for each hard register used as a return value from
   the current function.  */
6799 6800

void
6801 6802 6803
diddle_return_value (doit, arg)
     void (*doit) PARAMS ((rtx, void *));
     void *arg;
6804
{
6805 6806 6807 6808
  rtx outgoing = current_function_return_rtx;

  if (! outgoing)
    return;
6809

6810 6811 6812 6813 6814
  if (GET_CODE (outgoing) == REG)
    (*doit) (outgoing, arg);
  else if (GET_CODE (outgoing) == PARALLEL)
    {
      int i;
6815

6816 6817 6818 6819 6820 6821
      for (i = 0; i < XVECLEN (outgoing, 0); i++)
	{
	  rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);

	  if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
	    (*doit) (x, arg);
6822 6823 6824 6825
	}
    }
}

6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837
static void
do_clobber_return_reg (reg, arg)
     rtx reg;
     void *arg ATTRIBUTE_UNUSED;
{
  emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
}

void
clobber_return_register ()
{
  diddle_return_value (do_clobber_return_reg, NULL);
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848

  /* In case we do use pseudo to return value, clobber it too.  */
  if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
    {
      tree decl_result = DECL_RESULT (current_function_decl);
      rtx decl_rtl = DECL_RTL (decl_result);
      if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
	{
	  do_clobber_return_reg (decl_rtl, NULL);
	}
    }
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
}

static void
do_use_return_reg (reg, arg)
     rtx reg;
     void *arg ATTRIBUTE_UNUSED;
{
  emit_insn (gen_rtx_USE (VOIDmode, reg));
}

void
use_return_register ()
{
  diddle_return_value (do_use_return_reg, NULL);
}

6865 6866
static GTY(()) rtx initial_trampoline;

Richard Stallman committed
6867
/* Generate RTL for the end of the current function.
Kazu Hirata committed
6868
   FILENAME and LINE are the current position in the source file.
Richard Stallman committed
6869

6870
   It is up to language-specific callers to do cleanups for parameters--
6871
   or else, supply 1 for END_BINDINGS and we will call expand_end_bindings.  */
Richard Stallman committed
6872 6873

void
6874
expand_function_end (filename, line, end_bindings)
Zack Weinberg committed
6875
     const char *filename;
Richard Stallman committed
6876
     int line;
6877
     int end_bindings;
Richard Stallman committed
6878 6879
{
  tree link;
6880
  rtx clobber_after;
Richard Stallman committed
6881

6882 6883
  finish_expr_for_function ();

6884 6885 6886 6887 6888
  /* If arg_pointer_save_area was referenced only from a nested
     function, we will not have initialized it yet.  Do that now.  */
  if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
    get_arg_pointer_save_area (cfun);

Richard Stallman committed
6889 6890 6891 6892 6893
#ifdef NON_SAVING_SETJMP
  /* Don't put any variables in registers if we call setjmp
     on a machine that fails to restore the registers.  */
  if (NON_SAVING_SETJMP && current_function_calls_setjmp)
    {
6894 6895 6896
      if (DECL_INITIAL (current_function_decl) != error_mark_node)
	setjmp_protect (DECL_INITIAL (current_function_decl));

Richard Stallman committed
6897 6898 6899 6900 6901 6902 6903 6904
      setjmp_protect_args ();
    }
#endif

  /* Initialize any trampolines required by this function.  */
  for (link = trampoline_list; link; link = TREE_CHAIN (link))
    {
      tree function = TREE_PURPOSE (link);
6905
      rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
Richard Stallman committed
6906
      rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6907
#ifdef TRAMPOLINE_TEMPLATE
6908
      rtx blktramp;
6909
#endif
Richard Stallman committed
6910 6911
      rtx seq;

6912
#ifdef TRAMPOLINE_TEMPLATE
Richard Stallman committed
6913 6914 6915
      /* First make sure this compilation has a template for
	 initializing trampolines.  */
      if (initial_trampoline == 0)
6916 6917
	{
	  initial_trampoline
6918
	    = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6919
	  set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6920
	}
6921
#endif
Richard Stallman committed
6922 6923 6924

      /* Generate insns to initialize the trampoline.  */
      start_sequence ();
6925 6926
      tramp = round_trampoline_addr (XEXP (tramp, 0));
#ifdef TRAMPOLINE_TEMPLATE
6927
      blktramp = replace_equiv_address (initial_trampoline, tramp);
6928
      emit_block_move (blktramp, initial_trampoline,
6929
		       GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6930 6931
#endif
      INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
Richard Stallman committed
6932 6933 6934 6935
      seq = get_insns ();
      end_sequence ();

      /* Put those insns at entry to the containing function (this one).  */
6936
      emit_insn_before (seq, tail_recursion_reentry);
Richard Stallman committed
6937 6938
    }

6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
  /* If we are doing stack checking and this function makes calls,
     do a stack probe at the start of the function to ensure we have enough
     space for another stack frame.  */
  if (flag_stack_check && ! STACK_CHECK_BUILTIN)
    {
      rtx insn, seq;

      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
	if (GET_CODE (insn) == CALL_INSN)
	  {
	    start_sequence ();
	    probe_stack_range (STACK_CHECK_PROTECT,
			       GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
	    seq = get_insns ();
	    end_sequence ();
6954
	    emit_insn_before (seq, tail_recursion_reentry);
6955 6956 6957 6958
	    break;
	  }
    }

6959
  /* Warn about unused parms if extra warnings were specified.  */
Phil Edwards committed
6960
  /* Either ``-Wextra -Wunused'' or ``-Wunused-parameter'' enables this
6961
     warning.  WARN_UNUSED_PARAMETER is negative when set by
Phil Edwards committed
6962 6963
     -Wunused.  Note that -Wall implies -Wunused, so ``-Wall -Wextra'' will
     also give these warnings.  */
6964 6965
  if (warn_unused_parameter > 0
      || (warn_unused_parameter < 0 && extra_warnings))
Richard Stallman committed
6966
    {
6967
      tree decl;
Richard Stallman committed
6968 6969 6970

      for (decl = DECL_ARGUMENTS (current_function_decl);
	   decl; decl = TREE_CHAIN (decl))
6971 6972
	if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
	    && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
Richard Stallman committed
6973 6974 6975 6976
	  warning_with_decl (decl, "unused parameter `%s'");
    }

  /* Delete handlers for nonlocal gotos if nothing uses them.  */
6977 6978
  if (nonlocal_goto_handler_slots != 0
      && ! current_function_has_nonlocal_label)
Richard Stallman committed
6979 6980 6981 6982
    delete_handlers ();

  /* End any sequences that failed to be closed due to syntax errors.  */
  while (in_sequence_p ())
6983
    end_sequence ();
Richard Stallman committed
6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994

  /* Outside function body, can't compute type's actual size
     until next function's body starts.  */
  immediate_size_expand--;

  clear_pending_stack_adjust ();
  do_pending_stack_adjust ();

  /* Mark the end of the function body.
     If control reaches this insn, the function can drop through
     without returning a value.  */
6995
  emit_note (NULL, NOTE_INSN_FUNCTION_END);
Richard Stallman committed
6996

6997 6998 6999 7000 7001 7002
  /* Must mark the last line number note in the function, so that the test
     coverage code can avoid counting the last line twice.  This just tells
     the code to ignore the immediately following line note, since there
     already exists a copy of this note somewhere above.  This line number
     note is still needed for debugging though, so we can't delete it.  */
  if (flag_test_coverage)
7003
    emit_note (NULL, NOTE_INSN_REPEATED_LINE_NUMBER);
7004

Richard Stallman committed
7005 7006 7007 7008
  /* Output a linenumber for the end of the function.
     SDB depends on this.  */
  emit_line_note_force (filename, line);

7009
  /* Before the return label (if any), clobber the return
7010
     registers so that they are not propagated live to the rest of
7011 7012
     the function.  This can only happen with functions that drop
     through; if there had been a return statement, there would
7013 7014 7015 7016 7017
     have either been a return rtx, or a jump to the return label.

     We delay actual code generation after the current_function_value_rtx
     is computed.  */
  clobber_after = get_last_insn ();
7018

Richard Stallman committed
7019 7020 7021 7022 7023 7024
  /* Output the label for the actual return from the function,
     if one is expected.  This happens either because a function epilogue
     is used instead of a return instruction, or because a return was done
     with a goto in order to run local cleanups, or because of pcc-style
     structure returning.  */
  if (return_label)
7025
    emit_label (return_label);
Richard Stallman committed
7026

7027 7028 7029 7030
  /* C++ uses this.  */
  if (end_bindings)
    expand_end_bindings (0, 0, 0);

7031 7032 7033 7034 7035 7036 7037
  if (current_function_instrument_entry_exit)
    {
      rtx fun = DECL_RTL (current_function_decl);
      if (GET_CODE (fun) == MEM)
	fun = XEXP (fun, 0);
      else
	abort ();
7038 7039
      emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
			 2, fun, Pmode,
7040 7041 7042 7043 7044 7045
			 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
						     0,
						     hard_frame_pointer_rtx),
			 Pmode);
    }

7046 7047 7048 7049 7050
  /* Let except.c know where it should emit the call to unregister
     the function context for sjlj exceptions.  */
  if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
    sjlj_emit_function_exit_after (get_last_insn ());

Richard Stallman committed
7051 7052 7053 7054 7055 7056 7057 7058
  /* If we had calls to alloca, and this machine needs
     an accurate stack pointer to exit the function,
     insert some code to save and restore the stack pointer.  */
#ifdef EXIT_IGNORE_STACK
  if (! EXIT_IGNORE_STACK)
#endif
    if (current_function_calls_alloca)
      {
7059 7060 7061
	rtx tem = 0;

	emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
7062
	emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
Richard Stallman committed
7063 7064
      }

7065 7066 7067
  /* If scalar return value was computed in a pseudo-reg, or was a named
     return value that got dumped to the stack, copy that to the hard
     return register.  */
7068
  if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
Richard Stallman committed
7069
    {
7070 7071 7072 7073 7074 7075 7076
      tree decl_result = DECL_RESULT (current_function_decl);
      rtx decl_rtl = DECL_RTL (decl_result);

      if (REG_P (decl_rtl)
	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
	  : DECL_REGISTER (decl_result))
	{
7077
	  rtx real_decl_rtl = current_function_return_rtx;
Richard Stallman committed
7078

7079 7080 7081
	  /* This should be set in assign_parms.  */
	  if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
	    abort ();
7082 7083 7084

	  /* If this is a BLKmode structure being returned in registers,
	     then use the mode computed in expand_return.  Note that if
7085
	     decl_rtl is memory, then its mode may have been changed,
7086 7087
	     but that current_function_return_rtx has not.  */
	  if (GET_MODE (real_decl_rtl) == BLKmode)
7088
	    PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
7089 7090

	  /* If a named return value dumped decl_return to memory, then
7091
	     we may need to re-do the PROMOTE_MODE signed/unsigned
7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103
	     extension.  */
	  if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
	    {
	      int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));

#ifdef PROMOTE_FUNCTION_RETURN
	      promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
			    &unsignedp, 1);
#endif

	      convert_move (real_decl_rtl, decl_rtl, unsignedp);
	    }
7104
	  else if (GET_CODE (real_decl_rtl) == PARALLEL)
7105 7106 7107 7108 7109 7110 7111 7112 7113 7114
	    {
	      /* If expand_function_start has created a PARALLEL for decl_rtl,
		 move the result to the real return registers.  Otherwise, do
		 a group load from decl_rtl for a named return.  */
	      if (GET_CODE (decl_rtl) == PARALLEL)
		emit_group_move (real_decl_rtl, decl_rtl);
	      else
		emit_group_load (real_decl_rtl, decl_rtl,
				 int_size_in_bytes (TREE_TYPE (decl_result)));
	    }
7115 7116 7117
	  else
	    emit_move_insn (real_decl_rtl, decl_rtl);
	}
Richard Stallman committed
7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
    }

  /* If returning a structure, arrange to return the address of the value
     in a place where debuggers expect to find it.

     If returning a structure PCC style,
     the caller also depends on this value.
     And current_function_returns_pcc_struct is not necessarily set.  */
  if (current_function_returns_struct
      || current_function_returns_pcc_struct)
    {
7129 7130
      rtx value_address
	= XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
Richard Stallman committed
7131 7132 7133 7134 7135 7136 7137
      tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
#ifdef FUNCTION_OUTGOING_VALUE
      rtx outgoing
	= FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
				   current_function_decl);
#else
      rtx outgoing
7138
	= FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
Richard Stallman committed
7139 7140 7141 7142 7143 7144
#endif

      /* Mark this as a function return value so integrate will delete the
	 assignment and USE below when inlining this function.  */
      REG_FUNCTION_VALUE_P (outgoing) = 1;

7145 7146 7147 7148 7149 7150 7151
#ifdef POINTERS_EXTEND_UNSIGNED
      /* The address may be ptr_mode and OUTGOING may be Pmode.  */
      if (GET_MODE (outgoing) != GET_MODE (value_address))
	value_address = convert_memory_address (GET_MODE (outgoing),
						value_address);
#endif

Richard Stallman committed
7152
      emit_move_insn (outgoing, value_address);
7153 7154 7155 7156

      /* Show return register used to hold result (in this case the address
	 of the result.  */
      current_function_return_rtx = outgoing;
Richard Stallman committed
7157 7158
    }

7159 7160 7161 7162
  /* If this is an implementation of throw, do what's necessary to
     communicate between __builtin_eh_return and the epilogue.  */
  expand_eh_return ();

7163 7164 7165
  /* Emit the actual code to clobber return register.  */
  {
    rtx seq, after;
7166

7167 7168
    start_sequence ();
    clobber_return_register ();
7169
    seq = get_insns ();
7170 7171 7172
    end_sequence ();

    after = emit_insn_after (seq, clobber_after);
7173

7174 7175 7176 7177
    if (clobber_after != after)
      cfun->x_clobber_return_insn = after;
  }

7178 7179 7180 7181 7182 7183
  /* ??? This should no longer be necessary since stupid is no longer with
     us, but there are some parts of the compiler (eg reload_combine, and
     sh mach_dep_reorg) that still try and compute their own lifetime info
     instead of using the general framework.  */
  use_return_register ();

Richard Stallman committed
7184 7185 7186 7187 7188 7189 7190
  /* Fix up any gotos that jumped out to the outermost
     binding level of the function.
     Must follow emitting RETURN_LABEL.  */

  /* If you have any cleanups to do at this point,
     and they need to create temporary variables,
     then you will lose.  */
7191
  expand_fixups (get_insns ());
Richard Stallman committed
7192
}
7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203

rtx
get_arg_pointer_save_area (f)
     struct function *f;
{
  rtx ret = f->x_arg_pointer_save_area;

  if (! ret)
    {
      ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
      f->x_arg_pointer_save_area = ret;
7204 7205 7206 7207 7208
    }

  if (f == cfun && ! f->arg_pointer_save_area_init)
    {
      rtx seq;
7209

7210
      /* Save the arg pointer at the beginning of the function.  The
7211
	 generated stack slot may not be a valid memory address, so we
7212 7213 7214
	 have to check it and fix it if necessary.  */
      start_sequence ();
      emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7215
      seq = get_insns ();
7216 7217
      end_sequence ();

7218 7219 7220
      push_topmost_sequence ();
      emit_insn_after (seq, get_insns ());
      pop_topmost_sequence ();
7221 7222 7223 7224
    }

  return ret;
}
Tom Wood committed
7225

7226 7227
/* Extend a vector that records the INSN_UIDs of INSNS
   (a list of one or more insns).  */
Tom Wood committed
7228

7229 7230
static void
record_insns (insns, vecp)
Tom Wood committed
7231
     rtx insns;
7232
     varray_type *vecp;
Tom Wood committed
7233
{
7234 7235
  int i, len;
  rtx tmp;
7236

7237 7238 7239 7240 7241 7242
  tmp = insns;
  len = 0;
  while (tmp != NULL_RTX)
    {
      len++;
      tmp = NEXT_INSN (tmp);
Tom Wood committed
7243
    }
7244 7245 7246 7247 7248

  i = VARRAY_SIZE (*vecp);
  VARRAY_GROW (*vecp, i + len);
  tmp = insns;
  while (tmp != NULL_RTX)
Tom Wood committed
7249
    {
7250 7251 7252
      VARRAY_INT (*vecp, i) = INSN_UID (tmp);
      i++;
      tmp = NEXT_INSN (tmp);
Tom Wood committed
7253 7254 7255
    }
}

7256 7257
/* Determine how many INSN_UIDs in VEC are part of INSN.  Because we can
   be running after reorg, SEQUENCE rtl is possible.  */
Tom Wood committed
7258

7259
static int
Tom Wood committed
7260 7261
contains (insn, vec)
     rtx insn;
7262
     varray_type vec;
Tom Wood committed
7263
{
7264
  int i, j;
Tom Wood committed
7265 7266 7267 7268

  if (GET_CODE (insn) == INSN
      && GET_CODE (PATTERN (insn)) == SEQUENCE)
    {
7269
      int count = 0;
Tom Wood committed
7270
      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7271 7272
	for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
	  if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7273 7274
	    count++;
      return count;
Tom Wood committed
7275 7276 7277
    }
  else
    {
7278 7279
      for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
	if (INSN_UID (insn) == VARRAY_INT (vec, j))
7280
	  return 1;
Tom Wood committed
7281 7282 7283
    }
  return 0;
}
7284 7285 7286 7287 7288

int
prologue_epilogue_contains (insn)
     rtx insn;
{
7289
  if (contains (insn, prologue))
7290
    return 1;
7291
  if (contains (insn, epilogue))
7292 7293 7294
    return 1;
  return 0;
}
Tom Wood committed
7295

7296 7297
int
sibcall_epilogue_contains (insn)
Kazu Hirata committed
7298
     rtx insn;
7299 7300 7301 7302 7303 7304
{
  if (sibcall_epilogue)
    return contains (insn, sibcall_epilogue);
  return 0;
}

7305
#ifdef HAVE_return
7306 7307 7308 7309
/* Insert gen_return at the end of block BB.  This also means updating
   block_for_insn appropriately.  */

static void
7310
emit_return_into_block (bb, line_note)
7311
     basic_block bb;
7312
     rtx line_note;
7313
{
7314
  emit_jump_insn_after (gen_return (), bb->end);
7315 7316
  if (line_note)
    emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7317
			  NOTE_LINE_NUMBER (line_note), PREV_INSN (bb->end));
7318
}
7319
#endif /* HAVE_return */
7320

7321 7322 7323 7324
#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)

/* These functions convert the epilogue into a variant that does not modify the
   stack pointer.  This is used in cases where a function returns an object
7325
   whose size is not known until it is computed.  The called function leaves the
7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
   object on the stack, leaves the stack depressed, and returns a pointer to
   the object.

   What we need to do is track all modifications and references to the stack
   pointer, deleting the modifications and changing the references to point to
   the location the stack pointer would have pointed to had the modifications
   taken place.

   These functions need to be portable so we need to make as few assumptions
   about the epilogue as we can.  However, the epilogue basically contains
   three things: instructions to reset the stack pointer, instructions to
   reload registers, possibly including the frame pointer, and an
   instruction to return to the caller.

   If we can't be sure of what a relevant epilogue insn is doing, we abort.
   We also make no attempt to validate the insns we make since if they are
   invalid, we probably can't do anything valid.  The intent is that these
   routines get "smarter" as more and more machines start to use them and
   they try operating on different epilogues.

   We use the following structure to track what the part of the epilogue that
   we've already processed has done.  We keep two copies of the SP equivalence,
   one for use during the insn we are processing and one for use in the next
   insn.  The difference is because one part of a PARALLEL may adjust SP
   and the other may use it.  */

struct epi_info
{
  rtx sp_equiv_reg;		/* REG that SP is set from, perhaps SP.  */
  HOST_WIDE_INT sp_offset;	/* Offset from SP_EQUIV_REG of present SP.  */
7356
  rtx new_sp_equiv_reg;		/* REG to be used at end of insn.  */
7357 7358 7359 7360 7361 7362 7363 7364
  HOST_WIDE_INT new_sp_offset;	/* Offset to be used at end of insn.  */
  rtx equiv_reg_src;		/* If nonzero, the value that SP_EQUIV_REG
				   should be set to once we no longer need
				   its value.  */
};

static void handle_epilogue_set PARAMS ((rtx, struct epi_info *));
static void emit_equiv_load PARAMS ((struct epi_info *));
7365

7366 7367
/* Modify INSN, a list of one or more insns that is part of the epilogue, to
   no modifications to the stack pointer.  Return the new list of insns.  */
7368

7369
static rtx
7370 7371
keep_stack_depressed (insns)
     rtx insns;
7372
{
7373
  int j;
7374
  struct epi_info info;
7375
  rtx insn, next;
7376

7377
  /* If the epilogue is just a single instruction, it ust be OK as is.  */
7378

7379 7380
  if (NEXT_INSN (insns) == NULL_RTX)
    return insns;
7381

7382 7383 7384 7385 7386 7387 7388
  /* Otherwise, start a sequence, initialize the information we have, and
     process all the insns we were given.  */
  start_sequence ();

  info.sp_equiv_reg = stack_pointer_rtx;
  info.sp_offset = 0;
  info.equiv_reg_src = 0;
7389

7390 7391 7392
  insn = insns;
  next = NULL_RTX;
  while (insn != NULL_RTX)
7393
    {
7394
      next = NEXT_INSN (insn);
7395

7396 7397 7398
      if (!INSN_P (insn))
	{
	  add_insn (insn);
7399
	  insn = next;
7400 7401
	  continue;
	}
7402

7403 7404 7405 7406 7407
      /* If this insn references the register that SP is equivalent to and
	 we have a pending load to that register, we must force out the load
	 first and then indicate we no longer know what SP's equivalent is.  */
      if (info.equiv_reg_src != 0
	  && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7408
	{
7409 7410 7411
	  emit_equiv_load (&info);
	  info.sp_equiv_reg = 0;
	}
7412

7413 7414
      info.new_sp_equiv_reg = info.sp_equiv_reg;
      info.new_sp_offset = info.sp_offset;
7415

7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434
      /* If this is a (RETURN) and the return address is on the stack,
	 update the address and change to an indirect jump.  */
      if (GET_CODE (PATTERN (insn)) == RETURN
	  || (GET_CODE (PATTERN (insn)) == PARALLEL
	      && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
	{
	  rtx retaddr = INCOMING_RETURN_ADDR_RTX;
	  rtx base = 0;
	  HOST_WIDE_INT offset = 0;
	  rtx jump_insn, jump_set;

	  /* If the return address is in a register, we can emit the insn
	     unchanged.  Otherwise, it must be a MEM and we see what the
	     base register and offset are.  In any case, we have to emit any
	     pending load to the equivalent reg of SP, if any.  */
	  if (GET_CODE (retaddr) == REG)
	    {
	      emit_equiv_load (&info);
	      add_insn (insn);
7435
	      insn = next;
7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
	      continue;
	    }
	  else if (GET_CODE (retaddr) == MEM
		   && GET_CODE (XEXP (retaddr, 0)) == REG)
	    base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
	  else if (GET_CODE (retaddr) == MEM
		   && GET_CODE (XEXP (retaddr, 0)) == PLUS
		   && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
		   && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
	    {
	      base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
	      offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
	    }
7449
	  else
7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
	    abort ();

	  /* If the base of the location containing the return pointer
	     is SP, we must update it with the replacement address.  Otherwise,
	     just build the necessary MEM.  */
	  retaddr = plus_constant (base, offset);
	  if (base == stack_pointer_rtx)
	    retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
					    plus_constant (info.sp_equiv_reg,
							   info.sp_offset));

	  retaddr = gen_rtx_MEM (Pmode, retaddr);

	  /* If there is a pending load to the equivalent register for SP
	     and we reference that register, we must load our address into
	     a scratch register and then do that load.  */
	  if (info.equiv_reg_src
	      && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
	    {
	      unsigned int regno;
	      rtx reg;

	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		if (HARD_REGNO_MODE_OK (regno, Pmode)
7474 7475
		    && !fixed_regs[regno]
		    && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7476 7477 7478 7479 7480 7481
		    && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
					 regno)
		    && !refers_to_regno_p (regno,
					   regno + HARD_REGNO_NREGS (regno,
								     Pmode),
					   info.equiv_reg_src, NULL))
7482 7483 7484 7485
		  break;

	      if (regno == FIRST_PSEUDO_REGISTER)
		abort ();
7486

7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500
	      reg = gen_rtx_REG (Pmode, regno);
	      emit_move_insn (reg, retaddr);
	      retaddr = reg;
	    }

	  emit_equiv_load (&info);
	  jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));

	  /* Show the SET in the above insn is a RETURN.  */
	  jump_set = single_set (jump_insn);
	  if (jump_set == 0)
	    abort ();
	  else
	    SET_IS_RETURN_P (jump_set) = 1;
7501
	}
7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513

      /* If SP is not mentioned in the pattern and its equivalent register, if
	 any, is not modified, just emit it.  Otherwise, if neither is set,
	 replace the reference to SP and emit the insn.  If none of those are
	 true, handle each SET individually.  */
      else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
	       && (info.sp_equiv_reg == stack_pointer_rtx
		   || !reg_set_p (info.sp_equiv_reg, insn)))
	add_insn (insn);
      else if (! reg_set_p (stack_pointer_rtx, insn)
	       && (info.sp_equiv_reg == stack_pointer_rtx
		   || !reg_set_p (info.sp_equiv_reg, insn)))
7514
	{
7515 7516 7517 7518
	  if (! validate_replace_rtx (stack_pointer_rtx,
				      plus_constant (info.sp_equiv_reg,
						     info.sp_offset),
				      insn))
7519 7520
	    abort ();

7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535
	  add_insn (insn);
	}
      else if (GET_CODE (PATTERN (insn)) == SET)
	handle_epilogue_set (PATTERN (insn), &info);
      else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	{
	  for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
	    if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
	      handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
	}
      else
	add_insn (insn);

      info.sp_equiv_reg = info.new_sp_equiv_reg;
      info.sp_offset = info.new_sp_offset;
7536 7537

      insn = next;
7538 7539
    }

7540
  insns = get_insns ();
7541
  end_sequence ();
7542
  return insns;
7543 7544
}

7545
/* SET is a SET from an insn in the epilogue.  P is a pointer to the epi_info
7546
   structure that contains information about what we've seen so far.  We
7547
   process this SET by either updating that data or by emitting one or
7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566
   more insns.  */

static void
handle_epilogue_set (set, p)
     rtx set;
     struct epi_info *p;
{
  /* First handle the case where we are setting SP.  Record what it is being
     set from.  If unknown, abort.  */
  if (reg_set_p (stack_pointer_rtx, set))
    {
      if (SET_DEST (set) != stack_pointer_rtx)
	abort ();

      if (GET_CODE (SET_SRC (set)) == PLUS
	  && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
	{
	  p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
	  p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7567
	}
7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585
      else
	p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;

      /* If we are adjusting SP, we adjust from the old data.  */
      if (p->new_sp_equiv_reg == stack_pointer_rtx)
	{
	  p->new_sp_equiv_reg = p->sp_equiv_reg;
	  p->new_sp_offset += p->sp_offset;
	}

      if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
	abort ();

      return;
    }

  /* Next handle the case where we are setting SP's equivalent register.
     If we already have a value to set it to, abort.  We could update, but
7586 7587 7588 7589 7590
     there seems little point in handling that case.  Note that we have
     to allow for the case where we are setting the register set in
     the previous part of a PARALLEL inside a single insn.  But use the
     old offset for any updates within this insn.  */
  else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7591
    {
7592
      if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612
	  || p->equiv_reg_src != 0)
	abort ();
      else
	p->equiv_reg_src
	  = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
				  plus_constant (p->sp_equiv_reg,
						 p->sp_offset));
    }

  /* Otherwise, replace any references to SP in the insn to its new value
     and emit the insn.  */
  else
    {
      SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
					    plus_constant (p->sp_equiv_reg,
							   p->sp_offset));
      SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
					     plus_constant (p->sp_equiv_reg,
							    p->sp_offset));
      emit_insn (set);
7613 7614
    }
}
7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626

/* Emit an insn to do the load shown in p->equiv_reg_src, if needed.  */

static void
emit_equiv_load (p)
     struct epi_info *p;
{
  if (p->equiv_reg_src != 0)
    emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);

  p->equiv_reg_src = 0;
}
7627 7628
#endif

Richard Kenner committed
7629
/* Generate the prologue and epilogue RTL if the machine supports it.  Thread
Tom Wood committed
7630 7631 7632 7633 7634
   this into place with notes indicating where the prologue ends and where
   the epilogue begins.  Update the basic block information when possible.  */

void
thread_prologue_and_epilogue_insns (f)
Kaveh R. Ghazi committed
7635
     rtx f ATTRIBUTE_UNUSED;
Tom Wood committed
7636
{
7637
  int inserted = 0;
7638
  edge e;
7639
#if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7640
  rtx seq;
7641
#endif
7642 7643 7644
#ifdef HAVE_prologue
  rtx prologue_end = NULL_RTX;
#endif
7645 7646 7647
#if defined (HAVE_epilogue) || defined(HAVE_return)
  rtx epilogue_end = NULL_RTX;
#endif
7648

Tom Wood committed
7649 7650 7651
#ifdef HAVE_prologue
  if (HAVE_prologue)
    {
7652
      start_sequence ();
Kazu Hirata committed
7653
      seq = gen_prologue ();
7654
      emit_insn (seq);
Tom Wood committed
7655 7656

      /* Retain a map of the prologue insns.  */
7657
      record_insns (seq, &prologue);
7658
      prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7659

7660
      seq = get_insns ();
7661 7662
      end_sequence ();

7663
      /* Can't deal with multiple successors of the entry block
7664 7665 7666 7667
         at the moment.  Function should always have at least one
         entry point.  */
      if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
	abort ();
7668

7669 7670
      insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
      inserted = 1;
Tom Wood committed
7671 7672 7673
    }
#endif

7674 7675
  /* If the exit block has no non-fake predecessors, we don't need
     an epilogue.  */
Kazu Hirata committed
7676
  for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7677 7678 7679 7680 7681
    if ((e->flags & EDGE_FAKE) == 0)
      break;
  if (e == NULL)
    goto epilogue_done;

7682 7683 7684 7685 7686
#ifdef HAVE_return
  if (optimize && HAVE_return)
    {
      /* If we're allowed to generate a simple return instruction,
	 then by definition we don't need a full epilogue.  Examine
Kazu Hirata committed
7687 7688
	 the block that falls through to EXIT.   If it does not
	 contain any code, examine its predecessors and try to
7689 7690 7691 7692 7693 7694
	 emit (conditional) return instructions.  */

      basic_block last;
      edge e_next;
      rtx label;

Kazu Hirata committed
7695
      for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712
	if (e->flags & EDGE_FALLTHRU)
	  break;
      if (e == NULL)
	goto epilogue_done;
      last = e->src;

      /* Verify that there are no active instructions in the last block.  */
      label = last->end;
      while (label && GET_CODE (label) != CODE_LABEL)
	{
	  if (active_insn_p (label))
	    break;
	  label = PREV_INSN (label);
	}

      if (last->head == label && GET_CODE (label) == CODE_LABEL)
	{
Kazu Hirata committed
7713
	  rtx epilogue_line_note = NULL_RTX;
7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725

	  /* Locate the line number associated with the closing brace,
	     if we can find one.  */
	  for (seq = get_last_insn ();
	       seq && ! active_insn_p (seq);
	       seq = PREV_INSN (seq))
	    if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
	      {
		epilogue_line_note = seq;
		break;
	      }

Kazu Hirata committed
7726
	  for (e = last->pred; e; e = e_next)
7727 7728 7729 7730 7731 7732 7733 7734 7735
	    {
	      basic_block bb = e->src;
	      rtx jump;

	      e_next = e->pred_next;
	      if (bb == ENTRY_BLOCK_PTR)
		continue;

	      jump = bb->end;
7736
	      if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7737 7738 7739 7740 7741 7742
		continue;

	      /* If we have an unconditional jump, we can replace that
		 with a simple return instruction.  */
	      if (simplejump_p (jump))
		{
7743
		  emit_return_into_block (bb, epilogue_line_note);
7744
		  delete_insn (jump);
7745 7746 7747 7748 7749 7750
		}

	      /* If we have a conditional jump, we can try to replace
		 that with a conditional return instruction.  */
	      else if (condjump_p (jump))
		{
7751
		  if (! redirect_jump (jump, 0, 0))
7752
		    continue;
Kazu Hirata committed
7753

7754 7755 7756
		  /* If this block has only one successor, it both jumps
		     and falls through to the fallthru block, so we can't
		     delete the edge.  */
Kazu Hirata committed
7757 7758
		  if (bb->succ->succ_next == NULL)
		    continue;
7759 7760 7761 7762 7763
		}
	      else
		continue;

	      /* Fix up the CFG for the successful change we just made.  */
7764
	      redirect_edge_succ (e, EXIT_BLOCK_PTR);
7765 7766
	    }

7767 7768
	  /* Emit a return insn for the exit fallthru block.  Whether
	     this is still reachable will be determined later.  */
7769

7770
	  emit_barrier_after (last->end);
7771 7772
	  emit_return_into_block (last, epilogue_line_note);
	  epilogue_end = last->end;
7773
	  last->succ->flags &= ~EDGE_FALLTHRU;
Kazu Hirata committed
7774
	  goto epilogue_done;
7775
	}
7776 7777
    }
#endif
Tom Wood committed
7778 7779 7780
#ifdef HAVE_epilogue
  if (HAVE_epilogue)
    {
7781 7782 7783 7784
      /* Find the edge that falls through to EXIT.  Other edges may exist
	 due to RETURN instructions, but those don't need epilogues.
	 There really shouldn't be a mixture -- either all should have
	 been converted or none, however...  */
7785

Kazu Hirata committed
7786
      for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7787 7788 7789 7790
	if (e->flags & EDGE_FALLTHRU)
	  break;
      if (e == NULL)
	goto epilogue_done;
7791

7792
      start_sequence ();
7793
      epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7794

7795
      seq = gen_epilogue ();
7796

7797 7798 7799
#ifdef INCOMING_RETURN_ADDR_RTX
      /* If this function returns with the stack depressed and we can support
	 it, massage the epilogue to actually do that.  */
7800 7801
      if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
	  && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7802 7803
	seq = keep_stack_depressed (seq);
#endif
7804

7805
      emit_jump_insn (seq);
Tom Wood committed
7806

7807
      /* Retain a map of the epilogue insns.  */
7808
      record_insns (seq, &epilogue);
Tom Wood committed
7809

7810
      seq = get_insns ();
Kazu Hirata committed
7811
      end_sequence ();
7812

7813
      insert_insn_on_edge (seq, e);
7814
      inserted = 1;
Tom Wood committed
7815 7816
    }
#endif
7817
epilogue_done:
7818

7819
  if (inserted)
7820
    commit_edge_insertions ();
7821 7822 7823

#ifdef HAVE_sibcall_epilogue
  /* Emit sibling epilogues before any sibling call sites.  */
Kazu Hirata committed
7824
  for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7825 7826 7827 7828
    {
      basic_block bb = e->src;
      rtx insn = bb->end;
      rtx i;
7829
      rtx newinsn;
7830 7831 7832 7833 7834 7835

      if (GET_CODE (insn) != CALL_INSN
	  || ! SIBLING_CALL_P (insn))
	continue;

      start_sequence ();
7836 7837
      emit_insn (gen_sibcall_epilogue ());
      seq = get_insns ();
7838 7839
      end_sequence ();

7840 7841 7842 7843 7844
      /* Retain a map of the epilogue insns.  Used in life analysis to
	 avoid getting rid of sibcall epilogue insns.  Do this before we
	 actually emit the sequence.  */
      record_insns (seq, &sibcall_epilogue);

7845
      i = PREV_INSN (insn);
7846
      newinsn = emit_insn_before (seq, insn);
7847 7848
    }
#endif
7849 7850 7851 7852 7853 7854 7855

#ifdef HAVE_prologue
  if (prologue_end)
    {
      rtx insn, prev;

      /* GDB handles `break f' by setting a breakpoint on the first
7856
	 line note after the prologue.  Which means (1) that if
7857
	 there are line number notes before where we inserted the
7858 7859
	 prologue we should move them, and (2) we should generate a
	 note before the end of the first basic block, if there isn't
7860 7861
	 one already there.

7862
	 ??? This behavior is completely broken when dealing with
7863 7864 7865 7866
	 multiple entry functions.  We simply place the note always
	 into first basic block and let alternate entry points
	 to be missed.
       */
7867

Kazu Hirata committed
7868
      for (insn = prologue_end; insn; insn = prev)
7869 7870 7871 7872 7873 7874
	{
	  prev = PREV_INSN (insn);
	  if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	    {
	      /* Note that we cannot reorder the first insn in the
		 chain, since rest_of_compilation relies on that
7875
		 remaining constant.  */
7876
	      if (prev == NULL)
7877 7878
		break;
	      reorder_insns (insn, insn, prologue_end);
7879 7880 7881
	    }
	}

7882
      /* Find the last line number note in the first block.  */
7883
      for (insn = ENTRY_BLOCK_PTR->next_bb->end;
7884
	   insn != prologue_end && insn;
7885 7886 7887 7888 7889 7890 7891
	   insn = PREV_INSN (insn))
	if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	  break;

      /* If we didn't find one, make a copy of the first line number
	 we run across.  */
      if (! insn)
7892
	{
7893 7894 7895 7896 7897 7898 7899 7900 7901 7902
	  for (insn = next_active_insn (prologue_end);
	       insn;
	       insn = PREV_INSN (insn))
	    if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	      {
		emit_line_note_after (NOTE_SOURCE_FILE (insn),
				      NOTE_LINE_NUMBER (insn),
				      prologue_end);
		break;
	      }
7903 7904 7905
	}
    }
#endif
7906 7907 7908 7909 7910 7911
#ifdef HAVE_epilogue
  if (epilogue_end)
    {
      rtx insn, next;

      /* Similarly, move any line notes that appear after the epilogue.
7912
         There is no need, however, to be quite so anal about the existence
7913
	 of such a note.  */
Kazu Hirata committed
7914
      for (insn = epilogue_end; insn; insn = next)
7915 7916 7917 7918 7919 7920 7921
	{
	  next = NEXT_INSN (insn);
	  if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
	    reorder_insns (insn, insn, PREV_INSN (epilogue_end));
	}
    }
#endif
Tom Wood committed
7922 7923 7924 7925 7926 7927 7928
}

/* Reposition the prologue-end and epilogue-begin notes after instruction
   scheduling and delayed branch scheduling.  */

void
reposition_prologue_and_epilogue_notes (f)
Kaveh R. Ghazi committed
7929
     rtx f ATTRIBUTE_UNUSED;
Tom Wood committed
7930 7931
{
#if defined (HAVE_prologue) || defined (HAVE_epilogue)
7932
  rtx insn, last, note;
7933 7934 7935
  int len;

  if ((len = VARRAY_SIZE (prologue)) > 0)
Tom Wood committed
7936
    {
7937
      last = 0, note = 0;
Tom Wood committed
7938

7939 7940 7941
      /* Scan from the beginning until we reach the last prologue insn.
	 We apparently can't depend on basic_block_{head,end} after
	 reorg has run.  */
7942
      for (insn = f; insn; insn = NEXT_INSN (insn))
Tom Wood committed
7943
	{
7944
	  if (GET_CODE (insn) == NOTE)
7945
	    {
7946 7947 7948
	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
		note = insn;
	    }
7949
	  else if (contains (insn, prologue))
7950
	    {
7951 7952 7953 7954 7955
	      last = insn;
	      if (--len == 0)
		break;
	    }
	}
7956

7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967
      if (last)
	{
	  /* Find the prologue-end note if we haven't already, and
	     move it to just after the last prologue insn.  */
	  if (note == 0)
	    {
	      for (note = last; (note = NEXT_INSN (note));)
		if (GET_CODE (note) == NOTE
		    && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
		  break;
	    }
7968

7969 7970 7971 7972
	  /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note.  */
	  if (GET_CODE (last) == CODE_LABEL)
	    last = NEXT_INSN (last);
	  reorder_insns (note, note, last);
Tom Wood committed
7973
	}
7974 7975 7976 7977
    }

  if ((len = VARRAY_SIZE (epilogue)) > 0)
    {
7978
      last = 0, note = 0;
Tom Wood committed
7979

7980 7981 7982
      /* Scan from the end until we reach the first epilogue insn.
	 We apparently can't depend on basic_block_{head,end} after
	 reorg has run.  */
7983
      for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
Tom Wood committed
7984
	{
7985
	  if (GET_CODE (insn) == NOTE)
7986
	    {
7987 7988 7989
	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
		note = insn;
	    }
7990
	  else if (contains (insn, epilogue))
7991
	    {
7992 7993 7994 7995 7996
	      last = insn;
	      if (--len == 0)
		break;
	    }
	}
7997

7998 7999 8000 8001 8002 8003 8004 8005 8006 8007
      if (last)
	{
	  /* Find the epilogue-begin note if we haven't already, and
	     move it to just before the first epilogue insn.  */
	  if (note == 0)
	    {
	      for (note = insn; (note = PREV_INSN (note));)
		if (GET_CODE (note) == NOTE
		    && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
		  break;
8008
	    }
8009 8010 8011

	  if (PREV_INSN (last) != note)
	    reorder_insns (note, note, PREV_INSN (last));
Tom Wood committed
8012 8013 8014 8015
	}
    }
#endif /* HAVE_prologue or HAVE_epilogue */
}
8016 8017 8018 8019 8020 8021

/* Called once, at initialization, to initialize function.c.  */

void
init_function_once ()
{
8022 8023 8024
  VARRAY_INT_INIT (prologue, 0, "prologue");
  VARRAY_INT_INIT (epilogue, 0, "epilogue");
  VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
8025
}
8026 8027

#include "gt-function.h"