Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
d5103bbc
Unverified
Commit
d5103bbc
authored
Oct 29, 2018
by
Tianqi Chen
Committed by
GitHub
Oct 29, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[RELAY][PASS] FoldScaleAxis Backward (#2024)
parent
25e4dc51
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
234 additions
and
13 deletions
+234
-13
include/tvm/relay/expr_functor.h
+3
-3
python/tvm/relay/ir_pass.py
+29
-0
src/relay/ir/expr_functor.cc
+8
-4
src/relay/pass/fold_scale_axis.cc
+0
-0
src/relay/pass/pattern_util.h
+21
-2
tests/python/relay/test_pass_fold_scale_axis.py
+173
-4
No files found.
include/tvm/relay/expr_functor.h
View file @
d5103bbc
...
...
@@ -135,9 +135,9 @@ class ExprVisitor
void
VisitExpr_
(
const
TupleGetItemNode
*
op
)
override
;
virtual
void
VisitType
(
const
Type
&
t
);
pr
ivate
:
//
internal visited flag.
std
::
unordered_
set
<
const
Node
*>
visited
_
;
pr
otected
:
//
Internal visiting counter
std
::
unordered_
map
<
const
Node
*
,
size_t
>
visit_counter
_
;
};
/*!
...
...
python/tvm/relay/ir_pass.py
View file @
d5103bbc
...
...
@@ -31,6 +31,29 @@ def infer_type(expr, env=None):
return
_ir_pass
.
infer_type
(
expr
,
env
)
def
backward_fold_scale_axis
(
expr
):
"""Backward fold axis scaling into weights of conv2d/dense.
Parameters
----------
expr : tvm.relay.Expr
The input expression, we expect that expr's types
should be fully inferred by infer_type.
Returns
-------
folded_expr : tvm.relay.Expr
The folded expression after transformation.
Note
----
It is recommended to call backward_fold_scale_axis
before using forward_fold_scale_axis.
As backward folding targets common conv-bn pattern.
"""
return
_ir_pass
.
backward_fold_scale_axis
(
expr
)
def
forward_fold_scale_axis
(
expr
):
"""Fold the scaling of axis into weights of conv2d/dense.
...
...
@@ -44,6 +67,12 @@ def forward_fold_scale_axis(expr):
-------
folded_expr : tvm.relay.Expr
The folded expression after transformation.
Note
----
It is recommended to call backward_fold_scale_axis
before using forward_fold_scale_axis.
As backward folding targets common conv-bn pattern.
"""
return
_ir_pass
.
forward_fold_scale_axis
(
expr
)
...
...
src/relay/ir/expr_functor.cc
View file @
d5103bbc
...
...
@@ -160,10 +160,14 @@ Expr ExprMutator::VisitExpr_(const TupleGetItemNode* g) {
Type
ExprMutator
::
VisitType
(
const
Type
&
t
)
{
return
t
;
}
void
ExprVisitor
::
VisitExpr
(
const
Expr
&
expr
)
{
if
(
visited_
.
count
(
expr
.
get
()))
return
;
using
TParent
=
ExprFunctor
<
void
(
const
Expr
&
)
>
;
TParent
::
VisitExpr
(
expr
);
visited_
.
insert
(
expr
.
get
());
auto
it
=
visit_counter_
.
find
(
expr
.
get
());
if
(
it
!=
visit_counter_
.
end
())
{
++
it
->
second
;
}
else
{
using
TParent
=
ExprFunctor
<
void
(
const
Expr
&
)
>
;
TParent
::
VisitExpr
(
expr
);
visit_counter_
.
insert
({
expr
.
get
(),
1
});
}
}
void
ExprVisitor
::
ExprVisitor
::
VisitExpr_
(
const
VarNode
*
op
)
{
...
...
src/relay/pass/fold_scale_axis.cc
View file @
d5103bbc
This diff is collapsed.
Click to expand it.
src/relay/pass/pattern_util.h
View file @
d5103bbc
...
...
@@ -11,6 +11,7 @@
#include <tvm/relay/op.h>
#include <tvm/relay/expr.h>
#include <tvm/relay/attrs/transform.h>
#include "../op/nn/layout.h"
namespace
tvm
{
namespace
relay
{
...
...
@@ -100,11 +101,31 @@ inline Expr ExpandBiasToMatchAxis(Expr bias,
return
bias
;
}
/*!
* \brief Check if the call is depthwise conv2d.
*
* \param call The conv2d call.
* \param param The conv2d attributes.
* \return Whether it is depthwise_conv2d.
*/
inline
bool
IsDepthwiseConv2D
(
const
Call
&
call
,
const
Conv2DAttrs
*
param
,
const
Layout
&
weight_layout
)
{
static
const
Layout
kOIHW
(
"OIHW"
);
auto
wshape
=
ConvertLayout
(
call
->
args
[
1
]
->
type_as
<
TensorTypeNode
>
()
->
shape
,
weight_layout
,
kOIHW
);
return
is_const_int
(
wshape
[
0
],
param
->
groups
)
&&
is_const_int
(
wshape
[
1
],
1
);
}
inline
Expr
Multiply
(
Expr
lhs
,
Expr
rhs
)
{
static
const
Op
&
op
=
Op
::
Get
(
"multiply"
);
return
CallNode
::
make
(
op
,
{
lhs
,
rhs
},
Attrs
(),
{});
}
inline
Expr
Divide
(
Expr
lhs
,
Expr
rhs
)
{
static
const
Op
&
op
=
Op
::
Get
(
"divide"
);
return
CallNode
::
make
(
op
,
{
lhs
,
rhs
},
Attrs
(),
{});
...
...
@@ -116,8 +137,6 @@ inline Expr ReshapeLike(Expr lhs, Expr rhs) {
return
CallNode
::
make
(
op
,
{
lhs
,
rhs
},
Attrs
(),
{});
}
}
// namespace relay
}
// namespace tvm
#endif // TVM_RELAY_PASS_PATTERN_UTIL_H_
tests/python/relay/test_pass_fold_scale_axis.py
View file @
d5103bbc
...
...
@@ -62,14 +62,14 @@ def test_fold_fwd_dual_path():
channels
=
channels
,
kernel_size
=
(
3
,
3
),
data_layout
=
"NHWC"
,
weight_layout
=
"HW
OI
"
,
weight_layout
=
"HW
IO
"
,
groups
=
channels
,
padding
=
(
1
,
1
))
y2
=
relay
.
nn
.
conv2d
(
x
,
conv_weight
,
channels
=
channels
,
kernel_size
=
(
3
,
3
),
data_layout
=
"NHWC"
,
weight_layout
=
"HW
OI
"
,
weight_layout
=
"HW
IO
"
,
groups
=
channels
,
padding
=
(
1
,
1
))
z
=
relay
.
add
(
y1
,
y2
)
...
...
@@ -85,7 +85,7 @@ def test_fold_fwd_dual_path():
channels
=
channels
,
kernel_size
=
(
3
,
3
),
data_layout
=
"NHWC"
,
weight_layout
=
"HW
OI
"
,
weight_layout
=
"HW
IO
"
,
groups
=
channels
,
padding
=
(
1
,
1
))
y2
=
relay
.
nn
.
conv2d
(
x
,
...
...
@@ -93,7 +93,7 @@ def test_fold_fwd_dual_path():
channels
=
channels
,
kernel_size
=
(
3
,
3
),
data_layout
=
"NHWC"
,
weight_layout
=
"HW
OI
"
,
weight_layout
=
"HW
IO
"
,
groups
=
channels
,
padding
=
(
1
,
1
))
z
=
relay
.
add
(
y1
,
y2
)
...
...
@@ -147,7 +147,176 @@ def test_fold_fwd_fail():
check
((
2
,
11
,
10
,
4
),
4
)
def
test_fold_bwd_simple
():
"""Simple testcase."""
def
before
(
x
,
conv_weight
,
out_bias
,
out_scale
,
channels
):
args
=
[
x
,
conv_weight
,
out_bias
,
out_scale
]
out_scale
=
relay
.
expand_dims
(
out_scale
,
axis
=
1
,
num_newaxis
=
2
)
out_bias
=
relay
.
expand_dims
(
out_bias
,
axis
=
1
,
num_newaxis
=
2
)
y
=
relay
.
nn
.
conv2d
(
x
,
conv_weight
,
channels
=
channels
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
))
y
=
relay
.
add
(
y
,
out_bias
)
y
=
relay
.
nn
.
relu
(
y
)
y
=
relay
.
multiply
(
y
,
out_scale
)
return
relay
.
Function
(
args
,
y
)
def
expected
(
x
,
conv_weight
,
out_bias
,
out_scale
,
channels
):
# use a fixed order of args so alpha equal check can pass
args
=
[
x
,
conv_weight
,
out_bias
,
out_scale
]
out_scale
=
relay
.
expand_dims
(
out_scale
,
axis
=
1
,
num_newaxis
=
2
)
out_bias
=
relay
.
expand_dims
(
out_bias
,
axis
=
1
,
num_newaxis
=
2
)
squeezed_scale
=
relay
.
squeeze
(
out_scale
,
axis
=
[
1
,
2
])
conv_weight
=
relay
.
multiply
(
conv_weight
,
relay
.
expand_dims
(
squeezed_scale
,
axis
=
1
,
num_newaxis
=
3
))
y
=
relay
.
nn
.
conv2d
(
x
,
conv_weight
,
channels
=
channels
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
))
out_bias
=
relay
.
multiply
(
out_bias
,
relay
.
expand_dims
(
squeezed_scale
,
axis
=
1
,
num_newaxis
=
2
))
y
=
relay
.
add
(
y
,
out_bias
)
y
=
relay
.
nn
.
relu
(
y
)
return
relay
.
Function
(
args
,
y
)
def
check
(
shape
,
channels
):
x
=
relay
.
var
(
"x"
,
shape
=
shape
)
in_channels
=
shape
[
1
]
weight
=
relay
.
var
(
"weight"
)
out_bias
=
relay
.
var
(
"out_bias"
,
shape
=
(
channels
,))
out_scale
=
relay
.
var
(
"out_scale"
,
shape
=
(
channels
,))
y1
=
before
(
x
,
weight
,
out_bias
,
out_scale
,
channels
)
y1
=
relay
.
ir_pass
.
infer_type
(
y1
)
type_dict
=
{
x
.
name_hint
:
x
.
checked_type
for
x
in
y1
.
params
}
weight
=
relay
.
var
(
"weight"
,
type_dict
[
"weight"
])
y1_folded
=
relay
.
ir_pass
.
backward_fold_scale_axis
(
y1
)
y1_expected
=
expected
(
x
,
weight
,
out_bias
,
out_scale
,
channels
)
assert
relay
.
ir_pass
.
alpha_equal
(
y1_folded
,
y1_expected
)
check
((
2
,
4
,
10
,
10
),
8
)
def
test_fold_bwd_dual_path
():
"""Dual path testcase."""
def
before
(
x
,
conv_weight
,
out_bias
,
out_scale
,
channels
):
args
=
[
x
,
conv_weight
,
out_bias
,
out_scale
]
out_scale
=
relay
.
expand_dims
(
out_scale
,
axis
=
1
,
num_newaxis
=
2
)
out_bias
=
relay
.
expand_dims
(
out_bias
,
axis
=
1
,
num_newaxis
=
2
)
y1
=
relay
.
nn
.
conv2d
(
x
,
conv_weight
,
channels
=
channels
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
))
y1
=
relay
.
nn
.
relu
(
y1
)
y2
=
relay
.
nn
.
conv2d
(
x
,
conv_weight
,
channels
=
channels
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
))
y2
=
relay
.
nn
.
relu
(
y2
)
y
=
relay
.
add
(
y1
,
y2
)
y
=
relay
.
multiply
(
y
,
out_scale
)
return
relay
.
Function
(
args
,
y
)
def
expected
(
x
,
conv_weight
,
out_bias
,
out_scale
,
channels
):
# use a fixed order of args so alpha equal check can pass
args
=
[
x
,
conv_weight
,
out_bias
,
out_scale
]
out_scale
=
relay
.
expand_dims
(
out_scale
,
axis
=
1
,
num_newaxis
=
2
)
out_bias
=
relay
.
expand_dims
(
out_bias
,
axis
=
1
,
num_newaxis
=
2
)
squeezed_scale
=
relay
.
squeeze
(
out_scale
,
axis
=
[
1
,
2
])
def
fold_conv_weight
():
return
relay
.
multiply
(
conv_weight
,
relay
.
expand_dims
(
squeezed_scale
,
axis
=
1
,
num_newaxis
=
3
))
y1
=
relay
.
nn
.
conv2d
(
x
,
fold_conv_weight
(),
channels
=
channels
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
))
y1
=
relay
.
nn
.
relu
(
y1
)
y2
=
relay
.
nn
.
conv2d
(
x
,
fold_conv_weight
(),
channels
=
channels
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
))
y2
=
relay
.
nn
.
relu
(
y2
)
y
=
relay
.
add
(
y1
,
y2
)
return
relay
.
Function
(
args
,
y
)
def
check
(
shape
,
channels
):
x
=
relay
.
var
(
"x"
,
shape
=
shape
)
in_channels
=
shape
[
1
]
weight
=
relay
.
var
(
"weight"
)
out_bias
=
relay
.
var
(
"out_bias"
,
shape
=
(
channels
,))
out_scale
=
relay
.
var
(
"out_scale"
,
shape
=
(
channels
,))
y1
=
before
(
x
,
weight
,
out_bias
,
out_scale
,
channels
)
y1
=
relay
.
ir_pass
.
infer_type
(
y1
)
type_dict
=
{
x
.
name_hint
:
x
.
checked_type
for
x
in
y1
.
params
}
weight
=
relay
.
var
(
"weight"
,
type_dict
[
"weight"
])
y1_folded
=
relay
.
ir_pass
.
backward_fold_scale_axis
(
y1
)
y1_expected
=
expected
(
x
,
weight
,
out_bias
,
out_scale
,
channels
)
assert
relay
.
ir_pass
.
alpha_equal
(
y1_folded
,
y1_expected
)
check
((
2
,
4
,
10
,
10
),
8
)
def
test_fold_bwd_fail
():
"""Dual path testcase."""
def
fail1
(
x
,
conv_weight
,
out_bias
,
out_scale
,
channels
):
args
=
[
x
,
conv_weight
,
out_bias
,
out_scale
]
out_scale
=
relay
.
expand_dims
(
out_scale
,
axis
=
1
,
num_newaxis
=
2
)
out_bias
=
relay
.
expand_dims
(
out_bias
,
axis
=
1
,
num_newaxis
=
2
)
y1
=
relay
.
nn
.
conv2d
(
x
,
conv_weight
,
channels
=
channels
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
))
y1
=
relay
.
nn
.
relu
(
y1
)
y2
=
relay
.
nn
.
conv2d
(
x
,
conv_weight
,
channels
=
channels
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
out_layout
=
"CNHW"
)
# fold will fail because the axis from two path
# differs from each other.
y2
=
relay
.
nn
.
relu
(
y2
)
y
=
relay
.
add
(
y1
,
y2
)
y
=
relay
.
multiply
(
y
,
out_scale
)
return
relay
.
Function
(
args
,
y
)
def
fail2
(
x
,
conv_weight
,
out_bias
,
out_scale
,
channels
):
args
=
[
x
,
conv_weight
,
out_bias
,
out_scale
]
out_scale
=
relay
.
expand_dims
(
out_scale
,
axis
=
1
,
num_newaxis
=
2
)
out_bias
=
relay
.
expand_dims
(
out_bias
,
axis
=
1
,
num_newaxis
=
2
)
y1
=
relay
.
nn
.
conv2d
(
x
,
conv_weight
,
channels
=
channels
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
))
y2
=
relay
.
nn
.
relu
(
y1
)
# fold will fail because y1 is referred also by y2
y1
=
relay
.
multiply
(
y1
,
out_scale
)
y
=
relay
.
add
(
y1
,
y2
)
return
relay
.
Function
(
args
,
y
)
def
check
(
shape
,
channels
,
fbefore
):
x
=
relay
.
var
(
"x"
,
shape
=
shape
)
in_channels
=
shape
[
1
]
weight
=
relay
.
var
(
"weight"
)
out_bias
=
relay
.
var
(
"out_bias"
,
shape
=
(
channels
,))
out_scale
=
relay
.
var
(
"out_scale"
,
shape
=
(
channels
,))
y1
=
fbefore
(
x
,
weight
,
out_bias
,
out_scale
,
channels
)
y1
=
relay
.
ir_pass
.
infer_type
(
y1
)
y1_folded
=
relay
.
ir_pass
.
backward_fold_scale_axis
(
y1
)
assert
relay
.
ir_pass
.
alpha_equal
(
y1_folded
,
y1
)
check
((
4
,
4
,
10
,
10
),
4
,
fail1
)
check
((
4
,
4
,
10
,
10
),
4
,
fail2
)
if
__name__
==
"__main__"
:
test_fold_fwd_simple
()
test_fold_fwd_dual_path
()
test_fold_fwd_fail
()
test_fold_bwd_simple
()
test_fold_bwd_dual_path
()
test_fold_bwd_fail
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment