Commit a42d1e3c by Jian Weng Committed by Tianqi Chen

[Hybrid Script] Unify the symbol tables to one; support `tvm.container.Array` (#2366)

parent 151f550b
......@@ -52,7 +52,8 @@ The current parse interface looks like:
parser = tvm.hybrid.parse(outer_product, [a, b]) # return the parser of this function
If we pass these tvm tensors to this function, it returns a op node:
If we pass these tvm data structures, like ``Tensor``, ``Var``, ``Expr.*Imm``,
or ``tvm.container.Array``, to this function, it returns a op node:
.. code-block:: python
......@@ -60,12 +61,14 @@ If we pass these tvm tensors to this function, it returns a op node:
b = tvm.placeholder((99, ), name='b')
c = outer_product(a, b, c) # return the output tensor(s) of the operator
**Under construction, we are still deciding what kind of node should be returned.**
You can use any methods that can be applied on a TVM ``OpNode``, like create_schedule, although
so far, the functionality of schedule is as limited as ``ExternOpNode``. At least, it can be built
to LLVM module.
Tuning
~~~~~~
**Under construction, not truly supported yet.**
**Under construction, not supported yet.**
Follow up the example above, you can use some tvm like interfaces to tune the code:
......@@ -86,6 +89,21 @@ Here we use ``range`` aka ``serial``, ``unroll``, ``parallel``, and ``vectorize`
these **4** keywords to annotate the corresponding types of for loops.
The the usage is roughly the same as Python standard ``range``.
Besides all the loop types supported in Halide, ``const_range`` is supported for some specific conditions.
Sometimes, ``tvm.container.Array`` is desired to pass as an argument, but in TVM-HalideIR, there is no
such support that converts ``tvm.container.Array`` to an ``Expr``. Thus, a limited feature is supported.
Users can access containers by either constants or constants loops annotated.
.. code-block:: python
@tvm.hybrid.script
def foo(a, b): # b is a tvm.container.Array
c = output_tensor(a.shape, a.dtype)
for i in const_range(len(a)): # because you have b access, i should be explicitly annotated as const_range
c[i] = a[i] + b[i]
return c
Variables
~~~~~~~~~
......@@ -111,14 +129,14 @@ It regards the first store of a variable as its declaration.
s += a[i, j] # do something with sum
b[i] = sum # you can still use sum in this level
a[0] = s # you CANNOT use s here, even though it is allowed in conventional Python
b = (1, 2) # this has NOT been supported yet!
Attributes
~~~~~~~~~~
So far, ONLY tensors' ``shape`` attribute is supported! The ``shape`` atrribute is essentailly a
tuple, so you MUST access it as an array. Also, currently, only constant-indexed access is supported.
So far, ONLY tensors' ``shape`` and ``dtype`` attribute are supported!
The ``shape`` atrribute is essentailly a tuple, so you MUST access it as an array.
Currently, only constant-indexed access is supported.
.. code-block:: python
......@@ -133,8 +151,11 @@ Conditional Statement and Expression
.. code-block:: python
if condition:
# do something
if condition1 and condition2 and condition3:
# do something
else:
# do something else
# Select
a = b if condition else c
However, NO ``True`` and ``False`` keyword supported yet.
......@@ -153,7 +174,9 @@ Array Allocation
**Under construction, this function will be supported later!**
Use a function call ``allocation(shape, type, share/local)`` to declare an array buffer.
The basic usage is roughly the same as a normal array.
The basic usage is roughly the same as a normal ``numpy.array``, and you should access
high-dim array in ``a[i, j, k]`` fashion instead of ``a[i][j][k]``,
even for ``tvm.container.Array`` for compilation.
Thread Bind
......@@ -170,5 +193,5 @@ You can also do loop-thread bind by writing code like this:
Keywords
~~~~~~~~
- For keywords: ``serial``, ``range``, ``unroll``, ``parallel``, ``vectorize``, ``bind``
- For keywords: ``serial``, ``range``, ``unroll``, ``parallel``, ``vectorize``, ``bind``, ``const_expr``
- Math keywords: ``log``, ``exp``, ``sigmoid``, ``tanh``, ``power``, ``popcount``
......@@ -12,15 +12,17 @@ from .util import _internal_assert
#pylint: disable=redefined-builtin
LOOP_INTRIN = {
'range' : For.Serial,
'unroll' : For.Unrolled,
'parallel' : For.Parallel,
'vectorize': For.Vectorized,
'range' : For.Serial,
'unroll' : For.Unrolled,
'parallel' : For.Parallel,
'vectorize' : For.Vectorized,
'const_range' : (For.Unrolled, ),
}
def _range(annotation, args):
"""Handling TVM loop types"""
n = len(args)
n = args.__len__()
if n == 1:
low, ext = _api.const(0, dtype='int32'), args[0]
else:
......@@ -33,13 +35,13 @@ def _range(annotation, args):
return iter_var, low, ext, for_type
range = unroll = vectorize = parallel = _range #pylint: disable=invalid-name
range = unroll = vectorize = parallel = const_range = _range #pylint: disable=invalid-name
def bind(func_id, args):
"""Handling TVM thread binding"""
_internal_assert(func_id == "bind", "This function cannot be directly invoked!")
_internal_assert(len(args) == 2, "A loop bind should only have 2 arguments!")
_internal_assert(args.__len__() == 2, "A loop bind should only have 2 arguments!")
_internal_assert(isinstance(args[0], str), \
"A loop bind's first argument should be a string!")
iter_var = _api.thread_axis(args[0])
......@@ -56,7 +58,7 @@ sqrt = log = exp = tanh = sigmoid = power = popcount = _math_intrin #pylint: dis
def _min_max(func_id, args):
_internal_assert(len(args) == 2, "Max/Min function should have 2 elements")
_internal_assert(args.__len__() == 2, "Max/Min function should have 2 elements")
return getattr(_make, func_id.title())(args[0], args[1])
......@@ -66,7 +68,7 @@ min = max = _min_max #pylint: disable=invalid-name
def _allocate_tensor(func_id, args):
"""Handling TVM tensor allocation.
You may refer hybrid.intrin.allocate for more details."""
n = len(args)
n = args.__len__()
_internal_assert(isinstance(_api.convert(args[0]), Array), \
"allocate's first argument should be a tuple of shape!")
shape = args[0]
......@@ -89,4 +91,16 @@ def _allocate_tensor(func_id, args):
scope = 'global' if func_id != 'output_tensor' else 'output'
return (shape, dtype, scope)
output_tensor = allocate = _allocate_tensor #pylint: disable=invalid-name
def len(func_id, args):
"""Iterpret the len function"""
_internal_assert(args.__len__() == 1, "Only 1 argument is expected!")
_internal_assert(func_id == "len", "This function cannot be directly invoked!")
try:
return _api.convert(args[0].__len__())
except: #pylint: disable=bare-except
_internal_assert(args[0].shape.__len__() == 1, "Only one-dimension array can get len")
return _api.convert(args[0].shape[0])
......@@ -2,32 +2,19 @@
import numpy
class _range(object):
"""Base class of the loop ranges in hybrid script"""
def __init__(self, a, b=None):
if b is None:
self.low = 0
self.ext = a
else:
self.low = a
self.ext = b
class bind(object): #pylint: disable=invalid-name
"""GPU bind software emulataion runtime."""
def __init__(self, _, ext):
self.ext = ext
def __iter__(self):
i = 0
while i < self.ext:
yield i + self.low
yield i
i += 1
class bind(_range): #pylint: disable=invalid-name
def __init__(self, tag, ext):
super(bind, self).__init__(ext)
self.tag = tag
unroll = vectorize = parallel = _range #pylint: disable=invalid-name
def allocate(shape, dtype='float32', scope='global'): #pylint: disable=unused-argument
"""Allocate a buffer with given shape
......@@ -47,7 +34,6 @@ def allocate(shape, dtype='float32', scope='global'): #pylint: disable=unused-ar
"""
return numpy.zeros(shape).astype(dtype)
output_tensor = allocate #pylint: disable=invalid-name
def popcount(x):
"""
......@@ -87,17 +73,19 @@ def sigmoid(x):
HYBRID_GLOBALS = {
'unroll' : unroll,
'vectorize' : vectorize,
'parallel' : parallel,
'allocate' : allocate,
'output_tensor': output_tensor,
'len' : len,
'unroll' : range,
'vectorize' : range,
'parallel' : range,
'const_range' : range,
'bind' : bind,
'allocate' : allocate,
'output_tensor': allocate,
'sqrt' : numpy.sqrt,
'log' : numpy.log,
'tanh' : numpy.tanh,
'power' : numpy.power,
'exp' : numpy.exp,
'sigmoid' : sigmoid,
'popcount' : popcount
'popcount' : popcount,
}
......@@ -11,12 +11,13 @@ from .. import api as _api
from .. import make as _make
from .. import expr as _expr
from .. import stmt as _stmt
from ..container import Array
from ..tensor import Tensor
#pylint: disable=invalid-name
np_arg_types = tuple(list(numeric_types) + [numpy.ndarray])
tvm_arg_types = (Tensor, _expr.Var, _expr.ConstExpr)
tvm_arg_types = (Tensor, Array, _expr.Var, _expr.ConstExpr)
halide_imm_types = (_expr.IntImm, _expr.FloatImm, _expr.UIntImm)
def _internal_assert(cond, err):
......
......@@ -13,7 +13,7 @@ def run_and_check(func, args, var_dict={}, target='llvm'):
ctx = tvm.context(target, 0)
op = None
outs = func(*args)
outs = func(*tuple(tvm.convert(i) if isinstance(i, list) else i for i in args))
op = outs[0].op if isinstance(outs, list) else outs.op
emu_args = []
......@@ -23,13 +23,18 @@ def run_and_check(func, args, var_dict={}, target='llvm'):
shape = [tvm_val_2_py_val(j) for j in i.shape]
emu_args.append(numpy.random.randn(*shape).astype(i.dtype))
nd_args.append(tvm.nd.array(emu_args[-1], ctx))
else:
assert isinstance(i, tvm.expr.Var)
elif isinstance(i, tvm.expr.Var):
emu_args.append(tvm_val_2_py_val(i))
nd_args.append(emu_args[-1])
else:
assert isinstance(i, list)
emu_args.append(numpy.array(i))
sch = tvm.create_schedule(op)
module = tvm.build(sch, args + (outs if isinstance(outs, list) else [outs]), target=target)
module = tvm.build(sch,
[i for i in args if isinstance(i, (tvm.tensor.Tensor, tvm.expr.Var))] + \
(outs if isinstance(outs, list) else [outs]),
target=target)
assert module
out_tensors = []
......@@ -192,20 +197,20 @@ def test_fanout():
def test_looptype():
@script
def looptype(a, b, c):
d = output_tensor((8, ), 'int32')
e = output_tensor((8, ), 'int32')
f = output_tensor((8, ), 'int32')
for i in parallel(8):
d = output_tensor((16, ), 'int32')
e = output_tensor((16, ), 'int32')
f = output_tensor((16, ), 'int32')
for i in parallel(16):
d[i] = a[i]
for j in vectorize(8):
for j in vectorize(16):
e[j] = b[j]
for k in unroll(8):
for k in unroll(16):
f[k] = c[k]
return d, e, f
a = tvm.placeholder((8, ), name='a', dtype='int32')
b = tvm.placeholder((8, ), name='b', dtype='int32')
c = tvm.placeholder((8, ), name='c', dtype='int32')
a = tvm.placeholder((16, ), name='a', dtype='int32')
b = tvm.placeholder((16, ), name='b', dtype='int32')
c = tvm.placeholder((16, ), name='c', dtype='int32')
try:
d, e, f = looptype(a, b, c)
ir = d.op.body
......@@ -509,9 +514,9 @@ def test_value_index():
def test_func_call():
@tvm.hybrid.script
def foo(a, b):
for i in range(10):
for i in range(len(a)):
a[i] = i + 1.0
for i in range(10):
for i in range(len(a)):
b[i] = i + 1.0
c = outer_product(10, 10, a, b)
d = output_tensor(c.shape, c.dtype)
......@@ -538,6 +543,26 @@ def test_bool():
a = tvm.placeholder((10, ), name='a')
run_and_check(foo, [a])
def test_const_range():
@tvm.hybrid.script
def foo(a, b):
c = output_tensor(a.shape, a.dtype)
d = output_tensor(a.shape, a.dtype)
for i in const_range(2):
for j in const_range(5):
c[i, j] = a[i, j] + b[i, j]
for i in const_range(len(b)):
for j in const_range(len(b[0])):
d[i, j] = a[i, j] + b[i, j]
return c, d
a = tvm.placeholder((2, 5), name='a', dtype='int32')
b = [[1, 2, 3, 4, 5], [5, 4, 3, 2, 1]]
run_and_check(foo, [a, b])
if __name__ == "__main__":
test_outer_product()
test_fanout()
......@@ -553,5 +578,6 @@ if __name__ == "__main__":
test_value_index()
test_func_call()
test_bool()
test_const_range()
# TODO:
# test_inplace()
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment