Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
dedcf82f
Commit
dedcf82f
authored
Jul 24, 2019
by
Yong Wu
Committed by
Yao Wang
Jul 24, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay][Keras] Permute, Softmax support (#3618)
parent
e7fb2d4d
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
47 additions
and
30 deletions
+47
-30
python/tvm/relay/frontend/keras.py
+13
-3
tests/python/frontend/keras/test_forward.py
+34
-27
No files found.
python/tvm/relay/frontend/keras.py
View file @
dedcf82f
...
...
@@ -115,6 +115,9 @@ def _convert_activation(inexpr, keras_layer, _):
def
_convert_advanced_activation
(
inexpr
,
keras_layer
,
etab
):
act_type
=
type
(
keras_layer
)
.
__name__
if
act_type
==
'Softmax'
:
return
_op
.
nn
.
softmax
(
inexpr
,
axis
=
1
)
if
act_type
==
'ReLU'
:
if
keras_layer
.
max_value
:
return
_op
.
clip
(
inexpr
,
a_min
=
0.
,
a_max
=
float
(
keras_layer
.
max_value
))
...
...
@@ -160,6 +163,8 @@ def _convert_merge(inexpr, keras_layer, _):
'Operator {} is not supported in frontend Keras.'
.
format
(
merge_type
))
return
ret
def
_convert_permute
(
inexpr
,
keras_layer
,
_
):
return
_op
.
transpose
(
inexpr
,
axes
=
(
0
,)
+
keras_layer
.
dims
)
def
_convert_dense
(
inexpr
,
keras_layer
,
etab
):
weightList
=
keras_layer
.
get_weights
()
...
...
@@ -574,6 +579,7 @@ def _default_skip(inexpr, keras_layer, _): # pylint: disable=unused-argument
_convert_map
=
{
'Dense'
:
_convert_dense
,
'Activation'
:
_convert_activation
,
'Softmax'
:
_convert_advanced_activation
,
'ReLU'
:
_convert_advanced_activation
,
'LeakyReLU'
:
_convert_advanced_activation
,
'PReLU'
:
_convert_advanced_activation
,
...
...
@@ -620,7 +626,7 @@ _convert_map = {
'Average'
:
_convert_merge
,
'Maximum'
:
_convert_merge
,
# 'Dot' : _convert_merge,
#
'Permute' : _convert_permute,
'Permute'
:
_convert_permute
,
# 'Embedding' : _convert_embedding,
# 'RepeatVector' : _convert_repeat_vector,
...
...
@@ -632,11 +638,15 @@ _convert_map = {
def
_check_unsupported_layers
(
model
):
missing_ops
=
set
()
for
layer
in
model
.
layers
:
op_name
=
type
(
layer
)
.
__name__
if
op_name
not
in
_convert_map
:
raise
tvm
.
error
.
OpNotImplemented
(
'Operator {} is not supported in frontend Keras.'
.
format
(
op_name
))
missing_ops
.
add
(
op_name
)
if
missing_ops
:
raise
NotImplementedError
(
\
"The following operators are not implemented: {}"
.
format
(
missing_ops
))
def
keras_op_to_relay
(
inexpr
,
keras_layer
,
outname
,
etab
):
...
...
tests/python/frontend/keras/test_forward.py
View file @
dedcf82f
...
...
@@ -73,7 +73,7 @@ def verify_keras_frontend(keras_model, need_transpose=True):
def
test_forward_merge
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
Conv2D
(
8
,
(
3
,
3
),
padding
=
"same"
)(
data
)
y
=
keras
.
layers
.
Conv2D
(
8
,
(
3
,
3
),
padding
=
"same"
)(
x
)
z
=
keras
.
layers
.
Conv2D
(
8
,
(
3
,
3
),
padding
=
"same"
)(
y
)
...
...
@@ -93,7 +93,7 @@ def test_forward_merge():
def
test_forward_activations
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
act_funcs
=
[
keras
.
layers
.
Activation
(
'softmax'
),
keras
.
layers
.
Activation
(
'softplus'
),
keras
.
layers
.
Activation
(
'relu'
),
...
...
@@ -103,6 +103,7 @@ def test_forward_activations():
keras
.
layers
.
Activation
(
'tanh'
),
keras
.
layers
.
Activation
(
'linear'
),
keras
.
layers
.
Activation
(
'selu'
),
keras
.
layers
.
Softmax
(),
keras
.
layers
.
ReLU
(),
keras
.
layers
.
ReLU
(
max_value
=
6.
),
keras
.
layers
.
LeakyReLU
(
alpha
=
0.3
),
...
...
@@ -116,13 +117,18 @@ def test_forward_activations():
def
test_forward_dense
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
1
))
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
1
))
x
=
keras
.
layers
.
Flatten
()(
data
)
x
=
keras
.
layers
.
Dropout
(
0.5
)(
x
)
x
=
keras
.
layers
.
Dense
(
10
,
activation
=
'relu'
,
kernel_initializer
=
'uniform'
)(
x
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
)
def
test_forward_permute
():
data
=
keras
.
layers
.
Input
(
shape
=
(
2
,
3
,
4
))
x
=
keras
.
layers
.
Permute
([
2
,
3
,
1
])(
data
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
,
need_transpose
=
False
)
def
test_forward_sequential
():
keras_model
=
keras
.
models
.
Sequential
([
...
...
@@ -136,7 +142,7 @@ def test_forward_sequential():
def
test_forward_pool
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
1
))
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
1
))
# maxpool
x
=
keras
.
layers
.
MaxPooling2D
((
3
,
3
),
strides
=
(
1
,
1
),
padding
=
'same'
)(
data
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
...
...
@@ -148,14 +154,14 @@ def test_forward_pool():
def
test_forward_conv
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
conv_funcs
=
[
keras
.
layers
.
Conv2D
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
strides
=
(
2
,
2
),
padding
=
'same'
),
keras
.
layers
.
Conv2D
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
dilation_rate
=
(
2
,
2
),
padding
=
'same'
),
keras
.
layers
.
DepthwiseConv2D
(
kernel_size
=
(
3
,
3
),
padding
=
'same'
),
keras
.
layers
.
Conv2DTranspose
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
padding
=
'valid'
),
keras
.
layers
.
SeparableConv2D
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
padding
=
'same'
)]
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
conv_funcs
=
[
keras
.
layers
.
Conv2D
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
strides
=
(
2
,
2
),
padding
=
'same'
),
keras
.
layers
.
Conv2D
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
dilation_rate
=
(
2
,
2
),
padding
=
'same'
),
keras
.
layers
.
DepthwiseConv2D
(
kernel_size
=
(
3
,
3
),
padding
=
'same'
),
keras
.
layers
.
Conv2DTranspose
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
padding
=
'valid'
),
keras
.
layers
.
SeparableConv2D
(
filters
=
10
,
kernel_size
=
(
3
,
3
),
padding
=
'same'
)]
for
conv_func
in
conv_funcs
:
x
=
conv_func
(
data
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
...
...
@@ -163,21 +169,21 @@ def test_forward_conv():
def
test_forward_upsample
(
interpolation
=
'nearest'
):
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
UpSampling2D
(
size
=
(
3
,
3
),
interpolation
=
interpolation
)(
data
)
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
UpSampling2D
(
size
=
(
3
,
3
),
interpolation
=
interpolation
)(
data
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
)
def
test_forward_reshape
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
Reshape
(
target_shape
=
(
32
,
32
,
3
))(
data
)
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
Reshape
(
target_shape
=
(
32
,
32
,
3
))(
data
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
)
def
test_forward_crop
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
Cropping2D
(
cropping
=
((
1
,
1
),
(
1
,
1
)))(
data
)
x
=
keras
.
layers
.
Cropping2D
(
cropping
=
(
1
,
1
))(
x
)
x
=
keras
.
layers
.
Cropping2D
(
cropping
=
1
)(
x
)
...
...
@@ -190,8 +196,8 @@ def test_forward_crop():
def
test_forward_multi_inputs
():
data1
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
data2
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
data1
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
data2
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
Conv2D
(
8
,
(
3
,
3
),
padding
=
"same"
)(
data1
)
y
=
keras
.
layers
.
Conv2D
(
8
,
(
3
,
3
),
padding
=
"same"
)(
data2
)
z
=
keras
.
layers
.
Average
()([
x
,
y
])
...
...
@@ -201,7 +207,7 @@ def test_forward_multi_inputs():
def
test_forward_multi_outputs
():
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
Conv2D
(
8
,
(
3
,
3
),
padding
=
"same"
)(
data
)
x
=
keras
.
layers
.
GlobalAveragePooling2D
()(
x
)
y
=
keras
.
layers
.
Conv2D
(
8
,
(
3
,
3
),
padding
=
"same"
)(
data
)
...
...
@@ -212,7 +218,7 @@ def test_forward_multi_outputs():
def
test_forward_reuse_layers
():
# reuse conv2d
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
conv2d
=
keras
.
layers
.
Conv2D
(
8
,
(
3
,
3
),
padding
=
"same"
)
x
=
conv2d
(
data
)
y
=
conv2d
(
data
)
...
...
@@ -221,7 +227,7 @@ def test_forward_reuse_layers():
keras_model
=
keras
.
models
.
Model
(
data
,
z
)
verify_keras_frontend
(
keras_model
)
# reuse add
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
Conv2D
(
8
,
(
3
,
3
),
padding
=
"same"
)(
data
)
add
=
keras
.
layers
.
Add
()
x
=
add
([
x
,
x
])
...
...
@@ -232,7 +238,7 @@ def test_forward_reuse_layers():
def
test_forward_rnn
():
data
=
keras
.
layers
.
Input
(
shape
=
(
1
,
32
))
data
=
keras
.
layers
.
Input
(
shape
=
(
1
,
32
))
rnn_funcs
=
[
keras
.
layers
.
LSTM
(
units
=
16
,
return_state
=
False
,
recurrent_activation
=
'sigmoid'
,
activation
=
'tanh'
),
keras
.
layers
.
SimpleRNN
(
units
=
16
,
return_state
=
False
,
...
...
@@ -247,25 +253,25 @@ def test_forward_rnn():
def
test_forward_vgg16
():
keras_model
=
keras
.
applications
.
VGG16
(
include_top
=
True
,
weights
=
'imagenet'
,
input_shape
=
(
224
,
224
,
3
),
classes
=
1000
)
input_shape
=
(
224
,
224
,
3
),
classes
=
1000
)
verify_keras_frontend
(
keras_model
)
def
test_forward_xception
():
keras_model
=
keras
.
applications
.
Xception
(
include_top
=
True
,
weights
=
'imagenet'
,
input_shape
=
(
299
,
299
,
3
),
classes
=
1000
)
input_shape
=
(
299
,
299
,
3
),
classes
=
1000
)
verify_keras_frontend
(
keras_model
)
def
test_forward_resnet50
():
keras_model
=
keras
.
applications
.
ResNet50
(
include_top
=
True
,
weights
=
'imagenet'
,
input_shape
=
(
224
,
224
,
3
),
classes
=
1000
)
input_shape
=
(
224
,
224
,
3
),
classes
=
1000
)
verify_keras_frontend
(
keras_model
)
def
test_forward_mobilenet
():
keras_model
=
keras
.
applications
.
MobileNet
(
include_top
=
True
,
weights
=
'imagenet'
,
input_shape
=
(
224
,
224
,
3
),
classes
=
1000
)
input_shape
=
(
224
,
224
,
3
),
classes
=
1000
)
verify_keras_frontend
(
keras_model
)
...
...
@@ -273,6 +279,7 @@ if __name__ == '__main__':
test_forward_merge
()
test_forward_activations
()
test_forward_dense
()
test_forward_permute
()
test_forward_sequential
()
test_forward_pool
()
test_forward_conv
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment