test_forward.py 14 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23
import numpy as np
import tvm
from tvm import relay
from tvm.contrib import graph_runtime
from tvm.relay.testing.config import ctx_list
import keras

24
# prevent Keras from using up all gpu memory
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5
set_session(tf.Session(config=config))


def verify_keras_frontend(keras_model, need_transpose=True):
    # Keras frontend currently supports tensorflow backend only.
    assert(keras.backend.backend() == 'tensorflow')

    in_shapes = []
    for layer in keras_model._input_layers:
        in_shapes.append(tuple(dim.value if dim.value is not None else 1 for dim in layer.input.shape))

    def get_keras_output(xs, dtype='float32'):
        return keras_model.predict(xs)

    def get_tvm_output(xs, target, ctx, dtype='float32'):
        shape_dict = {name: x.shape for (name, x) in zip(keras_model.input_names, xs)}
45
        mod, params = relay.frontend.from_keras(keras_model, shape_dict)
46
        with relay.transform.build_config(opt_level=2):
47
            graph, lib, params = relay.build(mod,
48 49
                                             target,
                                             params=params)
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        m = graph_runtime.create(graph, lib, ctx)
        for name, x in zip(keras_model.input_names, xs):
            m.set_input(name, tvm.nd.array(x.astype(dtype)))
        m.set_input(**params)
        m.run()
        return [m.get_output(i).asnumpy() for i in range(m.get_num_outputs())]

    def to_channels_first(arr):
        return arr.transpose([0, -1] + list(range(1, arr.ndim - 1)))

    def to_channels_last(arr):
        return arr.transpose([0] + list(range(2, arr.ndim)) + [1])

    xs = [np.random.uniform(size=shape, low=-1.0, high=1.0) for shape in in_shapes]
    keras_out = get_keras_output(xs)
    keras_out = keras_out if isinstance(keras_out, list) else [keras_out]
    for target, ctx in ctx_list():
        inputs = [to_channels_first(x) for x in xs] if need_transpose else xs
        tvm_out = get_tvm_output(inputs, target, ctx)
        for kout, tout in zip(keras_out, tvm_out):
            if need_transpose:
                tout = to_channels_last(tout)
            tvm.testing.assert_allclose(kout, tout, rtol=1e-5, atol=1e-5)


def test_forward_merge():
76
    data = keras.layers.Input(shape=(32, 32, 3))
77 78 79 80 81 82 83 84 85 86
    x = keras.layers.Conv2D(8, (3, 3), padding="same")(data)
    y = keras.layers.Conv2D(8, (3, 3), padding="same")(x)
    z = keras.layers.Conv2D(8, (3, 3), padding="same")(y)
    merge_funcs = [keras.layers.Add(),
                   keras.layers.Subtract(),
                   keras.layers.Multiply(),
                   keras.layers.Maximum(),
                   keras.layers.Average(),
                   keras.layers.Concatenate()]
    for merge_func in merge_funcs:
Yong Wu committed
87
        if isinstance(merge_func, (keras.layers.merge.Subtract, keras.layers.merge.Dot)):
88 89 90 91 92 93
            out = merge_func([x, y])
        else:
            out = merge_func([x, y, z])
        keras_model = keras.models.Model(data, out)
        verify_keras_frontend(keras_model)

Yong Wu committed
94 95 96 97 98 99 100 101 102 103 104 105 106
def test_forward_merge_dot():
    data1 = keras.layers.Input(shape=(2, 2))
    data2 = keras.layers.Input(shape=(2, 2))
    merge_funcs = [keras.layers.Dot(axes=[1, 2]),
                   keras.layers.Dot(axes=[2, 1]),
                   keras.layers.Dot(axes=[1, 1]),
                   keras.layers.Dot(axes=[2, 2]),
                   keras.layers.Dot(axes=1),
                   keras.layers.Dot(axes=2)]
    for merge_func in merge_funcs:
        out = merge_func([data1, data2])
        keras_model = keras.models.Model([data1, data2], out)
        verify_keras_frontend(keras_model)
107 108

def test_forward_activations():
109
    data = keras.layers.Input(shape=(32, 32, 3))
110
    act_funcs = [keras.layers.Activation('softmax'),
111 112 113 114 115
                 keras.layers.Softmax(),
                 keras.layers.Softmax(axis=-1),
                 keras.layers.Softmax(axis=1),
                 keras.layers.Softmax(axis=2),
                 keras.layers.Softmax(axis=3),
116 117 118 119 120 121 122 123 124 125
                 keras.layers.Activation('softplus'),
                 keras.layers.Activation('relu'),
                 keras.layers.Activation('softsign'),
                 keras.layers.Activation('hard_sigmoid'),
                 keras.layers.Activation('sigmoid'),
                 keras.layers.Activation('tanh'),
                 keras.layers.Activation('linear'),
                 keras.layers.Activation('selu'),
                 keras.layers.ReLU(),
                 keras.layers.ReLU(max_value=6.),
126 127 128 129 130
                 keras.layers.ReLU(max_value=6., threshold=0.),
                 keras.layers.ReLU(max_value=6., threshold=1.),
                 keras.layers.ReLU(max_value=6., threshold=1., negative_slope=0.),
                 keras.layers.ReLU(max_value=6., threshold=1., negative_slope=0.5),
                 keras.layers.ReLU(max_value=6., threshold=1., negative_slope=1.),
131 132 133 134 135 136 137 138 139 140 141
                 keras.layers.LeakyReLU(alpha=0.3),
                 keras.layers.PReLU(weights=np.random.rand(1, 32, 32, 3)),
                 keras.layers.ELU(alpha=0.5),
                 keras.layers.ThresholdedReLU(theta=0.5)]
    for act_func in act_funcs:
        x = act_func(data)
        keras_model = keras.models.Model(data, x)
        verify_keras_frontend(keras_model)


def test_forward_dense():
142
    data = keras.layers.Input(shape=(32, 32, 1))
143 144 145 146 147 148
    x = keras.layers.Flatten()(data)
    x = keras.layers.Dropout(0.5)(x)
    x = keras.layers.Dense(10, activation='relu', kernel_initializer='uniform')(x)
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model)

149 150 151 152 153
def test_forward_permute():
    data = keras.layers.Input(shape=(2, 3, 4))
    x = keras.layers.Permute([2, 3, 1])(data)
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model, need_transpose=False)
154

155 156 157 158 159 160 161 162 163 164 165
def test_forward_sequential():
    keras_model = keras.models.Sequential([
        keras.layers.Dense(16, input_dim=32, activation='relu'),
        keras.layers.Dropout(0.5),
        keras.layers.Dense(8, activation='relu'),
        keras.layers.Dropout(0.5),
        keras.layers.Dense(1, activation='sigmoid')
    ])
    verify_keras_frontend(keras_model)


166
def test_forward_pool():
167
    data = keras.layers.Input(shape=(32, 32, 1))
168 169 170 171 172 173 174 175 176 177 178
    # maxpool
    x = keras.layers.MaxPooling2D((3, 3), strides=(1, 1), padding='same')(data)
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model)
    # avgpool
    y = keras.layers.AveragePooling2D((3, 3), strides=(1, 1), padding='same')(data)
    keras_model = keras.models.Model(data, y)
    verify_keras_frontend(keras_model)


def test_forward_conv():
179 180 181 182 183
    data = keras.layers.Input(shape=(32, 32, 3))
    conv_funcs = [keras.layers.Conv2D(filters=10, kernel_size=(3, 3),
                                      strides=(2, 2), padding='same'),
                  keras.layers.Conv2D(filters=10, kernel_size=(3, 3),
                                      dilation_rate=(2, 2), padding='same'),
184
                  keras.layers.Conv2D(filters=1, kernel_size=(3, 3), padding='same'),
185 186 187
                  keras.layers.DepthwiseConv2D(kernel_size=(3, 3), padding='same'),
                  keras.layers.Conv2DTranspose(filters=10, kernel_size=(3, 3), padding='valid'),
                  keras.layers.SeparableConv2D(filters=10, kernel_size=(3, 3), padding='same')]
188 189 190 191 192 193
    for conv_func in conv_funcs:
        x = conv_func(data)
        keras_model = keras.models.Model(data, x)
        verify_keras_frontend(keras_model)


194
def test_forward_upsample(interpolation='nearest'):
195 196
    data = keras.layers.Input(shape=(32, 32, 3))
    x = keras.layers.UpSampling2D(size=(3, 3), interpolation=interpolation)(data)
197
    keras_model = keras.models.Model(data, x)
198
    verify_keras_frontend(keras_model)
199 200 201


def test_forward_reshape():
202
    # input_shape len is 3, target_shape len is 3
203
    data = keras.layers.Input(shape=(32, 32, 3))
204
    x = keras.layers.Reshape(target_shape=(16, 64, 3))(data)
205 206
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model)
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    # input_shape len is 3, target_shape len is 2
    data = keras.layers.Input(shape=(32, 8, 3))
    x = keras.layers.Reshape(target_shape=(256, 3))(data)
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model)
    # input_shape len is 2, target_shape len is 3
    data = keras.layers.Input(shape=(256, 3))
    x = keras.layers.Reshape(target_shape=(8, 32, 3))(data)
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model)
    # input_shape len is 2, target_shape len is 1
    data = keras.layers.Input(shape=(2, 8))
    x = keras.layers.Reshape(target_shape=(16,))(data)
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model, need_transpose=False)
    # input_shape len is 1, target_shape len is 2
    data = keras.layers.Input(shape=(16,))
    x = keras.layers.Reshape(target_shape=(4, 4))(data)
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model, need_transpose=False)
    # input_shape len is 2, target_shape len is 2
    data = keras.layers.Input(shape=(2, 8))
    x = keras.layers.Reshape(target_shape=(4, 4))(data)
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model, need_transpose=False)
232 233 234


def test_forward_crop():
235
    data = keras.layers.Input(shape=(32, 32, 3))
236 237 238 239 240 241 242 243 244 245 246 247
    x = keras.layers.Cropping2D(cropping=((1, 1), (1, 1)))(data)
    x = keras.layers.Cropping2D(cropping=(1, 1))(x)
    x = keras.layers.Cropping2D(cropping=1)(x)
    x = keras.layers.Cropping2D(cropping=((0, 1), (1, 0)))(x)
    x = keras.layers.Cropping2D(cropping=(1, 0))(x)
    x = keras.layers.Cropping2D(cropping=0)(x)
    x = keras.layers.Add()([x, x])
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model)


def test_forward_multi_inputs():
248 249
    data1 = keras.layers.Input(shape=(32, 32, 3))
    data2 = keras.layers.Input(shape=(32, 32, 3))
250 251 252 253 254 255 256 257 258
    x = keras.layers.Conv2D(8, (3, 3), padding="same")(data1)
    y = keras.layers.Conv2D(8, (3, 3), padding="same")(data2)
    z = keras.layers.Average()([x, y])
    z = keras.layers.GlobalAveragePooling2D()(z)
    keras_model = keras.models.Model([data1, data2], z)
    verify_keras_frontend(keras_model)


def test_forward_multi_outputs():
259
    data = keras.layers.Input(shape=(32, 32, 3))
260 261 262 263 264 265 266 267 268 269
    x = keras.layers.Conv2D(8, (3, 3), padding="same")(data)
    x = keras.layers.GlobalAveragePooling2D()(x)
    y = keras.layers.Conv2D(8, (3, 3), padding="same")(data)
    y = keras.layers.GlobalAveragePooling2D()(y)
    keras_model = keras.models.Model(data, [x, y])
    verify_keras_frontend(keras_model)


def test_forward_reuse_layers():
    # reuse conv2d
270
    data = keras.layers.Input(shape=(32, 32, 3))
271 272 273 274 275 276 277 278
    conv2d = keras.layers.Conv2D(8, (3, 3), padding="same")
    x = conv2d(data)
    y = conv2d(data)
    z = keras.layers.Add()([x, y])
    z = keras.layers.GlobalAveragePooling2D()(z)
    keras_model = keras.models.Model(data, z)
    verify_keras_frontend(keras_model)
    # reuse add
279
    data = keras.layers.Input(shape=(32, 32, 3))
280 281 282 283 284 285 286 287 288 289
    x = keras.layers.Conv2D(8, (3, 3), padding="same")(data)
    add = keras.layers.Add()
    x = add([x, x])
    x = add([x, x])
    z = keras.layers.GlobalAveragePooling2D()(x)
    keras_model = keras.models.Model(data, z)
    verify_keras_frontend(keras_model)


def test_forward_rnn():
290
    data = keras.layers.Input(shape=(1, 32))
291 292 293 294 295 296 297 298 299 300 301 302 303 304
    rnn_funcs = [keras.layers.LSTM(units=16, return_state=False,
                    recurrent_activation='sigmoid', activation='tanh'),
                 keras.layers.SimpleRNN(units=16, return_state=False,
                    activation='tanh'),
                 keras.layers.GRU(units=16, return_state=False,
                    recurrent_activation='sigmoid', activation='tanh')]
    for rnn_func in rnn_funcs:
        x = rnn_func(data)
        keras_model = keras.models.Model(data, x)
        verify_keras_frontend(keras_model, need_transpose=False)


def test_forward_vgg16():
    keras_model = keras.applications.VGG16(include_top=True, weights='imagenet',
305
        input_shape=(224, 224, 3), classes=1000)
306 307 308 309 310
    verify_keras_frontend(keras_model)


def test_forward_xception():
    keras_model = keras.applications.Xception(include_top=True, weights='imagenet',
311
        input_shape=(299, 299, 3), classes=1000)
312 313 314 315 316
    verify_keras_frontend(keras_model)


def test_forward_resnet50():
    keras_model = keras.applications.ResNet50(include_top=True, weights='imagenet',
317
        input_shape=(224, 224, 3), classes=1000)
318 319 320 321 322
    verify_keras_frontend(keras_model)


def test_forward_mobilenet():
    keras_model = keras.applications.MobileNet(include_top=True, weights='imagenet',
323
        input_shape=(224, 224, 3), classes=1000)
324 325 326 327 328
    verify_keras_frontend(keras_model)


if __name__ == '__main__':
    test_forward_merge()
Yong Wu committed
329
    test_forward_merge_dot()
330 331
    test_forward_activations()
    test_forward_dense()
332
    test_forward_permute()
333
    test_forward_sequential()
334 335
    test_forward_pool()
    test_forward_conv()
336 337
    test_forward_upsample(interpolation='nearest')
    test_forward_upsample(interpolation='bilinear')
338 339 340 341 342 343 344 345 346 347
    test_forward_reshape()
    test_forward_crop()
    test_forward_multi_inputs()
    test_forward_multi_outputs()
    test_forward_reuse_layers()
    test_forward_rnn()
    test_forward_vgg16()
    test_forward_xception()
    test_forward_resnet50()
    test_forward_mobilenet()