Commit bb82e09f by Jianyu Huang Committed by Tianqi Chen

Add AVX512VNNI support for TVM (#3388)

parent eb220d92
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition
import tvm
import numpy as np
from topi.x86.tensor_intrin import dot_16x1x16_int8_int8_int32_vnni
from topi.x86.tensor_intrin import dot_16x1x16_int8_int8_int32
from nose.tools import nottest
@nottest
def test_fc_int8_acc32():
m = 1024
n = 1024
k = 1024
X = tvm.placeholder((m, k), name='X', dtype="uint8")
W = tvm.placeholder((n, k), name='W', dtype="int8")
peak = 280
print("Peak {} Gops/s".format(peak))
memory_ops = m * k + n * k + 2 * m * n
gops_per_mm = 2 * m * n * k
# For LLVM < 8.0, it shows "'cascadelake' is not a recognized processor for this target
# (ignoring processor)" error with the following setting. After LLVM 8.0 is enabled in the
# test, we should use cascadelake setting.
def verify(target="llvm -mcpu=cascadelake"):
if not tvm.module.enabled(target):
print("skip because %s is not enabled..." % target)
return
ctx = tvm.context(target, 0)
pc = dot_16x1x16_int8_int8_int32_vnni()
ak = tvm.reduce_axis((0, k), name='k')
packedW = tvm.placeholder(
(n // 16, 16 * (k // 4), 4), name='packedW', dtype="int8")
t_fc = tvm.compute((m, n), lambda i, j: tvm.sum(X[i, ak].astype(
"int32") * packedW[j / 16, (ak / 4) * 16 + j % 16, ak % 4].astype("int32"), axis=ak), name="F")
t_sch = tvm.create_schedule(t_fc.op)
a_x, a_y = t_fc.op.axis
a_k, = t_fc.op.reduce_axis
a_yo, a_yi = t_sch[t_fc].split(a_y, factor=16)
a_xo, a_xi = t_sch[t_fc].split(a_x, factor=32)
a_ko, a_ki = t_sch[t_fc].split(a_k, factor=4)
a_koo, a_koi = t_sch[t_fc].split(a_ko, factor=4)
t_sch[t_fc].reorder(a_yo, a_xo, a_xi, a_koo, a_koi, a_yi, a_ki)
t_sch[t_fc].unroll(a_koi)
t_sch[t_fc].tensorize(a_yi, pc)
t_func = tvm.build(t_sch, [X, packedW, t_fc], target, name="intrinsic")
t_evaluator = t_func.time_evaluator(t_func.entry_name, ctx, number=10)
# generate the plain data
a_ = np.random.uniform(1, 10, size=(m, k)).astype("uint8")
b_ = np.random.uniform(1, 10, size=(n, k)).astype("int8")
packW = np.random.uniform(1, 10, size=(
n // 16, 16 * (k // 4), 4)).astype("int8")
# This occurs in pre_compute stage
for r_idx in range(n // 16):
for s_idx in range(16 * (k // 4)):
for t_idx in range(4):
packW[r_idx][s_idx][t_idx] = b_[r_idx * 16 + s_idx %
16][(s_idx // 16) * 4 + t_idx]
x = tvm.nd.array(a_, ctx)
w = tvm.nd.array(packW, ctx)
y = tvm.nd.array(np.zeros((m, n), dtype="int32"), ctx)
result = t_evaluator(x, w, y)
gops_per_sec = gops_per_mm / result.mean / 1e9
# verify the correctness
tvm.testing.assert_allclose(y.asnumpy(), np.dot(a_, b_.T), rtol=0)
print('Tensorization: running time: {:.3f} ms, {:.2f} Gops/s, effiency: {:.2f}'.format(
result.mean * 1000, gops_per_sec, gops_per_sec / peak))
t_func.export_library("tensorize_acc32.o")
verify()
if __name__ == "__main__":
# The test requires Cascade Lake and newer Intel machines to generate the
# correct AVX512 VNNI instruction. So, disabling the test.
# test_fc_int8_acc32()
pass
...@@ -21,7 +21,7 @@ import tvm ...@@ -21,7 +21,7 @@ import tvm
def dot_16x1x16_int8_int8_int32(): def dot_16x1x16_int8_int8_int32():
""" """
Int8 dot product by every 4 elements using AVX2 Skylake instructions. Int8 dot product by every 4 elements using AVX512 Skylake instructions.
This function takes two arrays of int8 datatype -- data[4] and This function takes two arrays of int8 datatype -- data[4] and
kernel[16][4] -- and computes a dot product of data[4] with every kernel[16][4] -- and computes a dot product of data[4] with every
4 elements of kernels, resulting in output[16] of int32 datatype. 4 elements of kernels, resulting in output[16] of int32 datatype.
...@@ -30,9 +30,9 @@ def dot_16x1x16_int8_int8_int32(): ...@@ -30,9 +30,9 @@ def dot_16x1x16_int8_int8_int32():
void dot_16x1x16_int8_int8_int32(int8 data[4], int8 kernel[16][4], void dot_16x1x16_int8_int8_int32(int8 data[4], int8 kernel[16][4],
int32 output[16]){ int32 output[16]){
for (int i = 0; i < 16; i++){ for (int i = 0; i < 16; i++){
out[i] = 0; output[i] = 0;
for (int k = 0; k < 4; k++){ for (int k = 0; k < 4; k++){
out[i] += data[k] * kernel[i][k] output[i] += data[k] * kernel[i][k]
} }
} }
} }
...@@ -102,7 +102,7 @@ def dot_16x1x16_int8_int8_int32(): ...@@ -102,7 +102,7 @@ def dot_16x1x16_int8_int8_int32():
def dot_16x1x16_int8_int8_int16(): def dot_16x1x16_int8_int8_int16():
""" """
Int8 dot product by every 2 elements using AVX2 Skylake instructions. Int8 dot product by every 2 elements using AVX512 Skylake instructions.
This function takes two arrays of int8 datatype -- data[2] and This function takes two arrays of int8 datatype -- data[2] and
kernel[4][32][2] -- and computes a dot product of data[2] with every kernel[4][32][2] -- and computes a dot product of data[2] with every
2 elements of kernels, resulting in output[4][32] of int16 datatype. 2 elements of kernels, resulting in output[4][32] of int16 datatype.
...@@ -110,30 +110,33 @@ def dot_16x1x16_int8_int8_int16(): ...@@ -110,30 +110,33 @@ def dot_16x1x16_int8_int8_int16():
.. code-block:: c .. code-block:: c
void dot_16x1x16_int8_int8_int16(int8 data[2], int8 kernel[32*4][2], void dot_16x1x16_int8_int8_int16(int8 data[2], int8 kernel[32*4][2],
int16 output[32*4]){ int16 output[32*4]){
for (int i = 0; i< 4; i++){ for (int i = 0; i< 4; i++){
for (int j = 0; j < 32; j++){ for (int j = 0; j < 32; j++){
out[i][i] = 0; output[i][i] = 0;
for (int k = 0; k < 2; k++){ for (int k = 0; k < 2; k++){
out[i][j][k] += data[k] * kernel[i][j][k] output[i][j][k] += data[k] * kernel[i][j][k]
} }
} }
}
} }
}
Physically, the kernel array sits in four AVX512 vector registers and Physically, the kernel array sits in four AVX512 vector registers and
the data[2] is broadcasted to another AVX512 vector register. This the data[2] is broadcasted to another AVX512 vector register. This
function returns a TensorIntrin that can be used to tensorize function returns a TensorIntrin that can be used to tensorize
a schedule. a schedule.
Returns Returns
------- -------
intrin : TensorIntrin intrin : TensorIntrin
The Skylake int8 TensorIntrin that can be used in tensorizing schedule The Skylake int8 TensorIntrin that can be used in tensorizing schedule
""" """
num_int8_elements = 2 # 2 int8 elements in int32 int16_lanes = 4*32 # 4*32 int32 lanes in 4 AVX512 vector registers
num_int8_elements = 2 # 2 int8 elements in int16
data = tvm.placeholder((num_int8_elements,), dtype='uint8', name='data') data = tvm.placeholder((num_int8_elements,), dtype='uint8', name='data')
kernel = tvm.placeholder((128, num_int8_elements), dtype='int8', name='kernel') kernel = tvm.placeholder((int16_lanes, num_int8_elements), dtype='int8', name='kernel')
k = tvm.reduce_axis((0, num_int8_elements), name='k') k = tvm.reduce_axis((0, num_int8_elements), name='k')
C = tvm.compute((128, ), C = tvm.compute((int16_lanes, ),
lambda i: tvm.sum(data[k].astype('int16') * lambda i: tvm.sum(data[k].astype('int16') *
kernel[i, k].astype('int16'), kernel[i, k].astype('int16'),
axis=k), axis=k),
...@@ -177,3 +180,98 @@ def dot_16x1x16_int8_int8_int16(): ...@@ -177,3 +180,98 @@ def dot_16x1x16_int8_int8_int16():
with tvm.build_config(offset_factor=1, partition_const_loop=True): with tvm.build_config(offset_factor=1, partition_const_loop=True):
return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer}) return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer})
def dot_16x1x16_int8_int8_int32_vnni():
"""
Int8 dot product by every 4 elements using AVX512VNNI Cascade Lake instructions.
This function takes two arrays of int8 datatype -- data[4] and
kernel[16][4] -- and computes a dot product of data[4] with every
4 elements of kernels, resulting in output[16] of int32 datatype.
The pseudo code is as follows.
.. code-block:: c
void dot_16x1x16_int8_int8_int32_vnni(int8 data[4], int8 kernel[16][4],
int32 output[16]){
for (int i = 0; i < 16; i++){
output[i] = 0;
for (int k = 0; k < 4; k++){
output[i] += data[k] * kernel[i][k]
}
}
}
Physically, the kernel array sits in an AVX512 vector register and
the data[4] is broadcasted to another AVX512 vector register. This
function returns a TensorIntrin that can be used to tensorize
a schedule.
Returns
-------
intrin : TensorIntrin
The Cascade Lake int8 TensorIntrin that can be used in tensorizing schedule
"""
int32_lanes = 16 # 16 int32 lanes in AVX512
num_int8_elements = 4 # 4 int8 elements in int32
data = tvm.placeholder((num_int8_elements,), dtype='uint8', name='data')
kernel = tvm.placeholder((int32_lanes, num_int8_elements), dtype='int8', name='kernel')
k = tvm.reduce_axis((0, num_int8_elements), name='k')
C = tvm.compute((int32_lanes,),
lambda i: tvm.sum(data[k].astype('int32') *
kernel[i, k].astype('int32'),
axis=k),
name="C")
a_buffer = tvm.decl_buffer(data.shape, dtype='uint8', name="a_buffer",
offset_factor=1,
strides=[1])
b_buffer = tvm.decl_buffer(kernel.shape, dtype='int8', name="b_buffer",
offset_factor=1,
strides=[tvm.var('ldw'), 1])
def _intrin_func(ins, outs):
def _instr(index):
ib = tvm.ir_builder.create()
if index == 1:
ib.emit(outs[0].vstore(0, tvm.const(0, 'int32x16')))
return ib.get()
a_int8 = ins[0].vload([0], "uint8x4")
re_int32 = tvm.call_pure_intrin('int32', 'reinterpret', a_int8)
vec_ai32 = re_int32.astype('int32x16')
vec_b = ins[1].vload([0, 0], "int8x64")
vnni_inst_name = 'llvm.x86.avx512.vpdpbusd.512'
llvm_id = tvm.codegen.llvm_lookup_intrinsic_id(vnni_inst_name)
if llvm_id != 0: # VNNI is available for current LLVM version
vec_bi32 = tvm.call_pure_intrin('int32x16', 'reinterpret', vec_b)
vec_zero = tvm.const(0, "int32x16")
quad_reduction = tvm.call_llvm_intrin('int32x16',
'llvm.x86.avx512.vpdpbusd.512',
tvm.const(0, 'uint32'),
vec_zero,
vec_ai32, vec_bi32)
else: # Fall back to the normal AVX512
vec_a = tvm.call_pure_intrin('int8x64', 'reinterpret', vec_ai32)
vec_one = tvm.const(1, "int16x32")
pair_reduction = tvm.call_llvm_intrin('int16x32',
'llvm.x86.avx512.pmaddubs.w.512',
tvm.const(0, 'uint32'),
vec_a, vec_b)
quad_reduction = tvm.call_llvm_intrin('int32x16',
'llvm.x86.avx512.pmaddw.d.512',
tvm.const(0, 'uint32'),
pair_reduction, vec_one)
if index == 0:
ib.emit(outs[0].vstore(0, quad_reduction))
else:
ib.emit(outs[0].vstore(0, quad_reduction + outs[0].vload([0], 'int32x16')))
return ib.get()
# body, reset, update
return _instr(0), _instr(1), _instr(2)
with tvm.build_config(offset_factor=1, partition_const_loop=True):
return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer})
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment