satSolver.c 76.2 KB
Newer Older
Alan Mishchenko committed
1 2 3 4
/**************************************************************************************************
MiniSat -- Copyright (c) 2005, Niklas Sorensson
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/

5
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
Alan Mishchenko committed
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
**************************************************************************************************/
// Modified to compile with MS Visual Studio 6.0 by Alan Mishchenko

#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <math.h>

#include "satSolver.h"
28 29 30
#include "satStore.h"

ABC_NAMESPACE_IMPL_START
31

32
#define SAT_USE_ANALYZE_FINAL
33

Alan Mishchenko committed
34 35 36 37 38 39 40
//=================================================================================================
// Debug:

//#define VERBOSEDEBUG

// For derivation output (verbosity level 2)
#define L_IND    "%-*d"
41
#define L_ind    sat_solver_dl(s)*2+2,sat_solver_dl(s)
Alan Mishchenko committed
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
#define L_LIT    "%sx%d"
#define L_lit(p) lit_sign(p)?"~":"", (lit_var(p))

// Just like 'assert()' but expression will be evaluated in the release version as well.
static inline void check(int expr) { assert(expr); }

static void printlits(lit* begin, lit* end)
{
    int i;
    for (i = 0; i < end - begin; i++)
        printf(L_LIT" ",L_lit(begin[i]));
}

//=================================================================================================
// Random numbers:


// Returns a random float 0 <= x < 1. Seed must never be 0.
static inline double drand(double* seed) {
    int q;
    *seed *= 1389796;
    q = (int)(*seed / 2147483647);
    *seed -= (double)q * 2147483647;
    return *seed / 2147483647; }


// Returns a random integer 0 <= x < size. Seed must never be 0.
static inline int irand(double* seed, int size) {
    return (int)(drand(seed) * size); }


//=================================================================================================
74 75 76 77 78 79 80 81 82 83 84 85 86 87
// Variable datatype + minor functions:

static const int var0  = 1;
static const int var1  = 0;
static const int varX  = 3;

struct varinfo_t
{
    unsigned val    :  2;  // variable value 
    unsigned pol    :  1;  // last polarity
    unsigned tag    :  1;  // conflict analysis tag
    unsigned lev    : 28;  // variable level
};

88 89
static inline int     var_level     (sat_solver* s, int v)            { return s->levels[v];   }
static inline int     var_value     (sat_solver* s, int v)            { return s->assigns[v];  }
90 91
static inline int     var_polar     (sat_solver* s, int v)            { return s->polarity[v]; }

92 93
static inline void    var_set_level (sat_solver* s, int v, int lev)   { s->levels[v] = lev;    }
static inline void    var_set_value (sat_solver* s, int v, int val)   { s->assigns[v] = val;   }
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
static inline void    var_set_polar (sat_solver* s, int v, int pol)   { s->polarity[v] = pol;  }

// variable tags
static inline int     var_tag       (sat_solver* s, int v)            { return s->tags[v]; }
static inline void    var_set_tag   (sat_solver* s, int v, int tag)   { 
    assert( tag > 0 && tag < 16 );
    if ( s->tags[v] == 0 )
        veci_push( &s->tagged, v );
    s->tags[v] = tag;                           
}
static inline void    var_add_tag   (sat_solver* s, int v, int tag)   { 
    assert( tag > 0 && tag < 16 );
    if ( s->tags[v] == 0 )
        veci_push( &s->tagged, v );
    s->tags[v] |= tag;                           
}
static inline void    solver2_clear_tags(sat_solver* s, int start)    { 
    int i, * tagged = veci_begin(&s->tagged);
    for (i = start; i < veci_size(&s->tagged); i++)
        s->tags[tagged[i]] = 0;
    veci_resize(&s->tagged,start);
}

int sat_solver_get_var_value(sat_solver* s, int v)
{
    if ( var_value(s, v) == var0 )
        return l_False;
    if ( var_value(s, v) == var1 )
        return l_True;
    if ( var_value(s, v) == varX )
        return l_Undef;
    assert( 0 );
    return 0;
}
Alan Mishchenko committed
128 129 130 131

//=================================================================================================
// Simple helpers:

132 133
static inline int      sat_solver_dl(sat_solver* s)                { return veci_size(&s->trail_lim); }
static inline veci*    sat_solver_read_wlist(sat_solver* s, lit l) { return &s->wlists[l];            }
Alan Mishchenko committed
134 135 136 137 138 139 140 141 142 143 144 145 146 147

//=================================================================================================
// Variable order functions:

static inline void order_update(sat_solver* s, int v) // updateorder
{
    int*    orderpos = s->orderpos;
    int*    heap     = veci_begin(&s->order);
    int     i        = orderpos[v];
    int     x        = heap[i];
    int     parent   = (i - 1) / 2;

    assert(s->orderpos[v] != -1);

148
    while (i != 0 && s->activity[x] > s->activity[heap[parent]]){
Alan Mishchenko committed
149 150 151 152 153
        heap[i]           = heap[parent];
        orderpos[heap[i]] = i;
        i                 = parent;
        parent            = (i - 1) / 2;
    }
154

Alan Mishchenko committed
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    heap[i]     = x;
    orderpos[x] = i;
}

static inline void order_assigned(sat_solver* s, int v) 
{
}

static inline void order_unassigned(sat_solver* s, int v) // undoorder
{
    int* orderpos = s->orderpos;
    if (orderpos[v] == -1){
        orderpos[v] = veci_size(&s->order);
        veci_push(&s->order,v);
        order_update(s,v);
Alan Mishchenko committed
170
//printf( "+%d ", v );
Alan Mishchenko committed
171 172 173
    }
}

Alan Mishchenko committed
174
static inline int  order_select(sat_solver* s, float random_var_freq) // selectvar
Alan Mishchenko committed
175
{
176 177
    int*      heap     = veci_begin(&s->order);
    int*      orderpos = s->orderpos;
Alan Mishchenko committed
178 179 180 181
    // Random decision:
    if (drand(&s->random_seed) < random_var_freq){
        int next = irand(&s->random_seed,s->size);
        assert(next >= 0 && next < s->size);
182
        if (var_value(s, next) == varX)
Alan Mishchenko committed
183 184 185 186 187 188 189 190 191 192 193 194 195
            return next;
    }
    // Activity based decision:
    while (veci_size(&s->order) > 0){
        int    next  = heap[0];
        int    size  = veci_size(&s->order)-1;
        int    x     = heap[size];
        veci_resize(&s->order,size);
        orderpos[next] = -1;
        if (size > 0){
            int    i     = 0;
            int    child = 1;
            while (child < size){
196

197
                if (child+1 < size && s->activity[heap[child]] < s->activity[heap[child+1]])
Alan Mishchenko committed
198 199
                    child++;
                assert(child < size);
200
                if (s->activity[x] >= s->activity[heap[child]])
Alan Mishchenko committed
201
                    break;
202

Alan Mishchenko committed
203 204 205 206 207 208 209 210
                heap[i]           = heap[child];
                orderpos[heap[i]] = i;
                i                 = child;
                child             = 2 * child + 1;
            }
            heap[i]           = x;
            orderpos[heap[i]] = i;
        }
211
        if (var_value(s, next) == varX)
Alan Mishchenko committed
212 213 214 215 216
            return next;
    }
    return var_Undef;
}

217 218 219
void sat_solver_set_var_activity(sat_solver* s, int * pVars, int nVars) 
{
    int i;
220
    assert( s->VarActType == 1 );
221 222
    for (i = 0; i < s->size; i++)
        s->activity[i] = 0;
223
    s->var_inc = Abc_Dbl2Word(1);
224 225
    for ( i = 0; i < nVars; i++ )
    {
226
        int iVar = pVars ? pVars[i] : i;
227
        s->activity[iVar] = Abc_Dbl2Word(nVars-i);
228
        order_update( s, iVar );
229 230 231
    }
}

Alan Mishchenko committed
232
//=================================================================================================
233
// variable activities
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static inline void solver_init_activities(sat_solver* s)  
{
    // variable activities
    s->VarActType             = 0;
    if ( s->VarActType == 0 )
    {
        s->var_inc            = (1 <<  5);
        s->var_decay          = -1;
    }
    else if ( s->VarActType == 1 )
    {
        s->var_inc            = Abc_Dbl2Word(1.0);
        s->var_decay          = Abc_Dbl2Word(1.0 / 0.95);
    }
    else if ( s->VarActType == 2 )
    {
        s->var_inc            = Xdbl_FromDouble(1.0);
        s->var_decay          = Xdbl_FromDouble(1.0 / 0.950);
    }
    else assert(0);
255

256 257 258 259 260 261 262 263 264 265 266 267
    // clause activities
    s->ClaActType             = 0;
    if ( s->ClaActType == 0 )
    {
        s->cla_inc            = (1 << 11);
        s->cla_decay          = -1;
    }
    else
    {
        s->cla_inc            = 1;
        s->cla_decay          = (float)(1 / 0.999);
    }
268 269
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static inline void act_var_rescale(sat_solver* s)  
{
    if ( s->VarActType == 0 )
    {
        word* activity = s->activity;
        int i;
        for (i = 0; i < s->size; i++)
            activity[i] >>= 19;
        s->var_inc >>= 19;
        s->var_inc = Abc_MaxInt( (unsigned)s->var_inc, (1<<4) );
    }
    else if ( s->VarActType == 1 )
    {
        double* activity = (double*)s->activity;
        int i;
        for (i = 0; i < s->size; i++)
            activity[i] *= 1e-100;
        s->var_inc = Abc_Dbl2Word( Abc_Word2Dbl(s->var_inc) * 1e-100 );
        //printf( "Rescaling var activity...\n" ); 
    }
    else if ( s->VarActType == 2 )
    {
        xdbl * activity = s->activity;
        int i;
        for (i = 0; i < s->size; i++)
            activity[i] = Xdbl_Div( activity[i], 200 ); // activity[i] / 2^200
        s->var_inc = Xdbl_Div( s->var_inc, 200 ); 
    }
    else assert(0);
299
}
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static inline void act_var_bump(sat_solver* s, int v) 
{
    if ( s->VarActType == 0 )
    {
        s->activity[v] += s->var_inc;
        if ((unsigned)s->activity[v] & 0x80000000)
            act_var_rescale(s);
        if (s->orderpos[v] != -1)
            order_update(s,v);
    }
    else if ( s->VarActType == 1 )
    {
        double act = Abc_Word2Dbl(s->activity[v]) + Abc_Word2Dbl(s->var_inc);
        s->activity[v] = Abc_Dbl2Word(act);
        if (act > 1e100)
            act_var_rescale(s);
        if (s->orderpos[v] != -1)
            order_update(s,v);
    }
    else if ( s->VarActType == 2 )
    {
        s->activity[v] = Xdbl_Add( s->activity[v], s->var_inc );
        if (s->activity[v] > ABC_CONST(0x014c924d692ca61b))
            act_var_rescale(s);
        if (s->orderpos[v] != -1)
            order_update(s,v);
    }
    else assert(0);
Alan Mishchenko committed
328
}
329 330
static inline void act_var_bump_global(sat_solver* s, int v) 
{
331
    if ( !s->pGlobalVars || !s->pGlobalVars[v] )
332 333 334
        return;
    if ( s->VarActType == 0 )
    {
335
        s->activity[v] += (int)((unsigned)s->var_inc * 3);
336 337 338 339 340 341 342
        if (s->activity[v] & 0x80000000)
            act_var_rescale(s);
        if (s->orderpos[v] != -1)
            order_update(s,v);
    }
    else if ( s->VarActType == 1 )
    {
343 344 345 346 347 348 349 350 351 352 353
        double act = Abc_Word2Dbl(s->activity[v]) + Abc_Word2Dbl(s->var_inc) * 3.0;
        s->activity[v] = Abc_Dbl2Word(act);
        if ( act > 1e100)
            act_var_rescale(s);
        if (s->orderpos[v] != -1)
            order_update(s,v);
    }
    else if ( s->VarActType == 2 )
    {
        s->activity[v] = Xdbl_Add( s->activity[v], Xdbl_Mul(s->var_inc, Xdbl_FromDouble(3.0)) );
        if (s->activity[v] > ABC_CONST(0x014c924d692ca61b))
354 355 356 357 358
            act_var_rescale(s);
        if (s->orderpos[v] != -1)
            order_update(s,v);
    }
    else assert( 0 );
Alan Mishchenko committed
359
}
360 361
static inline void act_var_bump_factor(sat_solver* s, int v) 
{
362 363 364 365 366 367 368 369 370 371 372 373
    if ( !s->factors )
        return;
    if ( s->VarActType == 0 )
    {
        s->activity[v] += (int)((unsigned)s->var_inc * (float)s->factors[v]);
        if (s->activity[v] & 0x80000000)
            act_var_rescale(s);
        if (s->orderpos[v] != -1)
            order_update(s,v);
    }
    else if ( s->VarActType == 1 )
    {
374 375 376 377 378 379 380 381 382 383 384
        double act = Abc_Word2Dbl(s->activity[v]) + Abc_Word2Dbl(s->var_inc) * s->factors[v];
        s->activity[v] = Abc_Dbl2Word(act);
        if ( act > 1e100)
            act_var_rescale(s);
        if (s->orderpos[v] != -1)
            order_update(s,v);
    }
    else if ( s->VarActType == 2 )
    {
        s->activity[v] = Xdbl_Add( s->activity[v], Xdbl_Mul(s->var_inc, Xdbl_FromDouble(s->factors[v])) );
        if (s->activity[v] > ABC_CONST(0x014c924d692ca61b))
385 386 387 388 389
            act_var_rescale(s);
        if (s->orderpos[v] != -1)
            order_update(s,v);
    }
    else assert( 0 );
Alan Mishchenko committed
390
}
391

392 393 394 395 396 397 398 399 400
static inline void act_var_decay(sat_solver* s)    
{ 
    if ( s->VarActType == 0 )
        s->var_inc += (s->var_inc >>  4); 
    else if ( s->VarActType == 1 )
        s->var_inc = Abc_Dbl2Word( Abc_Word2Dbl(s->var_inc) * Abc_Word2Dbl(s->var_decay) );
    else if ( s->VarActType == 2 )
        s->var_inc = Xdbl_Mul(s->var_inc, s->var_decay); 
    else assert(0);
Alan Mishchenko committed
401
}
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
// clause activities
static inline void act_clause_rescale(sat_solver* s) 
{
    if ( s->ClaActType == 0 )
    {
        unsigned* activity = (unsigned *)veci_begin(&s->act_clas);
        int i;
        for (i = 0; i < veci_size(&s->act_clas); i++)
            activity[i] >>= 14;
        s->cla_inc >>= 14;
        s->cla_inc = Abc_MaxInt( s->cla_inc, (1<<10) );
    }
    else
    {
        float* activity = (float *)veci_begin(&s->act_clas);
        int i;
        for (i = 0; i < veci_size(&s->act_clas); i++)
            activity[i] *= (float)1e-20;
        s->cla_inc *= (float)1e-20;
    }
423
}
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
static inline void act_clause_bump(sat_solver* s, clause *c) 
{
    if ( s->ClaActType == 0 )
    {
        unsigned* act = (unsigned *)veci_begin(&s->act_clas) + c->lits[c->size];
        *act += s->cla_inc;
        if ( *act & 0x80000000 )
            act_clause_rescale(s);
    }
    else
    {
        float* act = (float *)veci_begin(&s->act_clas) + c->lits[c->size];
        *act += s->cla_inc;
        if (*act > 1e20) 
            act_clause_rescale(s);
    }
440
}
441 442 443 444 445 446
static inline void act_clause_decay(sat_solver* s)    
{ 
    if ( s->ClaActType == 0 )
        s->cla_inc += (s->cla_inc >> 10);
    else
        s->cla_inc *= s->cla_decay;
447
}
448

Alan Mishchenko committed
449 450

//=================================================================================================
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
// Sorting functions (sigh):

static inline void selectionsort(void** array, int size, int(*comp)(const void *, const void *))
{
    int     i, j, best_i;
    void*   tmp;

    for (i = 0; i < size-1; i++){
        best_i = i;
        for (j = i+1; j < size; j++){
            if (comp(array[j], array[best_i]) < 0)
                best_i = j;
        }
        tmp = array[i]; array[i] = array[best_i]; array[best_i] = tmp;
    }
}

static void sortrnd(void** array, int size, int(*comp)(const void *, const void *), double* seed)
{
    if (size <= 15)
        selectionsort(array, size, comp);

    else{
        void*       pivot = array[irand(seed, size)];
        void*       tmp;
        int         i = -1;
        int         j = size;

        for(;;){
            do i++; while(comp(array[i], pivot)<0);
            do j--; while(comp(pivot, array[j])<0);

            if (i >= j) break;

            tmp = array[i]; array[i] = array[j]; array[j] = tmp;
        }

        sortrnd(array    , i     , comp, seed);
        sortrnd(&array[i], size-i, comp, seed);
    }
}

//=================================================================================================
Alan Mishchenko committed
494 495
// Clause functions:

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
static inline int sat_clause_compute_lbd( sat_solver* s, clause* c )
{
    int i, lev, minl = 0, lbd = 0;
    for (i = 0; i < (int)c->size; i++)
    {
        lev = var_level(s, lit_var(c->lits[i]));
        if ( !(minl & (1 << (lev & 31))) )
        {
            minl |= 1 << (lev & 31);
            lbd++;
//            printf( "%d ", lev );
        }
    }
//    printf( " -> %d\n", lbd );
    return lbd;
}

Alan Mishchenko committed
513 514
/* pre: size > 1 && no variable occurs twice
 */
515
int sat_solver_clause_new(sat_solver* s, lit* begin, lit* end, int learnt)
Alan Mishchenko committed
516
{
517
    int fUseBinaryClauses = 1;
Alan Mishchenko committed
518 519
    int size;
    clause* c;
520
    int h;
Alan Mishchenko committed
521 522 523 524

    assert(end - begin > 1);
    assert(learnt >= 0 && learnt < 2);
    size           = end - begin;
525 526

    // do not allocate memory for the two-literal problem clause
527
    if ( fUseBinaryClauses && size == 2 && !learnt )
528
    {
529 530
        veci_push(sat_solver_read_wlist(s,lit_neg(begin[0])),(clause_from_lit(begin[1])));
        veci_push(sat_solver_read_wlist(s,lit_neg(begin[1])),(clause_from_lit(begin[0])));
531 532
        s->stats.clauses++;
        s->stats.clauses_literals += size;
533
        return 0;
534 535
    }

536
    // create new clause
537
//    h = Vec_SetAppend( &s->Mem, NULL, size + learnt + 1 + 1 ) << 1;
538
    h = Sat_MemAppend( &s->Mem, begin, size, learnt, 0 );
539 540 541
    assert( !(h & 1) );
    if ( s->hLearnts == -1 && learnt )
        s->hLearnts = h;
Alan Mishchenko committed
542
    if (learnt)
543 544 545 546 547 548
    {
        c = clause_read( s, h );
        c->lbd = sat_clause_compute_lbd( s, c );
        assert( clause_id(c) == veci_size(&s->act_clas) );
//        veci_push(&s->learned, h);
//        act_clause_bump(s,clause_read(s, h));
549 550 551 552
        if ( s->ClaActType == 0 )
            veci_push(&s->act_clas, (1<<10));
        else
            veci_push(&s->act_clas, s->cla_inc);
553 554 555 556 557 558 559 560
        s->stats.learnts++;
        s->stats.learnts_literals += size;
    }
    else
    {
        s->stats.clauses++;
        s->stats.clauses_literals += size;
    }
Alan Mishchenko committed
561 562 563 564 565 566 567 568 569

    assert(begin[0] >= 0);
    assert(begin[0] < s->size*2);
    assert(begin[1] >= 0);
    assert(begin[1] < s->size*2);

    assert(lit_neg(begin[0]) < s->size*2);
    assert(lit_neg(begin[1]) < s->size*2);

570 571 572 573
    //veci_push(sat_solver_read_wlist(s,lit_neg(begin[0])),c);
    //veci_push(sat_solver_read_wlist(s,lit_neg(begin[1])),c);
    veci_push(sat_solver_read_wlist(s,lit_neg(begin[0])),(size > 2 ? h : clause_from_lit(begin[1])));
    veci_push(sat_solver_read_wlist(s,lit_neg(begin[1])),(size > 2 ? h : clause_from_lit(begin[0])));
Alan Mishchenko committed
574

575
    return h;
Alan Mishchenko committed
576 577 578 579 580 581
}


//=================================================================================================
// Minor (solver) functions:

582
static inline int sat_solver_enqueue(sat_solver* s, lit l, int from)
Alan Mishchenko committed
583
{
584
    int v  = lit_var(l);
585 586 587 588 589 590
    if ( s->pFreqs[v] == 0 )
//    {
        s->pFreqs[v] = 1;
//        s->nVarUsed++;
//    }

Alan Mishchenko committed
591 592 593
#ifdef VERBOSEDEBUG
    printf(L_IND"enqueue("L_LIT")\n", L_ind, L_lit(l));
#endif
594 595 596
    if (var_value(s, v) != varX)
        return var_value(s, v) == lit_sign(l);
    else{
597
/*
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
        if ( s->pCnfFunc )
        {
            if ( lit_sign(l) )
            {
                if ( (s->loads[v] & 1) == 0 )
                {
                    s->loads[v] ^= 1;
                    s->pCnfFunc( s->pCnfMan, l );
                }
            }
            else
            {
                if ( (s->loads[v] & 2) == 0 )
                {
                    s->loads[v] ^= 2;
                    s->pCnfFunc( s->pCnfMan, l );
                }
            }
        }
617
*/
Alan Mishchenko committed
618 619 620 621
        // New fact -- store it.
#ifdef VERBOSEDEBUG
        printf(L_IND"bind("L_LIT")\n", L_ind, L_lit(l));
#endif
622 623 624
        var_set_value(s, v, lit_sign(l));
        var_set_level(s, v, sat_solver_dl(s));
        s->reasons[v] = from;
Alan Mishchenko committed
625 626 627 628 629 630 631
        s->trail[s->qtail++] = l;
        order_assigned(s, v);
        return true;
    }
}


632
static inline int sat_solver_decision(sat_solver* s, lit l){
Alan Mishchenko committed
633
    assert(s->qtail == s->qhead);
634
    assert(var_value(s, lit_var(l)) == varX);
Alan Mishchenko committed
635
#ifdef VERBOSEDEBUG
636 637
    printf(L_IND"assume("L_LIT")  ", L_ind, L_lit(l));
    printf( "act = %.20f\n", s->activity[lit_var(l)] );
Alan Mishchenko committed
638 639
#endif
    veci_push(&s->trail_lim,s->qtail);
640
    return sat_solver_enqueue(s,l,0);
Alan Mishchenko committed
641 642 643
}


Alan Mishchenko committed
644
static void sat_solver_canceluntil(sat_solver* s, int level) {
Alan Mishchenko committed
645
    int      bound;
646
    int      lastLev;
Alan Mishchenko committed
647 648
    int      c;
    
649
    if (sat_solver_dl(s) <= level)
Alan Mishchenko committed
650 651
        return;

652
    assert( veci_size(&s->trail_lim) > 0 );
Alan Mishchenko committed
653
    bound   = (veci_begin(&s->trail_lim))[level];
654
    lastLev = (veci_begin(&s->trail_lim))[veci_size(&s->trail_lim)-1];
Alan Mishchenko committed
655

Alan Mishchenko committed
656 657 658 659 660 661
    ////////////////////////////////////////
    // added to cancel all assignments
//    if ( level == -1 )
//        bound = 0;
    ////////////////////////////////////////

Alan Mishchenko committed
662
    for (c = s->qtail-1; c >= bound; c--) {
663 664 665
        int     x  = lit_var(s->trail[c]);
        var_set_value(s, x, varX);
        s->reasons[x] = 0;
666
        if ( c < lastLev )
667
            var_set_polar( s, x, !lit_sign(s->trail[c]) );
Alan Mishchenko committed
668
    }
669
    //printf( "\n" );
Alan Mishchenko committed
670 671

    for (c = s->qhead-1; c >= bound; c--)
672
        order_unassigned(s,lit_var(s->trail[c]));
Alan Mishchenko committed
673 674 675 676 677

    s->qhead = s->qtail = bound;
    veci_resize(&s->trail_lim,level);
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
static void sat_solver_canceluntil_rollback(sat_solver* s, int NewBound) {
    int      c, x;
   
    assert( sat_solver_dl(s) == 0 );
    assert( s->qtail == s->qhead );
    assert( s->qtail >= NewBound );

    for (c = s->qtail-1; c >= NewBound; c--) 
    {
        x = lit_var(s->trail[c]);
        var_set_value(s, x, varX);
        s->reasons[x] = 0;
    }

    for (c = s->qhead-1; c >= NewBound; c--)
        order_unassigned(s,lit_var(s->trail[c]));

    s->qhead = s->qtail = NewBound;
}

Alan Mishchenko committed
698 699 700 701
static void sat_solver_record(sat_solver* s, veci* cls)
{
    lit*    begin = veci_begin(cls);
    lit*    end   = begin + veci_size(cls);
702
    int     h     = (veci_size(cls) > 1) ? sat_solver_clause_new(s,begin,end,1) : 0;
703
    sat_solver_enqueue(s,*begin,h);
704
    assert(veci_size(cls) > 0);
705 706
    if ( h == 0 )
        veci_push( &s->unit_lits, *begin );
Alan Mishchenko committed
707

Alan Mishchenko committed
708 709 710 711
    ///////////////////////////////////
    // add clause to internal storage
    if ( s->pStore )
    {
712
        int RetValue = Sto_ManAddClause( (Sto_Man_t *)s->pStore, begin, end );
Alan Mishchenko committed
713
        assert( RetValue );
Alan Mishchenko committed
714
        (void) RetValue;
Alan Mishchenko committed
715 716
    }
    ///////////////////////////////////
717
/*
718
    if (h != 0) {
719
        act_clause_bump(s,clause_read(s, h));
Alan Mishchenko committed
720 721 722
        s->stats.learnts++;
        s->stats.learnts_literals += veci_size(cls);
    }
723
*/
Alan Mishchenko committed
724 725
}

726 727 728 729 730 731 732 733 734 735
int sat_solver_count_assigned(sat_solver* s)
{
    // count top-level assignments
    int i, Count = 0;
    assert(sat_solver_dl(s) == 0);
    for ( i = 0; i < s->size; i++ )
        if (var_value(s, i) != varX)
            Count++;
    return Count;
}
Alan Mishchenko committed
736 737 738 739 740 741 742

static double sat_solver_progress(sat_solver* s)
{
    int     i;
    double  progress = 0;
    double  F        = 1.0 / s->size;
    for (i = 0; i < s->size; i++)
743 744
        if (var_value(s, i) != varX)
            progress += pow(F, var_level(s, i));
Alan Mishchenko committed
745 746 747 748 749 750
    return progress / s->size;
}

//=================================================================================================
// Major methods:

751
static int sat_solver_lit_removable(sat_solver* s, int x, int minl)
Alan Mishchenko committed
752 753 754
{
    int      top     = veci_size(&s->tagged);

755
    assert(s->reasons[x] != 0);
Alan Mishchenko committed
756
    veci_resize(&s->stack,0);
757 758 759 760 761 762 763 764 765
    veci_push(&s->stack,x);

    while (veci_size(&s->stack)){
        int v = veci_pop(&s->stack);
        assert(s->reasons[v] != 0);
        if (clause_is_lit(s->reasons[v])){
            v = lit_var(clause_read_lit(s->reasons[v]));
            if (!var_tag(s,v) && var_level(s, v)){
                if (s->reasons[v] != 0 && ((1 << (var_level(s, v) & 31)) & minl)){
Alan Mishchenko committed
766
                    veci_push(&s->stack,v);
767
                    var_set_tag(s, v, 1);
Alan Mishchenko committed
768
                }else{
769 770
                    solver2_clear_tags(s, top);
                    return 0;
Alan Mishchenko committed
771 772 773
                }
            }
        }else{
774 775 776
            clause* c = clause_read(s, s->reasons[v]);
            lit* lits = clause_begin(c);
            int  i;
777
            for (i = 1; i < clause_size(c); i++){
Alan Mishchenko committed
778
                int v = lit_var(lits[i]);
779 780
                if (!var_tag(s,v) && var_level(s, v)){
                    if (s->reasons[v] != 0 && ((1 << (var_level(s, v) & 31)) & minl)){
Alan Mishchenko committed
781
                        veci_push(&s->stack,lit_var(lits[i]));
782
                        var_set_tag(s, v, 1);
Alan Mishchenko committed
783
                    }else{
784 785
                        solver2_clear_tags(s, top);
                        return 0;
Alan Mishchenko committed
786 787 788 789 790
                    }
                }
            }
        }
    }
791
    return 1;
Alan Mishchenko committed
792 793
}

794 795 796 797 798 799 800 801 802 803 804

/*_________________________________________________________________________________________________
|
|  analyzeFinal : (p : Lit)  ->  [void]
|  
|  Description:
|    Specialized analysis procedure to express the final conflict in terms of assumptions.
|    Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
|    stores the result in 'out_conflict'.
|________________________________________________________________________________________________@*/
/*
805
void Solver::analyzeFinal(Clause* confl, bool skip_first)
806
{
807 808 809 810 811 812 813 814 815 816
    // -- NOTE! This code is relatively untested. Please report bugs!
    conflict.clear();
    if (root_level == 0) return;

    vec<char>& seen  = analyze_seen;
    for (int i = skip_first ? 1 : 0; i < confl->size(); i++){
        Var x = var((*confl)[i]);
        if (level[x] > 0)
            seen[x] = 1;
    }
817

818 819 820
    int start = (root_level >= trail_lim.size()) ? trail.size()-1 : trail_lim[root_level];
    for (int i = start; i >= trail_lim[0]; i--){
        Var     x = var(trail[i]);
821
        if (seen[x]){
822 823 824 825
            GClause r = reason[x];
            if (r == GClause_NULL){
                assert(level[x] > 0);
                conflict.push(~trail[i]);
826
            }else{
827 828 829 830 831 832 833 834 835 836
                if (r.isLit()){
                    Lit p = r.lit();
                    if (level[var(p)] > 0)
                        seen[var(p)] = 1;
                }else{
                    Clause& c = *r.clause();
                    for (int j = 1; j < c.size(); j++)
                        if (level[var(c[j])] > 0)
                            seen[var(c[j])] = 1;
                }
837 838 839 840 841 842 843
            }
            seen[x] = 0;
        }
    }
}
*/

844 845
#ifdef SAT_USE_ANALYZE_FINAL

846
static void sat_solver_analyze_final(sat_solver* s, int hConf, int skip_first)
847
{
848
    clause* conf = clause_read(s, hConf);
849 850 851
    int i, j, start;
    veci_resize(&s->conf_final,0);
    if ( s->root_level == 0 )
852 853
        return;
    assert( veci_size(&s->tagged) == 0 );
854 855
//    assert( s->tags[lit_var(p)] == l_Undef );
//    s->tags[lit_var(p)] = l_True;
856
    for (i = skip_first ? 1 : 0; i < clause_size(conf); i++)
857 858
    {
        int x = lit_var(clause_begin(conf)[i]);
859 860
        if (var_level(s, x) > 0)
            var_set_tag(s, x, 1);
861 862 863 864
    }

    start = (s->root_level >= veci_size(&s->trail_lim))? s->qtail-1 : (veci_begin(&s->trail_lim))[s->root_level];
    for (i = start; i >= (veci_begin(&s->trail_lim))[0]; i--){
865
        int x = lit_var(s->trail[i]);
866 867 868
        if (var_tag(s,x)){
            if (s->reasons[x] == 0){
                assert(var_level(s, x) > 0);
869
                veci_push(&s->conf_final,lit_neg(s->trail[i]));
870
            }else{
871 872
                if (clause_is_lit(s->reasons[x])){
                    lit q = clause_read_lit(s->reasons[x]);
873
                    assert(lit_var(q) >= 0 && lit_var(q) < s->size);
874 875
                    if (var_level(s, lit_var(q)) > 0)
                        var_set_tag(s, lit_var(q), 1);
876 877
                }
                else{
878
                    clause* c = clause_read(s, s->reasons[x]);
879
                    int* lits = clause_begin(c);
880
                    for (j = 1; j < clause_size(c); j++)
881 882
                        if (var_level(s, lit_var(lits[j])) > 0)
                            var_set_tag(s, lit_var(lits[j]), 1);
883 884 885 886
                }
            }
        }
    }
887
    solver2_clear_tags(s,0);
888 889
}

890 891
#endif

892
static void sat_solver_analyze(sat_solver* s, int h, veci* learnt)
Alan Mishchenko committed
893 894 895 896 897 898
{
    lit*     trail   = s->trail;
    int      cnt     = 0;
    lit      p       = lit_Undef;
    int      ind     = s->qtail-1;
    lit*     lits;
899
    int      i, j, minl;
Alan Mishchenko committed
900 901
    veci_push(learnt,lit_Undef);
    do{
902 903 904 905 906 907 908
        assert(h != 0);
        if (clause_is_lit(h)){
            int x = lit_var(clause_read_lit(h));
            if (var_tag(s, x) == 0 && var_level(s, x) > 0){
                var_set_tag(s, x, 1);
                act_var_bump(s,x);
                if (var_level(s, x) == sat_solver_dl(s))
Alan Mishchenko committed
909 910
                    cnt++;
                else
911
                    veci_push(learnt,clause_read_lit(h));
Alan Mishchenko committed
912 913
            }
        }else{
914
            clause* c = clause_read(s, h);
915
            
916 917
            if (clause_learnt(c))
                act_clause_bump(s,c);
Alan Mishchenko committed
918
            lits = clause_begin(c);
919 920
            //printlits(lits,lits+clause_size(c)); printf("\n");
            for (j = (p == lit_Undef ? 0 : 1); j < clause_size(c); j++){
921 922 923 924
                int x = lit_var(lits[j]);
                if (var_tag(s, x) == 0 && var_level(s, x) > 0){
                    var_set_tag(s, x, 1);
                    act_var_bump(s,x);
925 926 927
                    // bump variables propaged by the LBD=2 clause
//                    if ( s->reasons[x] && clause_read(s, s->reasons[x])->lbd <= 2 )
//                        act_var_bump(s,x);
928
                    if (var_level(s,x) == sat_solver_dl(s))
Alan Mishchenko committed
929 930
                        cnt++;
                    else
931
                        veci_push(learnt,lits[j]);
Alan Mishchenko committed
932 933 934 935
                }
            }
        }

936
        while ( !var_tag(s, lit_var(trail[ind--])) );
Alan Mishchenko committed
937 938

        p = trail[ind+1];
939
        h = s->reasons[lit_var(p)];
Alan Mishchenko committed
940 941 942 943 944 945 946 947 948
        cnt--;

    }while (cnt > 0);

    *veci_begin(learnt) = lit_neg(p);

    lits = veci_begin(learnt);
    minl = 0;
    for (i = 1; i < veci_size(learnt); i++){
949
        int lev = var_level(s, lit_var(lits[i]));
Alan Mishchenko committed
950 951 952 953 954
        minl    |= 1 << (lev & 31);
    }

    // simplify (full)
    for (i = j = 1; i < veci_size(learnt); i++){
955
        if (s->reasons[lit_var(lits[i])] == 0 || !sat_solver_lit_removable(s,lit_var(lits[i]),minl))
Alan Mishchenko committed
956 957 958 959 960 961 962
            lits[j++] = lits[i];
    }

    // update size of learnt + statistics
    veci_resize(learnt,j);
    s->stats.tot_literals += j;

963

Alan Mishchenko committed
964
    // clear tags
965
    solver2_clear_tags(s,0);
Alan Mishchenko committed
966 967 968

#ifdef DEBUG
    for (i = 0; i < s->size; i++)
969
        assert(!var_tag(s, i));
Alan Mishchenko committed
970 971 972 973 974 975 976 977
#endif

#ifdef VERBOSEDEBUG
    printf(L_IND"Learnt {", L_ind);
    for (i = 0; i < veci_size(learnt); i++) printf(" "L_LIT, L_lit(lits[i]));
#endif
    if (veci_size(learnt) > 1){
        int max_i = 1;
978
        int max   = var_level(s, lit_var(lits[1]));
Alan Mishchenko committed
979 980 981
        lit tmp;

        for (i = 2; i < veci_size(learnt); i++)
982 983
            if (var_level(s, lit_var(lits[i])) > max){
                max   = var_level(s, lit_var(lits[i]));
Alan Mishchenko committed
984 985 986 987 988 989 990 991 992
                max_i = i;
            }

        tmp         = lits[1];
        lits[1]     = lits[max_i];
        lits[max_i] = tmp;
    }
#ifdef VERBOSEDEBUG
    {
993
        int lev = veci_size(learnt) > 1 ? var_level(s, lit_var(lits[1])) : 0;
Alan Mishchenko committed
994 995 996 997 998
        printf(" } at level %d\n", lev);
    }
#endif
}

999
//#define TEST_CNF_LOAD
Alan Mishchenko committed
1000

1001
int sat_solver_propagate(sat_solver* s)
Alan Mishchenko committed
1002
{
1003
    int     hConfl = 0;
Alan Mishchenko committed
1004
    lit*    lits;
1005
    lit false_lit;
Alan Mishchenko committed
1006 1007

    //printf("sat_solver_propagate\n");
1008
    while (hConfl == 0 && s->qtail - s->qhead > 0){
1009
        lit p = s->trail[s->qhead++];
1010 1011

#ifdef TEST_CNF_LOAD
1012
        int v = lit_var(p);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        if ( s->pCnfFunc )
        {
            if ( lit_sign(p) )
            {
                if ( (s->loads[v] & 1) == 0 )
                {
                    s->loads[v] ^= 1;
                    s->pCnfFunc( s->pCnfMan, p );
                }
            }
            else
            {
                if ( (s->loads[v] & 2) == 0 )
                {
                    s->loads[v] ^= 2;
                    s->pCnfFunc( s->pCnfMan, p );
                }
            }
        }
        {
#endif

1035 1036 1037 1038
        veci* ws    = sat_solver_read_wlist(s,p);
        int*  begin = veci_begin(ws);
        int*  end   = begin + veci_size(ws);
        int*i, *j;
Alan Mishchenko committed
1039 1040

        s->stats.propagations++;
1041
//        s->simpdb_props--;
Alan Mishchenko committed
1042

Alan Mishchenko committed
1043
        //printf("checking lit %d: "L_LIT"\n", veci_size(ws), L_lit(p));
Alan Mishchenko committed
1044 1045
        for (i = j = begin; i < end; ){
            if (clause_is_lit(*i)){
1046 1047

                int Lit = clause_read_lit(*i);
1048
                if (var_value(s, lit_var(Lit)) == lit_sign(Lit)){
1049 1050 1051 1052
                    *j++ = *i++;
                    continue;
                }

Alan Mishchenko committed
1053
                *j++ = *i;
1054
                if (!sat_solver_enqueue(s,clause_read_lit(*i),clause_from_lit(p))){
1055 1056 1057
                    hConfl = s->hBinary;
                    (clause_begin(s->binary))[1] = lit_neg(p);
                    (clause_begin(s->binary))[0] = clause_read_lit(*i++);
Alan Mishchenko committed
1058 1059 1060 1061
                    // Copy the remaining watches:
                    while (i < end)
                        *j++ = *i++;
                }
Alan Mishchenko committed
1062
            }else{
Alan Mishchenko committed
1063

1064 1065
                clause* c = clause_read(s,*i);
                lits = clause_begin(c);
Alan Mishchenko committed
1066

Alan Mishchenko committed
1067
                // Make sure the false literal is data[1]:
Alan Mishchenko committed
1068 1069 1070 1071 1072 1073 1074
                false_lit = lit_neg(p);
                if (lits[0] == false_lit){
                    lits[0] = lits[1];
                    lits[1] = false_lit;
                }
                assert(lits[1] == false_lit);

Alan Mishchenko committed
1075
                // If 0th watch is true, then clause is already satisfied.
1076
                if (var_value(s, lit_var(lits[0])) == lit_sign(lits[0]))
Alan Mishchenko committed
1077
                    *j++ = *i;
1078
                else{
Alan Mishchenko committed
1079
                    // Look for new watch:
1080
                    lit* stop = lits + clause_size(c);
Alan Mishchenko committed
1081
                    lit* k;
Alan Mishchenko committed
1082
                    for (k = lits + 2; k < stop; k++){
1083
                        if (var_value(s, lit_var(*k)) != !lit_sign(*k)){
Alan Mishchenko committed
1084 1085
                            lits[1] = *k;
                            *k = false_lit;
1086
                            veci_push(sat_solver_read_wlist(s,lit_neg(lits[1])),*i);
Alan Mishchenko committed
1087
                            goto next; }
Alan Mishchenko committed
1088 1089 1090 1091
                    }

                    *j++ = *i;
                    // Clause is unit under assignment:
1092 1093
                    if ( c->lrn )
                        c->lbd = sat_clause_compute_lbd(s, c);
1094
                    if (!sat_solver_enqueue(s,lits[0], *i)){
1095
                        hConfl = *i++;
Alan Mishchenko committed
1096 1097 1098 1099 1100 1101
                        // Copy the remaining watches:
                        while (i < end)
                            *j++ = *i++;
                    }
                }
            }
Alan Mishchenko committed
1102 1103
        next:
            i++;
Alan Mishchenko committed
1104 1105
        }

1106 1107
        s->stats.inspects += j - veci_begin(ws);
        veci_resize(ws,j - veci_begin(ws));
1108 1109 1110
#ifdef TEST_CNF_LOAD
        }
#endif
Alan Mishchenko committed
1111 1112
    }

1113
    return hConfl;
Alan Mishchenko committed
1114 1115 1116 1117 1118 1119 1120
}

//=================================================================================================
// External solver functions:

sat_solver* sat_solver_new(void)
{
1121 1122
    sat_solver* s = (sat_solver*)ABC_CALLOC( char, sizeof(sat_solver));

1123
//    Vec_SetAlloc_(&s->Mem, 15);
1124
    Sat_MemAlloc_(&s->Mem, 17);
1125
    s->hLearnts = -1;
1126
    s->hBinary = Sat_MemAppend( &s->Mem, NULL, 2, 0, 0 );
1127
    s->binary = clause_read( s, s->hBinary );
1128

1129 1130 1131 1132
    s->nLearntStart = LEARNT_MAX_START_DEFAULT;  // starting learned clause limit
    s->nLearntDelta = LEARNT_MAX_INCRE_DEFAULT;  // delta of learned clause limit
    s->nLearntRatio = LEARNT_MAX_RATIO_DEFAULT;  // ratio of learned clause limit
    s->nLearntMax   = s->nLearntStart;
Alan Mishchenko committed
1133 1134 1135 1136 1137

    // initialize vectors
    veci_new(&s->order);
    veci_new(&s->trail_lim);
    veci_new(&s->tagged);
1138 1139
//    veci_new(&s->learned);
    veci_new(&s->act_clas);
Alan Mishchenko committed
1140
    veci_new(&s->stack);
1141
//    veci_new(&s->model);
1142
    veci_new(&s->unit_lits);
Alan Mishchenko committed
1143
    veci_new(&s->temp_clause);
1144
    veci_new(&s->conf_final);
Alan Mishchenko committed
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

    // initialize arrays
    s->wlists    = 0;
    s->activity  = 0;
    s->orderpos  = 0;
    s->reasons   = 0;
    s->trail     = 0;

    // initialize other vars
    s->size                   = 0;
    s->cap                    = 0;
    s->qhead                  = 0;
    s->qtail                  = 0;
1158 1159 1160 1161

    solver_init_activities(s);
    veci_new(&s->act_vars);

Alan Mishchenko committed
1162
    s->root_level             = 0;
1163 1164
//    s->simpdb_assigns         = 0;
//    s->simpdb_props           = 0;
Alan Mishchenko committed
1165 1166
    s->random_seed            = 91648253;
    s->progress_estimate      = 0;
1167 1168
//    s->binary                 = (clause*)ABC_ALLOC( char, sizeof(clause) + sizeof(lit)*2);
//    s->binary->size_learnt    = (2 << 1);
Alan Mishchenko committed
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
    s->verbosity              = 0;

    s->stats.starts           = 0;
    s->stats.decisions        = 0;
    s->stats.propagations     = 0;
    s->stats.inspects         = 0;
    s->stats.conflicts        = 0;
    s->stats.clauses          = 0;
    s->stats.clauses_literals = 0;
    s->stats.learnts          = 0;
    s->stats.learnts_literals = 0;
    s->stats.tot_literals     = 0;
    return s;
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
sat_solver* zsat_solver_new_seed(double seed)
{
    sat_solver* s = (sat_solver*)ABC_CALLOC( char, sizeof(sat_solver));

//    Vec_SetAlloc_(&s->Mem, 15);
    Sat_MemAlloc_(&s->Mem, 15);
    s->hLearnts = -1;
    s->hBinary = Sat_MemAppend( &s->Mem, NULL, 2, 0, 0 );
    s->binary = clause_read( s, s->hBinary );

    s->nLearntStart = LEARNT_MAX_START_DEFAULT;  // starting learned clause limit
    s->nLearntDelta = LEARNT_MAX_INCRE_DEFAULT;  // delta of learned clause limit
    s->nLearntRatio = LEARNT_MAX_RATIO_DEFAULT;  // ratio of learned clause limit
    s->nLearntMax   = s->nLearntStart;

    // initialize vectors
    veci_new(&s->order);
    veci_new(&s->trail_lim);
    veci_new(&s->tagged);
//    veci_new(&s->learned);
    veci_new(&s->act_clas);
    veci_new(&s->stack);
//    veci_new(&s->model);
    veci_new(&s->unit_lits);
    veci_new(&s->temp_clause);
    veci_new(&s->conf_final);

    // initialize arrays
    s->wlists    = 0;
    s->activity  = 0;
    s->orderpos  = 0;
    s->reasons   = 0;
    s->trail     = 0;

    // initialize other vars
    s->size                   = 0;
    s->cap                    = 0;
    s->qhead                  = 0;
    s->qtail                  = 0;
1223 1224 1225 1226

    solver_init_activities(s);
    veci_new(&s->act_vars);

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
    s->root_level             = 0;
//    s->simpdb_assigns         = 0;
//    s->simpdb_props           = 0;
    s->random_seed            = seed;
    s->progress_estimate      = 0;
//    s->binary                 = (clause*)ABC_ALLOC( char, sizeof(clause) + sizeof(lit)*2);
//    s->binary->size_learnt    = (2 << 1);
    s->verbosity              = 0;

    s->stats.starts           = 0;
    s->stats.decisions        = 0;
    s->stats.propagations     = 0;
    s->stats.inspects         = 0;
    s->stats.conflicts        = 0;
    s->stats.clauses          = 0;
    s->stats.clauses_literals = 0;
    s->stats.learnts          = 0;
    s->stats.learnts_literals = 0;
    s->stats.tot_literals     = 0;
    return s;
}

1249 1250 1251 1252 1253
int sat_solver_addvar(sat_solver* s)
{
    sat_solver_setnvars(s, s->size+1);
    return s->size-1;
}
1254 1255 1256 1257 1258
void sat_solver_setnvars(sat_solver* s,int n)
{
    int var;

    if (s->cap < n){
1259
        int old_cap = s->cap;
1260
        while (s->cap < n) s->cap = s->cap*2+1;
1261 1262
        if ( s->cap < 50000 )
            s->cap = 50000;
1263

1264 1265 1266 1267 1268 1269
        s->wlists    = ABC_REALLOC(veci,   s->wlists,   s->cap*2);
//        s->vi        = ABC_REALLOC(varinfo,s->vi,       s->cap);
        s->levels    = ABC_REALLOC(int,    s->levels,   s->cap);
        s->assigns   = ABC_REALLOC(char,   s->assigns,  s->cap);
        s->polarity  = ABC_REALLOC(char,   s->polarity, s->cap);
        s->tags      = ABC_REALLOC(char,   s->tags,     s->cap);
1270
        s->loads     = ABC_REALLOC(char,   s->loads,    s->cap);
1271 1272
        s->activity  = ABC_REALLOC(word,   s->activity, s->cap);
        s->activity2 = ABC_REALLOC(word,   s->activity2,s->cap);
1273
        s->pFreqs    = ABC_REALLOC(char,   s->pFreqs,   s->cap);
1274

1275
        if ( s->factors )
1276 1277
        s->factors   = ABC_REALLOC(double, s->factors,  s->cap);
        s->orderpos  = ABC_REALLOC(int,    s->orderpos, s->cap);
1278
        s->reasons   = ABC_REALLOC(int,    s->reasons,  s->cap);
1279
        s->trail     = ABC_REALLOC(lit,    s->trail,    s->cap);
1280
        s->model     = ABC_REALLOC(int,    s->model,    s->cap);
1281 1282
        memset( s->wlists + 2*old_cap, 0, 2*(s->cap-old_cap)*sizeof(veci) );
    } 
1283 1284

    for (var = s->size; var < n; var++){
1285 1286 1287
        assert(!s->wlists[2*var].size);
        assert(!s->wlists[2*var+1].size);
        if ( s->wlists[2*var].ptr == NULL )
1288
            veci_new(&s->wlists[2*var]);
1289
        if ( s->wlists[2*var+1].ptr == NULL )
1290
            veci_new(&s->wlists[2*var+1]);
1291 1292 1293 1294 1295 1296

        if ( s->VarActType == 0 )
            s->activity[var] = (1<<10);
        else if ( s->VarActType == 1 )
            s->activity[var] = 0;
        else if ( s->VarActType == 2 )
1297
            s->activity[var] = 0;
1298 1299
        else assert(0);

1300
        s->pFreqs[var]   = 0;
1301 1302 1303 1304 1305 1306 1307
        if ( s->factors )
        s->factors [var] = 0;
//        *((int*)s->vi + var) = 0; s->vi[var].val = varX;
        s->levels  [var] = 0;
        s->assigns [var] = varX;
        s->polarity[var] = 0;
        s->tags    [var] = 0;
1308
        s->loads   [var] = 0;
1309 1310
        s->orderpos[var] = veci_size(&s->order);
        s->reasons [var] = 0;
1311
        s->model   [var] = 0; 
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
        
        /* does not hold because variables enqueued at top level will not be reinserted in the heap
           assert(veci_size(&s->order) == var); 
         */
        veci_push(&s->order,var);
        order_update(s, var);
    }

    s->size = n > s->size ? n : s->size;
}
Alan Mishchenko committed
1322 1323 1324

void sat_solver_delete(sat_solver* s)
{
1325 1326
//    Vec_SetFree_( &s->Mem );
    Sat_MemFree_( &s->Mem );
Alan Mishchenko committed
1327 1328 1329 1330 1331

    // delete vectors
    veci_delete(&s->order);
    veci_delete(&s->trail_lim);
    veci_delete(&s->tagged);
1332 1333
//    veci_delete(&s->learned);
    veci_delete(&s->act_clas);
Alan Mishchenko committed
1334
    veci_delete(&s->stack);
1335
//    veci_delete(&s->model);
Alan Mishchenko committed
1336
    veci_delete(&s->act_vars);
1337
    veci_delete(&s->unit_lits);
1338
    veci_delete(&s->pivot_vars);
Alan Mishchenko committed
1339
    veci_delete(&s->temp_clause);
1340
    veci_delete(&s->conf_final);
Alan Mishchenko committed
1341

1342 1343 1344
    veci_delete(&s->user_vars);
    veci_delete(&s->user_values);

Alan Mishchenko committed
1345
    // delete arrays
1346
    if (s->reasons != 0){
Alan Mishchenko committed
1347
        int i;
1348
        for (i = 0; i < s->cap*2; i++)
1349
            veci_delete(&s->wlists[i]);
Alan Mishchenko committed
1350
        ABC_FREE(s->wlists   );
1351 1352 1353 1354 1355
//        ABC_FREE(s->vi       );
        ABC_FREE(s->levels   );
        ABC_FREE(s->assigns  );
        ABC_FREE(s->polarity );
        ABC_FREE(s->tags     );
1356
        ABC_FREE(s->loads    );
Alan Mishchenko committed
1357
        ABC_FREE(s->activity );
1358
        ABC_FREE(s->activity2);
1359
        ABC_FREE(s->pFreqs   );
Alan Mishchenko committed
1360 1361 1362 1363
        ABC_FREE(s->factors  );
        ABC_FREE(s->orderpos );
        ABC_FREE(s->reasons  );
        ABC_FREE(s->trail    );
1364
        ABC_FREE(s->model    );
Alan Mishchenko committed
1365 1366
    }

Alan Mishchenko committed
1367
    sat_solver_store_free(s);
Alan Mishchenko committed
1368
    ABC_FREE(s);
Alan Mishchenko committed
1369 1370
}

1371
void sat_solver_restart( sat_solver* s )
1372 1373
{
    int i;
1374
    Sat_MemRestart( &s->Mem );
1375
    s->hLearnts = -1;
1376
    s->hBinary = Sat_MemAppend( &s->Mem, NULL, 2, 0, 0 );
1377 1378
    s->binary = clause_read( s, s->hBinary );

1379 1380 1381 1382 1383
    veci_resize(&s->trail_lim, 0);
    veci_resize(&s->order, 0);
    for ( i = 0; i < s->size*2; i++ )
        s->wlists[i].size = 0;

1384
    s->nDBreduces = 0;
1385

1386 1387 1388 1389 1390
    // initialize other vars
    s->size                   = 0;
//    s->cap                    = 0;
    s->qhead                  = 0;
    s->qtail                  = 0;
1391 1392 1393 1394 1395 1396 1397


    // variable activities
    solver_init_activities(s);
    veci_resize(&s->act_clas, 0);


1398
    s->root_level             = 0;
1399 1400
//    s->simpdb_assigns         = 0;
//    s->simpdb_props           = 0;
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
    s->random_seed            = 91648253;
    s->progress_estimate      = 0;
    s->verbosity              = 0;

    s->stats.starts           = 0;
    s->stats.decisions        = 0;
    s->stats.propagations     = 0;
    s->stats.inspects         = 0;
    s->stats.conflicts        = 0;
    s->stats.clauses          = 0;
    s->stats.clauses_literals = 0;
    s->stats.learnts          = 0;
    s->stats.learnts_literals = 0;
    s->stats.tot_literals     = 0;
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
void zsat_solver_restart_seed( sat_solver* s, double seed )
{
    int i;
    Sat_MemRestart( &s->Mem );
    s->hLearnts = -1;
    s->hBinary = Sat_MemAppend( &s->Mem, NULL, 2, 0, 0 );
    s->binary = clause_read( s, s->hBinary );

    veci_resize(&s->trail_lim, 0);
    veci_resize(&s->order, 0);
    for ( i = 0; i < s->size*2; i++ )
        s->wlists[i].size = 0;

    s->nDBreduces = 0;

    // initialize other vars
    s->size                   = 0;
//    s->cap                    = 0;
    s->qhead                  = 0;
    s->qtail                  = 0;
1437 1438 1439 1440

    solver_init_activities(s);
    veci_resize(&s->act_clas, 0);

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
    s->root_level             = 0;
//    s->simpdb_assigns         = 0;
//    s->simpdb_props           = 0;
    s->random_seed            = seed;
    s->progress_estimate      = 0;
    s->verbosity              = 0;

    s->stats.starts           = 0;
    s->stats.decisions        = 0;
    s->stats.propagations     = 0;
    s->stats.inspects         = 0;
    s->stats.conflicts        = 0;
    s->stats.clauses          = 0;
    s->stats.clauses_literals = 0;
    s->stats.learnts          = 0;
    s->stats.learnts_literals = 0;
    s->stats.tot_literals     = 0;
}

1460
// returns memory in bytes used by the SAT solver
1461
double sat_solver_memory( sat_solver* s )
1462
{
1463 1464
    int i;
    double Mem = sizeof(sat_solver);
1465 1466 1467 1468 1469 1470 1471
    for (i = 0; i < s->cap*2; i++)
        Mem += s->wlists[i].cap * sizeof(int);
    Mem += s->cap * sizeof(veci);     // ABC_FREE(s->wlists   );
    Mem += s->cap * sizeof(int);      // ABC_FREE(s->levels   );
    Mem += s->cap * sizeof(char);     // ABC_FREE(s->assigns  );
    Mem += s->cap * sizeof(char);     // ABC_FREE(s->polarity );
    Mem += s->cap * sizeof(char);     // ABC_FREE(s->tags     );
1472
    Mem += s->cap * sizeof(char);     // ABC_FREE(s->loads    );
1473
    Mem += s->cap * sizeof(word);     // ABC_FREE(s->activity );
1474
    if ( s->activity2 )
1475
    Mem += s->cap * sizeof(word);     // ABC_FREE(s->activity );
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
    if ( s->factors )
    Mem += s->cap * sizeof(double);   // ABC_FREE(s->factors  );
    Mem += s->cap * sizeof(int);      // ABC_FREE(s->orderpos );
    Mem += s->cap * sizeof(int);      // ABC_FREE(s->reasons  );
    Mem += s->cap * sizeof(lit);      // ABC_FREE(s->trail    );
    Mem += s->cap * sizeof(int);      // ABC_FREE(s->model    );

    Mem += s->order.cap * sizeof(int);
    Mem += s->trail_lim.cap * sizeof(int);
    Mem += s->tagged.cap * sizeof(int);
1486
//    Mem += s->learned.cap * sizeof(int);
1487 1488
    Mem += s->stack.cap * sizeof(int);
    Mem += s->act_vars.cap * sizeof(int);
1489
    Mem += s->unit_lits.cap * sizeof(int);
1490
    Mem += s->act_clas.cap * sizeof(int);
1491 1492
    Mem += s->temp_clause.cap * sizeof(int);
    Mem += s->conf_final.cap * sizeof(int);
1493
    Mem += Sat_MemMemoryAll( &s->Mem );
1494 1495 1496
    return Mem;
}

1497
int sat_solver_simplify(sat_solver* s)
1498
{
1499 1500 1501 1502
    assert(sat_solver_dl(s) == 0);
    if (sat_solver_propagate(s) != 0)
        return false;
    return true;
1503 1504
}

1505
void sat_solver_reducedb(sat_solver* s)
1506
{
1507 1508
    static abctime TimeTotal = 0;
    abctime clk = Abc_Clock();
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
    Sat_Mem_t * pMem = &s->Mem;
    int nLearnedOld = veci_size(&s->act_clas);
    int * act_clas = veci_begin(&s->act_clas);
    int * pPerm, * pArray, * pSortValues, nCutoffValue;
    int i, k, j, Id, Counter, CounterStart, nSelected;
    clause * c;

    assert( s->nLearntMax > 0 );
    assert( nLearnedOld == Sat_MemEntryNum(pMem, 1) );
    assert( nLearnedOld == (int)s->stats.learnts );

    s->nDBreduces++;

1522
    //printf( "Calling reduceDB with %d learned clause limit.\n", s->nLearntMax );
1523
    s->nLearntMax = s->nLearntStart + s->nLearntDelta * s->nDBreduces;
1524 1525 1526 1527 1528 1529 1530 1531
//    return;

    // create sorting values
    pSortValues = ABC_ALLOC( int, nLearnedOld );
    Sat_MemForEachLearned( pMem, c, i, k )
    {
        Id = clause_id(c);
//        pSortValues[Id] = act[Id];
1532 1533 1534 1535
        if ( s->ClaActType == 0 )
            pSortValues[Id] = ((7 - Abc_MinInt(c->lbd, 7)) << 28) | (act_clas[Id] >> 4);
        else
            pSortValues[Id] = ((7 - Abc_MinInt(c->lbd, 7)) << 28);// | (act_clas[Id] >> 4);
1536
        assert( pSortValues[Id] >= 0 );
1537 1538
    }

1539 1540
    // preserve 1/20 of last clauses
    CounterStart  = nLearnedOld - (s->nLearntMax / 20);
1541

1542
    // preserve 3/4 of most active clauses
1543
    nSelected = nLearnedOld*s->nLearntRatio/100;
1544

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
    // find non-decreasing permutation
    pPerm = Abc_MergeSortCost( pSortValues, nLearnedOld );
    assert( pSortValues[pPerm[0]] <= pSortValues[pPerm[nLearnedOld-1]] );
    nCutoffValue = pSortValues[pPerm[nLearnedOld-nSelected]];
    ABC_FREE( pPerm );
//    ActCutOff = ABC_INFINITY;

    // mark learned clauses to remove
    Counter = j = 0;
    Sat_MemForEachLearned( pMem, c, i, k )
    {
        assert( c->mark == 0 );
        if ( Counter++ > CounterStart || clause_size(c) < 3 || pSortValues[clause_id(c)] > nCutoffValue || s->reasons[lit_var(c->lits[0])] == Sat_MemHand(pMem, i, k) )
            act_clas[j++] = act_clas[clause_id(c)];
        else // delete
        {
            c->mark = 1;
            s->stats.learnts_literals -= clause_size(c);
            s->stats.learnts--;
1564 1565
        }
    }
1566 1567 1568 1569
    assert( s->stats.learnts == (unsigned)j );
    assert( Counter == nLearnedOld );
    veci_resize(&s->act_clas,j);
    ABC_FREE( pSortValues );
1570

1571 1572 1573
    // update ID of each clause to be its new handle
    Counter = Sat_MemCompactLearned( pMem, 0 );
    assert( Counter == (int)s->stats.learnts );
1574

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
    // update reasons
    for ( i = 0; i < s->size; i++ )
    {
        if ( !s->reasons[i] ) // no reason
            continue;
        if ( clause_is_lit(s->reasons[i]) ) // 2-lit clause
            continue;
        if ( !clause_learnt_h(pMem, s->reasons[i]) ) // problem clause
            continue;
        c = clause_read( s, s->reasons[i] );
        assert( c->mark == 0 );
        s->reasons[i] = clause_id(c); // updating handle here!!!
    }
1588

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
    // update watches
    for ( i = 0; i < s->size*2; i++ )
    {
        pArray = veci_begin(&s->wlists[i]);
        for ( j = k = 0; k < veci_size(&s->wlists[i]); k++ )
        {
            if ( clause_is_lit(pArray[k]) ) // 2-lit clause
                pArray[j++] = pArray[k];
            else if ( !clause_learnt_h(pMem, pArray[k]) ) // problem clause
                pArray[j++] = pArray[k];
            else 
            {
                c = clause_read(s, pArray[k]);
                if ( !c->mark ) // useful learned clause
                   pArray[j++] = clause_id(c); // updating handle here!!!
            }
        }
        veci_resize(&s->wlists[i],j);
1607
    }
1608 1609 1610 1611 1612 1613

    // perform final move of the clauses
    Counter = Sat_MemCompactLearned( pMem, 1 );
    assert( Counter == (int)s->stats.learnts );

    // report the results
1614
    TimeTotal += Abc_Clock() - clk;
1615
    if ( s->fVerbose )
1616 1617 1618 1619
    {
    Abc_Print(1, "reduceDB: Keeping %7d out of %7d clauses (%5.2f %%)  ",
        s->stats.learnts, nLearnedOld, 100.0 * s->stats.learnts / nLearnedOld );
    Abc_PrintTime( 1, "Time", TimeTotal );
1620 1621 1622
    }
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640

// reverses to the previously bookmarked point
void sat_solver_rollback( sat_solver* s )
{
    Sat_Mem_t * pMem = &s->Mem;
    int i, k, j;
    static int Count = 0;
    Count++;
    assert( s->iVarPivot >= 0 && s->iVarPivot <= s->size );
    assert( s->iTrailPivot >= 0 && s->iTrailPivot <= s->qtail );
    // reset implication queue
    sat_solver_canceluntil_rollback( s, s->iTrailPivot );
    // update order 
    if ( s->iVarPivot < s->size )
    { 
        if ( s->activity2 )
        {
            s->var_inc = s->var_inc2;
1641
            memcpy( s->activity, s->activity2, sizeof(word) * s->iVarPivot );
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
        }
        veci_resize(&s->order, 0);
        for ( i = 0; i < s->iVarPivot; i++ )
        {
            if ( var_value(s, i) != varX )
                continue;
            s->orderpos[i] = veci_size(&s->order);
            veci_push(&s->order,i);
            order_update(s, i);
        }
    }
    // compact watches
    for ( i = 0; i < s->iVarPivot*2; i++ )
    {
        cla* pArray = veci_begin(&s->wlists[i]);
        for ( j = k = 0; k < veci_size(&s->wlists[i]); k++ )
1658 1659 1660 1661 1662 1663 1664
        {
            if ( clause_is_lit(pArray[k]) )
            {
                if ( clause_read_lit(pArray[k]) < s->iVarPivot*2 )
                    pArray[j++] = pArray[k];
            }
            else if ( Sat_MemClauseUsed(pMem, pArray[k]) )
1665
                pArray[j++] = pArray[k];
1666
        }
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
        veci_resize(&s->wlists[i],j);
    }
    // reset watcher lists
    for ( i = 2*s->iVarPivot; i < 2*s->size; i++ )
        s->wlists[i].size = 0;

    // reset clause counts
    s->stats.clauses = pMem->BookMarkE[0];
    s->stats.learnts = pMem->BookMarkE[1];
    // rollback clauses
    Sat_MemRollBack( pMem );

    // resize learned arrays
    veci_resize(&s->act_clas,  s->stats.learnts);

    // initialize other vars
    s->size = s->iVarPivot;
    if ( s->size == 0 )
    {
    //    s->size                   = 0;
    //    s->cap                    = 0;
        s->qhead                  = 0;
        s->qtail                  = 0;
1690 1691 1692

        solver_init_activities(s);

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
        s->root_level             = 0;
        s->random_seed            = 91648253;
        s->progress_estimate      = 0;
        s->verbosity              = 0;

        s->stats.starts           = 0;
        s->stats.decisions        = 0;
        s->stats.propagations     = 0;
        s->stats.inspects         = 0;
        s->stats.conflicts        = 0;
        s->stats.clauses          = 0;
        s->stats.clauses_literals = 0;
        s->stats.learnts          = 0;
        s->stats.learnts_literals = 0;
        s->stats.tot_literals     = 0;

        // initialize rollback
        s->iVarPivot              =  0; // the pivot for variables
        s->iTrailPivot            =  0; // the pivot for trail
        s->hProofPivot            =  1; // the pivot for proof records
    }
}


1717
int sat_solver_addclause(sat_solver* s, lit* begin, lit* end)
Alan Mishchenko committed
1718 1719 1720 1721
{
    lit *i,*j;
    int maxvar;
    lit last;
1722
    assert( begin < end );
1723
    if ( s->fPrintClause )
1724 1725 1726 1727 1728
    {
        for ( i = begin; i < end; i++ )
            printf( "%s%d ", (*i)&1 ? "!":"", (*i)>>1 );
        printf( "\n" );
    }
Alan Mishchenko committed
1729

Alan Mishchenko committed
1730 1731 1732 1733 1734 1735
    veci_resize( &s->temp_clause, 0 );
    for ( i = begin; i < end; i++ )
        veci_push( &s->temp_clause, *i );
    begin = veci_begin( &s->temp_clause );
    end = begin + veci_size( &s->temp_clause );

Alan Mishchenko committed
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
    // insertion sort
    maxvar = lit_var(*begin);
    for (i = begin + 1; i < end; i++){
        lit l = *i;
        maxvar = lit_var(l) > maxvar ? lit_var(l) : maxvar;
        for (j = i; j > begin && *(j-1) > l; j--)
            *j = *(j-1);
        *j = l;
    }
    sat_solver_setnvars(s,maxvar+1);

Alan Mishchenko committed
1747 1748 1749 1750
    ///////////////////////////////////
    // add clause to internal storage
    if ( s->pStore )
    {
1751
        int RetValue = Sto_ManAddClause( (Sto_Man_t *)s->pStore, begin, end );
Alan Mishchenko committed
1752
        assert( RetValue );
Alan Mishchenko committed
1753
        (void) RetValue;
Alan Mishchenko committed
1754 1755 1756
    }
    ///////////////////////////////////

Alan Mishchenko committed
1757 1758 1759
    // delete duplicates
    last = lit_Undef;
    for (i = j = begin; i < end; i++){
1760 1761
        //printf("lit: "L_LIT", value = %d\n", L_lit(*i), (lit_sign(*i) ? -s->assignss[lit_var(*i)] : s->assignss[lit_var(*i)]));
        if (*i == lit_neg(last) || var_value(s, lit_var(*i)) == lit_sign(*i))
Alan Mishchenko committed
1762
            return true;   // tautology
1763
        else if (*i != last && var_value(s, lit_var(*i)) == varX)
Alan Mishchenko committed
1764 1765
            last = *j++ = *i;
    }
1766
//    j = i;
Alan Mishchenko committed
1767 1768 1769

    if (j == begin)          // empty clause
        return false;
Alan Mishchenko committed
1770 1771

    if (j - begin == 1) // unit clause
1772
        return sat_solver_enqueue(s,*begin,0);
Alan Mishchenko committed
1773 1774

    // create new clause
1775
    sat_solver_clause_new(s,begin,j,0);
Alan Mishchenko committed
1776 1777 1778
    return true;
}

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
double luby(double y, int x)
{
    int size, seq;
    for (size = 1, seq = 0; size < x+1; seq++, size = 2*size + 1);
    while (size-1 != x){
        size = (size-1) >> 1;
        seq--;
        x = x % size;
    }
    return pow(y, (double)seq);
} 

void luby_test()
{
    int i;
    for ( i = 0; i < 20; i++ )
        printf( "%d ", (int)luby(2,i) );
    printf( "\n" );
}
Alan Mishchenko committed
1798

1799
static lbool sat_solver_search(sat_solver* s, ABC_INT64_T nof_conflicts)
1800
{
1801 1802
//    double  var_decay       = 0.95;
//    double  clause_decay    = 0.999;
1803
    double  random_var_freq = s->fNotUseRandom ? 0.0 : 0.02;
1804
    ABC_INT64_T  conflictC  = 0;
1805 1806 1807
    veci    learnt_clause;
    int     i;

1808
    assert(s->root_level == sat_solver_dl(s));
1809 1810 1811 1812 1813

    s->nRestarts++;
    s->stats.starts++;
//    s->var_decay = (float)(1 / var_decay   );  // move this to sat_solver_new()
//    s->cla_decay = (float)(1 / clause_decay);  // move this to sat_solver_new()
1814
//    veci_resize(&s->model,0);
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    veci_new(&learnt_clause);

    // use activity factors in every even restart
    if ( (s->nRestarts & 1) && veci_size(&s->act_vars) > 0 )
//    if ( veci_size(&s->act_vars) > 0 )
        for ( i = 0; i < s->act_vars.size; i++ )
            act_var_bump_factor(s, s->act_vars.ptr[i]);

    // use activity factors in every restart
    if ( s->pGlobalVars && veci_size(&s->act_vars) > 0 )
        for ( i = 0; i < s->act_vars.size; i++ )
            act_var_bump_global(s, s->act_vars.ptr[i]);

    for (;;){
1829 1830
        int hConfl = sat_solver_propagate(s);
        if (hConfl != 0){
1831 1832 1833 1834 1835 1836 1837
            // CONFLICT
            int blevel;

#ifdef VERBOSEDEBUG
            printf(L_IND"**CONFLICT**\n", L_ind);
#endif
            s->stats.conflicts++; conflictC++;
1838
            if (sat_solver_dl(s) == s->root_level){
1839
#ifdef SAT_USE_ANALYZE_FINAL
1840
                sat_solver_analyze_final(s, hConfl, 0);
1841 1842 1843 1844 1845 1846
#endif
                veci_delete(&learnt_clause);
                return l_False;
            }

            veci_resize(&learnt_clause,0);
1847 1848
            sat_solver_analyze(s, hConfl, &learnt_clause);
            blevel = veci_size(&learnt_clause) > 1 ? var_level(s, lit_var(veci_begin(&learnt_clause)[1])) : s->root_level;
1849 1850 1851 1852 1853
            blevel = s->root_level > blevel ? s->root_level : blevel;
            sat_solver_canceluntil(s,blevel);
            sat_solver_record(s,&learnt_clause);
#ifdef SAT_USE_ANALYZE_FINAL
//            if (learnt_clause.size() == 1) level[var(learnt_clause[0])] = 0;    // (this is ugly (but needed for 'analyzeFinal()') -- in future versions, we will backtrack past the 'root_level' and redo the assumptions)
1854 1855
            if ( learnt_clause.size == 1 ) 
                var_set_level(s, lit_var(learnt_clause.ptr[0]), 0);
1856 1857
#endif
            act_var_decay(s);
1858
            act_clause_decay(s);
1859 1860 1861 1862 1863

        }else{
            // NO CONFLICT
            int next;

1864
            // Reached bound on number of conflicts:
1865
            if ( (!s->fNoRestarts && nof_conflicts >= 0 && conflictC >= nof_conflicts) || (s->nRuntimeLimit && (s->stats.conflicts & 63) == 0 && Abc_Clock() > s->nRuntimeLimit)){
1866 1867 1868 1869 1870 1871
                s->progress_estimate = sat_solver_progress(s);
                sat_solver_canceluntil(s,s->root_level);
                veci_delete(&learnt_clause);
                return l_Undef; }

            // Reached bound on number of conflicts:
1872 1873 1874 1875 1876 1877 1878 1879 1880
            if ( (s->nConfLimit && s->stats.conflicts > s->nConfLimit) ||
                 (s->nInsLimit  && s->stats.propagations > s->nInsLimit) )
            {
                s->progress_estimate = sat_solver_progress(s);
                sat_solver_canceluntil(s,s->root_level);
                veci_delete(&learnt_clause);
                return l_Undef; 
            }

1881
            // Simplify the set of problem clauses:
1882
            if (sat_solver_dl(s) == 0 && !s->fSkipSimplify)
1883 1884
                sat_solver_simplify(s);

1885 1886 1887 1888
            // Reduce the set of learnt clauses:
//            if (s->nLearntMax && veci_size(&s->learned) - s->qtail >= s->nLearntMax)
            if (s->nLearntMax && veci_size(&s->act_clas) >= s->nLearntMax)
                sat_solver_reducedb(s);
1889 1890 1891

            // New variable decision:
            s->stats.decisions++;
1892
            next = order_select(s,(float)random_var_freq);
1893 1894 1895 1896

            if (next == var_Undef){
                // Model found:
                int i;
1897 1898
                for (i = 0; i < s->size; i++)
                    s->model[i] = (var_value(s,i)==var1 ? l_True : l_False);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
                sat_solver_canceluntil(s,s->root_level);
                veci_delete(&learnt_clause);

                /*
                veci apa; veci_new(&apa);
                for (i = 0; i < s->size; i++) 
                    veci_push(&apa,(int)(s->model.ptr[i] == l_True ? toLit(i) : lit_neg(toLit(i))));
                printf("model: "); printlits((lit*)apa.ptr, (lit*)apa.ptr + veci_size(&apa)); printf("\n");
                veci_delete(&apa);
                */

                return l_True;
            }

1913
            if ( var_polar(s, next) ) // positive polarity
1914
                sat_solver_decision(s,toLit(next));
1915
            else
1916
                sat_solver_decision(s,lit_neg(toLit(next)));
1917 1918 1919 1920 1921 1922
        }
    }

    return l_Undef; // cannot happen
}

1923 1924
// internal call to the SAT solver
int sat_solver_solve_internal(sat_solver* s)
Alan Mishchenko committed
1925
{
1926
    lbool status = l_Undef;
1927
    int restart_iter = 0;
1928
    veci_resize(&s->unit_lits, 0);
Alan Mishchenko committed
1929
    s->nCalls++;
1930

Alan Mishchenko committed
1931 1932 1933 1934 1935 1936 1937 1938
    if (s->verbosity >= 1){
        printf("==================================[MINISAT]===================================\n");
        printf("| Conflicts |     ORIGINAL     |              LEARNT              | Progress |\n");
        printf("|           | Clauses Literals |   Limit Clauses Literals  Lit/Cl |          |\n");
        printf("==============================================================================\n");
    }

    while (status == l_Undef){
1939
        ABC_INT64_T nof_conflicts;
Alan Mishchenko committed
1940 1941
        double Ratio = (s->stats.learnts == 0)? 0.0 :
            s->stats.learnts_literals / (double)s->stats.learnts;
1942
        if ( s->nRuntimeLimit && Abc_Clock() > s->nRuntimeLimit )
Alan Mishchenko committed
1943
            break;
Alan Mishchenko committed
1944 1945
        if (s->verbosity >= 1)
        {
Alan Mishchenko committed
1946 1947 1948 1949
            printf("| %9.0f | %7.0f %8.0f | %7.0f %7.0f %8.0f %7.1f | %6.3f %% |\n", 
                (double)s->stats.conflicts,
                (double)s->stats.clauses, 
                (double)s->stats.clauses_literals,
1950
                (double)0, 
Alan Mishchenko committed
1951 1952 1953 1954 1955 1956
                (double)s->stats.learnts, 
                (double)s->stats.learnts_literals,
                Ratio,
                s->progress_estimate*100);
            fflush(stdout);
        }
1957
        nof_conflicts = (ABC_INT64_T)( 100 * luby(2, restart_iter++) );
1958
        status = sat_solver_search(s, nof_conflicts);
Alan Mishchenko committed
1959 1960 1961
        // quit the loop if reached an external limit
        if ( s->nConfLimit && s->stats.conflicts > s->nConfLimit )
            break;
1962
        if ( s->nInsLimit  && s->stats.propagations > s->nInsLimit )
Alan Mishchenko committed
1963
            break;
1964
        if ( s->nRuntimeLimit && Abc_Clock() > s->nRuntimeLimit )
1965
            break;
1966 1967
        if ( s->pFuncStop && s->pFuncStop(s->RunId) )
            break;
Alan Mishchenko committed
1968 1969 1970 1971
    }
    if (s->verbosity >= 1)
        printf("==============================================================================\n");

1972
    sat_solver_canceluntil(s,s->root_level);
1973 1974 1975 1976 1977 1978 1979
    // save variable values
    if ( status == l_True && s->user_vars.size )
    {
        int v;
        for ( v = 0; v < s->user_vars.size; v++ )
            veci_push(&s->user_values, sat_solver_var_value(s, s->user_vars.ptr[v]));
    }
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
    return status;
}

// pushing one assumption to the stack of assumptions
int sat_solver_push(sat_solver* s, int p)
{
    assert(lit_var(p) < s->size);
    veci_push(&s->trail_lim,s->qtail);
    s->root_level++;
    if (!sat_solver_enqueue(s,p,0))
    {
        int h = s->reasons[lit_var(p)];
        if (h)
        {
            if (clause_is_lit(h))
            {
                (clause_begin(s->binary))[1] = lit_neg(p);
                (clause_begin(s->binary))[0] = clause_read_lit(h);
                h = s->hBinary;
            }
            sat_solver_analyze_final(s, h, 1);
            veci_push(&s->conf_final, lit_neg(p));
        }
        else
        {
            veci_resize(&s->conf_final,0);
            veci_push(&s->conf_final, lit_neg(p));
            // the two lines below are a bug fix by Siert Wieringa 
            if (var_level(s, lit_var(p)) > 0)
                veci_push(&s->conf_final, p);
        }
        //sat_solver_canceluntil(s, 0);
        return false; 
    }
    else
    {
        int fConfl = sat_solver_propagate(s);
        if (fConfl){
            sat_solver_analyze_final(s, fConfl, 0);
            //assert(s->conf_final.size > 0);
            //sat_solver_canceluntil(s, 0);
            return false; }
    }
    return true;
}

// removing one assumption from the stack of assumptions
void sat_solver_pop(sat_solver* s)
{
    assert( sat_solver_dl(s) > 0 );
    sat_solver_canceluntil(s, --s->root_level);
}

void sat_solver_set_resource_limits(sat_solver* s, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal)
{
    // set the external limits
    s->nRestarts  = 0;
    s->nConfLimit = 0;
    s->nInsLimit  = 0;
    if ( nConfLimit )
        s->nConfLimit = s->stats.conflicts + nConfLimit;
    if ( nInsLimit )
//        s->nInsLimit = s->stats.inspects + nInsLimit;
        s->nInsLimit = s->stats.propagations + nInsLimit;
    if ( nConfLimitGlobal && (s->nConfLimit == 0 || s->nConfLimit > nConfLimitGlobal) )
        s->nConfLimit = nConfLimitGlobal;
    if ( nInsLimitGlobal && (s->nInsLimit == 0 || s->nInsLimit > nInsLimitGlobal) )
        s->nInsLimit = nInsLimitGlobal;
}

int sat_solver_solve(sat_solver* s, lit* begin, lit* end, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal)
{
    lbool status;
    lit * i;
    ////////////////////////////////////////////////
    if ( s->fSolved )
    {
        if ( s->pStore )
        {
            int RetValue = Sto_ManAddClause( (Sto_Man_t *)s->pStore, NULL, NULL );
            assert( RetValue );
            (void) RetValue;
        }
        return l_False;
    }
    ////////////////////////////////////////////////

    if ( s->fVerbose )
        printf( "Running SAT solver with parameters %d and %d and %d.\n", s->nLearntStart, s->nLearntDelta, s->nLearntRatio );

    sat_solver_set_resource_limits( s, nConfLimit, nInsLimit, nConfLimitGlobal, nInsLimitGlobal );

#ifdef SAT_USE_ANALYZE_FINAL
    // Perform assumptions:
    s->root_level = 0;
    for ( i = begin; i < end; i++ )
        if ( !sat_solver_push(s, *i) )
        {
            sat_solver_canceluntil(s,0);
            s->root_level = 0;
            return l_False;
        }
    assert(s->root_level == sat_solver_dl(s));
#else
    //printf("solve: "); printlits(begin, end); printf("\n");
    for (i = begin; i < end; i++){
//        switch (lit_sign(*i) ? -s->assignss[lit_var(*i)] : s->assignss[lit_var(*i)]){
        switch (var_value(s, *i)) {
        case var1: // l_True: 
            break;
        case varX: // l_Undef
            sat_solver_decision(s, *i);
            if (sat_solver_propagate(s) == 0)
                break;
            // fallthrough
        case var0: // l_False 
            sat_solver_canceluntil(s, 0);
            return l_False;
        }
    }
    s->root_level = sat_solver_dl(s);
#endif

    status = sat_solver_solve_internal(s);

Alan Mishchenko committed
2105
    sat_solver_canceluntil(s,0);
2106
    s->root_level = 0;
Alan Mishchenko committed
2107 2108

    ////////////////////////////////////////////////
Alan Mishchenko committed
2109
    if ( status == l_False && s->pStore )
Alan Mishchenko committed
2110
    {
2111
        int RetValue = Sto_ManAddClause( (Sto_Man_t *)s->pStore, NULL, NULL );
Alan Mishchenko committed
2112
        assert( RetValue );
Alan Mishchenko committed
2113
        (void) RetValue;
Alan Mishchenko committed
2114 2115
    }
    ////////////////////////////////////////////////
Alan Mishchenko committed
2116 2117 2118
    return status;
}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
// This LEXSAT procedure should be called with a set of literals (pLits, nLits),
// which defines both (1) variable order, and (2) assignment to begin search from.
// It retuns the LEXSAT assigment that is the same or larger than the given one.
// (It assumes that there is no smaller assignment than the one given!)
// The resulting assignment is returned in the same set of literals (pLits, nLits).
// It pushes/pops assumptions internally and will undo them before terminating.
int sat_solver_solve_lexsat( sat_solver* s, int * pLits, int nLits )
{
    int i, iLitFail = -1;
    lbool status;
    assert( nLits > 0 );
    // help the SAT solver by setting desirable polarity
    sat_solver_set_literal_polarity( s, pLits, nLits );
    // check if there exists a satisfying assignment
    status = sat_solver_solve_internal( s );
    if ( status != l_True ) // no assignment
        return status;
    // there is at least one satisfying assignment
    assert( status == l_True );
    // find the first mismatching literal
    for ( i = 0; i < nLits; i++ )
        if ( pLits[i] != sat_solver_var_literal(s, Abc_Lit2Var(pLits[i])) )
            break;
    if ( i == nLits ) // no mismatch - the current assignment is the minimum one!
        return l_True;
    // mismatch happens in literal i
    iLitFail = i;
    // create assumptions up to this literal (as in pLits) - including this literal!
    for ( i = 0; i <= iLitFail; i++ )
        if ( !sat_solver_push(s, pLits[i]) ) // can become UNSAT while adding the last assumption
            break;
    if ( i < iLitFail + 1 ) // the solver became UNSAT while adding assumptions
        status = l_False;
    else // solve under the assumptions
        status = sat_solver_solve_internal( s );
    if ( status == l_True )
    {
        // we proved that there is a sat assignment with literal (iLitFail) having polarity as in pLits
        // continue solving recursively
        if ( iLitFail + 1 < nLits )
            status = sat_solver_solve_lexsat( s, pLits + iLitFail + 1, nLits - iLitFail - 1 );
    }
    else if ( status == l_False )
    {
        // we proved that there is no assignment with iLitFail having polarity as in pLits
        assert( Abc_LitIsCompl(pLits[iLitFail]) ); // literal is 0 
        // (this assert may fail only if there is a sat assignment smaller than one originally given in pLits)
        // now we flip this literal (make it 1), change the last assumption
        // and contiue looking for the 000...0-assignment of other literals
        sat_solver_pop( s );
        pLits[iLitFail] = Abc_LitNot(pLits[iLitFail]);
        if ( !sat_solver_push(s, pLits[iLitFail]) )
            printf( "sat_solver_solve_lexsat(): A satisfying assignment should exist.\n" ); // because we know that the problem is satisfiable
        // update other literals to be 000...0
        for ( i = iLitFail + 1; i < nLits; i++ )
            pLits[i] = Abc_LitNot( Abc_LitRegular(pLits[i]) );
        // continue solving recursively
        if ( iLitFail + 1 < nLits )
            status = sat_solver_solve_lexsat( s, pLits + iLitFail + 1, nLits - iLitFail - 1 );
        else
            status = l_True;
    }
    // undo the assumptions
    for ( i = iLitFail; i >= 0; i-- )
        sat_solver_pop( s );
    return status;
}

2187 2188 2189 2190 2191 2192
// This procedure is called on a set of assumptions to minimize their number.
// The procedure relies on the fact that the current set of assumptions is UNSAT.  
// It receives and returns SAT solver without assumptions. It returns the number 
// of assumptions after minimization. The set of assumptions is returned in pLits.
int sat_solver_minimize_assumptions( sat_solver* s, int * pLits, int nLits, int nConfLimit )
{
2193
    int i, k, nLitsL, nLitsR, nResL, nResR, status;
2194 2195 2196
    if ( nLits == 1 )
    {
        // since the problem is UNSAT, we will try to solve it without assuming the last literal
2197
        // if the result is UNSAT, the last literal can be dropped; otherwise, it is needed
2198
        if ( nConfLimit ) s->nConfLimit = s->stats.conflicts + nConfLimit;
2199
        status = sat_solver_solve_internal( s );
2200
        //printf( "%c", status == l_False ? 'u' : 's' );
2201 2202 2203
        return (int)(status != l_False); // return 1 if the problem is not UNSAT
    }
    assert( nLits >= 2 );
2204 2205
    nLitsL = nLits / 2;
    nLitsR = nLits - nLitsL;
2206 2207 2208 2209 2210 2211 2212 2213
    // assume the left lits
    for ( i = 0; i < nLitsL; i++ )
        if ( !sat_solver_push(s, pLits[i]) )
        {
            for ( k = i; k >= 0; k-- )
                sat_solver_pop(s);
            return sat_solver_minimize_assumptions( s, pLits, i+1, nConfLimit );
        }
2214 2215 2216 2217 2218 2219 2220 2221 2222
    // solve with these assumptions
    if ( nConfLimit ) s->nConfLimit = s->stats.conflicts + nConfLimit;
    status = sat_solver_solve_internal( s );
    if ( status == l_False ) // these are enough
    {
        for ( i = 0; i < nLitsL; i++ )
            sat_solver_pop(s);
        return sat_solver_minimize_assumptions( s, pLits, nLitsL, nConfLimit );
    }
2223
    // solve for the right lits
2224
    nResL = nLitsR == 1 ? 1 : sat_solver_minimize_assumptions( s, pLits + nLitsL, nLitsR, nConfLimit );
2225 2226 2227
    for ( i = 0; i < nLitsL; i++ )
        sat_solver_pop(s);
    // swap literals
2228
//    assert( nResL <= nLitsL );
2229 2230 2231 2232 2233
//    for ( i = 0; i < nResL; i++ )
//        ABC_SWAP( int, pLits[i], pLits[nLitsL+i] );
    veci_resize( &s->temp_clause, 0 );
    for ( i = 0; i < nLitsL; i++ )
        veci_push( &s->temp_clause, pLits[i] );
2234
    for ( i = 0; i < nResL; i++ )
2235 2236 2237
        pLits[i] = pLits[nLitsL+i];
    for ( i = 0; i < nLitsL; i++ )
        pLits[nResL+i] = veci_begin(&s->temp_clause)[i];
2238 2239 2240 2241 2242 2243 2244 2245
    // assume the right lits
    for ( i = 0; i < nResL; i++ )
        if ( !sat_solver_push(s, pLits[i]) )
        {
            for ( k = i; k >= 0; k-- )
                sat_solver_pop(s);
            return sat_solver_minimize_assumptions( s, pLits, i+1, nConfLimit );
        }
2246 2247 2248 2249 2250 2251 2252 2253 2254
    // solve with these assumptions
    if ( nConfLimit ) s->nConfLimit = s->stats.conflicts + nConfLimit;
    status = sat_solver_solve_internal( s );
    if ( status == l_False ) // these are enough
    {
        for ( i = 0; i < nResL; i++ )
            sat_solver_pop(s);
        return nResL;
    }
2255
    // solve for the left lits
2256
    nResR = nLitsL == 1 ? 1 : sat_solver_minimize_assumptions( s, pLits + nResL, nLitsL, nConfLimit );
2257 2258 2259 2260 2261
    for ( i = 0; i < nResL; i++ )
        sat_solver_pop(s);
    return nResL + nResR;
}

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
// This is a specialized version of the above procedure with several custom changes:
// - makes sure that at least one of the marked literals is preserved in the clause
// - sets literals to zero when they do not have to be used
// - sets literals to zero for disproved variables
int sat_solver_minimize_assumptions2( sat_solver* s, int * pLits, int nLits, int nConfLimit )
{
    int i, k, nLitsL, nLitsR, nResL, nResR;
    if ( nLits == 1 )
    {
        // since the problem is UNSAT, we will try to solve it without assuming the last literal
        // if the result is UNSAT, the last literal can be dropped; otherwise, it is needed
        int RetValue = 1, LitNot = Abc_LitNot(pLits[0]);
        int status = l_False;
        int Temp = s->nConfLimit; 
        s->nConfLimit = nConfLimit;

        RetValue = sat_solver_push( s, LitNot ); assert( RetValue );
        status = sat_solver_solve_internal( s );
        sat_solver_pop( s );

        // if the problem is UNSAT, add clause
        if ( status == l_False )
        {
            RetValue = sat_solver_addclause( s, &LitNot, &LitNot+1 );
            assert( RetValue );
        }

        s->nConfLimit = Temp;
        return (int)(status != l_False); // return 1 if the problem is not UNSAT
    }
    assert( nLits >= 2 );
    nLitsL = nLits / 2;
    nLitsR = nLits - nLitsL;
    // assume the left lits
    for ( i = 0; i < nLitsL; i++ )
        if ( !sat_solver_push(s, pLits[i]) )
        {
            for ( k = i; k >= 0; k-- )
                sat_solver_pop(s);

            // add clauses for these literal
            for ( k = i+1; k > nLitsL; k++ )
            {
                int LitNot = Abc_LitNot(pLits[i]);
                int RetValue = sat_solver_addclause( s, &LitNot, &LitNot+1 );
                assert( RetValue );
            }

            return sat_solver_minimize_assumptions2( s, pLits, i+1, nConfLimit );
        }
    // solve for the right lits
    nResL = sat_solver_minimize_assumptions2( s, pLits + nLitsL, nLitsR, nConfLimit );
    for ( i = 0; i < nLitsL; i++ )
        sat_solver_pop(s);
    // swap literals
//    assert( nResL <= nLitsL );
    veci_resize( &s->temp_clause, 0 );
    for ( i = 0; i < nLitsL; i++ )
        veci_push( &s->temp_clause, pLits[i] );
    for ( i = 0; i < nResL; i++ )
        pLits[i] = pLits[nLitsL+i];
    for ( i = 0; i < nLitsL; i++ )
        pLits[nResL+i] = veci_begin(&s->temp_clause)[i];
    // assume the right lits
    for ( i = 0; i < nResL; i++ )
        if ( !sat_solver_push(s, pLits[i]) )
        {
            for ( k = i; k >= 0; k-- )
                sat_solver_pop(s);

            // add clauses for these literal
            for ( k = i+1; k > nResL; k++ )
            {
                int LitNot = Abc_LitNot(pLits[i]);
                int RetValue = sat_solver_addclause( s, &LitNot, &LitNot+1 );
                assert( RetValue );
            }

            return sat_solver_minimize_assumptions2( s, pLits, i+1, nConfLimit );
        }
    // solve for the left lits
    nResR = sat_solver_minimize_assumptions2( s, pLits + nResL, nLitsL, nConfLimit );
    for ( i = 0; i < nResL; i++ )
        sat_solver_pop(s);
    return nResL + nResR;
}


Alan Mishchenko committed
2350 2351 2352 2353 2354 2355 2356 2357 2358

int sat_solver_nvars(sat_solver* s)
{
    return s->size;
}


int sat_solver_nclauses(sat_solver* s)
{
2359
    return s->stats.clauses;
Alan Mishchenko committed
2360 2361 2362 2363 2364 2365 2366 2367 2368
}


int sat_solver_nconflicts(sat_solver* s)
{
    return (int)s->stats.conflicts;
}

//=================================================================================================
Alan Mishchenko committed
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
// Clause storage functions:

void sat_solver_store_alloc( sat_solver * s )
{
    assert( s->pStore == NULL );
    s->pStore = Sto_ManAlloc();
}

void sat_solver_store_write( sat_solver * s, char * pFileName )
{
2379
    if ( s->pStore ) Sto_ManDumpClauses( (Sto_Man_t *)s->pStore, pFileName );
Alan Mishchenko committed
2380 2381 2382 2383
}

void sat_solver_store_free( sat_solver * s )
{
2384
    if ( s->pStore ) Sto_ManFree( (Sto_Man_t *)s->pStore );
Alan Mishchenko committed
2385 2386
    s->pStore = NULL;
}
Alan Mishchenko committed
2387 2388 2389

int sat_solver_store_change_last( sat_solver * s )
{
2390
    if ( s->pStore ) return Sto_ManChangeLastClause( (Sto_Man_t *)s->pStore );
Alan Mishchenko committed
2391 2392
    return -1;
}
Alan Mishchenko committed
2393
 
Alan Mishchenko committed
2394 2395
void sat_solver_store_mark_roots( sat_solver * s )
{
2396
    if ( s->pStore ) Sto_ManMarkRoots( (Sto_Man_t *)s->pStore );
Alan Mishchenko committed
2397 2398 2399 2400
}

void sat_solver_store_mark_clauses_a( sat_solver * s )
{
2401
    if ( s->pStore ) Sto_ManMarkClausesA( (Sto_Man_t *)s->pStore );
Alan Mishchenko committed
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
}

void * sat_solver_store_release( sat_solver * s )
{
    void * pTemp;
    if ( s->pStore == NULL )
        return NULL;
    pTemp = s->pStore;
    s->pStore = NULL;
    return pTemp;
}

Alan Mishchenko committed
2414

2415 2416
ABC_NAMESPACE_IMPL_END