pattern_util.h 12 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
9
 *
10
 *   http://www.apache.org/licenses/LICENSE-2.0
11
 *
12 13 14 15 16 17 18 19
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

20 21 22 23 24 25 26 27 28 29
/*!
 *  Copyright (c) 2018 by Contributors.
 *
 * \file tvm/relay/pass/pattern_util.h
 * \brief Header of internal operator functions
 *  These can be used for writing passes.
 */
#ifndef TVM_RELAY_PASS_PATTERN_UTIL_H_
#define TVM_RELAY_PASS_PATTERN_UTIL_H_

30
#include <builtin_fp16.h>
31
#include <tvm/data_layout.h>
32 33
#include <tvm/relay/op.h>
#include <tvm/relay/expr.h>
34
#include <tvm/relay/attrs/nn.h>
35
#include <tvm/relay/attrs/transform.h>
36
#include <string>
37

38 39 40 41 42

namespace tvm {
namespace relay {

/*!
43 44 45 46 47 48 49 50 51 52
 * \brief Dispatch DataType to the C++ data type
 *  during runtime.
 */
#define TVM_DTYPE_DISPATCH(type, DType, ...)            \
  if (type == Float(64)) {                              \
    typedef double DType;                               \
    {__VA_ARGS__}                                       \
  } else if (type == Float(32)) {                       \
    typedef float DType;                                \
    {__VA_ARGS__}                                       \
53 54 55
  } else if (type == Float(16)) {                       \
    typedef uint16_t DType;                             \
    {__VA_ARGS__}                                       \
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  } else if (type == Int(64)) {                         \
    typedef int64_t DType;                              \
    {__VA_ARGS__}                                       \
  } else if (type == Int(32)) {                         \
    typedef int32_t DType;                              \
    {__VA_ARGS__}                                       \
  } else if (type == Int(16)) {                         \
    typedef int16_t DType;                              \
    {__VA_ARGS__}                                       \
  } else if (type == Int(8)) {                          \
    typedef int8_t DType;                               \
    {__VA_ARGS__}                                       \
  } else if (type == UInt(64)) {                        \
    typedef uint64_t DType;                             \
    {__VA_ARGS__}                                       \
  } else if (type == UInt(32)) {                        \
    typedef uint32_t DType;                             \
    {__VA_ARGS__}                                       \
  } else if (type == UInt(16)) {                        \
    typedef uint16_t DType;                             \
    {__VA_ARGS__}                                       \
  } else if (type == UInt(8)) {                         \
    typedef uint8_t DType;                              \
    {__VA_ARGS__}                                       \
  } else {                                              \
    LOG(FATAL) << "unknown data type " << type;         \
  }

/*!
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
 * \brief Try to match lhs and rhs via broadcasting rule, such that:
 *
 * rhs matches the dimension of lhs specified by lhs_axes
 * rhs's value equals 1 on rest of dimensions.
 *
 * \param tlhs The type of left operand (data)
 * \param trhs The type right operand (bias)
 * \param lhs_axes The axes on lhs to match.
 * \param rhs_value A squeezed version of rhs which only contains matched dimension.
 * \return Whether match is successful.
 */
inline bool MatchBroadcastToLeftAxes(const TensorTypeNode* tlhs,
                                     const TensorTypeNode* trhs,
                                     const Array<Integer>& lhs_axes,
                                     Expr* rhs_value = nullptr) {
  if (tlhs->shape.size() < trhs->shape.size()) return false;
  AttrsEqual equal;
  size_t base = tlhs->shape.size() - trhs->shape.size();
  size_t j = 0;

  NodePtr<SqueezeAttrs> squeeze_attrs;
  if (rhs_value != nullptr) {
    squeeze_attrs = make_node<SqueezeAttrs>();
  }

  for (size_t i = 0; i < tlhs->shape.size(); ++i) {
    if (j < lhs_axes.size() && i == static_cast<size_t>(lhs_axes[j]->value)) {
      if (i < base || !equal(tlhs->shape[i], trhs->shape[i - base])) {
        return false;
      }
      ++j;
    } else if (i >= base) {
      if (!is_const_int(trhs->shape[i - base], 1)) {
        return false;
      }
      if (rhs_value != nullptr) {
        squeeze_attrs->axis.push_back(static_cast<int>(i - base));
      }
    }
  }
  if (rhs_value != nullptr && squeeze_attrs->axis.size() != 0) {
    static const Op& squeeze_op = Op::Get("squeeze");
    *rhs_value = CallNode::make(squeeze_op, {rhs_value[0]}, Attrs(squeeze_attrs), {});
  }
  return true;
}

/*!
 * \brief Expand 1D Tensor to match axis.
 *
 * The result bias can be used to add or multiply to
 * the target Tensor on the specified axis via broadcasting rule.
 *
 * \param bias The bias.
139
 * \param target_ndim Target dimension.
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
 * \param axes The axis on the output we want to match on.
 */
inline Expr ExpandBiasToMatchAxis(Expr bias,
                                  int target_ndim,
                                  const Array<Integer>& axes) {
  static const Op& expand_dims = Op::Get("expand_dims");
  for (size_t i = axes.size(); i != 0; --i) {
    if (i == axes.size()) {
      int64_t num_pad_axis = target_ndim - axes[i - 1]->value - 1;
      if (num_pad_axis > 0) {
        auto attrs = make_node<ExpandDimsAttrs>();
        attrs->axis = i;
        attrs->num_newaxis = static_cast<int>(num_pad_axis);
        bias = CallNode::make(expand_dims, {bias}, Attrs(attrs), {});
      }
    } else {
      int64_t diff = axes[i]->value - axes[i - 1]->value;
      CHECK_GE(diff, 0L);
      if (diff > 0) {
        auto attrs = make_node<ExpandDimsAttrs>();
        attrs->axis = i;
        attrs->num_newaxis = static_cast<int>(diff);
        bias = CallNode::make(expand_dims, {bias}, Attrs(attrs), {});
      }
    }
  }
  return bias;
}

169 170 171 172 173 174 175 176 177
/*!
 * \brief Check if the call is depthwise conv2d.
 *
 * \param call The conv2d call.
 * \param param The conv2d attributes.
 * \return Whether it is depthwise_conv2d.
 */
inline bool IsDepthwiseConv2D(const Call& call,
                              const Conv2DAttrs* param,
178
                              const Layout& kernel_layout) {
179
  static const Layout kOIHW("OIHW");
180 181
  const auto bilayout = BijectiveLayoutNode::make(kernel_layout, kOIHW);
  auto wshape = bilayout.ForwardShape(call->args[1]->type_as<TensorTypeNode>()->shape);
182 183 184 185
  return is_const_int(wshape[0], param->groups) &&
      is_const_int(wshape[1], 1);
}

186 187 188 189 190 191 192 193
/*!
 * \brief Get super-dimension of output channels of conv2d
 * \param call The conv2d call.
 * \return Super-dimension size of output channels of conv2d.
 */
inline int64_t GetConv2DSuperChannelsDim(const CallNode* call) {
    auto param = call->attrs.as<Conv2DAttrs>();
    auto tweight = call->args[1]->type_as<TensorTypeNode>();
194
    auto index = param->kernel_layout.find('O');
195 196 197 198
    CHECK_NE(index, std::string::npos);
    auto channels = as_const_int(tweight->shape[index]);
    return *channels;
}
199

200 201 202 203 204 205 206 207 208 209
/*!
 * \brief Create a Constant with a scalar
 *
 * \param dtype The data type.
 * \param value The value of the scalar.
 * \return A Constant.
 */
template<typename T>
inline Constant MakeConstantScalar(DataType dtype, T value) {
  runtime::NDArray arr = runtime::NDArray::Empty({}, Type2TVMType(dtype), {kDLCPU, 0});
210
  TVM_DTYPE_DISPATCH(dtype, DType, {
211 212 213 214 215 216 217 218
    if (dtype == Float(16)) {
      // convert to float16
      // storage is uint16_t
      *static_cast<DType*>(arr->data) =
        __truncXfYf2__<float, uint32_t, 23, uint16_t, uint16_t, 10>(static_cast<float>(value));
    } else {
      *static_cast<DType*>(arr->data) = value;
    }
219
  })
220 221 222
  return ConstantNode::make(arr);
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*!
 * \brief Check if two expressions are equal scalars.
 * \param a The expression to be checked.
 * \param b The expression to be checked
 * \return Whether two expressions are equal scalars.
 */
inline bool IsEqualScalar(const Expr& a, const Expr& b) {
  const auto* constant_a = a.as<ConstantNode>();
  const auto* constant_b = b.as<ConstantNode>();
  if (!constant_a || !constant_b || !constant_a->is_scalar() || !constant_b->is_scalar()) {
    return false;
  }
  return AlphaEqual(a, b);
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
inline Expr GetField(Expr t, size_t i) {
  return TupleGetItemNode::make(t, i);
}

inline Expr Pair(Expr l, Expr r) {
  return TupleNode::make({l, r});
}

inline Expr Exp(Expr e) {
  static const Op& op = Op::Get("exp");
  return CallNode::make(op, {e});
}

inline Expr Log(Expr e) {
  static const Op& op = Op::Get("log");
  return CallNode::make(op, {e});
}
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/*!
 * \brief Get an immediate scalar from a Constant expr.
 *
 * \param expr The Constant expr.
 * \return A scalar with type T.
 */
template <typename T>
T GetScalarFromConstant(Expr expr) {
  const auto* n = expr.as<ConstantNode>();
  CHECK(n->is_scalar());
  return static_cast<T*>(n->data->data)[0];
}

inline Expr Cast(Expr x, DataType dtype) {
  static const Op& op = Op::Get("cast");
  auto attrs = make_node<CastAttrs>();
  attrs->dtype = dtype;
  return CallNode::make(op, {x}, Attrs(attrs), {});
}
274 275 276 277 278 279 280 281 282 283 284 285 286

inline Expr Negative(Expr x) {
  static const Op& op = Op::Get("negative");
  return CallNode::make(op, {x}, Attrs(), {});
}


inline Expr Sqrt(Expr x) {
  static const Op& op = Op::Get("sqrt");
  return CallNode::make(op, {x}, Attrs(), {});
}


287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
inline Expr Relu(Expr x) {
  static const Op& op = Op::Get("nn.relu");
  return CallNode::make(op, {x}, Attrs(), {});
}


inline Expr Round(Expr x) {
  static const Op& op = Op::Get("round");
  return CallNode::make(op, {x}, Attrs(), {});
}


inline Expr Clip(Expr x, double a_min, double a_max) {
  static const Op& op = Op::Get("clip");
  auto attrs = make_node<ClipAttrs>();
  attrs->a_min = a_min;
  attrs->a_max = a_max;
  return CallNode::make(op, {x}, Attrs(attrs), {});
}


308 309 310 311 312 313
inline Expr Add(Expr lhs, Expr rhs) {
  static const Op& op = Op::Get("add");
  return CallNode::make(op, {lhs, rhs}, Attrs(), {});
}


eqy committed
314
inline Expr Subtract(Expr lhs, Expr rhs) {
315 316 317 318 319
  static const Op& op = Op::Get("subtract");
  return CallNode::make(op, {lhs, rhs}, Attrs(), {});
}


320 321 322 323 324
inline Expr Multiply(Expr lhs, Expr rhs) {
  static const Op& op = Op::Get("multiply");
  return CallNode::make(op, {lhs, rhs}, Attrs(), {});
}

325

326 327 328 329 330
inline Expr Divide(Expr lhs, Expr rhs) {
  static const Op& op = Op::Get("divide");
  return CallNode::make(op, {lhs, rhs}, Attrs(), {});
}

331
inline Expr ZerosLike(Expr e) {
332 333 334 335
  static const Op& op = Op::Get("zeros_like");
  return CallNode::make(op, {e});
}

336
inline Expr OnesLike(Expr e) {
337 338 339
  static const Op& op = Op::Get("ones_like");
  return CallNode::make(op, {e});
}
340

341 342 343 344 345
inline Expr CollapseSumLike(Expr e) {
  static const Op& op = Op::Get("collapse_sum_like");
  return CallNode::make(op, {e});
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
inline Expr Power(Expr lhs, Expr rhs) {
  static const Op& op = Op::Get("power");
  return CallNode::make(op, {lhs, rhs}, Attrs(), {});
}


inline Expr RightShift(Expr x, Expr nbit) {
  static const Op& op = Op::Get("right_shift");
  return CallNode::make(op, {x, nbit}, Attrs(), {});
}


inline Expr LeftShift(Expr x, Expr nbit) {
  static const Op& op = Op::Get("left_shift");
  return CallNode::make(op, {x, nbit}, Attrs(), {});
}


364 365 366 367 368
inline Expr ReshapeLike(Expr lhs, Expr rhs) {
  static const Op& op = Op::Get("reshape_like");
  return CallNode::make(op, {lhs, rhs}, Attrs(), {});
}

369 370 371 372 373 374 375

inline Expr Copy(Expr data) {
  static const Op& op = Op::Get("copy");
  return CallNode::make(op, {data}, Attrs(), {});
}


376 377 378 379
Expr MakeConcatenate(Expr data, int axis);

Expr MakeStridedSlice(Expr data, Array<Integer> begin, Array<Integer> end, Array<Integer> strides);

380 381
Expr StopFusion(Expr data);

382 383
Expr ForceCast(Expr data);

384 385 386
}  // namespace relay
}  // namespace tvm
#endif  // TVM_RELAY_PASS_PATTERN_UTIL_H_