real.c 140 KB
Newer Older
Richard Stallman committed
1
/* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF,
2
   and support for XFmode IEEE extended real floating point arithmetic.
Jeff Law committed
3 4
   Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000 Free Software Foundation, Inc.
5
   Contributed by Stephen L. Moshier (moshier@world.std.com).
Richard Stallman committed
6

7
This file is part of GCC.
Richard Stallman committed
8

9 10 11 12
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
Richard Stallman committed
13

14 15 16 17
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Stallman committed
18 19

You should have received a copy of the GNU General Public License
20 21 22
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */
Richard Stallman committed
23

24
#include "config.h"
25
#include "system.h"
Richard Stallman committed
26
#include "tree.h"
Robert Lipe committed
27
#include "toplev.h"
28
#include "tm_p.h"
Richard Stallman committed
29 30 31 32

/* To enable support of XFmode extended real floating point, define
LONG_DOUBLE_TYPE_SIZE 96 in the tm.h file (m68k.h or i386.h).

33
To support cross compilation between IEEE, VAX and IBM floating
Richard Stallman committed
34 35 36 37 38 39 40 41 42 43 44 45
point formats, define REAL_ARITHMETIC in the tm.h file.

In either case the machine files (tm.h) must not contain any code
that tries to use host floating point arithmetic to convert
REAL_VALUE_TYPEs from `double' to `float', pass them to fprintf,
etc.  In cross-compile situations a REAL_VALUE_TYPE may not
be intelligible to the host computer's native arithmetic.

The emulator defaults to the host's floating point format so that
its decimal conversion functions can be used if desired (see
real.h).

46 47 48 49 50 51 52 53
The first part of this file interfaces gcc to a floating point
arithmetic suite that was not written with gcc in mind.  Avoid
changing the low-level arithmetic routines unless you have suitable
test programs available.  A special version of the PARANOIA floating
point arithmetic tester, modified for this purpose, can be found on
usc.edu: /pub/C-numanal/ieeetest.zoo.  Other tests, and libraries of
XFmode and TFmode transcendental functions, can be obtained by ftp from
netlib.att.com: netlib/cephes.   */
54

Richard Stallman committed
55
/* Type of computer arithmetic.
56
   Only one of DEC, IBM, IEEE, C4X, or UNK should get defined.
57

58
   `IEEE', when REAL_WORDS_BIG_ENDIAN is non-zero, refers generically
59 60 61 62 63 64 65
   to big-endian IEEE floating-point data structure.  This definition
   should work in SFmode `float' type and DFmode `double' type on
   virtually all big-endian IEEE machines.  If LONG_DOUBLE_TYPE_SIZE
   has been defined to be 96, then IEEE also invokes the particular
   XFmode (`long double' type) data structure used by the Motorola
   680x0 series processors.

66
   `IEEE', when REAL_WORDS_BIG_ENDIAN is zero, refers generally to
67 68 69 70
   little-endian IEEE machines. In this case, if LONG_DOUBLE_TYPE_SIZE
   has been defined to be 96, then IEEE also invokes the particular
   XFmode `long double' data structure used by the Intel 80x86 series
   processors.
71 72 73 74 75

   `DEC' refers specifically to the Digital Equipment Corp PDP-11
   and VAX floating point data structure.  This model currently
   supports no type wider than DFmode.

76 77 78 79 80
   `IBM' refers specifically to the IBM System/370 and compatible
   floating point data structure.  This model currently supports
   no type wider than DFmode.  The IBM conversions were contributed by
   frank@atom.ansto.gov.au (Frank Crawford).

81 82 83
   `C4X' refers specifically to the floating point format used on
   Texas Instruments TMS320C3x and TMS320C4x digital signal
   processors.  This supports QFmode (32-bit float, double) and HFmode
84 85 86 87
   (40-bit long double) where BITS_PER_BYTE is 32. Unlike IEEE
   floats, C4x floats are not rounded to be even. The C4x conversions
   were contributed by m.hayes@elec.canterbury.ac.nz (Michael Hayes) and
   Haj.Ten.Brugge@net.HCC.nl (Herman ten Brugge).
88

89 90 91 92 93
   If LONG_DOUBLE_TYPE_SIZE = 64 (the default, unless tm.h defines it)
   then `long double' and `double' are both implemented, but they
   both mean DFmode.  In this case, the software floating-point
   support available here is activated by writing
      #define REAL_ARITHMETIC
94
   in tm.h.
95 96

   The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support
97
   and may deactivate XFmode since `long double' is used to refer
98 99 100
   to both modes.  Defining INTEL_EXTENDED_IEEE_FORMAT to non-zero
   at the same time enables 80387-style 80-bit floats in a 128-bit
   padded image, as seen on IA-64.
101 102 103 104 105 106 107 108 109 110 111 112

   The macros FLOAT_WORDS_BIG_ENDIAN, HOST_FLOAT_WORDS_BIG_ENDIAN,
   contributed by Richard Earnshaw <Richard.Earnshaw@cl.cam.ac.uk>,
   separate the floating point unit's endian-ness from that of
   the integer addressing.  This permits one to define a big-endian
   FPU on a little-endian machine (e.g., ARM).  An extension to
   BYTES_BIG_ENDIAN may be required for some machines in the future.
   These optional macros may be defined in tm.h.  In real.h, they
   default to WORDS_BIG_ENDIAN, etc., so there is no need to define
   them for any normal host or target machine on which the floats
   and the integers have the same endian-ness.   */

113 114 115

/* The following converts gcc macros into the ones used by this file.  */

Richard Stallman committed
116 117 118 119 120 121 122 123
/* REAL_ARITHMETIC defined means that macros in real.h are
   defined to call emulator functions.  */
#ifdef REAL_ARITHMETIC

#if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT
/* PDP-11, Pro350, VAX: */
#define DEC 1
#else /* it's not VAX */
124 125 126 127
#if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT
/* IBM System/370 style */
#define IBM 1
#else /* it's also not an IBM */
128 129 130 131
#if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
/* TMS320C3x/C4x style */
#define C4X 1
#else /* it's also not a C4X */
Richard Stallman committed
132
#if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
133
#define IEEE
Richard Stallman committed
134
#else /* it's not IEEE either */
Mike Stump committed
135
/* UNKnown arithmetic.  We don't support this and can't go on.  */
Richard Stallman committed
136 137 138
unknown arithmetic type
#define UNK 1
#endif /* not IEEE */
139
#endif /* not C4X */
140
#endif /* not IBM */
Richard Stallman committed
141 142
#endif /* not VAX */

143 144
#define REAL_WORDS_BIG_ENDIAN FLOAT_WORDS_BIG_ENDIAN

Richard Stallman committed
145 146 147 148 149 150
#else
/* REAL_ARITHMETIC not defined means that the *host's* data
   structure will be used.  It may differ by endian-ness from the
   target machine's structure and will get its ends swapped
   accordingly (but not here).  Probably only the decimal <-> binary
   functions in this file will actually be used in this case.  */
151

Richard Stallman committed
152 153 154
#if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT
#define DEC 1
#else /* it's not VAX */
155 156 157 158
#if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT
/* IBM System/370 style */
#define IBM 1
#else /* it's also not an IBM */
Richard Stallman committed
159
#if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
160
#define IEEE
Richard Stallman committed
161 162 163 164
#else /* it's not IEEE either */
unknown arithmetic type
#define UNK 1
#endif /* not IEEE */
165
#endif /* not IBM */
Richard Stallman committed
166 167
#endif /* not VAX */

168 169
#define REAL_WORDS_BIG_ENDIAN HOST_FLOAT_WORDS_BIG_ENDIAN

Richard Stallman committed
170 171
#endif /* REAL_ARITHMETIC not defined */

172 173
/* Define INFINITY for support of infinity.
   Define NANS for support of Not-a-Number's (NaN's).  */
174
#if !defined(DEC) && !defined(IBM) && !defined(C4X)
Richard Stallman committed
175
#define INFINITY
176
#define NANS
Richard Stallman committed
177 178
#endif

Mike Stump committed
179
/* Support of NaNs requires support of infinity.  */
180 181 182 183 184
#ifdef NANS
#ifndef INFINITY
#define INFINITY
#endif
#endif
185

Richard Stallman committed
186
/* Find a host integer type that is at least 16 bits wide,
Mike Stump committed
187
   and another type at least twice whatever that size is.  */
Richard Stallman committed
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

#if HOST_BITS_PER_CHAR >= 16
#define EMUSHORT char
#define EMUSHORT_SIZE HOST_BITS_PER_CHAR
#define EMULONG_SIZE (2 * HOST_BITS_PER_CHAR)
#else
#if HOST_BITS_PER_SHORT >= 16
#define EMUSHORT short
#define EMUSHORT_SIZE HOST_BITS_PER_SHORT
#define EMULONG_SIZE (2 * HOST_BITS_PER_SHORT)
#else
#if HOST_BITS_PER_INT >= 16
#define EMUSHORT int
#define EMUSHORT_SIZE HOST_BITS_PER_INT
#define EMULONG_SIZE (2 * HOST_BITS_PER_INT)
#else
#if HOST_BITS_PER_LONG >= 16
#define EMUSHORT long
#define EMUSHORT_SIZE HOST_BITS_PER_LONG
#define EMULONG_SIZE (2 * HOST_BITS_PER_LONG)
#else
Mike Stump committed
209
/*  You will have to modify this program to have a smaller unit size.  */
Richard Stallman committed
210 211 212 213 214 215
#define EMU_NON_COMPILE
#endif
#endif
#endif
#endif

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/* If no 16-bit type has been found and the compiler is GCC, try HImode.  */
#if defined(__GNUC__) && EMUSHORT_SIZE != 16
typedef int HItype __attribute__ ((mode (HI)));
typedef unsigned int UHItype __attribute__ ((mode (HI)));
#undef EMUSHORT
#undef EMUSHORT_SIZE
#undef EMULONG_SIZE
#define EMUSHORT HItype
#define UEMUSHORT UHItype
#define EMUSHORT_SIZE 16
#define EMULONG_SIZE 32
#else
#define UEMUSHORT unsigned EMUSHORT
#endif

Richard Stallman committed
231 232 233 234 235 236 237 238 239
#if HOST_BITS_PER_SHORT >= EMULONG_SIZE
#define EMULONG short
#else
#if HOST_BITS_PER_INT >= EMULONG_SIZE
#define EMULONG int
#else
#if HOST_BITS_PER_LONG >= EMULONG_SIZE
#define EMULONG long
#else
240
#if HOST_BITS_PER_LONGLONG >= EMULONG_SIZE
Richard Stallman committed
241 242
#define EMULONG long long int
#else
Mike Stump committed
243
/*  You will have to modify this program to have a smaller unit size.  */
Richard Stallman committed
244 245 246 247 248 249 250
#define EMU_NON_COMPILE
#endif
#endif
#endif
#endif


Mike Stump committed
251
/* The host interface doesn't work if no 16-bit size exists.  */
Richard Stallman committed
252 253 254 255
#if EMUSHORT_SIZE != 16
#define EMU_NON_COMPILE
#endif

Mike Stump committed
256
/* OK to continue compilation.  */
Richard Stallman committed
257 258 259 260 261 262 263
#ifndef EMU_NON_COMPILE

/* Construct macros to translate between REAL_VALUE_TYPE and e type.
   In GET_REAL and PUT_REAL, r and e are pointers.
   A REAL_VALUE_TYPE is guaranteed to occupy contiguous locations
   in memory, with no holes.  */

264
#if MAX_LONG_DOUBLE_TYPE_SIZE == 96 || \
265
    ((INTEL_EXTENDED_IEEE_FORMAT != 0) && MAX_LONG_DOUBLE_TYPE_SIZE == 128)
266
/* Number of 16 bit words in external e type format */
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
# define NE 6
# define MAXDECEXP 4932
# define MINDECEXP -4956
# define GET_REAL(r,e)  memcpy ((char *)(e), (char *)(r), 2*NE)
# define PUT_REAL(e,r)						\
	do {							\
	  memcpy ((char *)(r), (char *)(e), 2*NE);		\
	  if (2*NE < sizeof(*r))				\
	    memset ((char *)(r) + 2*NE, 0, sizeof(*r) - 2*NE);	\
	} while (0)
# else /* no XFmode */
#  if MAX_LONG_DOUBLE_TYPE_SIZE == 128
#   define NE 10
#   define MAXDECEXP 4932
#   define MINDECEXP -4977
#   define GET_REAL(r,e) memcpy ((char *)(e), (char *)(r), 2*NE)
#   define PUT_REAL(e,r)					\
	do {							\
	  memcpy ((char *)(r), (char *)(e), 2*NE);		\
	  if (2*NE < sizeof(*r))				\
	    memset ((char *)(r) + 2*NE, 0, sizeof(*r) - 2*NE);	\
	} while (0)
289 290 291 292
#else
#define NE 6
#define MAXDECEXP 4932
#define MINDECEXP -4956
Richard Stallman committed
293 294
#ifdef REAL_ARITHMETIC
/* Emulator uses target format internally
Mike Stump committed
295
   but host stores it in host endian-ness.  */
Richard Stallman committed
296

297 298 299
#define GET_REAL(r,e)							\
do {									\
     if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN)		\
300
       e53toe ((UEMUSHORT *) (r), (e));				\
301 302
     else								\
       {								\
303
	 UEMUSHORT w[4];					\
Kaveh R. Ghazi committed
304 305 306 307
         memcpy (&w[3], ((EMUSHORT *) r), sizeof (EMUSHORT));		\
         memcpy (&w[2], ((EMUSHORT *) r) + 1, sizeof (EMUSHORT));	\
         memcpy (&w[1], ((EMUSHORT *) r) + 2, sizeof (EMUSHORT));	\
         memcpy (&w[0], ((EMUSHORT *) r) + 3, sizeof (EMUSHORT));	\
308 309
	 e53toe (w, (e));						\
       }								\
310 311
   } while (0)

312 313 314
#define PUT_REAL(e,r)							\
do {									\
     if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN)		\
315
       etoe53 ((e), (UEMUSHORT *) (r));				\
316 317
     else								\
       {								\
318
	 UEMUSHORT w[4];					\
319
	 etoe53 ((e), w);						\
Kaveh R. Ghazi committed
320 321 322 323
         memcpy (((EMUSHORT *) r), &w[3], sizeof (EMUSHORT));		\
         memcpy (((EMUSHORT *) r) + 1, &w[2], sizeof (EMUSHORT));	\
         memcpy (((EMUSHORT *) r) + 2, &w[1], sizeof (EMUSHORT));	\
         memcpy (((EMUSHORT *) r) + 3, &w[0], sizeof (EMUSHORT));	\
324
       }								\
325
   } while (0)
Richard Stallman committed
326 327 328 329

#else /* not REAL_ARITHMETIC */

/* emulator uses host format */
330 331
#define GET_REAL(r,e) e53toe ((UEMUSHORT *) (r), (e))
#define PUT_REAL(e,r) etoe53 ((e), (UEMUSHORT *) (r))
Richard Stallman committed
332 333

#endif /* not REAL_ARITHMETIC */
334
#endif /* not TFmode */
335
#endif /* not XFmode */
Richard Stallman committed
336

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

/* Number of 16 bit words in internal format */
#define NI (NE+3)

/* Array offset to exponent */
#define E 1

/* Array offset to high guard word */
#define M 2

/* Number of bits of precision */
#define NBITS ((NI-4)*16)

/* Maximum number of decimal digits in ASCII conversion
 * = NBITS*log10(2)
 */
#define NDEC (NBITS*8/27)

/* The exponent of 1.0 */
#define EXONE (0x3fff)

358 359 360 361 362 363 364
#if defined(HOST_EBCDIC)
/* bit 8 is significant in EBCDIC */
#define CHARMASK 0xff
#else
#define CHARMASK 0x7f
#endif

365
extern int extra_warnings;
366 367
extern UEMUSHORT ezero[], ehalf[], eone[], etwo[];
extern UEMUSHORT elog2[], esqrt2[];
368

369
static void endian	PARAMS ((UEMUSHORT *, long *,
370
			       enum machine_mode));
371 372
static void eclear	PARAMS ((UEMUSHORT *));
static void emov	PARAMS ((UEMUSHORT *, UEMUSHORT *));
373
#if 0
374
static void eabs	PARAMS ((UEMUSHORT *));
375
#endif
376 377 378 379 380
static void eneg	PARAMS ((UEMUSHORT *));
static int eisneg	PARAMS ((UEMUSHORT *));
static int eisinf	PARAMS ((UEMUSHORT *));
static int eisnan	PARAMS ((UEMUSHORT *));
static void einfin	PARAMS ((UEMUSHORT *));
381
#ifdef NANS
382 383 384 385 386 387 388 389 390 391 392
static void enan	PARAMS ((UEMUSHORT *, int));
static void einan	PARAMS ((UEMUSHORT *));
static int eiisnan	PARAMS ((UEMUSHORT *));
static int eiisneg	PARAMS ((UEMUSHORT *));
static void make_nan	PARAMS ((UEMUSHORT *, int, enum machine_mode));
#endif
static void emovi	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void emovo	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void ecleaz	PARAMS ((UEMUSHORT *));
static void ecleazs	PARAMS ((UEMUSHORT *));
static void emovz	PARAMS ((UEMUSHORT *, UEMUSHORT *));
393
#if 0
394
static void eiinfin	PARAMS ((UEMUSHORT *));
395
#endif
396
#ifdef INFINITY
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
static int eiisinf	PARAMS ((UEMUSHORT *));
#endif
static int ecmpm	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void eshdn1	PARAMS ((UEMUSHORT *));
static void eshup1	PARAMS ((UEMUSHORT *));
static void eshdn8	PARAMS ((UEMUSHORT *));
static void eshup8	PARAMS ((UEMUSHORT *));
static void eshup6	PARAMS ((UEMUSHORT *));
static void eshdn6	PARAMS ((UEMUSHORT *));
static void eaddm	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void esubm	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void m16m	PARAMS ((unsigned int, UEMUSHORT *, UEMUSHORT *));
static int edivm	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static int emulm	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void emdnorm	PARAMS ((UEMUSHORT *, int, int, EMULONG, int));
static void esub	PARAMS ((UEMUSHORT *, UEMUSHORT *,
			       UEMUSHORT *));
static void eadd	PARAMS ((UEMUSHORT *, UEMUSHORT *,
			       UEMUSHORT *));
static void eadd1	PARAMS ((UEMUSHORT *, UEMUSHORT *,
			       UEMUSHORT *));
static void ediv	PARAMS ((UEMUSHORT *, UEMUSHORT *,
			       UEMUSHORT *));
static void emul	PARAMS ((UEMUSHORT *, UEMUSHORT *,
			       UEMUSHORT *));
static void e53toe	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void e64toe	PARAMS ((UEMUSHORT *, UEMUSHORT *));
424
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
425 426 427 428 429 430 431 432 433 434 435 436
static void e113toe	PARAMS ((UEMUSHORT *, UEMUSHORT *));
#endif
static void e24toe	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void etoe113	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void toe113	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void etoe64	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void toe64	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void etoe53	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void toe53	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void etoe24	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void toe24	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static int ecmp		PARAMS ((UEMUSHORT *, UEMUSHORT *));
437
#if 0
438 439 440 441 442 443 444 445 446 447
static void eround	PARAMS ((UEMUSHORT *, UEMUSHORT *));
#endif
static void ltoe	PARAMS ((HOST_WIDE_INT *, UEMUSHORT *));
static void ultoe	PARAMS ((unsigned HOST_WIDE_INT *, UEMUSHORT *));
static void eifrac	PARAMS ((UEMUSHORT *, HOST_WIDE_INT *,
			       UEMUSHORT *));
static void euifrac	PARAMS ((UEMUSHORT *, unsigned HOST_WIDE_INT *,
			       UEMUSHORT *));
static int eshift	PARAMS ((UEMUSHORT *, int));
static int enormlz	PARAMS ((UEMUSHORT *));
448
#if 0
449 450 451 452
static void e24toasc	PARAMS ((UEMUSHORT *, char *, int));
static void e53toasc	PARAMS ((UEMUSHORT *, char *, int));
static void e64toasc	PARAMS ((UEMUSHORT *, char *, int));
static void e113toasc	PARAMS ((UEMUSHORT *, char *, int));
453
#endif /* 0 */
454 455 456 457
static void etoasc	PARAMS ((UEMUSHORT *, char *, int));
static void asctoe24	PARAMS ((const char *, UEMUSHORT *));
static void asctoe53	PARAMS ((const char *, UEMUSHORT *));
static void asctoe64	PARAMS ((const char *, UEMUSHORT *));
458
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
459
static void asctoe113	PARAMS ((const char *, UEMUSHORT *));
460
#endif
461 462 463
static void asctoe	PARAMS ((const char *, UEMUSHORT *));
static void asctoeg	PARAMS ((const char *, UEMUSHORT *, int));
static void efloor	PARAMS ((UEMUSHORT *, UEMUSHORT *));
Manfred Hollstein committed
464
#if 0
465 466
static void efrexp	PARAMS ((UEMUSHORT *, int *,
			       UEMUSHORT *));
Manfred Hollstein committed
467
#endif
468
static void eldexp	PARAMS ((UEMUSHORT *, int, UEMUSHORT *));
Manfred Hollstein committed
469
#if 0
470 471
static void eremain	PARAMS ((UEMUSHORT *, UEMUSHORT *,
			       UEMUSHORT *));
Manfred Hollstein committed
472
#endif
473
static void eiremain	PARAMS ((UEMUSHORT *, UEMUSHORT *));
474
static void mtherr	PARAMS ((const char *, int));
475
#ifdef DEC
476 477 478
static void dectoe	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void etodec	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void todec	PARAMS ((UEMUSHORT *, UEMUSHORT *));
479 480
#endif
#ifdef IBM
481
static void ibmtoe	PARAMS ((UEMUSHORT *, UEMUSHORT *,
482
			       enum machine_mode));
483
static void etoibm	PARAMS ((UEMUSHORT *, UEMUSHORT *,
484
			       enum machine_mode));
485
static void toibm	PARAMS ((UEMUSHORT *, UEMUSHORT *,
486
			       enum machine_mode));
487
#endif
488
#ifdef C4X
489
static void c4xtoe	PARAMS ((UEMUSHORT *, UEMUSHORT *,
490
 			       enum machine_mode));
491
static void etoc4x	PARAMS ((UEMUSHORT *, UEMUSHORT *,
492
 			       enum machine_mode));
493
static void toc4x	PARAMS ((UEMUSHORT *, UEMUSHORT *,
494 495
 			       enum machine_mode));
#endif
Manfred Hollstein committed
496
#if 0
497 498 499 500 501
static void uditoe	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void ditoe	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void etoudi	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void etodi	PARAMS ((UEMUSHORT *, UEMUSHORT *));
static void esqrt	PARAMS ((UEMUSHORT *, UEMUSHORT *));
Manfred Hollstein committed
502
#endif
503

504 505 506
/* Copy 32-bit numbers obtained from array containing 16-bit numbers,
   swapping ends if required, into output array of longs.  The
   result is normally passed to fprintf by the ASM_OUTPUT_ macros.   */
507

508
static void
Richard Stallman committed
509
endian (e, x, mode)
510
     UEMUSHORT e[];
Richard Stallman committed
511 512 513 514 515
     long x[];
     enum machine_mode mode;
{
  unsigned long th, t;

516
  if (REAL_WORDS_BIG_ENDIAN)
Richard Stallman committed
517
    {
518 519 520
      switch (mode)
	{
	case TFmode:
521
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
Mike Stump committed
522
	  /* Swap halfwords in the fourth long.  */
523 524 525 526
	  th = (unsigned long) e[6] & 0xffff;
	  t = (unsigned long) e[7] & 0xffff;
	  t |= th << 16;
	  x[3] = (long) t;
527
#endif
528 529

	case XFmode:
Mike Stump committed
530
	  /* Swap halfwords in the third long.  */
531 532 533 534 535 536 537
	  th = (unsigned long) e[4] & 0xffff;
	  t = (unsigned long) e[5] & 0xffff;
	  t |= th << 16;
	  x[2] = (long) t;
	  /* fall into the double case */

	case DFmode:
538
	  /* Swap halfwords in the second word.  */
539 540 541 542 543 544 545
	  th = (unsigned long) e[2] & 0xffff;
	  t = (unsigned long) e[3] & 0xffff;
	  t |= th << 16;
	  x[1] = (long) t;
	  /* fall into the float case */

	case SFmode:
546 547
	case HFmode:
	  /* Swap halfwords in the first word.  */
548 549 550
	  th = (unsigned long) e[0] & 0xffff;
	  t = (unsigned long) e[1] & 0xffff;
	  t |= th << 16;
551
	  x[0] = (long) t;
552
	  break;
Richard Stallman committed
553

554 555 556
	default:
	  abort ();
	}
Richard Stallman committed
557
    }
558
  else
Richard Stallman committed
559
    {
Mike Stump committed
560
      /* Pack the output array without swapping.  */
Richard Stallman committed
561

562 563 564
      switch (mode)
	{
	case TFmode:
565
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
Mike Stump committed
566
	  /* Pack the fourth long.  */
567 568 569 570
	  th = (unsigned long) e[7] & 0xffff;
	  t = (unsigned long) e[6] & 0xffff;
	  t |= th << 16;
	  x[3] = (long) t;
571
#endif
572 573 574 575 576 577 578 579 580 581 582 583

	case XFmode:
	  /* Pack the third long.
	     Each element of the input REAL_VALUE_TYPE array has 16 useful bits
	     in it.  */
	  th = (unsigned long) e[5] & 0xffff;
	  t = (unsigned long) e[4] & 0xffff;
	  t |= th << 16;
	  x[2] = (long) t;
	  /* fall into the double case */

	case DFmode:
584
	  /* Pack the second long */
585 586 587 588 589 590 591
	  th = (unsigned long) e[3] & 0xffff;
	  t = (unsigned long) e[2] & 0xffff;
	  t |= th << 16;
	  x[1] = (long) t;
	  /* fall into the float case */

	case SFmode:
592 593
	case HFmode:
	  /* Pack the first long */
594 595 596
	  th = (unsigned long) e[1] & 0xffff;
	  t = (unsigned long) e[0] & 0xffff;
	  t |= th << 16;
597
	  x[0] = (long) t;
598
	  break;
Richard Stallman committed
599

600 601 602
	default:
	  abort ();
	}
Richard Stallman committed
603 604 605 606
    }
}


607
/* This is the implementation of the REAL_ARITHMETIC macro.  */
608

609
void
Richard Stallman committed
610 611 612 613 614 615
earith (value, icode, r1, r2)
     REAL_VALUE_TYPE *value;
     int icode;
     REAL_VALUE_TYPE *r1;
     REAL_VALUE_TYPE *r2;
{
616
  UEMUSHORT d1[NE], d2[NE], v[NE];
Richard Stallman committed
617 618 619 620
  enum tree_code code;

  GET_REAL (r1, d1);
  GET_REAL (r2, d2);
621
#ifdef NANS
Mike Stump committed
622
/*  Return NaN input back to the caller.  */
623 624 625 626 627 628 629 630 631 632 633
  if (eisnan (d1))
    {
      PUT_REAL (d1, value);
      return;
    }
  if (eisnan (d2))
    {
      PUT_REAL (d2, value);
      return;
    }
#endif
Richard Stallman committed
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
  code = (enum tree_code) icode;
  switch (code)
    {
    case PLUS_EXPR:
      eadd (d2, d1, v);
      break;

    case MINUS_EXPR:
      esub (d2, d1, v);		/* d1 - d2 */
      break;

    case MULT_EXPR:
      emul (d2, d1, v);
      break;

    case RDIV_EXPR:
#ifndef REAL_INFINITY
      if (ecmp (d2, ezero) == 0)
652 653
	{
#ifdef NANS
654
	enan (v, eisneg (d1) ^ eisneg (d2));
655 656
	break;
#else
Richard Stallman committed
657 658
	abort ();
#endif
659 660
	}
#endif
Richard Stallman committed
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
      ediv (d2, d1, v);	/* d1/d2 */
      break;

    case MIN_EXPR:		/* min (d1,d2) */
      if (ecmp (d1, d2) < 0)
	emov (d1, v);
      else
	emov (d2, v);
      break;

    case MAX_EXPR:		/* max (d1,d2) */
      if (ecmp (d1, d2) > 0)
	emov (d1, v);
      else
	emov (d2, v);
      break;
    default:
      emov (ezero, v);
      break;
    }
PUT_REAL (v, value);
}


685 686 687
/* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT.
   implements REAL_VALUE_RNDZINT (x) (etrunci (x)).  */

688
REAL_VALUE_TYPE
Richard Stallman committed
689 690 691
etrunci (x)
     REAL_VALUE_TYPE x;
{
692
  UEMUSHORT f[NE], g[NE];
Richard Stallman committed
693
  REAL_VALUE_TYPE r;
694
  HOST_WIDE_INT l;
Richard Stallman committed
695 696

  GET_REAL (&x, g);
697 698 699 700
#ifdef NANS
  if (eisnan (g))
    return (x);
#endif
Richard Stallman committed
701 702 703 704 705 706 707
  eifrac (g, &l, f);
  ltoe (&l, g);
  PUT_REAL (g, &r);
  return (r);
}


708 709 710
/* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT;
   implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)).  */

711
REAL_VALUE_TYPE
Richard Stallman committed
712 713 714
etruncui (x)
     REAL_VALUE_TYPE x;
{
715
  UEMUSHORT f[NE], g[NE];
Richard Stallman committed
716
  REAL_VALUE_TYPE r;
717
  unsigned HOST_WIDE_INT l;
Richard Stallman committed
718 719

  GET_REAL (&x, g);
720 721 722 723
#ifdef NANS
  if (eisnan (g))
    return (x);
#endif
Richard Stallman committed
724 725 726 727 728 729 730
  euifrac (g, &l, f);
  ultoe (&l, g);
  PUT_REAL (g, &r);
  return (r);
}


731 732 733
/* This is the REAL_VALUE_ATOF function.  It converts a decimal or hexadecimal
   string to binary, rounding off as indicated by the machine_mode argument.
   Then it promotes the rounded value to REAL_VALUE_TYPE.  */
734

735
REAL_VALUE_TYPE
Richard Stallman committed
736
ereal_atof (s, t)
737
     const char *s;
Richard Stallman committed
738 739
     enum machine_mode t;
{
740
  UEMUSHORT tem[NE], e[NE];
Richard Stallman committed
741 742 743 744
  REAL_VALUE_TYPE r;

  switch (t)
    {
745 746
#ifdef C4X
    case QFmode:
747
    case HFmode:
748 749 750 751 752 753 754
      asctoe53 (s, tem);
      e53toe (tem, e);
      break;
#else
    case HFmode:
#endif

Richard Stallman committed
755 756 757 758
    case SFmode:
      asctoe24 (s, tem);
      e24toe (tem, e);
      break;
759

Richard Stallman committed
760 761 762 763
    case DFmode:
      asctoe53 (s, tem);
      e53toe (tem, e);
      break;
764

765
    case TFmode:
766
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
767 768 769
      asctoe113 (s, tem);
      e113toe (tem, e);
      break;
770 771 772 773 774 775 776
#endif
      /* FALLTHRU */

    case XFmode:
      asctoe64 (s, tem);
      e64toe (tem, e);
      break;
777

Richard Stallman committed
778 779 780 781 782 783 784 785
    default:
      asctoe (s, e);
    }
  PUT_REAL (e, &r);
  return (r);
}


786 787
/* Expansion of REAL_NEGATE.  */

788
REAL_VALUE_TYPE
Richard Stallman committed
789 790 791
ereal_negate (x)
     REAL_VALUE_TYPE x;
{
792
  UEMUSHORT e[NE];
Richard Stallman committed
793 794 795 796 797 798 799 800 801
  REAL_VALUE_TYPE r;

  GET_REAL (&x, e);
  eneg (e);
  PUT_REAL (e, &r);
  return (r);
}


802 803 804
/* Round real toward zero to HOST_WIDE_INT;
   implements REAL_VALUE_FIX (x).  */

805
HOST_WIDE_INT
806
efixi (x)
Richard Stallman committed
807 808
     REAL_VALUE_TYPE x;
{
809
  UEMUSHORT f[NE], g[NE];
810
  HOST_WIDE_INT l;
Richard Stallman committed
811 812

  GET_REAL (&x, f);
813 814 815 816 817 818 819
#ifdef NANS
  if (eisnan (f))
    {
      warning ("conversion from NaN to int");
      return (-1);
    }
#endif
820 821
  eifrac (f, &l, g);
  return l;
Richard Stallman committed
822 823
}

824
/* Round real toward zero to unsigned HOST_WIDE_INT
825 826 827
   implements  REAL_VALUE_UNSIGNED_FIX (x).
   Negative input returns zero.  */

828
unsigned HOST_WIDE_INT
829
efixui (x)
Richard Stallman committed
830 831
     REAL_VALUE_TYPE x;
{
832
  UEMUSHORT f[NE], g[NE];
833
  unsigned HOST_WIDE_INT l;
Richard Stallman committed
834 835

  GET_REAL (&x, f);
836 837 838 839 840 841 842
#ifdef NANS
  if (eisnan (f))
    {
      warning ("conversion from NaN to unsigned int");
      return (-1);
    }
#endif
843 844
  euifrac (f, &l, g);
  return l;
Richard Stallman committed
845 846 847
}


848 849
/* REAL_VALUE_FROM_INT macro.  */

850
void
851
ereal_from_int (d, i, j, mode)
Richard Stallman committed
852
     REAL_VALUE_TYPE *d;
853
     HOST_WIDE_INT i, j;
854
     enum machine_mode mode;
Richard Stallman committed
855
{
856
  UEMUSHORT df[NE], dg[NE];
857
  HOST_WIDE_INT low, high;
Richard Stallman committed
858 859
  int sign;

860 861
  if (GET_MODE_CLASS (mode) != MODE_FLOAT)
    abort ();
Richard Stallman committed
862 863 864 865 866 867 868 869 870 871 872 873
  sign = 0;
  low = i;
  if ((high = j) < 0)
    {
      sign = 1;
      /* complement and add 1 */
      high = ~high;
      if (low)
	low = -low;
      else
	high += 1;
    }
874
  eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
875
  ultoe ((unsigned HOST_WIDE_INT *) &high, dg);
Richard Stallman committed
876
  emul (dg, df, dg);
877
  ultoe ((unsigned HOST_WIDE_INT *) &low, df);
Richard Stallman committed
878 879 880
  eadd (df, dg, dg);
  if (sign)
    eneg (dg);
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

  /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS.
     Avoid double-rounding errors later by rounding off now from the
     extra-wide internal format to the requested precision.  */
  switch (GET_MODE_BITSIZE (mode))
    {
    case 32:
      etoe24 (dg, df);
      e24toe (df, dg);
      break;

    case 64:
      etoe53 (dg, df);
      e53toe (df, dg);
      break;

    case 96:
      etoe64 (dg, df);
      e64toe (df, dg);
      break;

    case 128:
903
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
904 905
      etoe113 (dg, df);
      e113toe (df, dg);
906 907 908 909
#else
      etoe64 (dg, df);
      e64toe (df, dg);
#endif
910 911 912 913 914 915
      break;

    default:
      abort ();
  }

Richard Stallman committed
916 917 918 919
  PUT_REAL (dg, d);
}


920
/* REAL_VALUE_FROM_UNSIGNED_INT macro.   */
921

922
void
923
ereal_from_uint (d, i, j, mode)
Richard Stallman committed
924
     REAL_VALUE_TYPE *d;
925
     unsigned HOST_WIDE_INT i, j;
926
     enum machine_mode mode;
Richard Stallman committed
927
{
928
  UEMUSHORT df[NE], dg[NE];
929
  unsigned HOST_WIDE_INT low, high;
Richard Stallman committed
930

931 932
  if (GET_MODE_CLASS (mode) != MODE_FLOAT)
    abort ();
Richard Stallman committed
933 934
  low = i;
  high = j;
935
  eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
Richard Stallman committed
936 937 938 939
  ultoe (&high, dg);
  emul (dg, df, dg);
  ultoe (&low, df);
  eadd (df, dg, dg);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961

  /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS.
     Avoid double-rounding errors later by rounding off now from the
     extra-wide internal format to the requested precision.  */
  switch (GET_MODE_BITSIZE (mode))
    {
    case 32:
      etoe24 (dg, df);
      e24toe (df, dg);
      break;

    case 64:
      etoe53 (dg, df);
      e53toe (df, dg);
      break;

    case 96:
      etoe64 (dg, df);
      e64toe (df, dg);
      break;

    case 128:
962
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
963 964
      etoe113 (dg, df);
      e113toe (df, dg);
965 966 967 968
#else
      etoe64 (dg, df);
      e64toe (df, dg);
#endif
969 970 971 972 973 974
      break;

    default:
      abort ();
  }

Richard Stallman committed
975 976 977 978
  PUT_REAL (dg, d);
}


979 980
/* REAL_VALUE_TO_INT macro.  */

981
void
Richard Stallman committed
982
ereal_to_int (low, high, rr)
983
     HOST_WIDE_INT *low, *high;
Richard Stallman committed
984 985
     REAL_VALUE_TYPE rr;
{
986
  UEMUSHORT d[NE], df[NE], dg[NE], dh[NE];
Richard Stallman committed
987 988 989
  int s;

  GET_REAL (&rr, d);
990
#ifdef NANS
991
  if (eisnan (d))
992 993 994 995 996 997 998
    {
      warning ("conversion from NaN to int");
      *low = -1;
      *high = -1;
      return;
    }
#endif
Richard Stallman committed
999 1000 1001 1002 1003 1004 1005
  /* convert positive value */
  s = 0;
  if (eisneg (d))
    {
      eneg (d);
      s = 1;
    }
1006
  eldexp (eone, HOST_BITS_PER_WIDE_INT, df);
Richard Stallman committed
1007
  ediv (df, d, dg);		/* dg = d / 2^32 is the high word */
1008
  euifrac (dg, (unsigned HOST_WIDE_INT *) high, dh);
Richard Stallman committed
1009
  emul (df, dh, dg);		/* fractional part is the low word */
1010
  euifrac (dg, (unsigned HOST_WIDE_INT *)low, dh);
Richard Stallman committed
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
  if (s)
    {
      /* complement and add 1 */
      *high = ~(*high);
      if (*low)
	*low = -(*low);
      else
	*high += 1;
    }
}


1023 1024
/* REAL_VALUE_LDEXP macro.  */

Richard Stallman committed
1025 1026 1027 1028 1029
REAL_VALUE_TYPE
ereal_ldexp (x, n)
     REAL_VALUE_TYPE x;
     int n;
{
1030
  UEMUSHORT e[NE], y[NE];
Richard Stallman committed
1031 1032 1033
  REAL_VALUE_TYPE r;

  GET_REAL (&x, e);
1034 1035 1036 1037
#ifdef NANS
  if (eisnan (e))
    return (x);
#endif
Richard Stallman committed
1038 1039 1040 1041 1042 1043
  eldexp (e, n, y);
  PUT_REAL (y, &r);
  return (r);
}

/* These routines are conditionally compiled because functions
1044 1045
   of the same names may be defined in fold-const.c.  */

Richard Stallman committed
1046 1047
#ifdef REAL_ARITHMETIC

Mike Stump committed
1048
/* Check for infinity in a REAL_VALUE_TYPE.  */
1049

Richard Stallman committed
1050 1051
int
target_isinf (x)
1052
     REAL_VALUE_TYPE x ATTRIBUTE_UNUSED;
Richard Stallman committed
1053
{
1054
#ifdef INFINITY
1055
  UEMUSHORT e[NE];
Richard Stallman committed
1056 1057 1058 1059 1060 1061 1062 1063

  GET_REAL (&x, e);
  return (eisinf (e));
#else
  return 0;
#endif
}

Mike Stump committed
1064
/* Check whether a REAL_VALUE_TYPE item is a NaN.  */
Richard Stallman committed
1065 1066 1067

int
target_isnan (x)
1068
     REAL_VALUE_TYPE x ATTRIBUTE_UNUSED;
Richard Stallman committed
1069
{
1070
#ifdef NANS
1071
  UEMUSHORT e[NE];
1072 1073 1074

  GET_REAL (&x, e);
  return (eisnan (e));
1075
#else
Richard Stallman committed
1076
  return (0);
1077
#endif
Richard Stallman committed
1078 1079 1080
}


1081
/* Check for a negative REAL_VALUE_TYPE number.
Mike Stump committed
1082
   This just checks the sign bit, so that -0 counts as negative.  */
Richard Stallman committed
1083 1084 1085 1086 1087

int
target_negative (x)
     REAL_VALUE_TYPE x;
{
1088
  return ereal_isneg (x);
Richard Stallman committed
1089 1090 1091
}

/* Expansion of REAL_VALUE_TRUNCATE.
1092 1093
   The result is in floating point, rounded to nearest or even.  */

Richard Stallman committed
1094 1095 1096 1097 1098
REAL_VALUE_TYPE
real_value_truncate (mode, arg)
     enum machine_mode mode;
     REAL_VALUE_TYPE arg;
{
1099
  UEMUSHORT e[NE], t[NE];
Richard Stallman committed
1100 1101 1102
  REAL_VALUE_TYPE r;

  GET_REAL (&arg, e);
1103 1104 1105 1106
#ifdef NANS
  if (eisnan (e))
    return (arg);
#endif
Richard Stallman committed
1107 1108 1109
  eclear (t);
  switch (mode)
    {
1110
    case TFmode:
1111
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
1112 1113 1114
      etoe113 (e, t);
      e113toe (t, t);
      break;
1115 1116
#endif
      /* FALLTHRU */
1117

Richard Stallman committed
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    case XFmode:
      etoe64 (e, t);
      e64toe (t, t);
      break;

    case DFmode:
      etoe53 (e, t);
      e53toe (t, t);
      break;

    case SFmode:
1129
#ifndef C4X
1130
    case HFmode:
1131
#endif
Richard Stallman committed
1132 1133 1134 1135
      etoe24 (e, t);
      e24toe (t, t);
      break;

1136 1137 1138 1139 1140 1141 1142 1143
#ifdef C4X
    case HFmode:
    case QFmode:
      etoe53 (e, t);
      e53toe (t, t);
      break;
#endif

Richard Stallman committed
1144
    case SImode:
1145
      r = etrunci (arg);
Richard Stallman committed
1146 1147
      return (r);

1148 1149 1150
    /* If an unsupported type was requested, presume that
       the machine files know something useful to do with
       the unmodified value.  */
1151

Richard Stallman committed
1152
    default:
1153
      return (arg);
Richard Stallman committed
1154 1155 1156 1157 1158
    }
  PUT_REAL (t, &r);
  return (r);
}

1159 1160 1161 1162 1163 1164 1165 1166
/* Try to change R into its exact multiplicative inverse in machine mode
   MODE.  Return nonzero function value if successful.  */

int
exact_real_inverse (mode, r)
     enum machine_mode mode;
     REAL_VALUE_TYPE *r;
{
1167
  UEMUSHORT e[NE], einv[NE];
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
  REAL_VALUE_TYPE rinv;
  int i;

  GET_REAL (r, e);

  /* Test for input in range.  Don't transform IEEE special values.  */
  if (eisinf (e) || eisnan (e) || (ecmp (e, ezero) == 0))
    return 0;

  /* Test for a power of 2: all significand bits zero except the MSB.
     We are assuming the target has binary (or hex) arithmetic.  */
  if (e[NE - 2] != 0x8000)
    return 0;

  for (i = 0; i < NE - 2; i++)
    {
      if (e[i] != 0)
	return 0;
    }

  /* Compute the inverse and truncate it to the required mode.  */
  ediv (e, eone, einv);
  PUT_REAL (einv, &rinv);
  rinv = real_value_truncate (mode, rinv);

#ifdef CHECK_FLOAT_VALUE
  /* This check is not redundant.  It may, for example, flush
     a supposedly IEEE denormal value to zero.  */
  i = 0;
  if (CHECK_FLOAT_VALUE (mode, rinv, i))
    return 0;
#endif
  GET_REAL (&rinv, einv);

  /* Check the bits again, because the truncation might have
     generated an arbitrary saturation value on overflow.  */
  if (einv[NE - 2] != 0x8000)
    return 0;

  for (i = 0; i < NE - 2; i++)
    {
      if (einv[i] != 0)
	return 0;
    }

  /* Fail if the computed inverse is out of range.  */
  if (eisinf (einv) || eisnan (einv) || (ecmp (einv, ezero) == 0))
    return 0;

  /* Output the reciprocal and return success flag.  */
  PUT_REAL (einv, r);
  return 1;
}
Richard Stallman committed
1221 1222
#endif /* REAL_ARITHMETIC defined */

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
/* Used for debugging--print the value of R in human-readable format
   on stderr.  */

void
debug_real (r)
     REAL_VALUE_TYPE r;
{
  char dstr[30];

  REAL_VALUE_TO_DECIMAL (r, "%.20g", dstr);
  fprintf (stderr, "%s", dstr);
1234
}
1235 1236


1237 1238 1239
/* The following routines convert REAL_VALUE_TYPE to the various floating
   point formats that are meaningful to supported computers.

1240
   The results are returned in 32-bit pieces, each piece stored in a `long'.
1241
   This is so they can be printed by statements like
1242

1243 1244 1245
      fprintf (file, "%lx, %lx", L[0],  L[1]);

   that will work on both narrow- and wide-word host computers.  */
1246

1247 1248 1249
/* Convert R to a 128-bit long double precision value.  The output array L
   contains four 32-bit pieces of the result, in the order they would appear
   in memory.  */
1250

1251
void
1252 1253 1254 1255
etartdouble (r, l)
     REAL_VALUE_TYPE r;
     long l[];
{
1256
  UEMUSHORT e[NE];
1257 1258 1259 1260 1261 1262

  GET_REAL (&r, e);
  etoe113 (e, e);
  endian (e, l, TFmode);
}

1263 1264 1265
/* Convert R to a double extended precision value.  The output array L
   contains three 32-bit pieces of the result, in the order they would
   appear in memory.  */
1266

1267
void
Richard Stallman committed
1268 1269 1270 1271
etarldouble (r, l)
     REAL_VALUE_TYPE r;
     long l[];
{
1272
  UEMUSHORT e[NE];
Richard Stallman committed
1273 1274 1275 1276 1277 1278

  GET_REAL (&r, e);
  etoe64 (e, e);
  endian (e, l, XFmode);
}

1279 1280 1281
/* Convert R to a double precision value.  The output array L contains two
   32-bit pieces of the result, in the order they would appear in memory.  */

1282
void
Richard Stallman committed
1283 1284 1285 1286
etardouble (r, l)
     REAL_VALUE_TYPE r;
     long l[];
{
1287
  UEMUSHORT e[NE];
Richard Stallman committed
1288 1289 1290 1291 1292 1293

  GET_REAL (&r, e);
  etoe53 (e, e);
  endian (e, l, DFmode);
}

1294 1295 1296
/* Convert R to a single precision float value stored in the least-significant
   bits of a `long'.  */

Richard Stallman committed
1297 1298 1299 1300
long
etarsingle (r)
     REAL_VALUE_TYPE r;
{
1301
  UEMUSHORT e[NE];
1302
  long l;
Richard Stallman committed
1303 1304 1305 1306 1307 1308 1309

  GET_REAL (&r, e);
  etoe24 (e, e);
  endian (e, &l, SFmode);
  return ((long) l);
}

1310 1311 1312 1313 1314
/* Convert X to a decimal ASCII string S for output to an assembly
   language file.  Note, there is no standard way to spell infinity or
   a NaN, so these values may require special treatment in the tm.h
   macros.  */

Richard Stallman committed
1315 1316 1317 1318 1319
void
ereal_to_decimal (x, s)
     REAL_VALUE_TYPE x;
     char *s;
{
1320
  UEMUSHORT e[NE];
Richard Stallman committed
1321 1322 1323 1324 1325

  GET_REAL (&x, e);
  etoasc (e, s, 20);
}

1326 1327 1328
/* Compare X and Y.  Return 1 if X > Y, 0 if X == Y, -1 if X < Y,
   or -2 if either is a NaN.   */

Richard Stallman committed
1329 1330 1331 1332
int
ereal_cmp (x, y)
     REAL_VALUE_TYPE x, y;
{
1333
  UEMUSHORT ex[NE], ey[NE];
Richard Stallman committed
1334 1335 1336 1337 1338 1339

  GET_REAL (&x, ex);
  GET_REAL (&y, ey);
  return (ecmp (ex, ey));
}

1340 1341
/*  Return 1 if the sign bit of X is set, else return 0.  */

Richard Stallman committed
1342 1343 1344 1345
int
ereal_isneg (x)
     REAL_VALUE_TYPE x;
{
1346
  UEMUSHORT ex[NE];
Richard Stallman committed
1347 1348 1349 1350 1351 1352

  GET_REAL (&x, ex);
  return (eisneg (ex));
}

/* End of REAL_ARITHMETIC interface */
1353

1354 1355 1356 1357 1358 1359 1360
/*
  Extended precision IEEE binary floating point arithmetic routines

  Numbers are stored in C language as arrays of 16-bit unsigned
  short integers.  The arguments of the routines are pointers to
  the arrays.

1361
  External e type data structure, similar to Intel 8087 chip
1362 1363 1364 1365 1366 1367 1368 1369
  temporary real format but possibly with a larger significand:

	NE-1 significand words	(least significant word first,
				 most significant bit is normally set)
	exponent		(value = EXONE for 1.0,
				top bit is the sign)


1370
  Internal exploded e-type data structure of a number (a "word" is 16 bits):
1371 1372 1373 1374 1375 1376 1377 1378 1379

  ei[0]	sign word	(0 for positive, 0xffff for negative)
  ei[1]	biased exponent	(value = EXONE for the number 1.0)
  ei[2]	high guard word	(always zero after normalization)
  ei[3]
  to ei[NI-2]	significand	(NI-4 significand words,
 				 most significant word first,
 				 most significant bit is set)
  ei[NI-1]	low guard word	(0x8000 bit is rounding place)
1380 1381 1382



1383
 		Routines for external format e-type numbers
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393
 	asctoe (string, e)	ASCII string to extended double e type
 	asctoe64 (string, &d)	ASCII string to long double
 	asctoe53 (string, &d)	ASCII string to double
 	asctoe24 (string, &f)	ASCII string to single
 	asctoeg (string, e, prec) ASCII string to specified precision
 	e24toe (&f, e)		IEEE single precision to e type
 	e53toe (&d, e)		IEEE double precision to e type
 	e64toe (&d, e)		IEEE long double precision to e type
 	e113toe (&d, e)		128-bit long double precision to e type
1394
#if 0
1395
 	eabs (e)			absolute value
1396
#endif
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
 	eadd (a, b, c)		c = b + a
 	eclear (e)		e = 0
 	ecmp (a, b)		Returns 1 if a > b, 0 if a == b,
 				-1 if a < b, -2 if either a or b is a NaN.
 	ediv (a, b, c)		c = b / a
 	efloor (a, b)		truncate to integer, toward -infinity
 	efrexp (a, exp, s)	extract exponent and significand
 	eifrac (e, &l, frac)    e to HOST_WIDE_INT and e type fraction
 	euifrac (e, &l, frac)   e to unsigned HOST_WIDE_INT and e type fraction
 	einfin (e)		set e to infinity, leaving its sign alone
 	eldexp (a, n, b)	multiply by 2**n
 	emov (a, b)		b = a
 	emul (a, b, c)		c = b * a
 	eneg (e)			e = -e
1411
#if 0
1412
 	eround (a, b)		b = nearest integer value to a
1413
#endif
1414
 	esub (a, b, c)		c = b - a
1415
#if 0
1416 1417 1418 1419
 	e24toasc (&f, str, n)	single to ASCII string, n digits after decimal
 	e53toasc (&d, str, n)	double to ASCII string, n digits after decimal
 	e64toasc (&d, str, n)	80-bit long double to ASCII string
 	e113toasc (&d, str, n)	128-bit long double to ASCII string
1420
#endif
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
 	etoasc (e, str, n)	e to ASCII string, n digits after decimal
 	etoe24 (e, &f)		convert e type to IEEE single precision
 	etoe53 (e, &d)		convert e type to IEEE double precision
 	etoe64 (e, &d)		convert e type to IEEE long double precision
 	ltoe (&l, e)		HOST_WIDE_INT to e type
 	ultoe (&l, e)		unsigned HOST_WIDE_INT to e type
	eisneg (e)              1 if sign bit of e != 0, else 0
	eisinf (e)              1 if e has maximum exponent (non-IEEE)
 				or is infinite (IEEE)
        eisnan (e)              1 if e is a NaN
1431

1432

1433
 		Routines for internal format exploded e-type numbers
1434

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
 	eaddm (ai, bi)		add significands, bi = bi + ai
 	ecleaz (ei)		ei = 0
 	ecleazs (ei)		set ei = 0 but leave its sign alone
 	ecmpm (ai, bi)		compare significands, return 1, 0, or -1
 	edivm (ai, bi)		divide  significands, bi = bi / ai
 	emdnorm (ai,l,s,exp)	normalize and round off
 	emovi (a, ai)		convert external a to internal ai
 	emovo (ai, a)		convert internal ai to external a
 	emovz (ai, bi)		bi = ai, low guard word of bi = 0
 	emulm (ai, bi)		multiply significands, bi = bi * ai
 	enormlz (ei)		left-justify the significand
 	eshdn1 (ai)		shift significand and guards down 1 bit
 	eshdn8 (ai)		shift down 8 bits
 	eshdn6 (ai)		shift down 16 bits
 	eshift (ai, n)		shift ai n bits up (or down if n < 0)
 	eshup1 (ai)		shift significand and guards up 1 bit
 	eshup8 (ai)		shift up 8 bits
 	eshup6 (ai)		shift up 16 bits
 	esubm (ai, bi)		subtract significands, bi = bi - ai
        eiisinf (ai)            1 if infinite
        eiisnan (ai)            1 if a NaN
 	eiisneg (ai)		1 if sign bit of ai != 0, else 0
        einan (ai)              set ai = NaN
1458
#if 0
1459
        eiinfin (ai)            set ai = infinity
1460
#endif
1461 1462 1463 1464 1465

  The result is always normalized and rounded to NI-4 word precision
  after each arithmetic operation.

  Exception flags are NOT fully supported.
1466

1467 1468
  Signaling NaN's are NOT supported; they are treated the same
  as quiet NaN's.
1469

1470 1471
  Define INFINITY for support of infinity; otherwise a
  saturation arithmetic is implemented.
1472

1473 1474 1475 1476 1477 1478 1479
  Define NANS for support of Not-a-Number items; otherwise the
  arithmetic will never produce a NaN output, and might be confused
  by a NaN input.
  If NaN's are supported, the output of `ecmp (a,b)' is -2 if
  either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)'
  may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than'
  if in doubt.
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
  Denormals are always supported here where appropriate (e.g., not
  for conversion to DEC numbers).  */

/* Definitions for error codes that are passed to the common error handling
   routine mtherr.

   For Digital Equipment PDP-11 and VAX computers, certain
  IBM systems, and others that use numbers with a 56-bit
  significand, the symbol DEC should be defined.  In this
  mode, most floating point constants are given as arrays
  of octal integers to eliminate decimal to binary conversion
  errors that might be introduced by the compiler.
1493

1494 1495
  For computers, such as IBM PC, that follow the IEEE
  Standard for Binary Floating Point Arithmetic (ANSI/IEEE
1496
  Std 754-1985), the symbol IEEE should be defined.
1497 1498
  These numbers have 53-bit significands.  In this mode, constants
  are provided as arrays of hexadecimal 16 bit integers.
1499 1500
  The endian-ness of generated values is controlled by
  REAL_WORDS_BIG_ENDIAN.
1501

1502 1503 1504 1505 1506
  To accommodate other types of computer arithmetic, all
  constants are also provided in a normal decimal radix
  which one can hope are correctly converted to a suitable
  format by the available C language compiler.  To invoke
  this mode, the symbol UNK is defined.
1507

1508 1509 1510 1511 1512 1513
  An important difference among these modes is a predefined
  set of machine arithmetic constants for each.  The numbers
  MACHEP (the machine roundoff error), MAXNUM (largest number
  represented), and several other parameters are preset by
  the configuration symbol.  Check the file const.c to
  ensure that these values are correct for your computer.
1514

1515
  For ANSI C compatibility, define ANSIC equal to 1.  Currently
Mike Stump committed
1516
  this affects only the atan2 function and others that use it.  */
Richard Stallman committed
1517

Richard Stallman committed
1518
/* Constant definitions for math error conditions.  */
Richard Stallman committed
1519 1520 1521 1522 1523 1524 1525

#define DOMAIN		1	/* argument domain error */
#define SING		2	/* argument singularity */
#define OVERFLOW	3	/* overflow range error */
#define UNDERFLOW	4	/* underflow range error */
#define TLOSS		5	/* total loss of precision */
#define PLOSS		6	/* partial loss of precision */
1526
#define INVALID		7	/* NaN-producing operation */
Richard Stallman committed
1527 1528 1529

/*  e type constants used by high precision check routines */

1530
#if MAX_LONG_DOUBLE_TYPE_SIZE == 128 && (INTEL_EXTENDED_IEEE_FORMAT == 0)
Richard Stallman committed
1531
/* 0.0 */
1532
UEMUSHORT ezero[NE] =
1533 1534
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,};
1535
extern UEMUSHORT ezero[];
Richard Stallman committed
1536 1537

/* 5.0E-1 */
1538
UEMUSHORT ehalf[NE] =
1539 1540
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3ffe,};
1541
extern UEMUSHORT ehalf[];
Richard Stallman committed
1542 1543

/* 1.0E0 */
1544
UEMUSHORT eone[NE] =
1545 1546
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,};
1547
extern UEMUSHORT eone[];
Richard Stallman committed
1548 1549

/* 2.0E0 */
1550
UEMUSHORT etwo[NE] =
1551 1552
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4000,};
1553
extern UEMUSHORT etwo[];
Richard Stallman committed
1554 1555

/* 3.2E1 */
1556
UEMUSHORT e32[NE] =
1557 1558
 {0x0000, 0x0000, 0x0000, 0x0000,
  0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4004,};
1559
extern UEMUSHORT e32[];
Richard Stallman committed
1560 1561

/* 6.93147180559945309417232121458176568075500134360255E-1 */
1562
UEMUSHORT elog2[NE] =
1563 1564
 {0x40f3, 0xf6af, 0x03f2, 0xb398,
  0xc9e3, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,};
1565
extern UEMUSHORT elog2[];
Richard Stallman committed
1566 1567

/* 1.41421356237309504880168872420969807856967187537695E0 */
1568
UEMUSHORT esqrt2[NE] =
1569 1570
 {0x1d6f, 0xbe9f, 0x754a, 0x89b3,
  0x597d, 0x6484, 0174736, 0171463, 0132404, 0x3fff,};
1571
extern UEMUSHORT esqrt2[];
Richard Stallman committed
1572 1573

/* 3.14159265358979323846264338327950288419716939937511E0 */
1574
UEMUSHORT epi[NE] =
1575
 {0x2902, 0x1cd1, 0x80dc, 0x628b,
Richard Stallman committed
1576
  0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,};
1577
extern UEMUSHORT epi[];
Richard Stallman committed
1578

1579 1580
#else
/* LONG_DOUBLE_TYPE_SIZE is other than 128 */
1581
UEMUSHORT ezero[NE] =
1582
 {0, 0000000, 0000000, 0000000, 0000000, 0000000,};
1583
UEMUSHORT ehalf[NE] =
1584
 {0, 0000000, 0000000, 0000000, 0100000, 0x3ffe,};
1585
UEMUSHORT eone[NE] =
1586
 {0, 0000000, 0000000, 0000000, 0100000, 0x3fff,};
1587
UEMUSHORT etwo[NE] =
1588
 {0, 0000000, 0000000, 0000000, 0100000, 0040000,};
1589
UEMUSHORT e32[NE] =
1590
 {0, 0000000, 0000000, 0000000, 0100000, 0040004,};
1591
UEMUSHORT elog2[NE] =
1592
 {0xc9e4, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,};
1593
UEMUSHORT esqrt2[NE] =
1594
 {0x597e, 0x6484, 0174736, 0171463, 0132404, 0x3fff,};
1595
UEMUSHORT epi[NE] =
1596 1597
 {0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,};
#endif
Richard Stallman committed
1598 1599

/* Control register for rounding precision.
1600 1601
   This can be set to 113 (if NE=10), 80 (if NE=6), 64, 56, 53, or 24 bits.  */

Richard Stallman committed
1602 1603 1604
int rndprc = NBITS;
extern int rndprc;

1605
/*  Clear out entire e-type number X.  */
Richard Stallman committed
1606

1607
static void
Richard Stallman committed
1608
eclear (x)
1609
     register UEMUSHORT *x;
Richard Stallman committed
1610 1611 1612 1613 1614 1615 1616
{
  register int i;

  for (i = 0; i < NE; i++)
    *x++ = 0;
}

1617
/* Move e-type number from A to B.  */
Richard Stallman committed
1618

1619
static void
Richard Stallman committed
1620
emov (a, b)
1621
     register UEMUSHORT *a, *b;
Richard Stallman committed
1622 1623 1624 1625 1626 1627 1628 1629
{
  register int i;

  for (i = 0; i < NE; i++)
    *b++ = *a++;
}


1630
#if 0
1631
/* Absolute value of e-type X.  */
Richard Stallman committed
1632

1633
static void
Richard Stallman committed
1634
eabs (x)
1635
     UEMUSHORT x[];
Richard Stallman committed
1636
{
1637
  /* sign is top bit of last word of external format */
1638
  x[NE - 1] &= 0x7fff;
Richard Stallman committed
1639
}
1640
#endif /* 0 */
Richard Stallman committed
1641

1642
/* Negate the e-type number X.  */
Richard Stallman committed
1643

1644
static void
Richard Stallman committed
1645
eneg (x)
1646
     UEMUSHORT x[];
Richard Stallman committed
1647 1648 1649 1650 1651
{

  x[NE - 1] ^= 0x8000;		/* Toggle the sign bit */
}

1652
/* Return 1 if sign bit of e-type number X is nonzero, else zero.  */
1653

1654
static int
Richard Stallman committed
1655
eisneg (x)
1656
     UEMUSHORT x[];
Richard Stallman committed
1657 1658 1659 1660 1661 1662 1663 1664
{

  if (x[NE - 1] & 0x8000)
    return (1);
  else
    return (0);
}

1665
/* Return 1 if e-type number X is infinity, else return zero.  */
1666

1667
static int
Richard Stallman committed
1668
eisinf (x)
1669
     UEMUSHORT x[];
Richard Stallman committed
1670 1671
{

1672 1673 1674 1675
#ifdef NANS
  if (eisnan (x))
    return (0);
#endif
Richard Stallman committed
1676 1677 1678 1679 1680 1681
  if ((x[NE - 1] & 0x7fff) == 0x7fff)
    return (1);
  else
    return (0);
}

1682 1683
/* Check if e-type number is not a number.  The bit pattern is one that we
   defined, so we know for sure how to detect it.  */
1684

1685
static int
1686
eisnan (x)
1687
     UEMUSHORT x[] ATTRIBUTE_UNUSED;
1688 1689 1690
{
#ifdef NANS
  int i;
1691 1692

  /* NaN has maximum exponent */
1693 1694
  if ((x[NE - 1] & 0x7fff) != 0x7fff)
    return (0);
Mike Stump committed
1695
  /* ... and non-zero significand field.  */
1696 1697 1698 1699 1700 1701
  for (i = 0; i < NE - 1; i++)
    {
      if (*x++ != 0)
        return (1);
    }
#endif
1702

1703 1704 1705
  return (0);
}

1706
/*  Fill e-type number X with infinity pattern (IEEE)
Mike Stump committed
1707
    or largest possible number (non-IEEE).  */
Richard Stallman committed
1708

1709
static void
Richard Stallman committed
1710
einfin (x)
1711
     register UEMUSHORT *x;
Richard Stallman committed
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
{
  register int i;

#ifdef INFINITY
  for (i = 0; i < NE - 1; i++)
    *x++ = 0;
  *x |= 32767;
#else
  for (i = 0; i < NE - 1; i++)
    *x++ = 0xffff;
  *x |= 32766;
  if (rndprc < NBITS)
    {
1725 1726 1727 1728 1729
      if (rndprc == 113)
	{
	  *(x - 9) = 0;
	  *(x - 8) = 0;
	}
Richard Stallman committed
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
      if (rndprc == 64)
	{
	  *(x - 5) = 0;
	}
      if (rndprc == 53)
	{
	  *(x - 4) = 0xf800;
	}
      else
	{
	  *(x - 4) = 0;
	  *(x - 3) = 0;
	  *(x - 2) = 0xff00;
	}
    }
#endif
}

1748 1749 1750 1751
/* Output an e-type NaN.
   This generates Intel's quiet NaN pattern for extended real.
   The exponent is 7fff, the leading mantissa word is c000.  */

1752
#ifdef NANS
1753
static void
1754
enan (x, sign)
1755
     register UEMUSHORT *x;
1756
     int sign;
1757 1758 1759 1760 1761 1762
{
  register int i;

  for (i = 0; i < NE - 2; i++)
    *x++ = 0;
  *x++ = 0xc000;
1763
  *x = (sign << 15) | 0x7fff;
1764
}
1765
#endif /* NANS */
1766

1767
/* Move in an e-type number A, converting it to exploded e-type B.  */
1768

1769
static void
Richard Stallman committed
1770
emovi (a, b)
1771
     UEMUSHORT *a, *b;
Richard Stallman committed
1772
{
1773
  register UEMUSHORT *p, *q;
Richard Stallman committed
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
  int i;

  q = b;
  p = a + (NE - 1);		/* point to last word of external number */
  /* get the sign bit */
  if (*p & 0x8000)
    *q++ = 0xffff;
  else
    *q++ = 0;
  /* get the exponent */
  *q = *p--;
  *q++ &= 0x7fff;		/* delete the sign bit */
#ifdef INFINITY
  if ((*(q - 1) & 0x7fff) == 0x7fff)
    {
1789 1790 1791 1792 1793 1794 1795 1796 1797
#ifdef NANS
      if (eisnan (a))
	{
	  *q++ = 0;
	  for (i = 3; i < NI; i++)
	    *q++ = *p--;
	  return;
	}
#endif
1798

Richard Stallman committed
1799 1800 1801 1802 1803
      for (i = 2; i < NI; i++)
	*q++ = 0;
      return;
    }
#endif
1804

Richard Stallman committed
1805 1806 1807 1808 1809 1810 1811 1812 1813
  /* clear high guard word */
  *q++ = 0;
  /* move in the significand */
  for (i = 0; i < NE - 1; i++)
    *q++ = *p--;
  /* clear low guard word */
  *q = 0;
}

1814
/* Move out exploded e-type number A, converting it to e type B.  */
1815

1816
static void
Richard Stallman committed
1817
emovo (a, b)
1818
     UEMUSHORT *a, *b;
Richard Stallman committed
1819
{
1820 1821
  register UEMUSHORT *p, *q;
  UEMUSHORT i;
1822
  int j;
Richard Stallman committed
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

  p = a;
  q = b + (NE - 1);		/* point to output exponent */
  /* combine sign and exponent */
  i = *p++;
  if (i)
    *q-- = *p++ | 0x8000;
  else
    *q-- = *p++;
#ifdef INFINITY
  if (*(p - 1) == 0x7fff)
    {
1835 1836 1837
#ifdef NANS
      if (eiisnan (a))
	{
1838
	  enan (b, eiisneg (a));
1839 1840 1841
	  return;
	}
#endif
Richard Stallman committed
1842
      einfin (b);
1843
	return;
Richard Stallman committed
1844 1845 1846 1847 1848
    }
#endif
  /* skip over guard word */
  ++p;
  /* move the significand */
1849
  for (j = 0; j < NE - 1; j++)
Richard Stallman committed
1850 1851 1852
    *q-- = *p++;
}

1853
/* Clear out exploded e-type number XI.  */
Richard Stallman committed
1854

1855
static void
Richard Stallman committed
1856
ecleaz (xi)
1857
     register UEMUSHORT *xi;
Richard Stallman committed
1858 1859 1860 1861 1862 1863 1864
{
  register int i;

  for (i = 0; i < NI; i++)
    *xi++ = 0;
}

Mike Stump committed
1865
/* Clear out exploded e-type XI, but don't touch the sign.  */
Richard Stallman committed
1866

1867
static void
Richard Stallman committed
1868
ecleazs (xi)
1869
     register UEMUSHORT *xi;
Richard Stallman committed
1870 1871 1872 1873 1874 1875 1876 1877
{
  register int i;

  ++xi;
  for (i = 0; i < NI - 1; i++)
    *xi++ = 0;
}

1878
/* Move exploded e-type number from A to B.  */
1879

1880
static void
Richard Stallman committed
1881
emovz (a, b)
1882
     register UEMUSHORT *a, *b;
Richard Stallman committed
1883 1884 1885 1886 1887 1888 1889 1890 1891
{
  register int i;

  for (i = 0; i < NI - 1; i++)
    *b++ = *a++;
  /* clear low guard word */
  *b = 0;
}

1892
/* Generate exploded e-type NaN.
1893
   The explicit pattern for this is maximum exponent and
1894
   top two significant bits set.  */
1895

1896
#ifdef NANS
1897
static void
1898
einan (x)
1899
     UEMUSHORT x[];
1900 1901 1902 1903 1904 1905
{

  ecleaz (x);
  x[E] = 0x7fff;
  x[M + 1] = 0xc000;
}
1906
#endif /* NANS */
1907

Mike Stump committed
1908
/* Return nonzero if exploded e-type X is a NaN.  */
1909

1910
#ifdef NANS
1911
static int
1912
eiisnan (x)
1913
     UEMUSHORT x[];
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
{
  int i;

  if ((x[E] & 0x7fff) == 0x7fff)
    {
      for (i = M + 1; i < NI; i++)
	{
	  if (x[i] != 0)
	    return (1);
	}
    }
  return (0);
}
1927
#endif /* NANS */
1928

1929
/* Return nonzero if sign of exploded e-type X is nonzero.  */
1930

1931
#ifdef NANS
1932
static int
1933
eiisneg (x)
1934
     UEMUSHORT x[];
1935 1936 1937 1938
{

  return x[0] != 0;
}
1939
#endif /* NANS */
1940

1941
#if 0
1942
/* Fill exploded e-type X with infinity pattern.
1943 1944
   This has maximum exponent and significand all zeros.  */

1945
static void
1946
eiinfin (x)
1947
     UEMUSHORT x[];
1948 1949 1950 1951 1952
{

  ecleaz (x);
  x[E] = 0x7fff;
}
1953
#endif /* 0 */
1954

Mike Stump committed
1955
/* Return nonzero if exploded e-type X is infinite.  */
1956

1957
#ifdef INFINITY
1958
static int
1959
eiisinf (x)
1960
     UEMUSHORT x[];
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
{

#ifdef NANS
  if (eiisnan (x))
    return (0);
#endif
  if ((x[E] & 0x7fff) == 0x7fff)
    return (1);
  return (0);
}
1971
#endif /* INFINITY */
Richard Stallman committed
1972

1973
/* Compare significands of numbers in internal exploded e-type format.
1974 1975 1976 1977 1978
   Guard words are included in the comparison.

   Returns	+1 if a > b
		 0 if a == b
		-1 if a < b   */
1979 1980

static int
Richard Stallman committed
1981
ecmpm (a, b)
1982
     register UEMUSHORT *a, *b;
Richard Stallman committed
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
{
  int i;

  a += M;			/* skip up to significand area */
  b += M;
  for (i = M; i < NI; i++)
    {
      if (*a++ != *b++)
	goto difrnt;
    }
  return (0);

 difrnt:
  if (*(--a) > *(--b))
    return (1);
  else
    return (-1);
}

2002
/* Shift significand of exploded e-type X down by 1 bit.  */
Richard Stallman committed
2003

2004
static void
Richard Stallman committed
2005
eshdn1 (x)
2006
     register UEMUSHORT *x;
Richard Stallman committed
2007
{
2008
  register UEMUSHORT bits;
Richard Stallman committed
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
  int i;

  x += M;			/* point to significand area */

  bits = 0;
  for (i = M; i < NI; i++)
    {
      if (*x & 1)
	bits |= 1;
      *x >>= 1;
      if (bits & 2)
	*x |= 0x8000;
      bits <<= 1;
      ++x;
    }
}

2026
/* Shift significand of exploded e-type X up by 1 bit.  */
Richard Stallman committed
2027

2028
static void
Richard Stallman committed
2029
eshup1 (x)
2030
     register UEMUSHORT *x;
Richard Stallman committed
2031
{
2032
  register UEMUSHORT bits;
Richard Stallman committed
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
  int i;

  x += NI - 1;
  bits = 0;

  for (i = M; i < NI; i++)
    {
      if (*x & 0x8000)
	bits |= 1;
      *x <<= 1;
      if (bits & 2)
	*x |= 1;
      bits <<= 1;
      --x;
    }
}


2051
/* Shift significand of exploded e-type X down by 8 bits.  */
Richard Stallman committed
2052

2053
static void
Richard Stallman committed
2054
eshdn8 (x)
2055
     register UEMUSHORT *x;
Richard Stallman committed
2056
{
2057
  register UEMUSHORT newbyt, oldbyt;
Richard Stallman committed
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
  int i;

  x += M;
  oldbyt = 0;
  for (i = M; i < NI; i++)
    {
      newbyt = *x << 8;
      *x >>= 8;
      *x |= oldbyt;
      oldbyt = newbyt;
      ++x;
    }
}

2072
/* Shift significand of exploded e-type X up by 8 bits.  */
Richard Stallman committed
2073

2074
static void
Richard Stallman committed
2075
eshup8 (x)
2076
     register UEMUSHORT *x;
Richard Stallman committed
2077 2078
{
  int i;
2079
  register UEMUSHORT newbyt, oldbyt;
Richard Stallman committed
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

  x += NI - 1;
  oldbyt = 0;

  for (i = M; i < NI; i++)
    {
      newbyt = *x >> 8;
      *x <<= 8;
      *x |= oldbyt;
      oldbyt = newbyt;
      --x;
    }
}

2094
/* Shift significand of exploded e-type X up by 16 bits.  */
Richard Stallman committed
2095

2096
static void
Richard Stallman committed
2097
eshup6 (x)
2098
     register UEMUSHORT *x;
Richard Stallman committed
2099 2100
{
  int i;
2101
  register UEMUSHORT *p;
Richard Stallman committed
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

  p = x + M;
  x += M + 1;

  for (i = M; i < NI - 1; i++)
    *p++ = *x++;

  *p = 0;
}

2112
/* Shift significand of exploded e-type X down by 16 bits.  */
Richard Stallman committed
2113

2114
static void
Richard Stallman committed
2115
eshdn6 (x)
2116
     register UEMUSHORT *x;
Richard Stallman committed
2117 2118
{
  int i;
2119
  register UEMUSHORT *p;
Richard Stallman committed
2120 2121 2122 2123 2124 2125 2126 2127 2128

  x += NI - 1;
  p = x + 1;

  for (i = M; i < NI - 1; i++)
    *(--p) = *(--x);

  *(--p) = 0;
}
2129 2130

/* Add significands of exploded e-type X and Y.  X + Y replaces Y.  */
Richard Stallman committed
2131

2132
static void
Richard Stallman committed
2133
eaddm (x, y)
2134
     UEMUSHORT *x, *y;
Richard Stallman committed
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
{
  register unsigned EMULONG a;
  int i;
  unsigned int carry;

  x += NI - 1;
  y += NI - 1;
  carry = 0;
  for (i = M; i < NI; i++)
    {
      a = (unsigned EMULONG) (*x) + (unsigned EMULONG) (*y) + carry;
      if (a & 0x10000)
	carry = 1;
      else
	carry = 0;
2150
      *y = (UEMUSHORT) a;
Richard Stallman committed
2151 2152 2153 2154 2155
      --x;
      --y;
    }
}

2156
/* Subtract significands of exploded e-type X and Y.  Y - X replaces Y.  */
Richard Stallman committed
2157

2158
static void
Richard Stallman committed
2159
esubm (x, y)
2160
     UEMUSHORT *x, *y;
Richard Stallman committed
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
{
  unsigned EMULONG a;
  int i;
  unsigned int carry;

  x += NI - 1;
  y += NI - 1;
  carry = 0;
  for (i = M; i < NI; i++)
    {
      a = (unsigned EMULONG) (*y) - (unsigned EMULONG) (*x) - carry;
      if (a & 0x10000)
	carry = 1;
      else
	carry = 0;
2176
      *y = (UEMUSHORT) a;
Richard Stallman committed
2177 2178 2179 2180 2181 2182
      --x;
      --y;
    }
}


2183
static UEMUSHORT equot[NI];
Richard Stallman committed
2184

2185 2186 2187 2188 2189 2190 2191

#if 0
/* Radix 2 shift-and-add versions of multiply and divide  */


/* Divide significands */

2192
int
Richard Stallman committed
2193
edivm (den, num)
2194
     UEMUSHORT den[], num[];
Richard Stallman committed
2195 2196
{
  int i;
2197 2198
  register UEMUSHORT *p, *q;
  UEMUSHORT j;
Richard Stallman committed
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

  p = &equot[0];
  *p++ = num[0];
  *p++ = num[1];

  for (i = M; i < NI; i++)
    {
      *p++ = 0;
    }

2209 2210 2211
  /* Use faster compare and subtraction if denominator has only 15 bits of
     significance.  */

Richard Stallman committed
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
  p = &den[M + 2];
  if (*p++ == 0)
    {
      for (i = M + 3; i < NI; i++)
	{
	  if (*p++ != 0)
	    goto fulldiv;
	}
      if ((den[M + 1] & 1) != 0)
	goto fulldiv;
      eshdn1 (num);
      eshdn1 (den);

      p = &den[M + 1];
      q = &num[M + 1];

      for (i = 0; i < NBITS + 2; i++)
	{
	  if (*p <= *q)
	    {
	      *q -= *p;
	      j = 1;
	    }
	  else
	    {
	      j = 0;
	    }
	  eshup1 (equot);
	  equot[NI - 2] |= j;
	  eshup1 (num);
	}
      goto divdon;
    }

2246 2247 2248
  /* The number of quotient bits to calculate is NBITS + 1 scaling guard
     bit + 1 roundoff bit.  */

Richard Stallman committed
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
 fulldiv:

  p = &equot[NI - 2];
  for (i = 0; i < NBITS + 2; i++)
    {
      if (ecmpm (den, num) <= 0)
	{
	  esubm (den, num);
	  j = 1;		/* quotient bit = 1 */
	}
      else
	j = 0;
      eshup1 (equot);
      *p |= j;
      eshup1 (num);
    }

 divdon:

  eshdn1 (equot);
  eshdn1 (equot);

  /* test for nonzero remainder after roundoff bit */
  p = &num[M];
  j = 0;
  for (i = M; i < NI; i++)
    {
      j |= *p++;
    }
  if (j)
    j = 1;


  for (i = 0; i < NI; i++)
    num[i] = equot[i];
  return ((int) j);
}


/* Multiply significands */
Mike Stump committed
2289

2290
int
Richard Stallman committed
2291
emulm (a, b)
2292
     UEMUSHORT a[], b[];
Richard Stallman committed
2293
{
2294
  UEMUSHORT *p, *q;
Richard Stallman committed
2295 2296 2297 2298 2299 2300 2301 2302 2303
  int i, j, k;

  equot[0] = b[0];
  equot[1] = b[1];
  for (i = M; i < NI; i++)
    equot[i] = 0;

  p = &a[NI - 2];
  k = NBITS;
2304
  while (*p == 0)		/* significand is not supposed to be zero */
Richard Stallman committed
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
    {
      eshdn6 (a);
      k -= 16;
    }
  if ((*p & 0xff) == 0)
    {
      eshdn8 (a);
      k -= 8;
    }

  q = &equot[NI - 1];
  j = 0;
  for (i = 0; i < k; i++)
    {
      if (*p & 1)
	eaddm (b, equot);
      /* remember if there were any nonzero bits shifted out */
      if (*q & 1)
	j |= 1;
      eshdn1 (a);
      eshdn1 (equot);
    }

  for (i = 0; i < NI; i++)
    b[i] = equot[i];

  /* return flag for lost nonzero bits */
  return (j);
}

2335 2336
#else

2337
/* Radix 65536 versions of multiply and divide.  */
2338

2339
/* Multiply significand of e-type number B
Mike Stump committed
2340
   by 16-bit quantity A, return e-type result to C.  */
2341

2342
static void
Richard Stallman committed
2343
m16m (a, b, c)
2344
     unsigned int a;
2345
     UEMUSHORT b[], c[];
2346
{
2347
  register UEMUSHORT *pp;
2348
  register unsigned EMULONG carry;
2349 2350
  UEMUSHORT *ps;
  UEMUSHORT p[NI];
2351
  unsigned EMULONG aa, m;
Richard Stallman committed
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
  int i;

  aa = a;
  pp = &p[NI-2];
  *pp++ = 0;
  *pp = 0;
  ps = &b[NI-1];

  for (i=M+1; i<NI; i++)
    {
      if (*ps == 0)
2363
	{
Richard Stallman committed
2364 2365 2366
	  --ps;
	  --pp;
	  *(pp-1) = 0;
2367
	}
Richard Stallman committed
2368 2369
      else
	{
2370
	  m = (unsigned EMULONG) aa * *ps--;
Richard Stallman committed
2371
	  carry = (m & 0xffff) + *pp;
2372
	  *pp-- = (UEMUSHORT)carry;
Richard Stallman committed
2373
	  carry = (carry >> 16) + (m >> 16) + *pp;
2374
	  *pp = (UEMUSHORT)carry;
Richard Stallman committed
2375 2376 2377 2378 2379
	  *(pp-1) = carry >> 16;
	}
    }
  for (i=M; i<NI; i++)
    c[i] = p[i];
2380 2381
}

2382 2383 2384
/* Divide significands of exploded e-types NUM / DEN.  Neither the
   numerator NUM nor the denominator DEN is permitted to have its high guard
   word nonzero.  */
2385

2386
static int
Richard Stallman committed
2387
edivm (den, num)
2388
     UEMUSHORT den[], num[];
2389
{
Richard Stallman committed
2390
  int i;
2391
  register UEMUSHORT *p;
2392
  unsigned EMULONG tnum;
2393 2394
  UEMUSHORT j, tdenm, tquot;
  UEMUSHORT tprod[NI+1];
2395

Richard Stallman committed
2396 2397 2398
  p = &equot[0];
  *p++ = num[0];
  *p++ = num[1];
2399

Richard Stallman committed
2400 2401 2402 2403 2404 2405 2406 2407
  for (i=M; i<NI; i++)
    {
      *p++ = 0;
    }
  eshdn1 (num);
  tdenm = den[M+1];
  for (i=M; i<NI; i++)
    {
Mike Stump committed
2408
      /* Find trial quotient digit (the radix is 65536).  */
2409
      tnum = (((unsigned EMULONG) num[M]) << 16) + num[M+1];
Richard Stallman committed
2410

Mike Stump committed
2411
      /* Do not execute the divide instruction if it will overflow.  */
Kaveh R. Ghazi committed
2412
      if ((tdenm * (unsigned long)0xffff) < tnum)
Richard Stallman committed
2413 2414 2415
	tquot = 0xffff;
      else
	tquot = tnum / tdenm;
Mike Stump committed
2416
      /* Multiply denominator by trial quotient digit.  */
2417
      m16m ((unsigned int)tquot, den, tprod);
Mike Stump committed
2418
      /* The quotient digit may have been overestimated.  */
Richard Stallman committed
2419
      if (ecmpm (tprod, num) > 0)
2420
	{
Richard Stallman committed
2421 2422 2423 2424 2425 2426 2427
	  tquot -= 1;
	  esubm (den, tprod);
	  if (ecmpm (tprod, num) > 0)
	    {
	      tquot -= 1;
	      esubm (den, tprod);
	    }
2428
	}
Richard Stallman committed
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
      esubm (tprod, num);
      equot[i] = tquot;
      eshup6(num);
    }
  /* test for nonzero remainder after roundoff bit */
  p = &num[M];
  j = 0;
  for (i=M; i<NI; i++)
    {
      j |= *p++;
    }
  if (j)
    j = 1;
2442

Richard Stallman committed
2443 2444
  for (i=0; i<NI; i++)
    num[i] = equot[i];
2445

Richard Stallman committed
2446
  return ((int)j);
2447 2448
}

2449
/* Multiply significands of exploded e-type A and B, result in B.  */
2450

2451
static int
Richard Stallman committed
2452
emulm (a, b)
2453
     UEMUSHORT a[], b[];
2454
{
2455 2456 2457
  UEMUSHORT *p, *q;
  UEMUSHORT pprod[NI];
  UEMUSHORT j;
Richard Stallman committed
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
  int i;

  equot[0] = b[0];
  equot[1] = b[1];
  for (i=M; i<NI; i++)
    equot[i] = 0;

  j = 0;
  p = &a[NI-1];
  q = &equot[NI-1];
  for (i=M+1; i<NI; i++)
    {
      if (*p == 0)
2471
	{
Richard Stallman committed
2472 2473 2474 2475
	  --p;
	}
      else
	{
2476
	  m16m ((unsigned int) *p--, b, pprod);
Richard Stallman committed
2477
	  eaddm(pprod, equot);
2478
	}
Richard Stallman committed
2479 2480 2481
      j |= *q;
      eshdn6(equot);
    }
2482

Richard Stallman committed
2483 2484
  for (i=0; i<NI; i++)
    b[i] = equot[i];
2485

Richard Stallman committed
2486 2487
  /* return flag for lost nonzero bits */
  return ((int)j);
2488 2489
}
#endif
Richard Stallman committed
2490 2491


2492
/* Normalize and round off.
Richard Stallman committed
2493

2494 2495
  The internal format number to be rounded is S.
  Input LOST is 0 if the value is exact.  This is the so-called sticky bit.
2496

2497 2498
  Input SUBFLG indicates whether the number was obtained
  by a subtraction operation.  In that case if LOST is nonzero
2499
  then the number is slightly smaller than indicated.
2500

2501 2502 2503
  Input EXP is the biased exponent, which may be negative.
  the exponent field of S is ignored but is replaced by
  EXP as adjusted by normalization and rounding.
2504

2505 2506
  Input RCNTRL is the rounding control.  If it is nonzero, the
  returned value will be rounded to RNDPRC bits.
2507 2508

  For future reference:  In order for emdnorm to round off denormal
2509 2510 2511 2512
   significands at the right point, the input exponent must be
   adjusted to be the actual value it would have after conversion to
   the final floating point type.  This adjustment has been
   implemented for all type conversions (etoe53, etc.) and decimal
2513
   conversions, but not for the arithmetic functions (eadd, etc.).
2514 2515 2516 2517 2518
   Data types having standard 15-bit exponents are not affected by
   this, but SFmode and DFmode are affected. For example, ediv with
   rndprc = 24 will not round correctly to 24-bit precision if the
   result is denormal.   */

Richard Stallman committed
2519 2520
static int rlast = -1;
static int rw = 0;
2521 2522 2523
static UEMUSHORT rmsk = 0;
static UEMUSHORT rmbit = 0;
static UEMUSHORT rebit = 0;
Richard Stallman committed
2524
static int re = 0;
2525
static UEMUSHORT rbit[NI];
Richard Stallman committed
2526

2527
static void
Richard Stallman committed
2528
emdnorm (s, lost, subflg, exp, rcntrl)
2529
     UEMUSHORT s[];
Richard Stallman committed
2530 2531 2532 2533 2534 2535
     int lost;
     int subflg;
     EMULONG exp;
     int rcntrl;
{
  int i, j;
2536
  UEMUSHORT r;
Richard Stallman committed
2537 2538 2539 2540

  /* Normalize */
  j = enormlz (s);

Mike Stump committed
2541
  /* a blank significand could mean either zero or infinity.  */
Richard Stallman committed
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
#ifndef INFINITY
  if (j > NBITS)
    {
      ecleazs (s);
      return;
    }
#endif
  exp -= j;
#ifndef INFINITY
  if (exp >= 32767L)
    goto overf;
#else
  if ((j > NBITS) && (exp < 32767))
    {
      ecleazs (s);
      return;
    }
#endif
  if (exp < 0L)
    {
      if (exp > (EMULONG) (-NBITS - 1))
	{
	  j = (int) exp;
	  i = eshift (s, j);
	  if (i)
	    lost = 1;
	}
      else
	{
	  ecleazs (s);
	  return;
	}
    }
Mike Stump committed
2575
  /* Round off, unless told not to by rcntrl.  */
Richard Stallman committed
2576 2577
  if (rcntrl == 0)
    goto mdfin;
Mike Stump committed
2578
  /* Set up rounding parameters if the control register changed.  */
Richard Stallman committed
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
  if (rndprc != rlast)
    {
      ecleaz (rbit);
      switch (rndprc)
	{
	default:
	case NBITS:
	  rw = NI - 1;		/* low guard word */
	  rmsk = 0xffff;
	  rmbit = 0x8000;
2589
	  re = rw - 1;
Richard Stallman committed
2590 2591
	  rebit = 1;
	  break;
2592

2593 2594 2595 2596 2597 2598 2599
	case 113:
	  rw = 10;
	  rmsk = 0x7fff;
	  rmbit = 0x4000;
	  rebit = 0x8000;
	  re = rw;
	  break;
2600

Richard Stallman committed
2601 2602 2603 2604 2605 2606 2607
	case 64:
	  rw = 7;
	  rmsk = 0xffff;
	  rmbit = 0x8000;
	  re = rw - 1;
	  rebit = 1;
	  break;
2608

2609
	  /* For DEC or IBM arithmetic */
Richard Stallman committed
2610 2611 2612 2613 2614
	case 56:
	  rw = 6;
	  rmsk = 0xff;
	  rmbit = 0x80;
	  rebit = 0x100;
2615
	  re = rw;
Richard Stallman committed
2616
	  break;
2617

Richard Stallman committed
2618 2619 2620 2621 2622
	case 53:
	  rw = 6;
	  rmsk = 0x7ff;
	  rmbit = 0x0400;
	  rebit = 0x800;
2623
	  re = rw;
Richard Stallman committed
2624
	  break;
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634

	  /* For C4x arithmetic */
	case 32:
	  rw = 5;
	  rmsk = 0xffff;
	  rmbit = 0x8000;
	  rebit = 1;
	  re = rw - 1;
	  break;

Richard Stallman committed
2635 2636 2637 2638 2639
	case 24:
	  rw = 4;
	  rmsk = 0xff;
	  rmbit = 0x80;
	  rebit = 0x100;
2640
	  re = rw;
Richard Stallman committed
2641 2642
	  break;
	}
2643
      rbit[re] = rebit;
Richard Stallman committed
2644 2645 2646
      rlast = rndprc;
    }

2647
  /* Shift down 1 temporarily if the data structure has an implied
2648 2649 2650 2651
     most significant bit and the number is denormal.
     Intel long double denormals also lose one bit of precision.  */
  if ((exp <= 0) && (rndprc != NBITS)
      && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN)))
Richard Stallman committed
2652
    {
2653 2654
      lost |= s[NI - 1] & 1;
      eshdn1 (s);
Richard Stallman committed
2655
    }
2656 2657 2658 2659
  /* Clear out all bits below the rounding bit,
     remembering in r if any were nonzero.  */
  r = s[rw] & rmsk;
  if (rndprc < NBITS)
Richard Stallman committed
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
    {
      i = rw + 1;
      while (i < NI)
	{
	  if (s[i])
	    r |= 1;
	  s[i] = 0;
	  ++i;
	}
    }
2670
  s[rw] &= ~rmsk;
Richard Stallman committed
2671 2672
  if ((r & rmbit) != 0)
    {
2673
#ifndef C4X
Richard Stallman committed
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
      if (r == rmbit)
	{
	  if (lost == 0)
	    {			/* round to even */
	      if ((s[re] & rebit) == 0)
		goto mddone;
	    }
	  else
	    {
	      if (subflg != 0)
		goto mddone;
	    }
	}
2687
#endif
Richard Stallman committed
2688 2689 2690
      eaddm (rbit, s);
    }
 mddone:
Mike Stump committed
2691
/* Undo the temporary shift for denormal values.  */
2692 2693
  if ((exp <= 0) && (rndprc != NBITS)
      && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN)))
Richard Stallman committed
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
    {
      eshup1 (s);
    }
  if (s[2] != 0)
    {				/* overflow on roundoff */
      eshdn1 (s);
      exp += 1;
    }
 mdfin:
  s[NI - 1] = 0;
  if (exp >= 32767L)
    {
#ifndef INFINITY
    overf:
#endif
#ifdef INFINITY
      s[1] = 32767;
      for (i = 2; i < NI - 1; i++)
	s[i] = 0;
2713 2714
      if (extra_warnings)
	warning ("floating point overflow");
Richard Stallman committed
2715 2716 2717 2718 2719 2720
#else
      s[1] = 32766;
      s[2] = 0;
      for (i = M + 1; i < NI - 1; i++)
	s[i] = 0xffff;
      s[NI - 1] = 0;
2721
      if ((rndprc < 64) || (rndprc == 113))
Richard Stallman committed
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
	{
	  s[rw] &= ~rmsk;
	  if (rndprc == 24)
	    {
	      s[5] = 0;
	      s[6] = 0;
	    }
	}
#endif
      return;
    }
  if (exp < 0)
    s[1] = 0;
  else
2736
    s[1] = (UEMUSHORT) exp;
Richard Stallman committed
2737 2738
}

2739
/*  Subtract.  C = B - A, all e type numbers.  */
Richard Stallman committed
2740 2741 2742

static int subflg = 0;

2743
static void
Richard Stallman committed
2744
esub (a, b, c)
2745
     UEMUSHORT *a, *b, *c;
Richard Stallman committed
2746 2747
{

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
#ifdef NANS
  if (eisnan (a))
    {
      emov (a, c);
      return;
    }
  if (eisnan (b))
    {
      emov (b, c);
      return;
    }
/* Infinity minus infinity is a NaN.
Mike Stump committed
2760
   Test for subtracting infinities of the same sign.  */
2761 2762 2763 2764
  if (eisinf (a) && eisinf (b)
      && ((eisneg (a) ^ eisneg (b)) == 0))
    {
      mtherr ("esub", INVALID);
2765
      enan (c, 0);
2766 2767 2768
      return;
    }
#endif
Richard Stallman committed
2769 2770 2771 2772
  subflg = 1;
  eadd1 (a, b, c);
}

Mike Stump committed
2773
/* Add.  C = A + B, all e type.  */
2774

2775
static void
Richard Stallman committed
2776
eadd (a, b, c)
2777
     UEMUSHORT *a, *b, *c;
Richard Stallman committed
2778 2779
{

2780
#ifdef NANS
Mike Stump committed
2781
/* NaN plus anything is a NaN.  */
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
  if (eisnan (a))
    {
      emov (a, c);
      return;
    }
  if (eisnan (b))
    {
      emov (b, c);
      return;
    }
/* Infinity minus infinity is a NaN.
Mike Stump committed
2793
   Test for adding infinities of opposite signs.  */
2794 2795 2796 2797
  if (eisinf (a) && eisinf (b)
      && ((eisneg (a) ^ eisneg (b)) != 0))
    {
      mtherr ("esub", INVALID);
2798
      enan (c, 0);
2799 2800 2801
      return;
    }
#endif
Richard Stallman committed
2802 2803 2804 2805
  subflg = 0;
  eadd1 (a, b, c);
}

2806 2807
/* Arithmetic common to both addition and subtraction.  */

2808
static void
Richard Stallman committed
2809
eadd1 (a, b, c)
2810
     UEMUSHORT *a, *b, *c;
Richard Stallman committed
2811
{
2812
  UEMUSHORT ai[NI], bi[NI], ci[NI];
Richard Stallman committed
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
  int i, lost, j, k;
  EMULONG lt, lta, ltb;

#ifdef INFINITY
  if (eisinf (a))
    {
      emov (a, c);
      if (subflg)
	eneg (c);
      return;
    }
  if (eisinf (b))
    {
      emov (b, c);
      return;
    }
#endif
  emovi (a, ai);
  emovi (b, bi);
  if (subflg)
    ai[0] = ~ai[0];

  /* compare exponents */
  lta = ai[E];
  ltb = bi[E];
  lt = lta - ltb;
  if (lt > 0L)
    {				/* put the larger number in bi */
      emovz (bi, ci);
      emovz (ai, bi);
      emovz (ci, ai);
      ltb = bi[E];
      lt = -lt;
    }
  lost = 0;
  if (lt != 0L)
    {
      if (lt < (EMULONG) (-NBITS - 1))
	goto done;		/* answer same as larger addend */
      k = (int) lt;
      lost = eshift (ai, k);	/* shift the smaller number down */
    }
  else
    {
      /* exponents were the same, so must compare significands */
      i = ecmpm (ai, bi);
      if (i == 0)
	{			/* the numbers are identical in magnitude */
	  /* if different signs, result is zero */
	  if (ai[0] != bi[0])
	    {
	      eclear (c);
	      return;
	    }
	  /* if same sign, result is double */
Richard Kenner committed
2868
	  /* double denormalized tiny number */
Richard Stallman committed
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	  if ((bi[E] == 0) && ((bi[3] & 0x8000) == 0))
	    {
	      eshup1 (bi);
	      goto done;
	    }
	  /* add 1 to exponent unless both are zero! */
	  for (j = 1; j < NI - 1; j++)
	    {
	      if (bi[j] != 0)
		{
		  ltb += 1;
2880 2881 2882 2883 2884 2885 2886 2887
		  if (ltb >= 0x7fff)
		    {
		      eclear (c);
		      if (ai[0] != 0)
			eneg (c);
		      einfin (c);
		      return;
		    }
Richard Stallman committed
2888 2889 2890
		  break;
		}
	    }
2891
	  bi[E] = (UEMUSHORT) ltb;
Richard Stallman committed
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
	  goto done;
	}
      if (i > 0)
	{			/* put the larger number in bi */
	  emovz (bi, ci);
	  emovz (ai, bi);
	  emovz (ci, ai);
	}
    }
  if (ai[0] == bi[0])
    {
      eaddm (ai, bi);
      subflg = 0;
    }
  else
    {
      esubm (ai, bi);
      subflg = 1;
    }
  emdnorm (bi, lost, subflg, ltb, 64);

 done:
  emovo (bi, c);
}

2917
/* Divide: C = B/A, all e type.  */
2918

2919
static void
Richard Stallman committed
2920
ediv (a, b, c)
2921
     UEMUSHORT *a, *b, *c;
Richard Stallman committed
2922
{
2923
  UEMUSHORT ai[NI], bi[NI];
2924
  int i, sign;
Richard Stallman committed
2925 2926
  EMULONG lt, lta, ltb;

2927 2928 2929 2930
/* IEEE says if result is not a NaN, the sign is "-" if and only if
   operands have opposite signs -- but flush -0 to 0 later if not IEEE.  */
  sign = eisneg(a) ^ eisneg(b);

2931
#ifdef NANS
Mike Stump committed
2932
/* Return any NaN input.  */
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
  if (eisnan (a))
    {
    emov (a, c);
    return;
    }
  if (eisnan (b))
    {
    emov (b, c);
    return;
    }
Mike Stump committed
2943
/* Zero over zero, or infinity over infinity, is a NaN.  */
2944 2945 2946 2947
  if (((ecmp (a, ezero) == 0) && (ecmp (b, ezero) == 0))
      || (eisinf (a) && eisinf (b)))
    {
    mtherr ("ediv", INVALID);
2948
    enan (c, sign);
2949 2950 2951
    return;
    }
#endif
Mike Stump committed
2952
/* Infinity over anything else is infinity.  */
Richard Stallman committed
2953 2954 2955 2956
#ifdef INFINITY
  if (eisinf (b))
    {
      einfin (c);
2957
      goto divsign;
Richard Stallman committed
2958
    }
Mike Stump committed
2959
/* Anything else over infinity is zero.  */
Richard Stallman committed
2960 2961 2962
  if (eisinf (a))
    {
      eclear (c);
2963
      goto divsign;
Richard Stallman committed
2964 2965 2966 2967 2968 2969 2970
    }
#endif
  emovi (a, ai);
  emovi (b, bi);
  lta = ai[E];
  ltb = bi[E];
  if (bi[E] == 0)
Mike Stump committed
2971
    {				/* See if numerator is zero.  */
Richard Stallman committed
2972 2973 2974 2975 2976 2977 2978 2979 2980
      for (i = 1; i < NI - 1; i++)
	{
	  if (bi[i] != 0)
	    {
	      ltb -= enormlz (bi);
	      goto dnzro1;
	    }
	}
      eclear (c);
2981
      goto divsign;
Richard Stallman committed
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
    }
 dnzro1:

  if (ai[E] == 0)
    {				/* possible divide by zero */
      for (i = 1; i < NI - 1; i++)
	{
	  if (ai[i] != 0)
	    {
	      lta -= enormlz (ai);
	      goto dnzro2;
	    }
	}
2995 2996
/* Divide by zero is not an invalid operation.
   It is a divide-by-zero operation!   */
Richard Stallman committed
2997 2998
      einfin (c);
      mtherr ("ediv", SING);
2999
      goto divsign;
Richard Stallman committed
3000 3001 3002 3003 3004 3005 3006 3007
    }
 dnzro2:

  i = edivm (ai, bi);
  /* calculate exponent */
  lt = ltb - lta + EXONE;
  emdnorm (bi, i, 0, lt, 64);
  emovo (bi, c);
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018

 divsign:

  if (sign
#ifndef IEEE
      && (ecmp (c, ezero) != 0)
#endif
      )
     *(c+(NE-1)) |= 0x8000;
  else
     *(c+(NE-1)) &= ~0x8000;
Richard Stallman committed
3019 3020
}

3021
/* Multiply e-types A and B, return e-type product C.   */
3022

3023
static void
Richard Stallman committed
3024
emul (a, b, c)
3025
     UEMUSHORT *a, *b, *c;
Richard Stallman committed
3026
{
3027
  UEMUSHORT ai[NI], bi[NI];
3028
  int i, j, sign;
Richard Stallman committed
3029 3030
  EMULONG lt, lta, ltb;

3031 3032 3033 3034
/* IEEE says if result is not a NaN, the sign is "-" if and only if
   operands have opposite signs -- but flush -0 to 0 later if not IEEE.  */
  sign = eisneg(a) ^ eisneg(b);

3035
#ifdef NANS
Mike Stump committed
3036
/* NaN times anything is the same NaN.  */
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
  if (eisnan (a))
    {
    emov (a, c);
    return;
    }
  if (eisnan (b))
    {
    emov (b, c);
    return;
    }
Mike Stump committed
3047
/* Zero times infinity is a NaN.  */
3048 3049 3050 3051
  if ((eisinf (a) && (ecmp (b, ezero) == 0))
      || (eisinf (b) && (ecmp (a, ezero) == 0)))
    {
    mtherr ("emul", INVALID);
3052
    enan (c, sign);
3053 3054 3055
    return;
    }
#endif
Mike Stump committed
3056
/* Infinity times anything else is infinity.  */
Richard Stallman committed
3057 3058 3059 3060
#ifdef INFINITY
  if (eisinf (a) || eisinf (b))
    {
      einfin (c);
3061
      goto mulsign;
Richard Stallman committed
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
    }
#endif
  emovi (a, ai);
  emovi (b, bi);
  lta = ai[E];
  ltb = bi[E];
  if (ai[E] == 0)
    {
      for (i = 1; i < NI - 1; i++)
	{
	  if (ai[i] != 0)
	    {
	      lta -= enormlz (ai);
	      goto mnzer1;
	    }
	}
      eclear (c);
3079
      goto mulsign;
Richard Stallman committed
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
    }
 mnzer1:

  if (bi[E] == 0)
    {
      for (i = 1; i < NI - 1; i++)
	{
	  if (bi[i] != 0)
	    {
	      ltb -= enormlz (bi);
	      goto mnzer2;
	    }
	}
      eclear (c);
3094
      goto mulsign;
Richard Stallman committed
3095 3096 3097 3098 3099 3100 3101 3102 3103
    }
 mnzer2:

  /* Multiply significands */
  j = emulm (ai, bi);
  /* calculate exponent */
  lt = lta + ltb - (EXONE - 1);
  emdnorm (bi, j, 0, lt, 64);
  emovo (bi, c);
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114

 mulsign:

  if (sign
#ifndef IEEE
      && (ecmp (c, ezero) != 0)
#endif
      )
     *(c+(NE-1)) |= 0x8000;
  else
     *(c+(NE-1)) &= ~0x8000;
Richard Stallman committed
3115 3116
}

3117
/* Convert double precision PE to e-type Y.  */
3118 3119

static void
3120
e53toe (pe, y)
3121
     UEMUSHORT *pe, *y;
Richard Stallman committed
3122 3123 3124
{
#ifdef DEC

3125
  dectoe (pe, y);
Richard Stallman committed
3126 3127

#else
3128 3129 3130
#ifdef IBM

  ibmtoe (pe, y, DFmode);
Richard Stallman committed
3131

3132
#else
3133 3134 3135 3136 3137
#ifdef C4X

  c4xtoe (pe, y, HFmode);

#else
3138 3139 3140
  register UEMUSHORT r;
  register UEMUSHORT *e, *p;
  UEMUSHORT yy[NI];
Richard Stallman committed
3141 3142
  int denorm, k;

3143
  e = pe;
Richard Stallman committed
3144 3145
  denorm = 0;			/* flag if denormalized number */
  ecleaz (yy);
3146
  if (! REAL_WORDS_BIG_ENDIAN)
3147
    e += 3;
Richard Stallman committed
3148 3149 3150 3151 3152 3153 3154 3155 3156
  r = *e;
  yy[0] = 0;
  if (r & 0x8000)
    yy[0] = 0xffff;
  yy[M] = (r & 0x0f) | 0x10;
  r &= ~0x800f;			/* strip sign and 4 significand bits */
#ifdef INFINITY
  if (r == 0x7ff0)
    {
3157
#ifdef NANS
3158
      if (! REAL_WORDS_BIG_ENDIAN)
3159
	{
3160 3161 3162 3163 3164 3165
	  if (((pe[3] & 0xf) != 0) || (pe[2] != 0)
	      || (pe[1] != 0) || (pe[0] != 0))
	    {
	      enan (y, yy[0] != 0);
	      return;
	    }
3166
	}
3167
      else
3168
	{
3169 3170 3171 3172 3173 3174
	  if (((pe[0] & 0xf) != 0) || (pe[1] != 0)
	      || (pe[2] != 0) || (pe[3] != 0))
	    {
	      enan (y, yy[0] != 0);
	      return;
	    }
3175 3176
	}
#endif  /* NANS */
3177
      eclear (y);
Richard Stallman committed
3178
      einfin (y);
3179
      if (yy[0])
Richard Stallman committed
3180 3181 3182
	eneg (y);
      return;
    }
3183
#endif  /* INFINITY */
Richard Stallman committed
3184 3185
  r >>= 4;
  /* If zero exponent, then the significand is denormalized.
Mike Stump committed
3186
     So take back the understood high significand bit.  */
3187

Richard Stallman committed
3188 3189 3190 3191 3192 3193 3194 3195
  if (r == 0)
    {
      denorm = 1;
      yy[M] &= ~0x10;
    }
  r += EXONE - 01777;
  yy[E] = r;
  p = &yy[M + 1];
3196
#ifdef IEEE
3197
  if (! REAL_WORDS_BIG_ENDIAN)
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
    {
      *p++ = *(--e);
      *p++ = *(--e);
      *p++ = *(--e);
    }
  else
    {
      ++e;
      *p++ = *e++;
      *p++ = *e++;
      *p++ = *e++;
    }
Richard Stallman committed
3210
#endif
3211
  eshift (yy, -5);
Richard Stallman committed
3212
  if (denorm)
3213
    {
3214
	/* If zero exponent, then normalize the significand.  */
Richard Stallman committed
3215 3216 3217
      if ((k = enormlz (yy)) > NBITS)
	ecleazs (yy);
      else
3218
	yy[E] -= (UEMUSHORT) (k - 1);
Richard Stallman committed
3219 3220
    }
  emovo (yy, y);
3221
#endif /* not C4X */
3222
#endif /* not IBM */
Richard Stallman committed
3223 3224 3225
#endif /* not DEC */
}

3226 3227
/* Convert double extended precision float PE to e type Y.  */

3228
static void
3229
e64toe (pe, y)
3230
     UEMUSHORT *pe, *y;
Richard Stallman committed
3231
{
3232 3233
  UEMUSHORT yy[NI];
  UEMUSHORT *e, *p, *q;
Richard Stallman committed
3234 3235
  int i;

3236
  e = pe;
Richard Stallman committed
3237 3238 3239
  p = yy;
  for (i = 0; i < NE - 5; i++)
    *p++ = 0;
Mike Stump committed
3240
/* This precision is not ordinarily supported on DEC or IBM.  */
Richard Stallman committed
3241 3242 3243 3244
#ifdef DEC
  for (i = 0; i < 5; i++)
    *p++ = *e++;
#endif
3245 3246 3247 3248 3249 3250 3251
#ifdef IBM
  p = &yy[0] + (NE - 1);
  *p-- = *e++;
  ++e;
  for (i = 0; i < 5; i++)
    *p-- = *e++;
#endif
3252
#ifdef IEEE
3253
  if (! REAL_WORDS_BIG_ENDIAN)
3254 3255 3256
    {
      for (i = 0; i < 5; i++)
	*p++ = *e++;
3257 3258 3259 3260 3261 3262

      /* For denormal long double Intel format, shift significand up one
	 -- but only if the top significand bit is zero.  A top bit of 1
	 is "pseudodenormal" when the exponent is zero.  */
      if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0)
	{
3263
	  UEMUSHORT temp[NI];
3264 3265 3266 3267 3268 3269

	  emovi(yy, temp);
	  eshup1(temp);
	  emovo(temp,y);
	  return;
	}
3270 3271 3272 3273
    }
  else
    {
      p = &yy[0] + (NE - 1);
3274 3275 3276 3277 3278
#ifdef ARM_EXTENDED_IEEE_FORMAT
      /* For ARMs, the exponent is in the lowest 15 bits of the word.  */
      *p-- = (e[0] & 0x8000) | (e[1] & 0x7ffff);
      e += 2;
#else
3279 3280
      *p-- = *e++;
      ++e;
3281
#endif
3282 3283 3284
      for (i = 0; i < 4; i++)
	*p-- = *e++;
    }
Richard Stallman committed
3285 3286
#endif
#ifdef INFINITY
3287 3288
  /* Point to the exponent field and check max exponent cases.  */
  p = &yy[NE - 1];
3289
  if ((*p & 0x7fff) == 0x7fff)
Richard Stallman committed
3290
    {
3291
#ifdef NANS
3292
      if (! REAL_WORDS_BIG_ENDIAN)
3293
	{
3294
	  for (i = 0; i < 4; i++)
3295
	    {
3296 3297 3298
	      if ((i != 3 && pe[i] != 0)
		  /* Anything but 0x8000 here, including 0, is a NaN.  */
		  || (i == 3 && pe[i] != 0x8000))
3299 3300 3301 3302
		{
		  enan (y, (*p & 0x8000) != 0);
		  return;
		}
3303 3304
	    }
	}
3305
      else
3306
	{
3307 3308
#ifdef ARM_EXTENDED_IEEE_FORMAT
	  for (i = 2; i <= 5; i++)
3309
	    {
3310 3311 3312 3313 3314
	      if (pe[i] != 0)
		{
		  enan (y, (*p & 0x8000) != 0);
		  return;
		}
3315
	    }
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
#else /* not ARM */
	  /* In Motorola extended precision format, the most significant
	     bit of an infinity mantissa could be either 1 or 0.  It is
	     the lower order bits that tell whether the value is a NaN.  */
	  if ((pe[2] & 0x7fff) != 0)
	    goto bigend_nan;

	  for (i = 3; i <= 5; i++)
	    {
	      if (pe[i] != 0)
		{
bigend_nan:
		  enan (y, (*p & 0x8000) != 0);
		  return;
		}
	    }
#endif /* not ARM */
3333 3334
	}
#endif /* NANS */
3335
      eclear (y);
Richard Stallman committed
3336 3337 3338 3339 3340
      einfin (y);
      if (*p & 0x8000)
	eneg (y);
      return;
    }
3341
#endif  /* INFINITY */
3342 3343
  p = yy;
  q = y;
Richard Stallman committed
3344 3345 3346 3347
  for (i = 0; i < NE; i++)
    *q++ = *p++;
}

3348
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
3349
/* Convert 128-bit long double precision float PE to e type Y.  */
Richard Stallman committed
3350

3351
static void
3352
e113toe (pe, y)
3353
     UEMUSHORT *pe, *y;
Richard Stallman committed
3354
{
3355 3356 3357
  register UEMUSHORT r;
  UEMUSHORT *e, *p;
  UEMUSHORT yy[NI];
3358
  int denorm, i;
Richard Stallman committed
3359

3360
  e = pe;
3361
  denorm = 0;
Richard Stallman committed
3362
  ecleaz (yy);
3363
#ifdef IEEE
3364
  if (! REAL_WORDS_BIG_ENDIAN)
3365
    e += 7;
Richard Stallman committed
3366 3367 3368 3369 3370
#endif
  r = *e;
  yy[0] = 0;
  if (r & 0x8000)
    yy[0] = 0xffff;
3371
  r &= 0x7fff;
Richard Stallman committed
3372
#ifdef INFINITY
3373
  if (r == 0x7fff)
Richard Stallman committed
3374
    {
3375
#ifdef NANS
3376
      if (! REAL_WORDS_BIG_ENDIAN)
3377
	{
3378
	  for (i = 0; i < 7; i++)
3379
	    {
3380 3381 3382 3383 3384
	      if (pe[i] != 0)
		{
		  enan (y, yy[0] != 0);
		  return;
		}
3385
	    }
3386
	}
3387
      else
3388
	{
3389
	  for (i = 1; i < 8; i++)
3390
	    {
3391 3392 3393 3394 3395
	      if (pe[i] != 0)
		{
		  enan (y, yy[0] != 0);
		  return;
		}
3396
	    }
3397
	}
3398
#endif /* NANS */
3399
      eclear (y);
Richard Stallman committed
3400
      einfin (y);
3401
      if (yy[0])
Richard Stallman committed
3402 3403 3404
	eneg (y);
      return;
    }
3405
#endif  /* INFINITY */
Richard Stallman committed
3406 3407
  yy[E] = r;
  p = &yy[M + 1];
3408
#ifdef IEEE
3409
  if (! REAL_WORDS_BIG_ENDIAN)
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
    {
      for (i = 0; i < 7; i++)
	*p++ = *(--e);
    }
  else
    {
      ++e;
      for (i = 0; i < 7; i++)
	*p++ = *e++;
    }
Richard Stallman committed
3420
#endif
Mike Stump committed
3421
/* If denormal, remove the implied bit; else shift down 1.  */
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
  if (r == 0)
    {
      yy[M] = 0;
    }
  else
    {
      yy[M] = 1;
      eshift (yy, -1);
    }
  emovo (yy, y);
}
3433
#endif
3434

3435
/* Convert single precision float PE to e type Y.  */
3436

3437
static void
3438
e24toe (pe, y)
3439
     UEMUSHORT *pe, *y;
3440 3441 3442 3443 3444 3445
{
#ifdef IBM

  ibmtoe (pe, y, SFmode);

#else
3446 3447 3448 3449 3450 3451 3452

#ifdef C4X

  c4xtoe (pe, y, QFmode);

#else

3453 3454 3455
  register UEMUSHORT r;
  register UEMUSHORT *e, *p;
  UEMUSHORT yy[NI];
3456 3457 3458 3459 3460
  int denorm, k;

  e = pe;
  denorm = 0;			/* flag if denormalized number */
  ecleaz (yy);
3461
#ifdef IEEE
3462
  if (! REAL_WORDS_BIG_ENDIAN)
3463
    e += 1;
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
#endif
#ifdef DEC
  e += 1;
#endif
  r = *e;
  yy[0] = 0;
  if (r & 0x8000)
    yy[0] = 0xffff;
  yy[M] = (r & 0x7f) | 0200;
  r &= ~0x807f;			/* strip sign and 7 significand bits */
#ifdef INFINITY
  if (r == 0x7f80)
    {
#ifdef NANS
3478
      if (REAL_WORDS_BIG_ENDIAN)
3479
	{
3480 3481 3482 3483 3484
	  if (((pe[0] & 0x7f) != 0) || (pe[1] != 0))
	    {
	      enan (y, yy[0] != 0);
	      return;
	    }
3485
	}
3486
      else
3487
	{
3488 3489 3490 3491 3492
	  if (((pe[1] & 0x7f) != 0) || (pe[0] != 0))
	    {
	      enan (y, yy[0] != 0);
	      return;
	    }
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
	}
#endif  /* NANS */
      eclear (y);
      einfin (y);
      if (yy[0])
	eneg (y);
      return;
    }
#endif  /* INFINITY */
  r >>= 7;
  /* If zero exponent, then the significand is denormalized.
Mike Stump committed
3504
     So take back the understood high significand bit.  */
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
  if (r == 0)
    {
      denorm = 1;
      yy[M] &= ~0200;
    }
  r += EXONE - 0177;
  yy[E] = r;
  p = &yy[M + 1];
#ifdef DEC
  *p++ = *(--e);
#endif
3516
#ifdef IEEE
3517
  if (! REAL_WORDS_BIG_ENDIAN)
3518 3519 3520 3521 3522 3523
    *p++ = *(--e);
  else
    {
      ++e;
      *p++ = *e++;
    }
3524 3525 3526 3527 3528 3529 3530
#endif
  eshift (yy, -8);
  if (denorm)
    {				/* if zero exponent, then normalize the significand */
      if ((k = enormlz (yy)) > NBITS)
	ecleazs (yy);
      else
3531
	yy[E] -= (UEMUSHORT) (k - 1);
Richard Stallman committed
3532 3533
    }
  emovo (yy, y);
3534
#endif /* not C4X */
3535 3536 3537
#endif /* not IBM */
}

3538
/* Convert e-type X to IEEE 128-bit long double format E.  */
3539

3540
static void
3541
etoe113 (x, e)
3542
     UEMUSHORT *x, *e;
3543
{
3544
  UEMUSHORT xi[NI];
3545 3546 3547 3548 3549 3550
  EMULONG exp;
  int rndsav;

#ifdef NANS
  if (eisnan (x))
    {
3551
      make_nan (e, eisneg (x), TFmode);
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
      return;
    }
#endif
  emovi (x, xi);
  exp = (EMULONG) xi[E];
#ifdef INFINITY
  if (eisinf (x))
    goto nonorm;
#endif
  /* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 113;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
3566
#ifdef INFINITY
3567
 nonorm:
3568
#endif
3569
  toe113 (xi, e);
Richard Stallman committed
3570 3571
}

3572 3573
/* Convert exploded e-type X, that has already been rounded to
   113-bit precision, to IEEE 128-bit long double format Y.  */
3574

3575
static void
3576
toe113 (a, b)
3577
     UEMUSHORT *a, *b;
3578
{
3579 3580
  register UEMUSHORT *p, *q;
  UEMUSHORT i;
3581 3582 3583 3584

#ifdef NANS
  if (eiisnan (a))
    {
3585
      make_nan (b, eiisneg (a), TFmode);
3586 3587 3588 3589
      return;
    }
#endif
  p = a;
3590
  if (REAL_WORDS_BIG_ENDIAN)
3591 3592 3593
    q = b;
  else
    q = b + 7;			/* point to output exponent */
3594

Mike Stump committed
3595
  /* If not denormal, delete the implied bit.  */
3596 3597 3598 3599 3600 3601
  if (a[E] != 0)
    {
      eshup1 (a);
    }
  /* combine sign and exponent */
  i = *p++;
3602
  if (REAL_WORDS_BIG_ENDIAN)
3603 3604 3605 3606 3607 3608
    {
      if (i)
	*q++ = *p++ | 0x8000;
      else
	*q++ = *p++;
    }
3609
  else
3610 3611 3612 3613 3614 3615
    {
      if (i)
	*q-- = *p++ | 0x8000;
      else
	*q-- = *p++;
    }
3616 3617 3618
  /* skip over guard word */
  ++p;
  /* move the significand */
3619
  if (REAL_WORDS_BIG_ENDIAN)
3620 3621 3622 3623 3624 3625 3626 3627 3628
    {
      for (i = 0; i < 7; i++)
	*q++ = *p++;
    }
  else
    {
      for (i = 0; i < 7; i++)
	*q-- = *p++;
    }
3629
}
Richard Stallman committed
3630

3631 3632
/* Convert e-type X to IEEE double extended format E.  */

3633
static void
Richard Stallman committed
3634
etoe64 (x, e)
3635
     UEMUSHORT *x, *e;
Richard Stallman committed
3636
{
3637
  UEMUSHORT xi[NI];
Richard Stallman committed
3638 3639 3640
  EMULONG exp;
  int rndsav;

3641 3642 3643
#ifdef NANS
  if (eisnan (x))
    {
3644
      make_nan (e, eisneg (x), XFmode);
3645 3646 3647
      return;
    }
#endif
Richard Stallman committed
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
  emovi (x, xi);
  /* adjust exponent for offset */
  exp = (EMULONG) xi[E];
#ifdef INFINITY
  if (eisinf (x))
    goto nonorm;
#endif
  /* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 64;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
3660
#ifdef INFINITY
Richard Stallman committed
3661
 nonorm:
3662
#endif
Richard Stallman committed
3663 3664 3665
  toe64 (xi, e);
}

3666 3667
/* Convert exploded e-type X, that has already been rounded to
   64-bit precision, to IEEE double extended format Y.  */
3668

3669
static void
Richard Stallman committed
3670
toe64 (a, b)
3671
     UEMUSHORT *a, *b;
Richard Stallman committed
3672
{
3673 3674
  register UEMUSHORT *p, *q;
  UEMUSHORT i;
Richard Stallman committed
3675

3676 3677 3678
#ifdef NANS
  if (eiisnan (a))
    {
3679
      make_nan (b, eiisneg (a), XFmode);
3680 3681 3682
      return;
    }
#endif
3683 3684 3685
  /* Shift denormal long double Intel format significand down one bit.  */
  if ((a[E] == 0) && ! REAL_WORDS_BIG_ENDIAN)
    eshdn1 (a);
Richard Stallman committed
3686
  p = a;
3687
#ifdef IBM
Richard Stallman committed
3688
  q = b;
3689 3690 3691 3692 3693
#endif
#ifdef DEC
  q = b + 4;
#endif
#ifdef IEEE
3694
  if (REAL_WORDS_BIG_ENDIAN)
3695 3696 3697 3698
    q = b;
  else
    {
      q = b + 4;			/* point to output exponent */
3699 3700 3701 3702 3703
      /* Clear the last two bytes of 12-byte Intel format.  q is pointing
	 into an array of size 6 (e.g. x[NE]), so the last two bytes are
	 always there, and there are never more bytes, even when we are using
	 INTEL_EXTENDED_IEEE_FORMAT.  */
      *(q+1) = 0;
3704
    }
Richard Stallman committed
3705 3706 3707 3708
#endif

  /* combine sign and exponent */
  i = *p++;
3709
#ifdef IBM
Richard Stallman committed
3710 3711 3712 3713 3714
  if (i)
    *q++ = *p++ | 0x8000;
  else
    *q++ = *p++;
  *q++ = 0;
3715 3716
#endif
#ifdef DEC
Richard Stallman committed
3717 3718 3719 3720 3721
  if (i)
    *q-- = *p++ | 0x8000;
  else
    *q-- = *p++;
#endif
3722
#ifdef IEEE
3723
  if (REAL_WORDS_BIG_ENDIAN)
3724
    {
3725 3726 3727 3728 3729
#ifdef ARM_EXTENDED_IEEE_FORMAT
      /* The exponent is in the lowest 15 bits of the first word.  */
      *q++ = i ? 0x8000 : 0;
      *q++ = *p++;
#else
3730 3731 3732 3733 3734
      if (i)
	*q++ = *p++ | 0x8000;
      else
	*q++ = *p++;
      *q++ = 0;
3735
#endif
3736 3737 3738 3739 3740 3741 3742 3743 3744
    }
  else
    {
      if (i)
	*q-- = *p++ | 0x8000;
      else
	*q-- = *p++;
    }
#endif
Richard Stallman committed
3745 3746 3747
  /* skip over guard word */
  ++p;
  /* move the significand */
3748
#ifdef IBM
Richard Stallman committed
3749 3750
  for (i = 0; i < 4; i++)
    *q++ = *p++;
3751 3752
#endif
#ifdef DEC
Richard Stallman committed
3753 3754 3755
  for (i = 0; i < 4; i++)
    *q-- = *p++;
#endif
3756
#ifdef IEEE
3757
  if (REAL_WORDS_BIG_ENDIAN)
3758 3759 3760 3761 3762 3763
    {
      for (i = 0; i < 4; i++)
	*q++ = *p++;
    }
  else
    {
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
#ifdef INFINITY
      if (eiisinf (a))
	{
	  /* Intel long double infinity significand.  */
	  *q-- = 0x8000;
	  *q-- = 0;
	  *q-- = 0;
	  *q = 0;
	  return;
	}
#endif
3775 3776 3777 3778
      for (i = 0; i < 4; i++)
	*q-- = *p++;
    }
#endif
Richard Stallman committed
3779 3780
}

3781
/* e type to double precision.  */
Richard Stallman committed
3782 3783

#ifdef DEC
3784
/* Convert e-type X to DEC-format double E.  */
Richard Stallman committed
3785

3786
static void
Richard Stallman committed
3787
etoe53 (x, e)
3788
     UEMUSHORT *x, *e;
Richard Stallman committed
3789 3790 3791 3792
{
  etodec (x, e);		/* see etodec.c */
}

3793 3794 3795
/* Convert exploded e-type X, that has already been rounded to
   56-bit double precision, to DEC double Y.  */

3796
static void
Richard Stallman committed
3797
toe53 (x, y)
3798
     UEMUSHORT *x, *y;
Richard Stallman committed
3799 3800 3801 3802 3803
{
  todec (x, y);
}

#else
3804
#ifdef IBM
3805
/* Convert e-type X to IBM 370-format double E.  */
3806

3807
static void
3808
etoe53 (x, e)
3809
     UEMUSHORT *x, *e;
3810 3811 3812 3813
{
  etoibm (x, e, DFmode);
}

3814 3815 3816
/* Convert exploded e-type X, that has already been rounded to
   56-bit precision, to IBM 370 double Y.  */

3817
static void
3818
toe53 (x, y)
3819
     UEMUSHORT *x, *y;
3820 3821 3822 3823
{
  toibm (x, y, DFmode);
}

3824 3825
#else /* it's neither DEC nor IBM */
#ifdef C4X
3826
/* Convert e-type X to C4X-format long double E.  */
3827

3828
static void
3829
etoe53 (x, e)
3830
     UEMUSHORT *x, *e;
3831 3832 3833 3834 3835 3836 3837
{
  etoc4x (x, e, HFmode);
}

/* Convert exploded e-type X, that has already been rounded to
   56-bit precision, to IBM 370 double Y.  */

3838
static void
3839
toe53 (x, y)
3840
     UEMUSHORT *x, *y;
3841 3842 3843 3844 3845
{
  toc4x (x, y, HFmode);
}

#else  /* it's neither DEC nor IBM nor C4X */
Richard Stallman committed
3846

3847 3848
/* Convert e-type X to IEEE double E.  */

3849
static void
Richard Stallman committed
3850
etoe53 (x, e)
3851
     UEMUSHORT *x, *e;
Richard Stallman committed
3852
{
3853
  UEMUSHORT xi[NI];
Richard Stallman committed
3854 3855 3856
  EMULONG exp;
  int rndsav;

3857 3858 3859
#ifdef NANS
  if (eisnan (x))
    {
3860
      make_nan (e, eisneg (x), DFmode);
3861 3862 3863
      return;
    }
#endif
Richard Stallman committed
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
  emovi (x, xi);
  /* adjust exponent for offsets */
  exp = (EMULONG) xi[E] - (EXONE - 0x3ff);
#ifdef INFINITY
  if (eisinf (x))
    goto nonorm;
#endif
  /* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 53;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
3876
#ifdef INFINITY
Richard Stallman committed
3877
 nonorm:
3878
#endif
Richard Stallman committed
3879 3880 3881
  toe53 (xi, e);
}

3882 3883
/* Convert exploded e-type X, that has already been rounded to
   53-bit precision, to IEEE double Y.  */
Richard Stallman committed
3884

3885
static void
Richard Stallman committed
3886
toe53 (x, y)
3887
     UEMUSHORT *x, *y;
Richard Stallman committed
3888
{
3889 3890
  UEMUSHORT i;
  UEMUSHORT *p;
Richard Stallman committed
3891

3892 3893 3894
#ifdef NANS
  if (eiisnan (x))
    {
3895
      make_nan (y, eiisneg (x), DFmode);
3896 3897 3898
      return;
    }
#endif
Richard Stallman committed
3899
  p = &x[0];
3900
#ifdef IEEE
3901
  if (! REAL_WORDS_BIG_ENDIAN)
3902
    y += 3;
Richard Stallman committed
3903 3904 3905 3906 3907 3908 3909
#endif
  *y = 0;			/* output high order */
  if (*p++)
    *y = 0x8000;		/* output sign bit */

  i = *p++;
  if (i >= (unsigned int) 2047)
Mike Stump committed
3910 3911
    {
      /* Saturate at largest number less than infinity.  */
Richard Stallman committed
3912 3913
#ifdef INFINITY
      *y |= 0x7ff0;
3914
      if (! REAL_WORDS_BIG_ENDIAN)
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	{
	  *(--y) = 0;
	  *(--y) = 0;
	  *(--y) = 0;
	}
      else
	{
	  ++y;
	  *y++ = 0;
	  *y++ = 0;
	  *y++ = 0;
	}
Richard Stallman committed
3927
#else
3928
      *y |= (UEMUSHORT) 0x7fef;
3929
      if (! REAL_WORDS_BIG_ENDIAN)
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
	{
	  *(--y) = 0xffff;
	  *(--y) = 0xffff;
	  *(--y) = 0xffff;
	}
      else
	{
	  ++y;
	  *y++ = 0xffff;
	  *y++ = 0xffff;
	  *y++ = 0xffff;
	}
Richard Stallman committed
3942 3943 3944 3945 3946
#endif
      return;
    }
  if (i == 0)
    {
3947
      eshift (x, 4);
Richard Stallman committed
3948 3949 3950 3951
    }
  else
    {
      i <<= 4;
3952
      eshift (x, 5);
Richard Stallman committed
3953
    }
3954 3955
  i |= *p++ & (UEMUSHORT) 0x0f;	/* *p = xi[M] */
  *y |= (UEMUSHORT) i;	/* high order output already has sign bit set */
3956
  if (! REAL_WORDS_BIG_ENDIAN)
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
    {
      *(--y) = *p++;
      *(--y) = *p++;
      *(--y) = *p;
    }
  else
    {
      ++y;
      *y++ = *p++;
      *y++ = *p++;
      *y++ = *p++;
    }
Richard Stallman committed
3969 3970
}

3971
#endif /* not C4X */
3972
#endif /* not IBM */
Richard Stallman committed
3973 3974 3975 3976
#endif /* not DEC */



3977
/* e type to single precision.  */
3978

3979
#ifdef IBM
3980
/* Convert e-type X to IBM 370 float E.  */
3981

3982
static void
3983
etoe24 (x, e)
3984
     UEMUSHORT *x, *e;
3985 3986 3987 3988
{
  etoibm (x, e, SFmode);
}

3989 3990 3991
/* Convert exploded e-type X, that has already been rounded to
   float precision, to IBM 370 float Y.  */

3992
static void
3993
toe24 (x, y)
3994
     UEMUSHORT *x, *y;
3995 3996 3997 3998 3999
{
  toibm (x, y, SFmode);
}

#else
4000 4001 4002 4003

#ifdef C4X
/* Convert e-type X to C4X float E.  */

4004
static void
4005
etoe24 (x, e)
4006
     UEMUSHORT *x, *e;
4007 4008 4009 4010 4011 4012 4013
{
  etoc4x (x, e, QFmode);
}

/* Convert exploded e-type X, that has already been rounded to
   float precision, to IBM 370 float Y.  */

4014
static void
4015
toe24 (x, y)
4016
     UEMUSHORT *x, *y;
4017 4018 4019 4020 4021 4022
{
  toc4x (x, y, QFmode);
}

#else

4023
/* Convert e-type X to IEEE float E.  DEC float is the same as IEEE float.  */
4024

4025
static void
Richard Stallman committed
4026
etoe24 (x, e)
4027
     UEMUSHORT *x, *e;
Richard Stallman committed
4028 4029
{
  EMULONG exp;
4030
  UEMUSHORT xi[NI];
Richard Stallman committed
4031 4032
  int rndsav;

4033 4034 4035
#ifdef NANS
  if (eisnan (x))
    {
4036
      make_nan (e, eisneg (x), SFmode);
4037 4038 4039
      return;
    }
#endif
Richard Stallman committed
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
  emovi (x, xi);
  /* adjust exponent for offsets */
  exp = (EMULONG) xi[E] - (EXONE - 0177);
#ifdef INFINITY
  if (eisinf (x))
    goto nonorm;
#endif
  /* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 24;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
4052
#ifdef INFINITY
Richard Stallman committed
4053
 nonorm:
4054
#endif
Richard Stallman committed
4055 4056 4057
  toe24 (xi, e);
}

4058 4059 4060
/* Convert exploded e-type X, that has already been rounded to
   float precision, to IEEE float Y.  */

4061
static void
Richard Stallman committed
4062
toe24 (x, y)
4063
     UEMUSHORT *x, *y;
Richard Stallman committed
4064
{
4065 4066
  UEMUSHORT i;
  UEMUSHORT *p;
Richard Stallman committed
4067

4068 4069 4070
#ifdef NANS
  if (eiisnan (x))
    {
4071
      make_nan (y, eiisneg (x), SFmode);
4072 4073 4074
      return;
    }
#endif
Richard Stallman committed
4075
  p = &x[0];
4076
#ifdef IEEE
4077
  if (! REAL_WORDS_BIG_ENDIAN)
4078
    y += 1;
Richard Stallman committed
4079 4080 4081 4082 4083 4084 4085 4086 4087
#endif
#ifdef DEC
  y += 1;
#endif
  *y = 0;			/* output high order */
  if (*p++)
    *y = 0x8000;		/* output sign bit */

  i = *p++;
Mike Stump committed
4088
/* Handle overflow cases.  */
Richard Stallman committed
4089
  if (i >= 255)
4090
    {
Richard Stallman committed
4091
#ifdef INFINITY
4092
      *y |= (UEMUSHORT) 0x7f80;
Richard Stallman committed
4093 4094 4095
#ifdef DEC
      *(--y) = 0;
#endif
4096
#ifdef IEEE
4097
      if (! REAL_WORDS_BIG_ENDIAN)
4098 4099 4100 4101 4102 4103
	*(--y) = 0;
      else
	{
	  ++y;
	  *y = 0;
	}
Richard Stallman committed
4104
#endif
4105
#else  /* no INFINITY */
4106
      *y |= (UEMUSHORT) 0x7f7f;
Richard Stallman committed
4107 4108 4109
#ifdef DEC
      *(--y) = 0xffff;
#endif
4110
#ifdef IEEE
4111
      if (! REAL_WORDS_BIG_ENDIAN)
4112 4113 4114 4115 4116 4117
	*(--y) = 0xffff;
      else
	{
	  ++y;
	  *y = 0xffff;
	}
Richard Stallman committed
4118
#endif
4119 4120
#ifdef ERANGE
      errno = ERANGE;
Richard Stallman committed
4121
#endif
4122
#endif  /* no INFINITY */
Richard Stallman committed
4123 4124 4125 4126
      return;
    }
  if (i == 0)
    {
4127
      eshift (x, 7);
Richard Stallman committed
4128 4129 4130 4131
    }
  else
    {
      i <<= 7;
4132
      eshift (x, 8);
Richard Stallman committed
4133
    }
4134
  i |= *p++ & (UEMUSHORT) 0x7f;	/* *p = xi[M] */
4135 4136
  /* High order output already has sign bit set.  */
  *y |= i;
Richard Stallman committed
4137 4138 4139
#ifdef DEC
  *(--y) = *p;
#endif
4140
#ifdef IEEE
4141
  if (! REAL_WORDS_BIG_ENDIAN)
4142 4143 4144 4145 4146 4147
    *(--y) = *p;
  else
    {
      ++y;
      *y = *p;
    }
Richard Stallman committed
4148 4149
#endif
}
4150
#endif  /* not C4X */
4151
#endif  /* not IBM */
Richard Stallman committed
4152

4153
/* Compare two e type numbers.
4154 4155 4156 4157
   Return +1 if a > b
           0 if a == b
          -1 if a < b
          -2 if either a or b is a NaN.  */
4158

4159
static int
Richard Stallman committed
4160
ecmp (a, b)
4161
     UEMUSHORT *a, *b;
Richard Stallman committed
4162
{
4163 4164
  UEMUSHORT ai[NI], bi[NI];
  register UEMUSHORT *p, *q;
Richard Stallman committed
4165 4166 4167
  register int i;
  int msign;

4168 4169 4170 4171
#ifdef NANS
  if (eisnan (a)  || eisnan (b))
      return (-2);
#endif
Richard Stallman committed
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
  emovi (a, ai);
  p = ai;
  emovi (b, bi);
  q = bi;

  if (*p != *q)
    {				/* the signs are different */
      /* -0 equals + 0 */
      for (i = 1; i < NI - 1; i++)
	{
	  if (ai[i] != 0)
	    goto nzro;
	  if (bi[i] != 0)
	    goto nzro;
	}
      return (0);
    nzro:
      if (*p == 0)
	return (1);
      else
	return (-1);
    }
  /* both are the same sign */
  if (*p == 0)
    msign = 1;
  else
    msign = -1;
  i = NI - 1;
  do
    {
      if (*p++ != *q++)
	{
	  goto diff;
	}
    }
  while (--i > 0);

  return (0);			/* equality */

 diff:

  if (*(--p) > *(--q))
    return (msign);		/* p is bigger */
  else
    return (-msign);		/* p is littler */
}

4219
#if 0
4220
/* Find e-type nearest integer to X, as floor (X + 0.5).  */
4221

4222
static void
Richard Stallman committed
4223
eround (x, y)
4224
     UEMUSHORT *x, *y;
Richard Stallman committed
4225 4226 4227 4228
{
  eadd (ehalf, x, y);
  efloor (y, y);
}
4229
#endif /* 0 */
Richard Stallman committed
4230

4231
/* Convert HOST_WIDE_INT LP to e type Y.  */
4232

4233
static void
Richard Stallman committed
4234
ltoe (lp, y)
4235
     HOST_WIDE_INT *lp;
4236
     UEMUSHORT *y;
Richard Stallman committed
4237
{
4238
  UEMUSHORT yi[NI];
4239
  unsigned HOST_WIDE_INT ll;
Richard Stallman committed
4240 4241 4242 4243 4244 4245
  int k;

  ecleaz (yi);
  if (*lp < 0)
    {
      /* make it positive */
4246
      ll = (unsigned HOST_WIDE_INT) (-(*lp));
Richard Stallman committed
4247 4248 4249 4250
      yi[0] = 0xffff;		/* put correct sign in the e type number */
    }
  else
    {
4251
      ll = (unsigned HOST_WIDE_INT) (*lp);
Richard Stallman committed
4252 4253
    }
  /* move the long integer to yi significand area */
4254
#if HOST_BITS_PER_WIDE_INT == 64
4255 4256 4257 4258
  yi[M] = (UEMUSHORT) (ll >> 48);
  yi[M + 1] = (UEMUSHORT) (ll >> 32);
  yi[M + 2] = (UEMUSHORT) (ll >> 16);
  yi[M + 3] = (UEMUSHORT) ll;
4259 4260
  yi[E] = EXONE + 47;		/* exponent if normalize shift count were 0 */
#else
4261 4262
  yi[M] = (UEMUSHORT) (ll >> 16);
  yi[M + 1] = (UEMUSHORT) ll;
Richard Stallman committed
4263
  yi[E] = EXONE + 15;		/* exponent if normalize shift count were 0 */
4264 4265
#endif

Richard Stallman committed
4266 4267 4268
  if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
    ecleaz (yi);		/* it was zero */
  else
4269
    yi[E] -= (UEMUSHORT) k;/* subtract shift count from exponent */
Richard Stallman committed
4270 4271 4272
  emovo (yi, y);		/* output the answer */
}

4273
/* Convert unsigned HOST_WIDE_INT LP to e type Y.  */
4274

4275
static void
Richard Stallman committed
4276
ultoe (lp, y)
4277
     unsigned HOST_WIDE_INT *lp;
4278
     UEMUSHORT *y;
Richard Stallman committed
4279
{
4280
  UEMUSHORT yi[NI];
4281
  unsigned HOST_WIDE_INT ll;
Richard Stallman committed
4282 4283 4284 4285 4286 4287
  int k;

  ecleaz (yi);
  ll = *lp;

  /* move the long integer to ayi significand area */
4288
#if HOST_BITS_PER_WIDE_INT == 64
4289 4290 4291 4292
  yi[M] = (UEMUSHORT) (ll >> 48);
  yi[M + 1] = (UEMUSHORT) (ll >> 32);
  yi[M + 2] = (UEMUSHORT) (ll >> 16);
  yi[M + 3] = (UEMUSHORT) ll;
4293 4294
  yi[E] = EXONE + 47;		/* exponent if normalize shift count were 0 */
#else
4295 4296
  yi[M] = (UEMUSHORT) (ll >> 16);
  yi[M + 1] = (UEMUSHORT) ll;
Richard Stallman committed
4297
  yi[E] = EXONE + 15;		/* exponent if normalize shift count were 0 */
4298 4299
#endif

Richard Stallman committed
4300 4301 4302
  if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
    ecleaz (yi);		/* it was zero */
  else
4303
    yi[E] -= (UEMUSHORT) k;  /* subtract shift count from exponent */
Richard Stallman committed
4304 4305 4306 4307
  emovo (yi, y);		/* output the answer */
}


4308 4309
/* Find signed HOST_WIDE_INT integer I and floating point fractional
   part FRAC of e-type (packed internal format) floating point input X.
4310 4311 4312 4313
   The integer output I has the sign of the input, except that
   positive overflow is permitted if FIXUNS_TRUNC_LIKE_FIX_TRUNC.
   The output e-type fraction FRAC is the positive fractional
   part of abs (X).  */
Richard Stallman committed
4314

4315
static void
Richard Stallman committed
4316
eifrac (x, i, frac)
4317
     UEMUSHORT *x;
4318
     HOST_WIDE_INT *i;
4319
     UEMUSHORT *frac;
Richard Stallman committed
4320
{
4321
  UEMUSHORT xi[NI];
4322
  int j, k;
4323
  unsigned HOST_WIDE_INT ll;
Richard Stallman committed
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333

  emovi (x, xi);
  k = (int) xi[E] - (EXONE - 1);
  if (k <= 0)
    {
      /* if exponent <= 0, integer = 0 and real output is fraction */
      *i = 0L;
      emovo (xi, frac);
      return;
    }
4334
  if (k > (HOST_BITS_PER_WIDE_INT - 1))
Richard Stallman committed
4335
    {
4336 4337
      /* long integer overflow: output large integer
	 and correct fraction  */
Richard Stallman committed
4338
      if (xi[0])
4339
	*i = ((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1);
Richard Stallman committed
4340
      else
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	{
#ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
	  /* In this case, let it overflow and convert as if unsigned.  */
	  euifrac (x, &ll, frac);
	  *i = (HOST_WIDE_INT) ll;
	  return;
#else
	  /* In other cases, return the largest positive integer.  */
	  *i = (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)) - 1;
#endif
	}
4352 4353 4354
      eshift (xi, k);
      if (extra_warnings)
	warning ("overflow on truncation to integer");
Richard Stallman committed
4355
    }
4356
  else if (k > 16)
Richard Stallman committed
4357
    {
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
      /* Shift more than 16 bits: first shift up k-16 mod 16,
	 then shift up by 16's.  */
      j = k - ((k >> 4) << 4);
      eshift (xi, j);
      ll = xi[M];
      k -= j;
      do
	{
	  eshup6 (xi);
	  ll = (ll << 16) | xi[M];
	}
      while ((k -= 16) > 0);
      *i = ll;
      if (xi[0])
	*i = -(*i);
    }
  else
4375 4376 4377
      {
        /* shift not more than 16 bits */
          eshift (xi, k);
4378
        *i = (HOST_WIDE_INT) xi[M] & 0xffff;
4379 4380 4381
        if (xi[0])
	  *i = -(*i);
      }
Richard Stallman committed
4382 4383 4384 4385 4386 4387
  xi[0] = 0;
  xi[E] = EXONE - 1;
  xi[M] = 0;
  if ((k = enormlz (xi)) > NBITS)
    ecleaz (xi);
  else
4388
    xi[E] -= (UEMUSHORT) k;
Richard Stallman committed
4389 4390 4391 4392 4393

  emovo (xi, frac);
}


4394 4395 4396
/* Find unsigned HOST_WIDE_INT integer I and floating point fractional part
   FRAC of e-type X.  A negative input yields integer output = 0 but
   correct fraction.  */
Richard Stallman committed
4397

4398
static void
Richard Stallman committed
4399
euifrac (x, i, frac)
4400
     UEMUSHORT *x;
4401
     unsigned HOST_WIDE_INT *i;
4402
     UEMUSHORT *frac;
Richard Stallman committed
4403
{
4404
  unsigned HOST_WIDE_INT ll;
4405
  UEMUSHORT xi[NI];
4406
  int j, k;
Richard Stallman committed
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416

  emovi (x, xi);
  k = (int) xi[E] - (EXONE - 1);
  if (k <= 0)
    {
      /* if exponent <= 0, integer = 0 and argument is fraction */
      *i = 0L;
      emovo (xi, frac);
      return;
    }
4417
  if (k > HOST_BITS_PER_WIDE_INT)
Richard Stallman committed
4418
    {
4419 4420
      /* Long integer overflow: output large integer
	 and correct fraction.
4421
	 Note, the BSD MicroVAX compiler says that ~(0UL)
4422
	 is a syntax error.  */
Richard Stallman committed
4423
      *i = ~(0L);
4424 4425 4426
      eshift (xi, k);
      if (extra_warnings)
	warning ("overflow on truncation to unsigned integer");
Richard Stallman committed
4427
    }
4428
  else if (k > 16)
Richard Stallman committed
4429
    {
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
      /* Shift more than 16 bits: first shift up k-16 mod 16,
	 then shift up by 16's.  */
      j = k - ((k >> 4) << 4);
      eshift (xi, j);
      ll = xi[M];
      k -= j;
      do
	{
	  eshup6 (xi);
	  ll = (ll << 16) | xi[M];
	}
      while ((k -= 16) > 0);
      *i = ll;
    }
  else
    {
      /* shift not more than 16 bits */
4447
      eshift (xi, k);
4448
      *i = (HOST_WIDE_INT) xi[M] & 0xffff;
Richard Stallman committed
4449 4450
    }

Mike Stump committed
4451
  if (xi[0])  /* A negative value yields unsigned integer 0.  */
Richard Stallman committed
4452
    *i = 0L;
4453

Richard Stallman committed
4454 4455 4456 4457 4458 4459
  xi[0] = 0;
  xi[E] = EXONE - 1;
  xi[M] = 0;
  if ((k = enormlz (xi)) > NBITS)
    ecleaz (xi);
  else
4460
    xi[E] -= (UEMUSHORT) k;
Richard Stallman committed
4461 4462 4463 4464

  emovo (xi, frac);
}

4465
/* Shift the significand of exploded e-type X up or down by SC bits.  */
4466

4467
static int
Richard Stallman committed
4468
eshift (x, sc)
4469
     UEMUSHORT *x;
Richard Stallman committed
4470 4471
     int sc;
{
4472 4473
  UEMUSHORT lost;
  UEMUSHORT *p;
Richard Stallman committed
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529

  if (sc == 0)
    return (0);

  lost = 0;
  p = x + NI - 1;

  if (sc < 0)
    {
      sc = -sc;
      while (sc >= 16)
	{
	  lost |= *p;		/* remember lost bits */
	  eshdn6 (x);
	  sc -= 16;
	}

      while (sc >= 8)
	{
	  lost |= *p & 0xff;
	  eshdn8 (x);
	  sc -= 8;
	}

      while (sc > 0)
	{
	  lost |= *p & 1;
	  eshdn1 (x);
	  sc -= 1;
	}
    }
  else
    {
      while (sc >= 16)
	{
	  eshup6 (x);
	  sc -= 16;
	}

      while (sc >= 8)
	{
	  eshup8 (x);
	  sc -= 8;
	}

      while (sc > 0)
	{
	  eshup1 (x);
	  sc -= 1;
	}
    }
  if (lost)
    lost = 1;
  return ((int) lost);
}

4530 4531
/* Shift normalize the significand area of exploded e-type X.
   Return the shift count (up = positive).  */
4532

4533
static int
Richard Stallman committed
4534
enormlz (x)
4535
     UEMUSHORT x[];
Richard Stallman committed
4536
{
4537
  register UEMUSHORT *p;
Richard Stallman committed
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
  int sc;

  sc = 0;
  p = &x[M];
  if (*p != 0)
    goto normdn;
  ++p;
  if (*p & 0x8000)
    return (0);			/* already normalized */
  while (*p == 0)
    {
      eshup6 (x);
      sc += 16;
4551

Richard Stallman committed
4552
      /* With guard word, there are NBITS+16 bits available.
4553
       Return true if all are zero.  */
Richard Stallman committed
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
      if (sc > NBITS)
	return (sc);
    }
  /* see if high byte is zero */
  while ((*p & 0xff00) == 0)
    {
      eshup8 (x);
      sc += 8;
    }
  /* now shift 1 bit at a time */
  while ((*p & 0x8000) == 0)
    {
      eshup1 (x);
      sc += 1;
      if (sc > NBITS)
	{
	  mtherr ("enormlz", UNDERFLOW);
	  return (sc);
	}
    }
  return (sc);

  /* Normalize by shifting down out of the high guard word
     of the significand */
 normdn:

  if (*p & 0xff00)
    {
      eshdn8 (x);
      sc -= 8;
    }
  while (*p != 0)
    {
      eshdn1 (x);
      sc -= 1;

      if (sc < -NBITS)
	{
	  mtherr ("enormlz", OVERFLOW);
	  return (sc);
	}
    }
  return (sc);
}

4599
/* Powers of ten used in decimal <-> binary conversions.  */
Richard Stallman committed
4600 4601 4602 4603

#define NTEN 12
#define MAXP 4096

4604
#if MAX_LONG_DOUBLE_TYPE_SIZE == 128 && (INTEL_EXTENDED_IEEE_FORMAT == 0)
4605
static UEMUSHORT etens[NTEN + 1][NE] =
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
{
  {0x6576, 0x4a92, 0x804a, 0x153f,
   0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,},	/* 10**4096 */
  {0x6a32, 0xce52, 0x329a, 0x28ce,
   0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,},	/* 10**2048 */
  {0x526c, 0x50ce, 0xf18b, 0x3d28,
   0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,},
  {0x9c66, 0x58f8, 0xbc50, 0x5c54,
   0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,},
  {0x851e, 0xeab7, 0x98fe, 0x901b,
   0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,},
  {0x0235, 0x0137, 0x36b1, 0x336c,
   0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,},
  {0x50f8, 0x25fb, 0xc76b, 0x6b71,
   0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,},
  {0x0000, 0x0000, 0x0000, 0x0000,
   0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,},	/* 10**1 */
};

4635
static UEMUSHORT emtens[NTEN + 1][NE] =
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
{
  {0x2030, 0xcffc, 0xa1c3, 0x8123,
   0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,},	/* 10**-4096 */
  {0x8264, 0xd2cb, 0xf2ea, 0x12d4,
   0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,},	/* 10**-2048 */
  {0xf53f, 0xf698, 0x6bd3, 0x0158,
   0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,},
  {0xe731, 0x04d4, 0xe3f2, 0xd332,
   0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,},
  {0xa23e, 0x5308, 0xfefb, 0x1155,
   0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,},
  {0xe26d, 0xdbde, 0xd05d, 0xb3f6,
   0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,},
  {0x2a20, 0x6224, 0x47b3, 0x98d7,
   0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,},
  {0x0b5b, 0x4af2, 0xa581, 0x18ed,
   0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,},
  {0xbf71, 0xa9b3, 0x7989, 0xbe68,
   0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,},
  {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b,
   0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,},
  {0xc155, 0xa4a8, 0x404e, 0x6113,
   0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,},
  {0xd70a, 0x70a3, 0x0a3d, 0xa3d7,
   0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,},
  {0xcccd, 0xcccc, 0xcccc, 0xcccc,
   0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,},	/* 10**-1 */
};
#else
/* LONG_DOUBLE_TYPE_SIZE is other than 128 */
4666
static UEMUSHORT etens[NTEN + 1][NE] =
Richard Stallman committed
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
{
  {0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,},	/* 10**4096 */
  {0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,},	/* 10**2048 */
  {0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,},
  {0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,},
  {0xddbc, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,},
  {0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,},
  {0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,},
  {0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,},
  {0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,},
  {0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,},
  {0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,},
  {0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,},
  {0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,},	/* 10**1 */
};

4683
static UEMUSHORT emtens[NTEN + 1][NE] =
Richard Stallman committed
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
{
  {0x2de4, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,},	/* 10**-4096 */
  {0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,},	/* 10**-2048 */
  {0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,},
  {0x7133, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,},
  {0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,},
  {0xac7d, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,},
  {0x3f24, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,},
  {0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,},
  {0x4c2f, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,},
  {0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,},
  {0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,},
  {0x3d71, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,},
  {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,},	/* 10**-1 */
};
4699
#endif
Richard Stallman committed
4700

4701
#if 0
4702 4703 4704
/* Convert float value X to ASCII string STRING with NDIG digits after
   the decimal point.  */

4705
static void
Richard Stallman committed
4706
e24toasc (x, string, ndigs)
4707
     UEMUSHORT x[];
Richard Stallman committed
4708 4709 4710
     char *string;
     int ndigs;
{
4711
  UEMUSHORT w[NI];
Richard Stallman committed
4712 4713 4714 4715 4716

  e24toe (x, w);
  etoasc (w, string, ndigs);
}

4717 4718
/* Convert double value X to ASCII string STRING with NDIG digits after
   the decimal point.  */
Richard Stallman committed
4719

4720
static void
Richard Stallman committed
4721
e53toasc (x, string, ndigs)
4722
     UEMUSHORT x[];
Richard Stallman committed
4723 4724 4725
     char *string;
     int ndigs;
{
4726
  UEMUSHORT w[NI];
Richard Stallman committed
4727 4728 4729 4730 4731

  e53toe (x, w);
  etoasc (w, string, ndigs);
}

4732 4733
/* Convert double extended value X to ASCII string STRING with NDIG digits
   after the decimal point.  */
Richard Stallman committed
4734

4735
static void
Richard Stallman committed
4736
e64toasc (x, string, ndigs)
4737
     UEMUSHORT x[];
Richard Stallman committed
4738 4739 4740
     char *string;
     int ndigs;
{
4741
  UEMUSHORT w[NI];
Richard Stallman committed
4742 4743 4744 4745 4746

  e64toe (x, w);
  etoasc (w, string, ndigs);
}

4747 4748 4749
/* Convert 128-bit long double value X to ASCII string STRING with NDIG digits
   after the decimal point.  */

4750
static void
4751
e113toasc (x, string, ndigs)
4752
     UEMUSHORT x[];
4753 4754 4755
     char *string;
     int ndigs;
{
4756
  UEMUSHORT w[NI];
4757 4758 4759 4760

  e113toe (x, w);
  etoasc (w, string, ndigs);
}
4761
#endif /* 0 */
4762

4763 4764
/* Convert e-type X to ASCII string STRING with NDIGS digits after
   the decimal point.  */
Richard Stallman committed
4765 4766 4767

static char wstring[80];	/* working storage for ASCII output */

4768
static void
Richard Stallman committed
4769
etoasc (x, string, ndigs)
4770
     UEMUSHORT x[];
Richard Stallman committed
4771 4772 4773 4774
     char *string;
     int ndigs;
{
  EMUSHORT digit;
4775 4776 4777
  UEMUSHORT y[NI], t[NI], u[NI], w[NI];
  UEMUSHORT *p, *r, *ten;
  UEMUSHORT sign;
Richard Stallman committed
4778 4779
  int i, j, k, expon, rndsav;
  char *s, *ss;
4780
  UEMUSHORT m;
Richard Stallman committed
4781

4782 4783

  rndsav = rndprc;
Richard Stallman committed
4784 4785
  ss = string;
  s = wstring;
4786 4787 4788 4789 4790 4791 4792 4793 4794
  *ss = '\0';
  *s = '\0';
#ifdef NANS
  if (eisnan (x))
    {
      sprintf (wstring, " NaN ");
      goto bxit;
    }
#endif
Richard Stallman committed
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
  rndprc = NBITS;		/* set to full precision */
  emov (x, y);			/* retain external format */
  if (y[NE - 1] & 0x8000)
    {
      sign = 0xffff;
      y[NE - 1] &= 0x7fff;
    }
  else
    {
      sign = 0;
    }
  expon = 0;
  ten = &etens[NTEN][0];
  emov (eone, t);
  /* Test for zero exponent */
  if (y[NE - 1] == 0)
    {
      for (k = 0; k < NE - 1; k++)
	{
	  if (y[k] != 0)
	    goto tnzro;		/* denormalized number */
	}
Richard Kenner committed
4817
      goto isone;		/* valid all zeros */
Richard Stallman committed
4818 4819 4820
    }
 tnzro:

Mike Stump committed
4821
  /* Test for infinity.  */
Richard Stallman committed
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
  if (y[NE - 1] == 0x7fff)
    {
      if (sign)
	sprintf (wstring, " -Infinity ");
      else
	sprintf (wstring, " Infinity ");
      goto bxit;
    }

  /* Test for exponent nonzero but significand denormalized.
   * This is an error condition.
   */
  if ((y[NE - 1] != 0) && ((y[NE - 2] & 0x8000) == 0))
    {
      mtherr ("etoasc", DOMAIN);
      sprintf (wstring, "NaN");
      goto bxit;
    }

  /* Compare to 1.0 */
  i = ecmp (eone, y);
  if (i == 0)
    goto isone;

4846 4847 4848
  if (i == -2)
    abort ();

Richard Stallman committed
4849 4850
  if (i < 0)
    {				/* Number is greater than 1 */
Mike Stump committed
4851
      /* Convert significand to an integer and strip trailing decimal zeros.  */
Richard Stallman committed
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
      emov (y, u);
      u[NE - 1] = EXONE + NBITS - 1;

      p = &etens[NTEN - 4][0];
      m = 16;
      do
	{
	  ediv (p, u, t);
	  efloor (t, w);
	  for (j = 0; j < NE - 1; j++)
	    {
	      if (t[j] != w[j])
		goto noint;
	    }
	  emov (t, u);
	  expon += (int) m;
	noint:
	  p += NE;
	  m >>= 1;
	}
      while (m != 0);

      /* Rescale from integer significand */
      u[NE - 1] += y[NE - 1] - (unsigned int) (EXONE + NBITS - 1);
      emov (u, y);
      /* Find power of 10 */
      emov (eone, t);
      m = MAXP;
      p = &etens[0][0];
Mike Stump committed
4881
      /* An unordered compare result shouldn't happen here.  */
Richard Stallman committed
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
      while (ecmp (ten, u) <= 0)
	{
	  if (ecmp (p, u) <= 0)
	    {
	      ediv (p, u, u);
	      emul (p, t, t);
	      expon += (int) m;
	    }
	  m >>= 1;
	  if (m == 0)
	    break;
	  p += NE;
	}
    }
  else
    {				/* Number is less than 1.0 */
Mike Stump committed
4898
      /* Pad significand with trailing decimal zeros.  */
Richard Stallman committed
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
      if (y[NE - 1] == 0)
	{
	  while ((y[NE - 2] & 0x8000) == 0)
	    {
	      emul (ten, y, y);
	      expon -= 1;
	    }
	}
      else
	{
	  emovi (y, w);
	  for (i = 0; i < NDEC + 1; i++)
	    {
	      if ((w[NI - 1] & 0x7) != 0)
		break;
	      /* multiply by 10 */
	      emovz (w, u);
	      eshdn1 (u);
	      eshdn1 (u);
	      eaddm (w, u);
	      u[1] += 3;
	      while (u[2] != 0)
		{
		  eshdn1 (u);
		  u[1] += 1;
		}
	      if (u[NI - 1] != 0)
		break;
	      if (eone[NE - 1] <= u[1])
		break;
	      emovz (u, w);
	      expon -= 1;
	    }
	  emovo (w, y);
	}
      k = -MAXP;
      p = &emtens[0][0];
      r = &etens[0][0];
      emov (y, w);
      emov (eone, t);
      while (ecmp (eone, w) > 0)
	{
	  if (ecmp (p, w) >= 0)
	    {
	      emul (r, w, w);
	      emul (r, t, t);
	      expon += k;
	    }
	  k /= 2;
	  if (k == 0)
	    break;
	  p += NE;
	  r += NE;
	}
      ediv (t, eone, t);
    }
 isone:
Mike Stump committed
4956
  /* Find the first (leading) digit.  */
Richard Stallman committed
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
  emovi (t, w);
  emovz (w, t);
  emovi (y, w);
  emovz (w, y);
  eiremain (t, y);
  digit = equot[NI - 1];
  while ((digit == 0) && (ecmp (y, ezero) != 0))
    {
      eshup1 (y);
      emovz (y, u);
      eshup1 (u);
      eshup1 (u);
      eaddm (u, y);
      eiremain (t, y);
      digit = equot[NI - 1];
      expon -= 1;
    }
  s = wstring;
  if (sign)
    *s++ = '-';
  else
    *s++ = ' ';
Mike Stump committed
4979
  /* Examine number of digits requested by caller.  */
Richard Stallman committed
4980 4981 4982 4983
  if (ndigs < 0)
    ndigs = 0;
  if (ndigs > NDEC)
    ndigs = NDEC;
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
  if (digit == 10)
    {
      *s++ = '1';
      *s++ = '.';
      if (ndigs > 0)
	{
	  *s++ = '0';
	  ndigs -= 1;
	}
      expon += 1;
    }
  else
    {
Richard Stallman committed
4997
      *s++ = (char)digit + '0';
4998 4999
      *s++ = '.';
    }
Mike Stump committed
5000
  /* Generate digits after the decimal point.  */
Richard Stallman committed
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
  for (k = 0; k <= ndigs; k++)
    {
      /* multiply current number by 10, without normalizing */
      eshup1 (y);
      emovz (y, u);
      eshup1 (u);
      eshup1 (u);
      eaddm (u, y);
      eiremain (t, y);
      *s++ = (char) equot[NI - 1] + '0';
    }
  digit = equot[NI - 1];
  --s;
  ss = s;
  /* round off the ASCII string */
  if (digit > 4)
    {
Mike Stump committed
5018
      /* Test for critical rounding case in ASCII output.  */
Richard Stallman committed
5019 5020 5021 5022 5023
      if (digit == 5)
	{
	  emovo (y, t);
	  if (ecmp (t, ezero) != 0)
	    goto roun;		/* round to nearest */
5024
#ifndef C4X
Richard Stallman committed
5025 5026
	  if ((*(s - 1) & 1) == 0)
	    goto doexp;		/* round to even */
5027
#endif
Richard Stallman committed
5028 5029 5030 5031
	}
      /* Round up and propagate carry-outs */
    roun:
      --s;
5032
      k = *s & CHARMASK;
Richard Stallman committed
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
      /* Carry out to most significant digit? */
      if (k == '.')
	{
	  --s;
	  k = *s;
	  k += 1;
	  *s = (char) k;
	  /* Most significant digit carries to 10? */
	  if (k > '9')
	    {
	      expon += 1;
	      *s = '1';
	    }
	  goto doexp;
	}
      /* Round up and carry out from less significant digits */
      k += 1;
      *s = (char) k;
      if (k > '9')
	{
	  *s = '0';
	  goto roun;
	}
    }
 doexp:
  /*
     if (expon >= 0)
     sprintf (ss, "e+%d", expon);
     else
     sprintf (ss, "e%d", expon);
     */
  sprintf (ss, "e%d", expon);
 bxit:
  rndprc = rndsav;
  /* copy out the working string */
  s = string;
  ss = wstring;
  while (*ss == ' ')		/* strip possible leading space */
    ++ss;
  while ((*s++ = *ss++) != '\0')
    ;
}


5077
/* Convert ASCII string to floating point.
Richard Stallman committed
5078

5079 5080 5081 5082
   Numeric input is a free format decimal number of any length, with
   or without decimal point.  Entering E after the number followed by an
   integer number causes the second number to be interpreted as a power of
   10 to be multiplied by the first number (i.e., "scientific" notation).  */
Richard Stallman committed
5083

5084
/* Convert ASCII string S to single precision float value Y.  */
5085

5086
static void
Richard Stallman committed
5087
asctoe24 (s, y)
5088
     const char *s;
5089
     UEMUSHORT *y;
Richard Stallman committed
5090 5091 5092 5093 5094
{
  asctoeg (s, y, 24);
}


5095
/* Convert ASCII string S to double precision value Y.  */
5096

5097
static void
Richard Stallman committed
5098
asctoe53 (s, y)
5099
     const char *s;
5100
     UEMUSHORT *y;
Richard Stallman committed
5101
{
5102
#if defined(DEC) || defined(IBM)
Richard Stallman committed
5103 5104
  asctoeg (s, y, 56);
#else
5105 5106 5107
#if defined(C4X)
  asctoeg (s, y, 32);
#else
Richard Stallman committed
5108 5109
  asctoeg (s, y, 53);
#endif
5110
#endif
Richard Stallman committed
5111 5112 5113
}


5114
/* Convert ASCII string S to double extended value Y.  */
5115

5116
static void
Richard Stallman committed
5117
asctoe64 (s, y)
5118
     const char *s;
5119
     UEMUSHORT *y;
Richard Stallman committed
5120 5121 5122 5123
{
  asctoeg (s, y, 64);
}

5124
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
5125
/* Convert ASCII string S to 128-bit long double Y.  */
5126

5127
static void
5128
asctoe113 (s, y)
5129
     const char *s;
5130
     UEMUSHORT *y;
5131 5132 5133
{
  asctoeg (s, y, 113);
}
5134
#endif
5135

5136
/* Convert ASCII string S to e type Y.  */
5137

5138
static void
Richard Stallman committed
5139
asctoe (s, y)
5140
     const char *s;
5141
     UEMUSHORT *y;
Richard Stallman committed
5142 5143 5144 5145
{
  asctoeg (s, y, NBITS);
}

5146
/* Convert ASCII string SS to e type Y, with a specified rounding precision
5147
   of OPREC bits.  BASE is 16 for C99 hexadecimal floating constants.  */
5148

5149
static void
Richard Stallman committed
5150
asctoeg (ss, y, oprec)
5151
     const char *ss;
5152
     UEMUSHORT *y;
Richard Stallman committed
5153 5154
     int oprec;
{
5155
  UEMUSHORT yy[NI], xt[NI], tt[NI];
Richard Stallman committed
5156
  int esign, decflg, sgnflg, nexp, exp, prec, lost;
5157
  int i, k, trail, c, rndsav;
Richard Stallman committed
5158
  EMULONG lexp;
5159
  UEMUSHORT nsign;
5160
  char *sp, *s, *lstr;
5161
  int base = 10;
Richard Stallman committed
5162

Mike Stump committed
5163
  /* Copy the input string.  */
5164
  lstr = (char *) alloca (strlen (ss) + 1);
5165

5166 5167
  while (*ss == ' ')		/* skip leading spaces */
    ++ss;
5168

Richard Stallman committed
5169
  sp = lstr;
5170
  while ((*sp++ = *ss++) != '\0')
5171
    ;
Richard Stallman committed
5172 5173
  s = lstr;

5174 5175 5176 5177 5178 5179
  if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
    {
      base = 16;
      s += 2;
    }

Richard Stallman committed
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
  rndsav = rndprc;
  rndprc = NBITS;		/* Set to full precision */
  lost = 0;
  nsign = 0;
  decflg = 0;
  sgnflg = 0;
  nexp = 0;
  exp = 0;
  prec = 0;
  ecleaz (yy);
  trail = 0;

 nxtcom:
5193
  if (*s >= '0' && *s <= '9')
5194
    k = *s - '0';
5195
  else if (*s >= 'a' && *s <= 'f')
5196 5197 5198 5199
    k = 10 + *s - 'a';
  else
    k = 10 + *s - 'A';
  if ((k >= 0) && (k < base))
Richard Stallman committed
5200 5201 5202 5203
    {
      /* Ignore leading zeros */
      if ((prec == 0) && (decflg == 0) && (k == 0))
	goto donchr;
Mike Stump committed
5204
      /* Identify and strip trailing zeros after the decimal point.  */
Richard Stallman committed
5205 5206 5207
      if ((trail == 0) && (decflg != 0))
	{
	  sp = s;
5208 5209 5210
	  while ((*sp >= '0' && *sp <= '9')
		 || (base == 16 && ((*sp >= 'a' && *sp <= 'f')
				    || (*sp >= 'A' && *sp <= 'F'))))
Richard Stallman committed
5211 5212
	    ++sp;
	  /* Check for syntax error */
5213
	  c = *sp & CHARMASK;
5214 5215 5216
	  if ((base != 10 || ((c != 'e') && (c != 'E')))
	      && (base != 16 || ((c != 'p') && (c != 'P')))
	      && (c != '\0')
Richard Stallman committed
5217 5218
	      && (c != '\n') && (c != '\r') && (c != ' ')
	      && (c != ','))
5219
	    goto unexpected_char_error;
Richard Stallman committed
5220 5221 5222 5223 5224 5225 5226
	  --sp;
	  while (*sp == '0')
	    *sp-- = 'z';
	  trail = 1;
	  if (*s == 'z')
	    goto donchr;
	}
5227

Richard Stallman committed
5228
      /* If enough digits were given to more than fill up the yy register,
5229 5230 5231 5232
	 continuing until overflow into the high guard word yy[2]
	 guarantees that there will be a roundoff bit at the top
	 of the low guard word after normalization.  */

Richard Stallman committed
5233 5234
      if (yy[2] == 0)
	{
5235 5236
	  if (base == 16)
	    {
5237
	      if (decflg)
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
		nexp += 4;	/* count digits after decimal point */

	      eshup1 (yy);	/* multiply current number by 16 */
	      eshup1 (yy);
	      eshup1 (yy);
	      eshup1 (yy);
	    }
	  else
	    {
	      if (decflg)
Jeff Law committed
5248
		nexp += 1;		/* count digits after decimal point */
5249

Jeff Law committed
5250
	      eshup1 (yy);		/* multiply current number by 10 */
5251 5252 5253 5254
	      emovz (yy, xt);
	      eshup1 (xt);
	      eshup1 (xt);
	      eaddm (xt, yy);
5255 5256
	    }
	  /* Insert the current digit.  */
Richard Stallman committed
5257
	  ecleaz (xt);
5258
	  xt[NI - 2] = (UEMUSHORT) k;
Richard Stallman committed
5259 5260 5261 5262
	  eaddm (xt, yy);
	}
      else
	{
5263
	  /* Mark any lost non-zero digit.  */
Richard Stallman committed
5264
	  lost |= k;
5265 5266
	  /* Count lost digits before the decimal point.  */
	  if (decflg == 0)
5267 5268
	    {
	      if (base == 10)
5269
		nexp -= 1;
5270 5271
	      else
		nexp -= 4;
5272
	    }
Richard Stallman committed
5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
	}
      prec += 1;
      goto donchr;
    }

  switch (*s)
    {
    case 'z':
      break;
    case 'E':
    case 'e':
5284 5285
    case 'P':
    case 'p':
Richard Stallman committed
5286 5287 5288
      goto expnt;
    case '.':			/* decimal point */
      if (decflg)
5289
	goto unexpected_char_error;
Richard Stallman committed
5290 5291 5292 5293 5294
      ++decflg;
      break;
    case '-':
      nsign = 0xffff;
      if (sgnflg)
5295
	goto unexpected_char_error;
Richard Stallman committed
5296 5297 5298 5299
      ++sgnflg;
      break;
    case '+':
      if (sgnflg)
5300
	goto unexpected_char_error;
Richard Stallman committed
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
      ++sgnflg;
      break;
    case ',':
    case ' ':
    case '\0':
    case '\n':
    case '\r':
      goto daldone;
    case 'i':
    case 'I':
5311
      goto infinite;
Richard Stallman committed
5312
    default:
5313
    unexpected_char_error:
5314 5315 5316
#ifdef NANS
      einan (yy);
#else
Richard Stallman committed
5317
      mtherr ("asctoe", DOMAIN);
5318 5319
      eclear (yy);
#endif
Richard Stallman committed
5320 5321 5322 5323 5324 5325 5326 5327
      goto aexit;
    }
 donchr:
  ++s;
  goto nxtcom;

  /* Exponent interpretation */
 expnt:
5328
  /* 0.0eXXX is zero, regardless of XXX.  Check for the 0.0.  */
5329 5330 5331 5332 5333 5334
  for (k = 0; k < NI; k++)
    {
      if (yy[k] != 0)
	goto read_expnt;
    }
  goto aexit;
Richard Stallman committed
5335

5336
read_expnt:
Richard Stallman committed
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
  esign = 1;
  exp = 0;
  ++s;
  /* check for + or - */
  if (*s == '-')
    {
      esign = -1;
      ++s;
    }
  if (*s == '+')
    ++s;
  while ((*s >= '0') && (*s <= '9'))
    {
      exp *= 10;
      exp += *s++ - '0';
5352
      if (exp > 999999)
Jeff Law committed
5353
	break;
Richard Stallman committed
5354 5355 5356
    }
  if (esign < 0)
    exp = -exp;
5357
  if ((exp > MAXDECEXP) && (base == 10))
5358 5359 5360 5361 5362 5363
    {
 infinite:
      ecleaz (yy);
      yy[E] = 0x7fff;		/* infinity */
      goto aexit;
    }
5364
  if ((exp < MINDECEXP) && (base == 10))
5365 5366 5367 5368 5369
    {
 zero:
      ecleaz (yy);
      goto aexit;
    }
Richard Stallman committed
5370 5371

 daldone:
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
  if (base == 16)
    {
      /* Base 16 hexadecimal floating constant.  */
      if ((k = enormlz (yy)) > NBITS)
	{
	  ecleaz (yy);
	  goto aexit;
	}
      /* Adjust the exponent.  NEXP is the number of hex digits,
         EXP is a power of 2.  */
      lexp = (EXONE - 1 + NBITS) - k + yy[E] + exp - nexp;
      if (lexp > 0x7fff)
	goto infinite;
      if (lexp < 0)
	goto zero;
      yy[E] = lexp;
      goto expdon;
    }

Richard Stallman committed
5391
  nexp = exp - nexp;
Mike Stump committed
5392
  /* Pad trailing zeros to minimize power of 10, per IEEE spec.  */
Richard Stallman committed
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
  while ((nexp > 0) && (yy[2] == 0))
    {
      emovz (yy, xt);
      eshup1 (xt);
      eshup1 (xt);
      eaddm (yy, xt);
      eshup1 (xt);
      if (xt[2] != 0)
	break;
      nexp -= 1;
      emovz (xt, yy);
    }
  if ((k = enormlz (yy)) > NBITS)
    {
      ecleaz (yy);
      goto aexit;
    }
  lexp = (EXONE - 1 + NBITS) - k;
  emdnorm (yy, lost, 0, lexp, 64);
5412
  lost = 0;
Richard Stallman committed
5413

5414 5415 5416 5417 5418 5419 5420
  /* Convert to external format:

     Multiply by 10**nexp.  If precision is 64 bits,
     the maximum relative error incurred in forming 10**n
     for 0 <= n <= 324 is 8.2e-20, at 10**180.
     For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947.
     For 0 >= n >= -999, it is -1.55e-19 at 10**-435.  */
Richard Stallman committed
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433

  lexp = yy[E];
  if (nexp == 0)
    {
      k = 0;
      goto expdon;
    }
  esign = 1;
  if (nexp < 0)
    {
      nexp = -nexp;
      esign = -1;
      if (nexp > 4096)
5434
	{
Mike Stump committed
5435
	  /* Punt.  Can't handle this without 2 divides.  */
Richard Stallman committed
5436 5437 5438 5439 5440 5441 5442 5443 5444
	  emovi (etens[0], tt);
	  lexp -= tt[E];
	  k = edivm (tt, yy);
	  lexp += EXONE;
	  nexp -= 4096;
	}
    }
  emov (eone, xt);
  exp = 1;
5445
  i = NTEN;
Richard Stallman committed
5446 5447 5448
  do
    {
      if (exp & nexp)
5449 5450
	emul (etens[i], xt, xt);
      i--;
Richard Stallman committed
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
      exp = exp + exp;
    }
  while (exp <= MAXP);

  emovi (xt, tt);
  if (esign < 0)
    {
      lexp -= tt[E];
      k = edivm (tt, yy);
      lexp += EXONE;
    }
  else
    {
      lexp += tt[E];
      k = emulm (tt, yy);
      lexp -= EXONE - 1;
    }
5468
  lost = k;
Richard Stallman committed
5469 5470 5471 5472 5473 5474

 expdon:

  /* Round and convert directly to the destination type */
  if (oprec == 53)
    lexp -= EXONE - 0x3ff;
5475 5476 5477 5478
#ifdef C4X
  else if (oprec == 24 || oprec == 32)
    lexp -= (EXONE - 0x7f);
#else
5479 5480 5481 5482
#ifdef IBM
  else if (oprec == 24 || oprec == 56)
    lexp -= EXONE - (0x41 << 2);
#else
Richard Stallman committed
5483 5484
  else if (oprec == 24)
    lexp -= EXONE - 0177;
5485 5486
#endif /* IBM */
#endif /* C4X */
Richard Stallman committed
5487 5488 5489 5490 5491
#ifdef DEC
  else if (oprec == 56)
    lexp -= EXONE - 0201;
#endif
  rndprc = oprec;
5492
  emdnorm (yy, lost, 0, lexp, 64);
Richard Stallman committed
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504

 aexit:

  rndprc = rndsav;
  yy[0] = nsign;
  switch (oprec)
    {
#ifdef DEC
    case 56:
      todec (yy, y);		/* see etodec.c */
      break;
#endif
5505 5506 5507 5508 5509
#ifdef IBM
    case 56:
      toibm (yy, y, DFmode);
      break;
#endif
5510 5511 5512 5513 5514 5515
#ifdef C4X
    case 32:
      toc4x (yy, y, HFmode);
      break;
#endif

Richard Stallman committed
5516 5517 5518 5519 5520 5521 5522 5523 5524
    case 53:
      toe53 (yy, y);
      break;
    case 24:
      toe24 (yy, y);
      break;
    case 64:
      toe64 (yy, y);
      break;
5525 5526 5527
    case 113:
      toe113 (yy, y);
      break;
Richard Stallman committed
5528 5529 5530 5531 5532 5533 5534 5535
    case NBITS:
      emovo (yy, y);
      break;
    }
}



5536 5537
/* Return Y = largest integer not greater than X (truncated toward minus
   infinity).  */
5538

5539
static UEMUSHORT bmask[] =
Richard Stallman committed
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
{
  0xffff,
  0xfffe,
  0xfffc,
  0xfff8,
  0xfff0,
  0xffe0,
  0xffc0,
  0xff80,
  0xff00,
  0xfe00,
  0xfc00,
  0xf800,
  0xf000,
  0xe000,
  0xc000,
  0x8000,
  0x0000,
};

5560
static void
Richard Stallman committed
5561
efloor (x, y)
5562
     UEMUSHORT x[], y[];
Richard Stallman committed
5563
{
5564
  register UEMUSHORT *p;
Richard Stallman committed
5565
  int e, expon, i;
5566
  UEMUSHORT f[NE];
Richard Stallman committed
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592

  emov (x, f);			/* leave in external format */
  expon = (int) f[NE - 1];
  e = (expon & 0x7fff) - (EXONE - 1);
  if (e <= 0)
    {
      eclear (y);
      goto isitneg;
    }
  /* number of bits to clear out */
  e = NBITS - e;
  emov (f, y);
  if (e <= 0)
    return;

  p = &y[0];
  while (e >= 16)
    {
      *p++ = 0;
      e -= 16;
    }
  /* clear the remaining bits */
  *p &= bmask[e];
  /* truncate negatives toward minus infinity */
 isitneg:

5593
  if ((UEMUSHORT) expon & (UEMUSHORT) 0x8000)
Richard Stallman committed
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
    {
      for (i = 0; i < NE - 1; i++)
	{
	  if (f[i] != y[i])
	    {
	      esub (eone, y, y);
	      break;
	    }
	}
    }
}


Manfred Hollstein committed
5607
#if 0
5608 5609
/* Return S and EXP such that  S * 2^EXP = X and .5 <= S < 1.
   For example, 1.1 = 0.55 * 2^1.  */
5610

5611
static void
Richard Stallman committed
5612
efrexp (x, exp, s)
5613
     UEMUSHORT x[];
Richard Stallman committed
5614
     int *exp;
5615
     UEMUSHORT s[];
Richard Stallman committed
5616
{
5617
  UEMUSHORT xi[NI];
Richard Stallman committed
5618 5619 5620
  EMULONG li;

  emovi (x, xi);
5621
  /*  Handle denormalized numbers properly using long integer exponent.  */
Richard Stallman committed
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
  li = (EMULONG) ((EMUSHORT) xi[1]);

  if (li == 0)
    {
      li -= enormlz (xi);
    }
  xi[1] = 0x3ffe;
  emovo (xi, s);
  *exp = (int) (li - 0x3ffe);
}
Manfred Hollstein committed
5632
#endif
Richard Stallman committed
5633

5634
/* Return e type Y = X * 2^PWR2.  */
5635

5636
static void
Richard Stallman committed
5637
eldexp (x, pwr2, y)
5638
     UEMUSHORT x[];
Richard Stallman committed
5639
     int pwr2;
5640
     UEMUSHORT y[];
Richard Stallman committed
5641
{
5642
  UEMUSHORT xi[NI];
Richard Stallman committed
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
  EMULONG li;
  int i;

  emovi (x, xi);
  li = xi[1];
  li += pwr2;
  i = 0;
  emdnorm (xi, i, i, li, 64);
  emovo (xi, y);
}


Manfred Hollstein committed
5655
#if 0
5656 5657
/* C = remainder after dividing B by A, all e type values.
   Least significant integer quotient bits left in EQUOT.  */
5658

5659
static void
Richard Stallman committed
5660
eremain (a, b, c)
5661
     UEMUSHORT a[], b[], c[];
Richard Stallman committed
5662
{
5663
  UEMUSHORT den[NI], num[NI];
Richard Stallman committed
5664

5665
#ifdef NANS
Richard Stallman committed
5666 5667 5668 5669
  if (eisinf (b)
      || (ecmp (a, ezero) == 0)
      || eisnan (a)
      || eisnan (b))
5670
    {
5671
      enan (c, 0);
5672 5673 5674
      return;
    }
#endif
Richard Stallman committed
5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
  if (ecmp (a, ezero) == 0)
    {
      mtherr ("eremain", SING);
      eclear (c);
      return;
    }
  emovi (a, den);
  emovi (b, num);
  eiremain (den, num);
  /* Sign of remainder = sign of quotient */
  if (a[0] == b[0])
    num[0] = 0;
  else
    num[0] = 0xffff;
  emovo (num, c);
}
Manfred Hollstein committed
5691
#endif
Richard Stallman committed
5692

5693 5694 5695
/*  Return quotient of exploded e-types NUM / DEN in EQUOT,
    remainder in NUM.  */

5696
static void
Richard Stallman committed
5697
eiremain (den, num)
5698
     UEMUSHORT den[], num[];
Richard Stallman committed
5699 5700
{
  EMULONG ld, ln;
5701
  UEMUSHORT j;
Richard Stallman committed
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724

  ld = den[E];
  ld -= enormlz (den);
  ln = num[E];
  ln -= enormlz (num);
  ecleaz (equot);
  while (ln >= ld)
    {
      if (ecmpm (den, num) <= 0)
	{
	  esubm (den, num);
	  j = 1;
	}
      else
	  j = 0;
      eshup1 (equot);
      equot[NI - 1] |= j;
      eshup1 (num);
      ln -= 1;
    }
  emdnorm (num, 0, 0, ln, 0);
}

5725
/* Report an error condition CODE encountered in function NAME.
5726 5727

    Mnemonic        Value          Significance
5728

5729 5730 5731 5732 5733 5734 5735 5736 5737
     DOMAIN            1       argument domain error
     SING              2       function singularity
     OVERFLOW          3       overflow range error
     UNDERFLOW         4       underflow range error
     TLOSS             5       total loss of precision
     PLOSS             6       partial loss of precision
     INVALID           7       NaN - producing operation
     EDOM             33       Unix domain error code
     ERANGE           34       Unix range error code
5738

5739
   The order of appearance of the following messages is bound to the
5740
   error codes defined above.  */
Richard Stallman committed
5741 5742 5743 5744

int merror = 0;
extern int merror;

5745
static void
Richard Stallman committed
5746
mtherr (name, code)
5747
     const char *name;
Richard Stallman committed
5748 5749
     int code;
{
5750
  /* The string passed by the calling program is supposed to be the
5751
     name of the function in which the error occurred.
5752
     The code argument selects which error message string will be printed.  */
Richard Stallman committed
5753

5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
  if (strcmp (name, "esub") == 0)
    name = "subtraction";
  else if (strcmp (name, "ediv") == 0)
    name = "division";
  else if (strcmp (name, "emul") == 0)
    name = "multiplication";
  else if (strcmp (name, "enormlz") == 0)
    name = "normalization";
  else if (strcmp (name, "etoasc") == 0)
    name = "conversion to text";
  else if (strcmp (name, "asctoe") == 0)
    name = "parsing";
  else if (strcmp (name, "eremain") == 0)
    name = "modulus";
  else if (strcmp (name, "esqrt") == 0)
    name = "square root";
5770
  if (extra_warnings)
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
    {
      switch (code)
	{
	case DOMAIN:    warning ("%s: argument domain error"    , name); break;
	case SING:      warning ("%s: function singularity"     , name); break;
	case OVERFLOW:  warning ("%s: overflow range error"     , name); break;
	case UNDERFLOW: warning ("%s: underflow range error"    , name); break;
	case TLOSS:     warning ("%s: total loss of precision"  , name); break;
	case PLOSS:     warning ("%s: partial loss of precision", name); break;
	case INVALID:   warning ("%s: NaN - producing operation", name); break;
	default:        abort ();
	}
    }

Richard Stallman committed
5785 5786 5787 5788
  /* Set global error message word */
  merror = code + 1;
}

5789
#ifdef DEC
5790
/* Convert DEC double precision D to e type E.  */
5791

5792
static void
Richard Stallman committed
5793
dectoe (d, e)
5794 5795
     UEMUSHORT *d;
     UEMUSHORT *e;
Richard Stallman committed
5796
{
5797 5798
  UEMUSHORT y[NI];
  register UEMUSHORT r, *p;
Richard Stallman committed
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829

  ecleaz (y);			/* start with a zero */
  p = y;			/* point to our number */
  r = *d;			/* get DEC exponent word */
  if (*d & (unsigned int) 0x8000)
    *p = 0xffff;		/* fill in our sign */
  ++p;				/* bump pointer to our exponent word */
  r &= 0x7fff;			/* strip the sign bit */
  if (r == 0)			/* answer = 0 if high order DEC word = 0 */
    goto done;


  r >>= 7;			/* shift exponent word down 7 bits */
  r += EXONE - 0201;		/* subtract DEC exponent offset */
  /* add our e type exponent offset */
  *p++ = r;			/* to form our exponent */

  r = *d++;			/* now do the high order mantissa */
  r &= 0177;			/* strip off the DEC exponent and sign bits */
  r |= 0200;			/* the DEC understood high order mantissa bit */
  *p++ = r;			/* put result in our high guard word */

  *p++ = *d++;			/* fill in the rest of our mantissa */
  *p++ = *d++;
  *p = *d;

  eshdn8 (y);			/* shift our mantissa down 8 bits */
 done:
  emovo (y, e);
}

5830
/* Convert e type X to DEC double precision D.  */
Richard Stallman committed
5831

5832
static void
Richard Stallman committed
5833
etodec (x, d)
5834
     UEMUSHORT *x, *d;
Richard Stallman committed
5835
{
5836
  UEMUSHORT xi[NI];
5837 5838
  EMULONG exp;
  int rndsav;
Richard Stallman committed
5839 5840

  emovi (x, xi);
5841 5842 5843
  /* Adjust exponent for offsets.  */
  exp = (EMULONG) xi[E] - (EXONE - 0201);
  /* Round off to nearest or even.  */
Richard Stallman committed
5844 5845 5846 5847 5848 5849 5850
  rndsav = rndprc;
  rndprc = 56;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
  todec (xi, d);
}

5851 5852 5853
/* Convert exploded e-type X, that has already been rounded to
   56-bit precision, to DEC format double Y.  */

5854
static void
Richard Stallman committed
5855
todec (x, y)
5856
     UEMUSHORT *x, *y;
Richard Stallman committed
5857
{
5858 5859
  UEMUSHORT i;
  UEMUSHORT *p;
Richard Stallman committed
5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879

  p = x;
  *y = 0;
  if (*p++)
    *y = 0100000;
  i = *p++;
  if (i == 0)
    {
      *y++ = 0;
      *y++ = 0;
      *y++ = 0;
      *y++ = 0;
      return;
    }
  if (i > 0377)
    {
      *y++ |= 077777;
      *y++ = 0xffff;
      *y++ = 0xffff;
      *y++ = 0xffff;
5880 5881 5882
#ifdef ERANGE
      errno = ERANGE;
#endif
Richard Stallman committed
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
      return;
    }
  i &= 0377;
  i <<= 7;
  eshup8 (x);
  x[M] &= 0177;
  i |= x[M];
  *y++ |= i;
  *y++ = x[M + 1];
  *y++ = x[M + 2];
  *y++ = x[M + 3];
}
5895 5896 5897
#endif /* DEC */

#ifdef IBM
5898
/* Convert IBM single/double precision to e type.  */
5899

5900
static void
5901
ibmtoe (d, e, mode)
5902 5903
     UEMUSHORT *d;
     UEMUSHORT *e;
5904 5905
     enum machine_mode mode;
{
5906 5907
  UEMUSHORT y[NI];
  register UEMUSHORT r, *p;
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938

  ecleaz (y);			/* start with a zero */
  p = y;			/* point to our number */
  r = *d;			/* get IBM exponent word */
  if (*d & (unsigned int) 0x8000)
    *p = 0xffff;		/* fill in our sign */
  ++p;				/* bump pointer to our exponent word */
  r &= 0x7f00;			/* strip the sign bit */
  r >>= 6;			/* shift exponent word down 6 bits */
				/* in fact shift by 8 right and 2 left */
  r += EXONE - (0x41 << 2);	/* subtract IBM exponent offset */
  				/* add our e type exponent offset */
  *p++ = r;			/* to form our exponent */

  *p++ = *d++ & 0xff;		/* now do the high order mantissa */
				/* strip off the IBM exponent and sign bits */
  if (mode != SFmode)		/* there are only 2 words in SFmode */
    {
      *p++ = *d++;		/* fill in the rest of our mantissa */
      *p++ = *d++;
    }
  *p = *d;

  if (y[M] == 0 && y[M+1] == 0 && y[M+2] == 0 && y[M+3] == 0)
    y[0] = y[E] = 0;
  else
    y[E] -= 5 + enormlz (y);	/* now normalise the mantissa */
			      /* handle change in RADIX */
  emovo (y, e);
}

Richard Stallman committed
5939 5940


5941
/* Convert e type to IBM single/double precision.  */
5942

5943
static void
5944
etoibm (x, d, mode)
5945
     UEMUSHORT *x, *d;
5946 5947
     enum machine_mode mode;
{
5948
  UEMUSHORT xi[NI];
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
  EMULONG exp;
  int rndsav;

  emovi (x, xi);
  exp = (EMULONG) xi[E] - (EXONE - (0x41 << 2));	/* adjust exponent for offsets */
							/* round off to nearest or even */
  rndsav = rndprc;
  rndprc = 56;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
  toibm (xi, d, mode);
}

5962
static void
5963
toibm (x, y, mode)
5964
     UEMUSHORT *x, *y;
5965 5966
     enum machine_mode mode;
{
5967 5968
  UEMUSHORT i;
  UEMUSHORT *p;
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014
  int r;

  p = x;
  *y = 0;
  if (*p++)
    *y = 0x8000;
  i = *p++;
  if (i == 0)
    {
      *y++ = 0;
      *y++ = 0;
      if (mode != SFmode)
	{
	  *y++ = 0;
	  *y++ = 0;
	}
      return;
    }
  r = i & 0x3;
  i >>= 2;
  if (i > 0x7f)
    {
      *y++ |= 0x7fff;
      *y++ = 0xffff;
      if (mode != SFmode)
	{
	  *y++ = 0xffff;
	  *y++ = 0xffff;
	}
#ifdef ERANGE
      errno = ERANGE;
#endif
      return;
    }
  i &= 0x7f;
  *y |= (i << 8);
  eshift (x, r + 5);
  *y++ |= x[M];
  *y++ = x[M + 1];
  if (mode != SFmode)
    {
      *y++ = x[M + 2];
      *y++ = x[M + 3];
    }
}
#endif /* IBM */
6015

6016 6017 6018 6019

#ifdef C4X
/* Convert C4X single/double precision to e type.  */

6020
static void
6021
c4xtoe (d, e, mode)
6022 6023
     UEMUSHORT *d;
     UEMUSHORT *e;
6024 6025
     enum machine_mode mode;
{
6026
  UEMUSHORT y[NI];
6027 6028 6029 6030 6031 6032
  int r;
  int isnegative;
  int size;
  int i;
  int carry;

6033
  /* Short-circuit the zero case.  */
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057
  if ((d[0] == 0x8000)
      && (d[1] == 0x0000)
      && ((mode == QFmode) || ((d[2] == 0x0000) && (d[3] == 0x0000))))
    {
      e[0] = 0;
      e[1] = 0;
      e[2] = 0;
      e[3] = 0;
      e[4] = 0;
      e[5] = 0;
      return;
    }

  ecleaz (y);			/* start with a zero */
  r = d[0];			/* get sign/exponent part */
  if (r & (unsigned int) 0x0080)
  {
     y[0] = 0xffff;		/* fill in our sign */
     isnegative = TRUE;
  }
  else
  {
     isnegative = FALSE;
  }
6058

6059
  r >>= 8;			/* Shift exponent word down 8 bits.  */
6060
  if (r & 0x80)			/* Make the exponent negative if it is.  */
6061 6062 6063 6064 6065 6066 6067 6068 6069
  {
     r = r | (~0 & ~0xff);
  }

  if (isnegative)
  {
     /* Now do the high order mantissa.  We don't "or" on the high bit
	because it is 2 (not 1) and is handled a little differently
	below.  */
6070
     y[M] = d[0] & 0x7f;
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086

     y[M+1] = d[1];
     if (mode != QFmode)	/* There are only 2 words in QFmode.  */
     {
	y[M+2] = d[2];		/* Fill in the rest of our mantissa.  */
	y[M+3] = d[3];
	size = 4;
     }
     else
     {
	size = 2;
     }
     eshift(y, -8);

     /* Now do the two's complement on the data.  */

6087
     carry = 1;	/* Initially add 1 for the two's complement.  */
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
     for (i=size + M; i > M; i--)
     {
	if (carry && (y[i] == 0x0000))
	{
	   /* We overflowed into the next word, carry is the same.  */
	   y[i] = carry ? 0x0000 : 0xffff;
	}
	else
	{
	   /* No overflow, just invert and add carry.  */
	   y[i] = ((~y[i]) + carry) & 0xffff;
	   carry = 0;
	}
     }

     if (carry)
     {
	eshift(y, -1);
	y[M+1] |= 0x8000;
	r++;
     }
     y[1] = r + EXONE;
  }
  else
  {
    /* Add our e type exponent offset to form our exponent.  */
     r += EXONE;
6115
     y[1] = r;
6116 6117 6118

     /* Now do the high order mantissa strip off the exponent and sign
	bits and add the high 1 bit.  */
6119
     y[M] = (d[0] & 0x7f) | 0x80;
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135

     y[M+1] = d[1];
     if (mode != QFmode)	/* There are only 2 words in QFmode.  */
     {
	y[M+2] = d[2];		/* Fill in the rest of our mantissa.  */
	y[M+3] = d[3];
     }
     eshift(y, -8);
  }

  emovo (y, e);
}


/* Convert e type to C4X single/double precision.  */

6136
static void
6137
etoc4x (x, d, mode)
6138
     UEMUSHORT *x, *d;
6139 6140
     enum machine_mode mode;
{
6141
  UEMUSHORT xi[NI];
6142 6143 6144 6145 6146
  EMULONG exp;
  int rndsav;

  emovi (x, xi);

6147
  /* Adjust exponent for offsets.  */
6148 6149
  exp = (EMULONG) xi[E] - (EXONE - 0x7f);

6150
  /* Round off to nearest or even.  */
6151 6152 6153 6154 6155 6156 6157
  rndsav = rndprc;
  rndprc = mode == QFmode ? 24 : 32;
  emdnorm (xi, 0, 0, exp, 64);
  rndprc = rndsav;
  toc4x (xi, d, mode);
}

6158
static void
6159
toc4x (x, y, mode)
6160
     UEMUSHORT *x, *y;
6161 6162 6163 6164 6165
     enum machine_mode mode;
{
  int i;
  int v;
  int carry;
6166

6167 6168 6169 6170 6171 6172 6173 6174
  /* Short-circuit the zero case */
  if ((x[0] == 0)	/* Zero exponent and sign */
      && (x[1] == 0)
      && (x[M] == 0)	/* The rest is for zero mantissa */
      && (x[M+1] == 0)
      /* Only check for double if necessary */
      && ((mode == QFmode) || ((x[M+2] == 0) && (x[M+3] == 0))))
    {
6175
      /* We have a zero.  Put it into the output and return.  */
6176 6177 6178 6179 6180 6181 6182 6183 6184
      *y++ = 0x8000;
      *y++ = 0x0000;
      if (mode != QFmode)
        {
          *y++ = 0x0000;
          *y++ = 0x0000;
        }
      return;
    }
6185

6186
  *y = 0;
6187

6188
  /* Negative number require a two's complement conversion of the
6189
     mantissa.  */
6190 6191 6192
  if (x[0])
    {
      *y = 0x0080;
6193

6194
      i = ((int) x[1]) - 0x7f;
6195

6196
      /* Now add 1 to the inverted data to do the two's complement.  */
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
      if (mode != QFmode)
	v = 4 + M;
      else
	v = 2 + M;
      carry = 1;
      while (v > M)
	{
	  if (x[v] == 0x0000)
	    {
	      x[v] = carry ? 0x0000 : 0xffff;
	    }
	  else
	    {
	      x[v] = ((~x[v]) + carry) & 0xffff;
	      carry = 0;
	    }
	  v--;
	}
6215

6216 6217 6218
      /* The following is a special case.  The C4X negative float requires
	 a zero in the high bit (because the format is (2 - x) x 2^m), so
	 if a one is in that bit, we have to shift left one to get rid
6219
	 of it.  This only occurs if the number is -1 x 2^m.  */
6220 6221 6222
      if (x[M+1] & 0x8000)
	{
	  /* This is the case of -1 x 2^m, we have to rid ourselves of the
6223
	     high sign bit and shift the exponent.  */
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
	  eshift(x, 1);
	  i--;
	}
    }
  else
    {
      i = ((int) x[1]) - 0x7f;
    }

  if ((i < -128) || (i > 127))
    {
      y[0] |= 0xff7f;
      y[1] = 0xffff;
      if (mode != QFmode)
	{
	  y[2] = 0xffff;
	  y[3] = 0xffff;
	}
#ifdef ERANGE
      errno = ERANGE;
#endif
      return;
    }
6247

6248
  y[0] |= ((i & 0xff) << 8);
6249

6250
  eshift (x, 8);
6251

6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
  y[0] |= x[M] & 0x7f;
  y[1] = x[M + 1];
  if (mode != QFmode)
    {
      y[2] = x[M + 2];
      y[3] = x[M + 3];
    }
}
#endif /* C4X */

6262 6263 6264 6265
/* Output a binary NaN bit pattern in the target machine's format.  */

/* If special NaN bit patterns are required, define them in tm.h
   as arrays of unsigned 16-bit shorts.  Otherwise, use the default
Mike Stump committed
6266
   patterns here.  */
6267 6268 6269
#ifdef TFMODE_NAN
TFMODE_NAN;
#else
6270
#ifdef IEEE
6271
UEMUSHORT TFbignan[8] =
6272
 {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff};
6273
UEMUSHORT TFlittlenan[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0xffff};
6274 6275 6276
#endif
#endif

6277 6278 6279
#ifdef XFMODE_NAN
XFMODE_NAN;
#else
6280
#ifdef IEEE
6281
UEMUSHORT XFbignan[6] =
6282
 {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff};
6283
UEMUSHORT XFlittlenan[6] = {0, 0, 0, 0xc000, 0xffff, 0};
6284 6285 6286
#endif
#endif

6287 6288 6289
#ifdef DFMODE_NAN
DFMODE_NAN;
#else
6290
#ifdef IEEE
6291 6292
UEMUSHORT DFbignan[4] = {0x7fff, 0xffff, 0xffff, 0xffff};
UEMUSHORT DFlittlenan[4] = {0, 0, 0, 0xfff8};
6293 6294 6295
#endif
#endif

6296 6297 6298
#ifdef SFMODE_NAN
SFMODE_NAN;
#else
6299
#ifdef IEEE
6300 6301
UEMUSHORT SFbignan[2] = {0x7fff, 0xffff};
UEMUSHORT SFlittlenan[2] = {0, 0xffc0};
6302 6303 6304 6305
#endif
#endif


6306
#ifdef NANS
6307
static void
6308
make_nan (nan, sign, mode)
6309
     UEMUSHORT *nan;
6310 6311
     int sign;
     enum machine_mode mode;
6312
{
6313
  int n;
6314
  UEMUSHORT *p;
6315 6316 6317 6318

  switch (mode)
    {
/* Possibly the `reserved operand' patterns on a VAX can be
Mike Stump committed
6319
   used like NaN's, but probably not in the same way as IEEE.  */
6320
#if !defined(DEC) && !defined(IBM) && !defined(C4X)
6321
    case TFmode:
6322
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
6323
      n = 8;
6324
      if (REAL_WORDS_BIG_ENDIAN)
6325 6326 6327
	p = TFbignan;
      else
	p = TFlittlenan;
6328
      break;
6329 6330
#endif
      /* FALLTHRU */
6331

6332 6333
    case XFmode:
      n = 6;
6334
      if (REAL_WORDS_BIG_ENDIAN)
6335 6336 6337
	p = XFbignan;
      else
	p = XFlittlenan;
6338
      break;
6339

6340 6341
    case DFmode:
      n = 4;
6342
      if (REAL_WORDS_BIG_ENDIAN)
6343 6344 6345
	p = DFbignan;
      else
	p = DFlittlenan;
6346
      break;
6347

6348
    case SFmode:
6349
    case HFmode:
6350
      n = 2;
6351
      if (REAL_WORDS_BIG_ENDIAN)
6352 6353 6354
	p = SFbignan;
      else
	p = SFlittlenan;
6355 6356
      break;
#endif
6357

6358 6359 6360
    default:
      abort ();
    }
6361
  if (REAL_WORDS_BIG_ENDIAN)
6362
    *nan++ = (sign << 15) | (*p++ & 0x7fff);
6363
  while (--n != 0)
6364
    *nan++ = *p++;
6365
  if (! REAL_WORDS_BIG_ENDIAN)
6366
    *nan = (sign << 15) | (*p & 0x7fff);
6367
}
6368
#endif /* NANS */
6369

6370
/* This is the inverse of the function `etarsingle' invoked by
6371 6372 6373
   REAL_VALUE_TO_TARGET_SINGLE.  */

REAL_VALUE_TYPE
6374 6375 6376 6377
ereal_unto_float (f)
     long f;
{
  REAL_VALUE_TYPE r;
6378 6379
  UEMUSHORT s[2];
  UEMUSHORT e[NE];
6380 6381 6382 6383 6384

  /* Convert 32 bit integer to array of 16 bit pieces in target machine order.
   This is the inverse operation to what the function `endian' does.  */
  if (REAL_WORDS_BIG_ENDIAN)
    {
6385 6386
      s[0] = (UEMUSHORT) (f >> 16);
      s[1] = (UEMUSHORT) f;
6387 6388 6389
    }
  else
    {
6390 6391
      s[0] = (UEMUSHORT) f;
      s[1] = (UEMUSHORT) (f >> 16);
6392
    }
6393
  /* Convert and promote the target float to E-type.  */
6394
  e24toe (s, e);
6395
  /* Output E-type to REAL_VALUE_TYPE.  */
6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408
  PUT_REAL (e, &r);
  return r;
}


/* This is the inverse of the function `etardouble' invoked by
   REAL_VALUE_TO_TARGET_DOUBLE.  */

REAL_VALUE_TYPE
ereal_unto_double (d)
     long d[];
{
  REAL_VALUE_TYPE r;
6409 6410
  UEMUSHORT s[4];
  UEMUSHORT e[NE];
6411 6412 6413 6414

  /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces.  */
  if (REAL_WORDS_BIG_ENDIAN)
    {
6415 6416 6417 6418
      s[0] = (UEMUSHORT) (d[0] >> 16);
      s[1] = (UEMUSHORT) d[0];
      s[2] = (UEMUSHORT) (d[1] >> 16);
      s[3] = (UEMUSHORT) d[1];
6419 6420 6421 6422
    }
  else
    {
      /* Target float words are little-endian.  */
6423 6424 6425 6426
      s[0] = (UEMUSHORT) d[0];
      s[1] = (UEMUSHORT) (d[0] >> 16);
      s[2] = (UEMUSHORT) d[1];
      s[3] = (UEMUSHORT) (d[1] >> 16);
6427
    }
6428
  /* Convert target double to E-type.  */
6429
  e53toe (s, e);
6430
  /* Output E-type to REAL_VALUE_TYPE.  */
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
  PUT_REAL (e, &r);
  return r;
}


/* Convert an SFmode target `float' value to a REAL_VALUE_TYPE.
   This is somewhat like ereal_unto_float, but the input types
   for these are different.  */

REAL_VALUE_TYPE
6441
ereal_from_float (f)
6442
     HOST_WIDE_INT f;
6443 6444
{
  REAL_VALUE_TYPE r;
6445 6446
  UEMUSHORT s[2];
  UEMUSHORT e[NE];
6447 6448 6449

  /* Convert 32 bit integer to array of 16 bit pieces in target machine order.
   This is the inverse operation to what the function `endian' does.  */
6450
  if (REAL_WORDS_BIG_ENDIAN)
6451
    {
6452 6453
      s[0] = (UEMUSHORT) (f >> 16);
      s[1] = (UEMUSHORT) f;
6454 6455 6456
    }
  else
    {
6457 6458
      s[0] = (UEMUSHORT) f;
      s[1] = (UEMUSHORT) (f >> 16);
6459
    }
Mike Stump committed
6460
  /* Convert and promote the target float to E-type.  */
6461
  e24toe (s, e);
Mike Stump committed
6462
  /* Output E-type to REAL_VALUE_TYPE.  */
6463 6464 6465 6466
  PUT_REAL (e, &r);
  return r;
}

6467

6468
/* Convert a DFmode target `double' value to a REAL_VALUE_TYPE.
6469 6470
   This is somewhat like ereal_unto_double, but the input types
   for these are different.
6471

6472 6473
   The DFmode is stored as an array of HOST_WIDE_INT in the target's
   data format, with no holes in the bit packing.  The first element
6474 6475 6476 6477 6478
   of the input array holds the bits that would come first in the
   target computer's memory.  */

REAL_VALUE_TYPE
ereal_from_double (d)
6479
     HOST_WIDE_INT d[];
6480 6481
{
  REAL_VALUE_TYPE r;
6482 6483
  UEMUSHORT s[4];
  UEMUSHORT e[NE];
6484

6485
  /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces.  */
6486
  if (REAL_WORDS_BIG_ENDIAN)
6487
    {
6488
#if HOST_BITS_PER_WIDE_INT == 32
6489 6490 6491 6492
      s[0] = (UEMUSHORT) (d[0] >> 16);
      s[1] = (UEMUSHORT) d[0];
      s[2] = (UEMUSHORT) (d[1] >> 16);
      s[3] = (UEMUSHORT) d[1];
6493
#else
6494 6495 6496
      /* In this case the entire target double is contained in the
	 first array element.  The second element of the input is
	 ignored.  */
6497 6498 6499 6500
      s[0] = (UEMUSHORT) (d[0] >> 48);
      s[1] = (UEMUSHORT) (d[0] >> 32);
      s[2] = (UEMUSHORT) (d[0] >> 16);
      s[3] = (UEMUSHORT) d[0];
6501
#endif
6502 6503 6504 6505
    }
  else
    {
      /* Target float words are little-endian.  */
6506 6507
      s[0] = (UEMUSHORT) d[0];
      s[1] = (UEMUSHORT) (d[0] >> 16);
6508
#if HOST_BITS_PER_WIDE_INT == 32
6509 6510
      s[2] = (UEMUSHORT) d[1];
      s[3] = (UEMUSHORT) (d[1] >> 16);
6511
#else
6512 6513
      s[2] = (UEMUSHORT) (d[0] >> 32);
      s[3] = (UEMUSHORT) (d[0] >> 48);
6514
#endif
6515
    }
Mike Stump committed
6516
  /* Convert target double to E-type.  */
6517
  e53toe (s, e);
Mike Stump committed
6518
  /* Output E-type to REAL_VALUE_TYPE.  */
6519 6520 6521
  PUT_REAL (e, &r);
  return r;
}
6522 6523


Manfred Hollstein committed
6524
#if 0
6525 6526
/* Convert target computer unsigned 64-bit integer to e-type.
   The endian-ness of DImode follows the convention for integers,
6527
   so we use WORDS_BIG_ENDIAN here, not REAL_WORDS_BIG_ENDIAN.  */
6528

6529
static void
6530
uditoe (di, e)
6531 6532
     UEMUSHORT *di;  /* Address of the 64-bit int.  */
     UEMUSHORT *e;
6533
{
6534
  UEMUSHORT yi[NI];
6535 6536 6537
  int k;

  ecleaz (yi);
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
  if (WORDS_BIG_ENDIAN)
    {
      for (k = M; k < M + 4; k++)
	yi[k] = *di++;
    }
  else
    {
      for (k = M + 3; k >= M; k--)
	yi[k] = *di++;
    }
6548 6549 6550 6551
  yi[E] = EXONE + 47;	/* exponent if normalize shift count were 0 */
  if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
    ecleaz (yi);		/* it was zero */
  else
6552
    yi[E] -= (UEMUSHORT) k;/* subtract shift count from exponent */
6553 6554 6555
  emovo (yi, e);
}

Mike Stump committed
6556
/* Convert target computer signed 64-bit integer to e-type.  */
6557

6558
static void
6559
ditoe (di, e)
6560 6561
     UEMUSHORT *di;  /* Address of the 64-bit int.  */
     UEMUSHORT *e;
6562 6563
{
  unsigned EMULONG acc;
6564 6565
  UEMUSHORT yi[NI];
  UEMUSHORT carry;
6566 6567 6568
  int k, sign;

  ecleaz (yi);
6569 6570 6571 6572 6573 6574 6575 6576 6577 6578
  if (WORDS_BIG_ENDIAN)
    {
      for (k = M; k < M + 4; k++)
	yi[k] = *di++;
    }
  else
    {
      for (k = M + 3; k >= M; k--)
	yi[k] = *di++;
    }
6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
  /* Take absolute value */
  sign = 0;
  if (yi[M] & 0x8000)
    {
      sign = 1;
      carry = 0;
      for (k = M + 3; k >= M; k--)
	{
	  acc = (unsigned EMULONG) (~yi[k] & 0xffff) + carry;
	  yi[k] = acc;
	  carry = 0;
	  if (acc & 0x10000)
	    carry = 1;
	}
    }
  yi[E] = EXONE + 47;	/* exponent if normalize shift count were 0 */
  if ((k = enormlz (yi)) > NBITS)/* normalize the significand */
    ecleaz (yi);		/* it was zero */
  else
6598
    yi[E] -= (UEMUSHORT) k;/* subtract shift count from exponent */
6599 6600 6601 6602 6603 6604
  emovo (yi, e);
  if (sign)
	eneg (e);
}


Mike Stump committed
6605
/* Convert e-type to unsigned 64-bit int.  */
6606

6607
static void
6608
etoudi (x, i)
6609 6610
     UEMUSHORT *x;
     UEMUSHORT *i;
6611
{
6612
  UEMUSHORT xi[NI];
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
  int j, k;

  emovi (x, xi);
  if (xi[0])
    {
      xi[M] = 0;
      goto noshift;
    }
  k = (int) xi[E] - (EXONE - 1);
  if (k <= 0)
    {
      for (j = 0; j < 4; j++)
	*i++ = 0;
      return;
    }
  if (k > 64)
    {
      for (j = 0; j < 4; j++)
	*i++ = 0xffff;
      if (extra_warnings)
	warning ("overflow on truncation to integer");
      return;
    }
  if (k > 16)
    {
      /* Shift more than 16 bits: first shift up k-16 mod 16,
	 then shift up by 16's.  */
      j = k - ((k >> 4) << 4);
      if (j == 0)
	j = 16;
      eshift (xi, j);
6644 6645 6646 6647 6648 6649 6650
      if (WORDS_BIG_ENDIAN)
	*i++ = xi[M];
      else
	{
	  i += 3;
	  *i-- = xi[M];
	}
6651 6652 6653 6654
      k -= j;
      do
	{
	  eshup6 (xi);
6655 6656 6657 6658
	  if (WORDS_BIG_ENDIAN)
	    *i++ = xi[M];
	  else
	    *i-- = xi[M];
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
	}
      while ((k -= 16) > 0);
    }
  else
    {
        /* shift not more than 16 bits */
      eshift (xi, k);

noshift:

6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
      if (WORDS_BIG_ENDIAN)
	{
	  i += 3;
	  *i-- = xi[M];
	  *i-- = 0;
	  *i-- = 0;
	  *i = 0;
	}
      else
	{
	  *i++ = xi[M];
	  *i++ = 0;
	  *i++ = 0;
	  *i = 0;
	}
6684 6685 6686 6687
    }
}


Mike Stump committed
6688
/* Convert e-type to signed 64-bit int.  */
6689

6690
static void
6691
etodi (x, i)
6692 6693
     UEMUSHORT *x;
     UEMUSHORT *i;
6694 6695
{
  unsigned EMULONG acc;
6696 6697 6698
  UEMUSHORT xi[NI];
  UEMUSHORT carry;
  UEMUSHORT *isave;
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
  int j, k;

  emovi (x, xi);
  k = (int) xi[E] - (EXONE - 1);
  if (k <= 0)
    {
      for (j = 0; j < 4; j++)
	*i++ = 0;
      return;
    }
  if (k > 64)
    {
      for (j = 0; j < 4; j++)
	*i++ = 0xffff;
      if (extra_warnings)
	warning ("overflow on truncation to integer");
      return;
    }
  isave = i;
  if (k > 16)
    {
      /* Shift more than 16 bits: first shift up k-16 mod 16,
	 then shift up by 16's.  */
      j = k - ((k >> 4) << 4);
      if (j == 0)
	j = 16;
      eshift (xi, j);
6726 6727 6728 6729 6730 6731 6732
      if (WORDS_BIG_ENDIAN)
	*i++ = xi[M];
      else
	{
	  i += 3;
	  *i-- = xi[M];
	}
6733 6734 6735 6736
      k -= j;
      do
	{
	  eshup6 (xi);
6737 6738 6739 6740
	  if (WORDS_BIG_ENDIAN)
	    *i++ = xi[M];
	  else
	    *i-- = xi[M];
6741 6742 6743 6744 6745 6746 6747 6748
	}
      while ((k -= 16) > 0);
    }
  else
    {
        /* shift not more than 16 bits */
      eshift (xi, k);

6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763
      if (WORDS_BIG_ENDIAN)
	{
	  i += 3;
	  *i = xi[M];
	  *i-- = 0;
	  *i-- = 0;
	  *i = 0;
	}
      else
	{
	  *i++ = xi[M];
	  *i++ = 0;
	  *i++ = 0;
	  *i = 0;
	}
6764 6765 6766 6767 6768
    }
  /* Negate if negative */
  if (xi[0])
    {
      carry = 0;
6769 6770
      if (WORDS_BIG_ENDIAN)
	isave += 3;
6771 6772 6773
      for (k = 0; k < 4; k++)
	{
	  acc = (unsigned EMULONG) (~(*isave) & 0xffff) + carry;
6774 6775 6776 6777
	  if (WORDS_BIG_ENDIAN)
	    *isave-- = acc;
	  else
	    *isave++ = acc;
6778 6779 6780 6781 6782 6783 6784 6785
	  carry = 0;
	  if (acc & 0x10000)
	    carry = 1;
	}
    }
}


Mike Stump committed
6786
/* Longhand square root routine.  */
6787 6788 6789 6790 6791


static int esqinited = 0;
static unsigned short sqrndbit[NI];

6792
static void
6793
esqrt (x, y)
6794
     UEMUSHORT *x, *y;
6795
{
6796
  UEMUSHORT temp[NI], num[NI], sq[NI], xx[NI];
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
  EMULONG m, exp;
  int i, j, k, n, nlups;

  if (esqinited == 0)
    {
      ecleaz (sqrndbit);
      sqrndbit[NI - 2] = 1;
      esqinited = 1;
    }
  /* Check for arg <= 0 */
  i = ecmp (x, ezero);
  if (i <= 0)
    {
6810
      if (i == -1)
6811
	{
6812 6813
	  mtherr ("esqrt", DOMAIN);
	  eclear (y);
6814
	}
6815 6816
      else
	emov (x, y);
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
      return;
    }

#ifdef INFINITY
  if (eisinf (x))
    {
      eclear (y);
      einfin (y);
      return;
    }
#endif
Mike Stump committed
6828
  /* Bring in the arg and renormalize if it is denormal.  */
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
  emovi (x, xx);
  m = (EMULONG) xx[1];		/* local long word exponent */
  if (m == 0)
    m -= enormlz (xx);

  /* Divide exponent by 2 */
  m -= 0x3ffe;
  exp = (unsigned short) ((m / 2) + 0x3ffe);

  /* Adjust if exponent odd */
  if ((m & 1) != 0)
    {
      if (m > 0)
	exp += 1;
      eshdn1 (xx);
    }

  ecleaz (sq);
  ecleaz (num);
  n = 8;			/* get 8 bits of result per inner loop */
  nlups = rndprc;
  j = 0;

  while (nlups > 0)
    {
      /* bring in next word of arg */
      if (j < NE)
	num[NI - 1] = xx[j + 3];
Mike Stump committed
6857
      /* Do additional bit on last outer loop, for roundoff.  */
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882
      if (nlups <= 8)
	n = nlups + 1;
      for (i = 0; i < n; i++)
	{
	  /* Next 2 bits of arg */
	  eshup1 (num);
	  eshup1 (num);
	  /* Shift up answer */
	  eshup1 (sq);
	  /* Make trial divisor */
	  for (k = 0; k < NI; k++)
	    temp[k] = sq[k];
	  eshup1 (temp);
	  eaddm (sqrndbit, temp);
	  /* Subtract and insert answer bit if it goes in */
	  if (ecmpm (temp, num) <= 0)
	    {
	      esubm (temp, num);
	      sq[NI - 2] |= 1;
	    }
	}
      nlups -= n;
      j += 1;
    }

Mike Stump committed
6883
  /* Adjust for extra, roundoff loop done.  */
6884 6885
  exp += (NBITS - 1) - rndprc;

Mike Stump committed
6886
  /* Sticky bit = 1 if the remainder is nonzero.  */
6887 6888 6889 6890
  k = 0;
  for (i = 3; i < NI; i++)
    k |= (int) num[i];

Mike Stump committed
6891
  /* Renormalize and round off.  */
6892 6893 6894
  emdnorm (sq, k, 0, exp, 64);
  emovo (sq, y);
}
Manfred Hollstein committed
6895
#endif
Richard Stallman committed
6896
#endif /* EMU_NON_COMPILE not defined */
6897 6898 6899 6900 6901

/* Return the binary precision of the significand for a given
   floating point mode.  The mode can hold an integer value
   that many bits wide, without losing any bits.  */

6902
unsigned int
6903 6904 6905 6906
significand_size (mode)
     enum machine_mode mode;
{

6907 6908 6909 6910
/* Don't test the modes, but their sizes, lest this
   code won't work for BITS_PER_UNIT != 8 .  */

switch (GET_MODE_BITSIZE (mode))
6911
  {
6912
  case 32:
6913

6914 6915 6916 6917
#if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
    return 56;
#endif

6918 6919
    return 24;

6920
  case 64:
6921 6922 6923 6924 6925 6926 6927 6928 6929
#if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
    return 53;
#else
#if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT
    return 56;
#else
#if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT
    return 56;
#else
6930 6931 6932
#if TARGET_FLOAT_FORMAT == C4X_FLOAT_FORMAT
    return 56;
#else
6933 6934 6935 6936
    abort ();
#endif
#endif
#endif
6937
#endif
6938

6939
  case 96:
6940
    return 64;
6941

6942
  case 128:
6943
#if (INTEL_EXTENDED_IEEE_FORMAT == 0)
6944
    return 113;
6945 6946 6947
#else
    return 64;
#endif
6948 6949 6950 6951 6952

  default:
    abort ();
  }
}