test_benchmark_topi_conv2d.py 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20

"""Testing topi conv2d operator for VTA"""

import json
21
import os
22 23

import numpy as np
24
from collections import namedtuple
25 26

import tvm
27
from tvm import autotvm
28 29 30 31 32
from tvm.contrib import util
from tvm.contrib.pickle_memoize import memoize
import topi
import topi.testing
import vta
33
from vta import program_fpga, reconfig_runtime
34
import vta.testing
35 36
from vta.testing import simulator

37

38 39 40 41
Workload = namedtuple("Conv2DWorkload",
                      ['batch', 'height', 'width', 'in_filter', 'out_filter',
                       'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride'])

42 43 44
# Get batch info from env
env = vta.get_env()

45 46 47
# ResNet18 workloads
resnet_wkls = [
    # Workloads of resnet18 on imagenet
48 49 50 51 52 53 54 55 56 57 58
    # ('resnet-18.C1',  Workload(env.BATCH, 224, 224, 3,   64,  7, 7, 3, 3, 2, 2)),
    ('resnet-18.C2',  Workload(env.BATCH,  56,  56, 64,  64,  3, 3, 1, 1, 1, 1)),
    ('resnet-18.C3',  Workload(env.BATCH,  56,  56, 64,  128, 3, 3, 1, 1, 2, 2)),
    ('resnet-18.C4',  Workload(env.BATCH,  56,  56, 64,  128, 1, 1, 0, 0, 2, 2)),
    ('resnet-18.C5',  Workload(env.BATCH,  28,  28, 128, 128, 3, 3, 1, 1, 1, 1)),
    ('resnet-18.C6',  Workload(env.BATCH,  28,  28, 128, 256, 3, 3, 1, 1, 2, 2)),
    ('resnet-18.C7',  Workload(env.BATCH,  28,  28, 128, 256, 1, 1, 0, 0, 2, 2)),
    ('resnet-18.C8',  Workload(env.BATCH,  14,  14, 256, 256, 3, 3, 1, 1, 1, 1)),
    ('resnet-18.C9',  Workload(env.BATCH,  14,  14, 256, 512, 3, 3, 1, 1, 2, 2)),
    ('resnet-18.C10', Workload(env.BATCH,  14,  14, 256, 512, 1, 1, 0, 0, 2, 2)),
    ('resnet-18.C11', Workload(env.BATCH,   7,   7, 512, 512, 3, 3, 1, 1, 1, 1)),
59 60 61
]

# FIXME: we need a custom clip operator to circumvent a pattern detection limitation
62 63 64 65 66 67 68 69 70
@tvm.tag_scope(tag=topi.tag.ELEMWISE)
def my_clip(x, a_min, a_max):
    """Unlike topi's current clip, put min and max into two stages."""
    const_min = tvm.const(a_min, x.dtype)
    const_max = tvm.const(a_max, x.dtype)
    x = tvm.compute(x.shape, lambda *i: tvm.min(x(*i), const_max), name="clipA")
    x = tvm.compute(x.shape, lambda *i: tvm.max(x(*i), const_min), name="clipB")
    return x

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
def run_conv2d(env, remote, wl, target,
               check_correctness=True, print_ir=False,
               samples=4):

    # Workload assertions
    assert wl.hpad == wl.wpad

    # Perform packing only if we are targeting the accelerator
    if "arm_cpu" in target.keys:
        data_pack = False
        layout = "NCHW"
    elif "vta" in target.keys:
        data_pack = True
        layout = "NCHW%dn%dc" % (env.BATCH, env.BLOCK_IN)

    # Derive shapes depending upon packing
    a_shape = (wl.batch, wl.in_filter, wl.height, wl.width)
    w_shape = (wl.out_filter, wl.in_filter, wl.hkernel, wl.wkernel)
    b_shape = (wl.batch, wl.out_filter, 1, 1)
    if data_pack:
        data_shape = (wl.batch//env.BATCH, wl.in_filter//env.BLOCK_IN,
92
                      wl.height, wl.width, env.BATCH, env.BLOCK_IN)
93 94
        kernel_shape = (wl.out_filter//env.BLOCK_OUT, wl.in_filter//env.BLOCK_IN,
                        wl.hkernel, wl.wkernel, env.BLOCK_OUT, env.BLOCK_IN)
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        bias_shape = (wl.batch//env.BATCH, wl.out_filter//env.BLOCK_OUT,
                      1, 1, env.BATCH, env.BLOCK_OUT)
    else:
        data_shape = a_shape
        kernel_shape = w_shape
        bias_shape = b_shape
    data = tvm.placeholder(data_shape, name="data", dtype=env.inp_dtype)
    kernel = tvm.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)
    bias = tvm.placeholder(bias_shape, name="bias", dtype=env.acc_dtype)

    # Define base computation schedule
    with target:
        res = topi.nn.conv2d(
            data, kernel, (wl.hstride, wl.wstride), (wl.hpad, wl.wpad), (1, 1),
            layout, env.acc_dtype)
        res = topi.right_shift(res, 8)
111
        res = topi.add(res, bias)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
        res = topi.cast(res, env.out_dtype)
        # Derive base schedule
        s = topi.generic.schedule_conv2d_nchw([res])
        if print_ir:
            print(vta.lower(s, [data, kernel, bias, res], simple_mode=True))

    # Derive number of ops
    fout_height = (wl.height + 2 * wl.hpad - wl.hkernel) // wl.hstride + 1
    fout_width = (wl.width + 2 * wl.wpad - wl.wkernel) // wl.wstride + 1
    num_ops = 2 * wl.batch * fout_height * fout_width * wl.hkernel * wl.wkernel * wl.out_filter * wl.in_filter

    # @memoize("vta.tests.test_benchmark_topi.conv2d.verify_nhwc")
    def get_ref_data():
        # derive min max for act, wgt, and bias types (max non inclusive)
        a_min, a_max = 0 - (1 << (env.INP_WIDTH - 1)), (1 << (env.INP_WIDTH - 1))
        w_min, w_max = 0 - (1 << (env.WGT_WIDTH - 1)), (1 << (env.WGT_WIDTH - 1))
        b_min, b_max = 0 - 1 << (env.INP_WIDTH + env.WGT_WIDTH - 2), 1 << (env.INP_WIDTH + env.WGT_WIDTH - 2)
        a_np = np.random.randint(a_min, a_max, size=a_shape).astype(data.dtype)
        w_np = np.random.randint(w_min, w_max, size=w_shape).astype(kernel.dtype)
        b_np = np.random.randint(b_min, b_max, size=b_shape).astype(env.acc_dtype)
        r_np = topi.testing.conv2d_nchw_python(
            a_np.astype(env.acc_dtype), w_np.astype(env.acc_dtype), (wl.hstride, wl.wstride), wl.hpad).astype(env.acc_dtype)
        return a_np, w_np, b_np, r_np

    # Data in original format
    data_np, kernel_np, bias_np, res_ref = get_ref_data()
    if data_pack:
        data_np = data_np.reshape(
            wl.batch//env.BATCH, env.BATCH,
            wl.in_filter//env.BLOCK_IN, env.BLOCK_IN,
            wl.height, wl.width).transpose((0, 2, 4, 5, 1, 3))
        kernel_np = kernel_np.reshape(
            wl.out_filter//env.BLOCK_OUT, env.BLOCK_OUT,
            wl.in_filter//env.BLOCK_IN, env.BLOCK_IN,
            wl.hkernel, wl.wkernel).transpose((0, 2, 4, 5, 1, 3))
        bias_np = bias_np.reshape(
149
            wl.batch//env.BATCH, wl.out_filter//env.BLOCK_OUT,
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
            1, 1, env.BATCH, env.BLOCK_OUT)

    # Build
    if "vta" in target.keys:
        mod = vta.build(s, [data, kernel, bias, res],
                        target=target,
                        target_host=env.target_host,
                        name="conv2d")
    else:
        mod = tvm.build(s, [data, kernel, bias, res],
                        target=target,
                        target_host=env.target_host,
                        name="conv2d")
    temp = util.tempdir()
    mod.save(temp.relpath("conv2d.o"))
    remote.upload(temp.relpath("conv2d.o"))
    f = remote.load_module("conv2d.o")
    ctx = remote.context(str(target))

    res_np = np.zeros(topi.util.get_const_tuple(res.shape)).astype(res.dtype)
    data_arr = tvm.nd.array(data_np, ctx)
    kernel_arr = tvm.nd.array(kernel_np, ctx)
    bias_arr = tvm.nd.array(bias_np, ctx)
    res_arr = tvm.nd.array(res_np, ctx)
    time_f = f.time_evaluator("conv2d", ctx, number=samples)

    # In vta sim mode, collect simulator runtime statistics
    stats = {}
    cost = None
179
    if env.TARGET in ["sim", "tsim"]:
180 181 182 183
        # Check if we're in local RPC mode (allows us to rebuild the
        # runtime on the fly when varying the VTA designs)
        local_rpc = int(os.environ.get("VTA_LOCAL_SIM_RPC", "0"))
        if local_rpc:
184 185 186 187
            if env.TARGET == "sim":
                remote.get_function("vta.simulator.profiler_clear")()
            else:
                remote.get_function("vta.tsim.profiler_clear")()
188
            cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
189 190 191 192
            if env.TARGET == "sim":
                stats = json.loads(remote.get_function("vta.simulator.profiler_status")())
            else:
                stats = json.loads(remote.get_function("vta.tsim.profiler_status")())
193 194 195 196 197 198 199 200 201 202 203 204 205 206
        else:
            simulator.clear_stats()
            cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
            stats = simulator.stats()
    else:
        cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)

    # Check correctness
    correct = False
    if check_correctness:
        res_orig = res_arr.asnumpy()
        if data_pack:
            res_orig = res_orig.transpose(
                (0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter, fout_height, fout_width)
207 208
            bias_np = bias_np.transpose(
                (0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter, 1, 1)
209
        res_ref = res_ref >> env.WGT_WIDTH
210
        res_ref += bias_np
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        res_ref = np.clip(res_ref, 0, (1 << env.OUT_WIDTH - 1) - 1)
        res_ref = res_ref.astype(env.out_dtype)
        correct = np.allclose(res_orig, res_ref)

    gops = (num_ops / cost.mean) / float(10 ** 9)
    status = "PASSED" if correct else "FAILED"
    if "arm_cpu" in target.keys:
        device = "CPU"
    elif "vta" in target.keys:
        device = "VTA"
    print("%s CONV2D TEST %s: Time cost = %g sec/op, %g GOPS" % (device, status, cost.mean, gops))

    return correct, cost, stats

def test_conv2d(device="vta"):
226
    def _run(env, remote):
227 228
        if device == "vta":
            target = env.target
229
            if env.TARGET not in ["sim", "tsim"]:
230 231 232 233 234 235 236 237 238
                assert tvm.module.enabled("rpc")
                program_fpga(remote, bitstream=None)
                reconfig_runtime(remote)
        elif device == "arm_cpu":
            target = env.target_vta_cpu
        with autotvm.tophub.context(target): # load pre-tuned schedule parameters
            for _, wl in resnet_wkls:
                print(wl)
                run_conv2d(env, remote, wl, target)
239 240 241
    vta.testing.run(_run)

if __name__ == "__main__":
242 243
    test_conv2d(device="arm_cpu")
    test_conv2d(device="vta")