Commit ff88edd6 by Alan Mishchenko

Adding alternative generalization procedure.

parent 160d1311
......@@ -288,7 +288,7 @@ int * Pdr_ManSortByPriority( Pdr_Man_t * p, Pdr_Set_t * pCube )
best_i = i;
for ( j = i+1; j < nSize; j++ )
// if ( pArray[j] < pArray[best_i] )
if ( pPrios[pCube->Lits[pArray[j]]>>1] < pPrios[pCube->Lits[pArray[best_i]]>>1] )
if ( pPrios[pCube->Lits[pArray[j]]>>1] < pPrios[pCube->Lits[pArray[best_i]]>>1] ) // list lower priority first (these will be removed first)
best_i = j;
temp = pArray[i];
pArray[i] = pArray[best_i];
......@@ -488,7 +488,7 @@ int ZPdr_ManDown( Pdr_Man_t * p, int k, Pdr_Set_t ** ppCube, Pdr_Set_t * pPred,
/**Function*************************************************************
Synopsis [Specialized sorting of flops based on cost.]
Synopsis [Specialized sorting of flops based on priority.]
Description []
......@@ -497,14 +497,14 @@ int ZPdr_ManDown( Pdr_Man_t * p, int k, Pdr_Set_t ** ppCube, Pdr_Set_t * pPred,
SeeAlso []
***********************************************************************/
static inline int Vec_IntSelectSortCostReverseLit( int * pArray, int nSize, Vec_Int_t * vCosts )
static inline int Vec_IntSelectSortPrioReverseLit( int * pArray, int nSize, Vec_Int_t * vPrios )
{
int i, j, best_i;
for ( i = 0; i < nSize-1; i++ )
{
best_i = i;
for ( j = i+1; j < nSize; j++ )
if ( Vec_IntEntry(vCosts, Abc_Lit2Var(pArray[j])) > Vec_IntEntry(vCosts, Abc_Lit2Var(pArray[best_i])) )
if ( Vec_IntEntry(vPrios, Abc_Lit2Var(pArray[j])) > Vec_IntEntry(vPrios, Abc_Lit2Var(pArray[best_i])) ) // prefer higher priority
best_i = j;
ABC_SWAP( int, pArray[i], pArray[best_i] );
}
......@@ -526,7 +526,7 @@ int Pdr_ManGeneralize2( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** pp
{
int fUseMinAss = 0;
sat_solver * pSat = Pdr_ManFetchSolver( p, k );
int Order = Vec_IntSelectSortCostReverseLit( pCube->Lits, pCube->nLits, p->vPrio );
int Order = Vec_IntSelectSortPrioReverseLit( pCube->Lits, pCube->nLits, p->vPrio );
Vec_Int_t * vLits1 = Pdr_ManCubeToLits( p, k, pCube, 1, 0 );
int RetValue, Count = 0, iLit, Lits[2], nLits = Vec_IntSize( vLits1 );
// create free variables
......@@ -541,7 +541,7 @@ int Pdr_ManGeneralize2( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** pp
// if there is only one positive literal, put it in front and always assume
if ( fUseMinAss )
{
for ( i = 0; i < pCube->nLits; i++ )
for ( i = 0; i < pCube->nLits && Count < 2; i++ )
Count += !Abc_LitIsCompl(pCube->Lits[i]);
if ( Count == 1 )
{
......@@ -549,7 +549,10 @@ int Pdr_ManGeneralize2( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** pp
if ( !Abc_LitIsCompl(pCube->Lits[i]) )
break;
assert( i < pCube->nLits );
ABC_SWAP( int, pCube->Lits[0], pCube->Lits[i] );
iLit = pCube->Lits[i];
for ( ; i > 0; i-- )
pCube->Lits[i] = pCube->Lits[i-1];
pCube->Lits[0] = iLit;
}
}
// add clauses for the additional AND-gates
......@@ -576,35 +579,51 @@ int Pdr_ManGeneralize2( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** pp
// perform minimization
if ( fUseMinAss )
{
if ( Count == 1 )
if ( Count == 1 ) // always assume the only positive literal
{
if ( !sat_solver_push(pSat, Vec_IntEntry(vLits1, 0)) ) // UNSAT after assuming the first (mandatory) literal
if ( !sat_solver_push(pSat, Vec_IntEntry(vLits1, 0)) ) // UNSAT with the first (mandatory) literal
nLits = 1;
else
nLits = 1 + sat_solver_minimize_assumptions( pSat, Vec_IntArray(vLits1)+1, nLits-1, p->pPars->nConfLimit );
nLits = 1 + sat_solver_minimize_assumptions2( pSat, Vec_IntArray(vLits1)+1, nLits-1, p->pPars->nConfLimit );
sat_solver_pop(pSat); // unassume the first literal
}
else
nLits = sat_solver_minimize_assumptions( pSat, Vec_IntArray(vLits1), nLits, p->pPars->nConfLimit );
nLits = sat_solver_minimize_assumptions2( pSat, Vec_IntArray(vLits1), nLits, p->pPars->nConfLimit );
Vec_IntShrink( vLits1, nLits );
}
else
{
int k, Entry;
// try removing one literal at a time in the old-fashioned way
int k, Entry;
Vec_Int_t * vTemp = Vec_IntAlloc( nLits );
for ( i = 0; i < nLits; i++ )
for ( i = nLits - 1; i >= 0; i-- )
{
// check init state
if ( Pdr_SetIsInit(pCube, i) )
continue;
// if we are about to remove a positive lit, make sure at least one positive lit remains
if ( !Abc_LitIsCompl(Vec_IntEntry(vLits1, i)) )
{
Vec_IntForEachEntry( vLits1, iLit, k )
if ( iLit != -1 && k != i && !Abc_LitIsCompl(iLit) )
break;
if ( k == Vec_IntSize(vLits1) ) // no other positive literals, except the i-th one
continue;
}
// load remaining literals
Vec_IntClear( vTemp );
Vec_IntForEachEntry( vLits1, Entry, k )
if ( Entry != -1 && k != i )
Vec_IntPush( vTemp, Entry );
else if ( Entry != -1 ) // assume opposite literal
Vec_IntPush( vTemp, Abc_LitNot(Entry) );
// solve with assumptions
RetValue = sat_solver_solve( pSat, Vec_IntArray(vTemp), Vec_IntLimit(vTemp), p->pPars->nConfLimit, 0, 0, 0 );
// commit the literal
if ( RetValue == l_False )
{
int LitNot = Abc_LitNot(Vec_IntEntry(vLits1, i));
int RetValue = sat_solver_addclause( pSat, &LitNot, &LitNot+1 );
assert( RetValue );
}
// update the clause
if ( RetValue == l_False )
Vec_IntWriteEntry( vLits1, i, -1 );
}
......@@ -625,7 +644,7 @@ int Pdr_ManGeneralize2( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** pp
Vec_IntForEachEntry( vLits1, iLit, i )
if ( !Abc_LitIsCompl(iLit) )
break;
if ( i == Vec_IntSize(vLits1) )
if ( i == Vec_IntSize(vLits1) ) // has no positive literals
{
// find positive lit in the cube
for ( i = 0; i < pCube->nLits; i++ )
......@@ -633,7 +652,10 @@ int Pdr_ManGeneralize2( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** pp
break;
assert( i < pCube->nLits );
Vec_IntPush( vLits1, pCube->Lits[i] );
// printf( "-" );
}
// else
// printf( "+" );
}
// create a subset cube
*ppCubeMin = Pdr_SetCreateSubset( pCube, Vec_IntArray(vLits1), Vec_IntSize(vLits1) );
......@@ -664,7 +686,7 @@ int Pdr_ManGeneralize( Pdr_Man_t * p, int k, Pdr_Set_t * pCube, Pdr_Set_t ** ppP
// if there is no induction, return
*ppCubeMin = NULL;
if ( p->pPars->fFlopOrder )
Vec_IntSelectSortCostReverseLit( pCube->Lits, pCube->nLits, p->vPrio );
Vec_IntSelectSortPrioReverseLit( pCube->Lits, pCube->nLits, p->vPrio );
RetValue = Pdr_ManCheckCube( p, k, pCube, ppPred, p->pPars->nConfLimit, 0, 1 );
if ( p->pPars->fFlopOrder )
Vec_IntSelectSort( pCube->Lits, pCube->nLits );
......
......@@ -2187,8 +2187,8 @@ int sat_solver_minimize_assumptions( sat_solver* s, int * pLits, int nLits, int
return (int)(status != l_False); // return 1 if the problem is not UNSAT
}
assert( nLits >= 2 );
nLitsR = nLits / 2;
nLitsL = nLits - nLitsR;
nLitsL = nLits / 2;
nLitsR = nLits - nLitsL;
// assume the left lits
for ( i = 0; i < nLitsL; i++ )
if ( !sat_solver_push(s, pLits[i]) )
......@@ -2202,7 +2202,7 @@ int sat_solver_minimize_assumptions( sat_solver* s, int * pLits, int nLits, int
for ( i = 0; i < nLitsL; i++ )
sat_solver_pop(s);
// swap literals
assert( nResL <= nLitsL );
// assert( nResL <= nLitsL );
// for ( i = 0; i < nResL; i++ )
// ABC_SWAP( int, pLits[i], pLits[nLitsL+i] );
veci_resize( &s->temp_clause, 0 );
......@@ -2227,6 +2227,94 @@ int sat_solver_minimize_assumptions( sat_solver* s, int * pLits, int nLits, int
return nResL + nResR;
}
// This is a specialized version of the above procedure with several custom changes:
// - makes sure that at least one of the marked literals is preserved in the clause
// - sets literals to zero when they do not have to be used
// - sets literals to zero for disproved variables
int sat_solver_minimize_assumptions2( sat_solver* s, int * pLits, int nLits, int nConfLimit )
{
int i, k, nLitsL, nLitsR, nResL, nResR;
if ( nLits == 1 )
{
// since the problem is UNSAT, we will try to solve it without assuming the last literal
// if the result is UNSAT, the last literal can be dropped; otherwise, it is needed
int RetValue = 1, LitNot = Abc_LitNot(pLits[0]);
int status = l_False;
int Temp = s->nConfLimit;
s->nConfLimit = nConfLimit;
RetValue = sat_solver_push( s, LitNot ); assert( RetValue );
status = sat_solver_solve_internal( s );
sat_solver_pop( s );
// if the problem is UNSAT, add clause
if ( status == l_False )
{
RetValue = sat_solver_addclause( s, &LitNot, &LitNot+1 );
assert( RetValue );
}
s->nConfLimit = Temp;
return (int)(status != l_False); // return 1 if the problem is not UNSAT
}
assert( nLits >= 2 );
nLitsL = nLits / 2;
nLitsR = nLits - nLitsL;
// assume the left lits
for ( i = 0; i < nLitsL; i++ )
if ( !sat_solver_push(s, pLits[i]) )
{
for ( k = i; k >= 0; k-- )
sat_solver_pop(s);
// add clauses for these literal
for ( k = i+1; k > nLitsL; k++ )
{
int LitNot = Abc_LitNot(pLits[i]);
int RetValue = sat_solver_addclause( s, &LitNot, &LitNot+1 );
assert( RetValue );
}
return sat_solver_minimize_assumptions2( s, pLits, i+1, nConfLimit );
}
// solve for the right lits
nResL = sat_solver_minimize_assumptions2( s, pLits + nLitsL, nLitsR, nConfLimit );
for ( i = 0; i < nLitsL; i++ )
sat_solver_pop(s);
// swap literals
// assert( nResL <= nLitsL );
veci_resize( &s->temp_clause, 0 );
for ( i = 0; i < nLitsL; i++ )
veci_push( &s->temp_clause, pLits[i] );
for ( i = 0; i < nResL; i++ )
pLits[i] = pLits[nLitsL+i];
for ( i = 0; i < nLitsL; i++ )
pLits[nResL+i] = veci_begin(&s->temp_clause)[i];
// assume the right lits
for ( i = 0; i < nResL; i++ )
if ( !sat_solver_push(s, pLits[i]) )
{
for ( k = i; k >= 0; k-- )
sat_solver_pop(s);
// add clauses for these literal
for ( k = i+1; k > nResL; k++ )
{
int LitNot = Abc_LitNot(pLits[i]);
int RetValue = sat_solver_addclause( s, &LitNot, &LitNot+1 );
assert( RetValue );
}
return sat_solver_minimize_assumptions2( s, pLits, i+1, nConfLimit );
}
// solve for the left lits
nResR = sat_solver_minimize_assumptions2( s, pLits + nResL, nLitsL, nConfLimit );
for ( i = 0; i < nResL; i++ )
sat_solver_pop(s);
return nResL + nResR;
}
int sat_solver_nvars(sat_solver* s)
{
......
......@@ -51,6 +51,7 @@ extern int sat_solver_solve(sat_solver* s, lit* begin, lit* end, ABC_INT
extern int sat_solver_solve_internal(sat_solver* s);
extern int sat_solver_solve_lexsat(sat_solver* s, int * pLits, int nLits);
extern int sat_solver_minimize_assumptions( sat_solver* s, int * pLits, int nLits, int nConfLimit );
extern int sat_solver_minimize_assumptions2( sat_solver* s, int * pLits, int nLits, int nConfLimit );
extern int sat_solver_push(sat_solver* s, int p);
extern void sat_solver_pop(sat_solver* s);
extern void sat_solver_set_resource_limits(sat_solver* s, ABC_INT64_T nConfLimit, ABC_INT64_T nInsLimit, ABC_INT64_T nConfLimitGlobal, ABC_INT64_T nInsLimitGlobal);
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment