Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
bb82e09f
Commit
bb82e09f
authored
Sep 13, 2019
by
Jianyu Huang
Committed by
Tianqi Chen
Sep 13, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add AVX512VNNI support for TVM (#3388)
parent
eb220d92
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
214 additions
and
11 deletions
+214
-11
tests/python/contrib/test_gemm_acc32_vnni.py
+105
-0
topi/python/topi/x86/tensor_intrin.py
+109
-11
No files found.
tests/python/contrib/test_gemm_acc32_vnni.py
0 → 100644
View file @
bb82e09f
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition
import
tvm
import
numpy
as
np
from
topi.x86.tensor_intrin
import
dot_16x1x16_int8_int8_int32_vnni
from
topi.x86.tensor_intrin
import
dot_16x1x16_int8_int8_int32
from
nose.tools
import
nottest
@nottest
def
test_fc_int8_acc32
():
m
=
1024
n
=
1024
k
=
1024
X
=
tvm
.
placeholder
((
m
,
k
),
name
=
'X'
,
dtype
=
"uint8"
)
W
=
tvm
.
placeholder
((
n
,
k
),
name
=
'W'
,
dtype
=
"int8"
)
peak
=
280
print
(
"Peak {} Gops/s"
.
format
(
peak
))
memory_ops
=
m
*
k
+
n
*
k
+
2
*
m
*
n
gops_per_mm
=
2
*
m
*
n
*
k
# For LLVM < 8.0, it shows "'cascadelake' is not a recognized processor for this target
# (ignoring processor)" error with the following setting. After LLVM 8.0 is enabled in the
# test, we should use cascadelake setting.
def
verify
(
target
=
"llvm -mcpu=cascadelake"
):
if
not
tvm
.
module
.
enabled
(
target
):
print
(
"skip because
%
s is not enabled..."
%
target
)
return
ctx
=
tvm
.
context
(
target
,
0
)
pc
=
dot_16x1x16_int8_int8_int32_vnni
()
ak
=
tvm
.
reduce_axis
((
0
,
k
),
name
=
'k'
)
packedW
=
tvm
.
placeholder
(
(
n
//
16
,
16
*
(
k
//
4
),
4
),
name
=
'packedW'
,
dtype
=
"int8"
)
t_fc
=
tvm
.
compute
((
m
,
n
),
lambda
i
,
j
:
tvm
.
sum
(
X
[
i
,
ak
]
.
astype
(
"int32"
)
*
packedW
[
j
/
16
,
(
ak
/
4
)
*
16
+
j
%
16
,
ak
%
4
]
.
astype
(
"int32"
),
axis
=
ak
),
name
=
"F"
)
t_sch
=
tvm
.
create_schedule
(
t_fc
.
op
)
a_x
,
a_y
=
t_fc
.
op
.
axis
a_k
,
=
t_fc
.
op
.
reduce_axis
a_yo
,
a_yi
=
t_sch
[
t_fc
]
.
split
(
a_y
,
factor
=
16
)
a_xo
,
a_xi
=
t_sch
[
t_fc
]
.
split
(
a_x
,
factor
=
32
)
a_ko
,
a_ki
=
t_sch
[
t_fc
]
.
split
(
a_k
,
factor
=
4
)
a_koo
,
a_koi
=
t_sch
[
t_fc
]
.
split
(
a_ko
,
factor
=
4
)
t_sch
[
t_fc
]
.
reorder
(
a_yo
,
a_xo
,
a_xi
,
a_koo
,
a_koi
,
a_yi
,
a_ki
)
t_sch
[
t_fc
]
.
unroll
(
a_koi
)
t_sch
[
t_fc
]
.
tensorize
(
a_yi
,
pc
)
t_func
=
tvm
.
build
(
t_sch
,
[
X
,
packedW
,
t_fc
],
target
,
name
=
"intrinsic"
)
t_evaluator
=
t_func
.
time_evaluator
(
t_func
.
entry_name
,
ctx
,
number
=
10
)
# generate the plain data
a_
=
np
.
random
.
uniform
(
1
,
10
,
size
=
(
m
,
k
))
.
astype
(
"uint8"
)
b_
=
np
.
random
.
uniform
(
1
,
10
,
size
=
(
n
,
k
))
.
astype
(
"int8"
)
packW
=
np
.
random
.
uniform
(
1
,
10
,
size
=
(
n
//
16
,
16
*
(
k
//
4
),
4
))
.
astype
(
"int8"
)
# This occurs in pre_compute stage
for
r_idx
in
range
(
n
//
16
):
for
s_idx
in
range
(
16
*
(
k
//
4
)):
for
t_idx
in
range
(
4
):
packW
[
r_idx
][
s_idx
][
t_idx
]
=
b_
[
r_idx
*
16
+
s_idx
%
16
][(
s_idx
//
16
)
*
4
+
t_idx
]
x
=
tvm
.
nd
.
array
(
a_
,
ctx
)
w
=
tvm
.
nd
.
array
(
packW
,
ctx
)
y
=
tvm
.
nd
.
array
(
np
.
zeros
((
m
,
n
),
dtype
=
"int32"
),
ctx
)
result
=
t_evaluator
(
x
,
w
,
y
)
gops_per_sec
=
gops_per_mm
/
result
.
mean
/
1e9
# verify the correctness
tvm
.
testing
.
assert_allclose
(
y
.
asnumpy
(),
np
.
dot
(
a_
,
b_
.
T
),
rtol
=
0
)
print
(
'Tensorization: running time: {:.3f} ms, {:.2f} Gops/s, effiency: {:.2f}'
.
format
(
result
.
mean
*
1000
,
gops_per_sec
,
gops_per_sec
/
peak
))
t_func
.
export_library
(
"tensorize_acc32.o"
)
verify
()
if
__name__
==
"__main__"
:
# The test requires Cascade Lake and newer Intel machines to generate the
# correct AVX512 VNNI instruction. So, disabling the test.
# test_fc_int8_acc32()
pass
topi/python/topi/x86/tensor_intrin.py
View file @
bb82e09f
...
...
@@ -21,7 +21,7 @@ import tvm
def
dot_16x1x16_int8_int8_int32
():
"""
Int8 dot product by every 4 elements using AVX2 Skylake instructions.
Int8 dot product by every 4 elements using AVX
51
2 Skylake instructions.
This function takes two arrays of int8 datatype -- data[4] and
kernel[16][4] -- and computes a dot product of data[4] with every
4 elements of kernels, resulting in output[16] of int32 datatype.
...
...
@@ -30,9 +30,9 @@ def dot_16x1x16_int8_int8_int32():
void dot_16x1x16_int8_int8_int32(int8 data[4], int8 kernel[16][4],
int32 output[16]){
for (int i = 0; i < 16; i++){
out[i] = 0;
out
put
[i] = 0;
for (int k = 0; k < 4; k++){
out[i] += data[k] * kernel[i][k]
out
put
[i] += data[k] * kernel[i][k]
}
}
}
...
...
@@ -102,7 +102,7 @@ def dot_16x1x16_int8_int8_int32():
def
dot_16x1x16_int8_int8_int16
():
"""
Int8 dot product by every 2 elements using AVX2 Skylake instructions.
Int8 dot product by every 2 elements using AVX
51
2 Skylake instructions.
This function takes two arrays of int8 datatype -- data[2] and
kernel[4][32][2] -- and computes a dot product of data[2] with every
2 elements of kernels, resulting in output[4][32] of int16 datatype.
...
...
@@ -110,30 +110,33 @@ def dot_16x1x16_int8_int8_int16():
.. code-block:: c
void dot_16x1x16_int8_int8_int16(int8 data[2], int8 kernel[32*4][2],
int16 output[32*4]){
for (int i = 0; i< 4; i++){
for (int i = 0; i< 4; i++){
for (int j = 0; j < 32; j++){
out[i][i] = 0;
out
put
[i][i] = 0;
for (int k = 0; k < 2; k++){
out[i][j][k] += data[k] * kernel[i][j][k]
out
put
[i][j][k] += data[k] * kernel[i][j][k]
}
}
}
}
}
Physically, the kernel array sits in four AVX512 vector registers and
the data[2] is broadcasted to another AVX512 vector register. This
function returns a TensorIntrin that can be used to tensorize
a schedule.
Returns
-------
intrin : TensorIntrin
The Skylake int8 TensorIntrin that can be used in tensorizing schedule
"""
num_int8_elements
=
2
# 2 int8 elements in int32
int16_lanes
=
4
*
32
# 4*32 int32 lanes in 4 AVX512 vector registers
num_int8_elements
=
2
# 2 int8 elements in int16
data
=
tvm
.
placeholder
((
num_int8_elements
,),
dtype
=
'uint8'
,
name
=
'data'
)
kernel
=
tvm
.
placeholder
((
128
,
num_int8_elements
),
dtype
=
'int8'
,
name
=
'kernel'
)
kernel
=
tvm
.
placeholder
((
int16_lanes
,
num_int8_elements
),
dtype
=
'int8'
,
name
=
'kernel'
)
k
=
tvm
.
reduce_axis
((
0
,
num_int8_elements
),
name
=
'k'
)
C
=
tvm
.
compute
((
128
,
),
C
=
tvm
.
compute
((
int16_lanes
,
),
lambda
i
:
tvm
.
sum
(
data
[
k
]
.
astype
(
'int16'
)
*
kernel
[
i
,
k
]
.
astype
(
'int16'
),
axis
=
k
),
...
...
@@ -177,3 +180,98 @@ def dot_16x1x16_int8_int8_int16():
with
tvm
.
build_config
(
offset_factor
=
1
,
partition_const_loop
=
True
):
return
tvm
.
decl_tensor_intrin
(
C
.
op
,
_intrin_func
,
binds
=
{
data
:
a_buffer
,
kernel
:
b_buffer
})
def
dot_16x1x16_int8_int8_int32_vnni
():
"""
Int8 dot product by every 4 elements using AVX512VNNI Cascade Lake instructions.
This function takes two arrays of int8 datatype -- data[4] and
kernel[16][4] -- and computes a dot product of data[4] with every
4 elements of kernels, resulting in output[16] of int32 datatype.
The pseudo code is as follows.
.. code-block:: c
void dot_16x1x16_int8_int8_int32_vnni(int8 data[4], int8 kernel[16][4],
int32 output[16]){
for (int i = 0; i < 16; i++){
output[i] = 0;
for (int k = 0; k < 4; k++){
output[i] += data[k] * kernel[i][k]
}
}
}
Physically, the kernel array sits in an AVX512 vector register and
the data[4] is broadcasted to another AVX512 vector register. This
function returns a TensorIntrin that can be used to tensorize
a schedule.
Returns
-------
intrin : TensorIntrin
The Cascade Lake int8 TensorIntrin that can be used in tensorizing schedule
"""
int32_lanes
=
16
# 16 int32 lanes in AVX512
num_int8_elements
=
4
# 4 int8 elements in int32
data
=
tvm
.
placeholder
((
num_int8_elements
,),
dtype
=
'uint8'
,
name
=
'data'
)
kernel
=
tvm
.
placeholder
((
int32_lanes
,
num_int8_elements
),
dtype
=
'int8'
,
name
=
'kernel'
)
k
=
tvm
.
reduce_axis
((
0
,
num_int8_elements
),
name
=
'k'
)
C
=
tvm
.
compute
((
int32_lanes
,),
lambda
i
:
tvm
.
sum
(
data
[
k
]
.
astype
(
'int32'
)
*
kernel
[
i
,
k
]
.
astype
(
'int32'
),
axis
=
k
),
name
=
"C"
)
a_buffer
=
tvm
.
decl_buffer
(
data
.
shape
,
dtype
=
'uint8'
,
name
=
"a_buffer"
,
offset_factor
=
1
,
strides
=
[
1
])
b_buffer
=
tvm
.
decl_buffer
(
kernel
.
shape
,
dtype
=
'int8'
,
name
=
"b_buffer"
,
offset_factor
=
1
,
strides
=
[
tvm
.
var
(
'ldw'
),
1
])
def
_intrin_func
(
ins
,
outs
):
def
_instr
(
index
):
ib
=
tvm
.
ir_builder
.
create
()
if
index
==
1
:
ib
.
emit
(
outs
[
0
]
.
vstore
(
0
,
tvm
.
const
(
0
,
'int32x16'
)))
return
ib
.
get
()
a_int8
=
ins
[
0
]
.
vload
([
0
],
"uint8x4"
)
re_int32
=
tvm
.
call_pure_intrin
(
'int32'
,
'reinterpret'
,
a_int8
)
vec_ai32
=
re_int32
.
astype
(
'int32x16'
)
vec_b
=
ins
[
1
]
.
vload
([
0
,
0
],
"int8x64"
)
vnni_inst_name
=
'llvm.x86.avx512.vpdpbusd.512'
llvm_id
=
tvm
.
codegen
.
llvm_lookup_intrinsic_id
(
vnni_inst_name
)
if
llvm_id
!=
0
:
# VNNI is available for current LLVM version
vec_bi32
=
tvm
.
call_pure_intrin
(
'int32x16'
,
'reinterpret'
,
vec_b
)
vec_zero
=
tvm
.
const
(
0
,
"int32x16"
)
quad_reduction
=
tvm
.
call_llvm_intrin
(
'int32x16'
,
'llvm.x86.avx512.vpdpbusd.512'
,
tvm
.
const
(
0
,
'uint32'
),
vec_zero
,
vec_ai32
,
vec_bi32
)
else
:
# Fall back to the normal AVX512
vec_a
=
tvm
.
call_pure_intrin
(
'int8x64'
,
'reinterpret'
,
vec_ai32
)
vec_one
=
tvm
.
const
(
1
,
"int16x32"
)
pair_reduction
=
tvm
.
call_llvm_intrin
(
'int16x32'
,
'llvm.x86.avx512.pmaddubs.w.512'
,
tvm
.
const
(
0
,
'uint32'
),
vec_a
,
vec_b
)
quad_reduction
=
tvm
.
call_llvm_intrin
(
'int32x16'
,
'llvm.x86.avx512.pmaddw.d.512'
,
tvm
.
const
(
0
,
'uint32'
),
pair_reduction
,
vec_one
)
if
index
==
0
:
ib
.
emit
(
outs
[
0
]
.
vstore
(
0
,
quad_reduction
))
else
:
ib
.
emit
(
outs
[
0
]
.
vstore
(
0
,
quad_reduction
+
outs
[
0
]
.
vload
([
0
],
'int32x16'
)))
return
ib
.
get
()
# body, reset, update
return
_instr
(
0
),
_instr
(
1
),
_instr
(
2
)
with
tvm
.
build_config
(
offset_factor
=
1
,
partition_const_loop
=
True
):
return
tvm
.
decl_tensor_intrin
(
C
.
op
,
_intrin_func
,
binds
=
{
data
:
a_buffer
,
kernel
:
b_buffer
})
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment