Commit 23c22812 by Thierry Moreau Committed by Jared Roesch

[VTA][TOPI] Conv2d transpose (deconvolution) operator support (#3777)

* initial conv2d_transpose

* correct select operator

* cleanup

* fix

* fix correcness check

* conv2d transpose declaration fix

* autotvm conv2d_transpose tuning script

* ir pass fix

* fix tuning script

* deriving params from env, adding bias

* removing bias comp from deconvolution

* lint

* fix

* lint

* lint

* turning off cpu

* lint, ops

* lint

* import fix

* removing hard coded values

* lint
parent 028f47ce
......@@ -69,7 +69,8 @@ def build_config(debug_flag=0, **kwargs):
debug_flag)
return tvm.make.stmt_seq(debug, stmt)
pass_list = [(1, ir_pass.inject_dma_intrin),
pass_list = [(0, ir_pass.inject_conv2d_transpose_skip),
(1, ir_pass.inject_dma_intrin),
(1, ir_pass.inject_skip_copy),
(1, ir_pass.annotate_alu_coproc_scope),
(1, lambda x: tvm.ir_pass.LiftAttrScope(x, "coproc_uop_scope", True)),
......
......@@ -579,6 +579,145 @@ def inject_dma_intrin(stmt_in):
return tvm.ir_pass.InjectCopyIntrin(stmt_in, "dma_copy", _inject_copy)
def _get_gemm_intrin_buffer():
env = get_env()
wgt_lanes = env.WGT_ELEM_BITS // env.WGT_WIDTH
assert wgt_lanes == env.BLOCK_OUT * env.BLOCK_IN
wgt_shape = (env.BLOCK_OUT, env.BLOCK_IN)
assert wgt_shape[0] * wgt_shape[1] == wgt_lanes
inp_lanes = env.INP_ELEM_BITS // env.INP_WIDTH
assert inp_lanes == env.BATCH * env.BLOCK_IN
inp_shape = (env.BATCH, env.BLOCK_IN)
assert inp_shape[0] * inp_shape[1] == inp_lanes
out_lanes = env.ACC_ELEM_BITS // env.ACC_WIDTH
assert out_lanes == env.BATCH * env.BLOCK_OUT
out_shape = (env.BATCH, env.BLOCK_OUT)
assert out_shape[0] * out_shape[1] == out_lanes
wgt = tvm.placeholder((wgt_shape[0], wgt_shape[1]),
dtype="int%d" % env.WGT_WIDTH,
name=env.wgt_scope)
inp = tvm.placeholder((inp_shape[0], inp_shape[1]),
dtype="int%d" % env.INP_WIDTH,
name=env.inp_scope)
k = tvm.reduce_axis((0, wgt_shape[1]), name="k")
out_dtype = "int%d" % env.ACC_WIDTH
out = tvm.compute((out_shape[0], out_shape[1]),
lambda i, j: tvm.sum(inp[i, k].astype(out_dtype) *
wgt[j, k].astype(out_dtype),
axis=[k]),
name="out")
wgt_layout = tvm.decl_buffer(
wgt.shape, wgt.dtype, env.wgt_scope,
scope=env.wgt_scope, offset_factor=wgt_lanes, data_alignment=wgt_lanes)
inp_layout = tvm.decl_buffer(
inp.shape, inp.dtype, env.inp_scope,
scope=env.inp_scope, offset_factor=inp_lanes, data_alignment=inp_lanes)
out_layout = tvm.decl_buffer(
out.shape, out.dtype, env.acc_scope,
scope=env.acc_scope, offset_factor=out_lanes, data_alignment=out_lanes)
return wgt_layout, inp_layout, out_layout
def inject_conv2d_transpose_skip(stmt_in):
"""Pass to skip 0-weights in conv2d transpose with stride > 1.
Parameters
----------
stmt_in : Stmt
Input statement
Returns
-------
stmt_out : Stmt
Transformed statement
"""
env = get_env()
dwgt, dinp, dout = _get_gemm_intrin_buffer()
calls = []
selects = []
def _find_basics(op):
if isinstance(op, tvm.expr.Call):
calls.append(op)
elif isinstance(op, tvm.expr.Select):
selects.append(op)
def _do_fold(op):
if _match_pragma(op, "conv2d_transpose_gemm"):
is_init = ".init" in str(op)
tvm.ir_pass.PostOrderVisit(op, _find_basics)
if is_init:
# create inner most block
irb = tvm.ir_builder.create()
dev = env.dev
irb.scope_attr(dev.vta_axis, "coproc_scope", dev.get_task_qid(dev.QID_COMPUTE))
irb.scope_attr(dev.vta_axis, "coproc_uop_scope", dev.vta_push_uop)
irb.emit(tvm.call_extern("int32", "VTAUopPush",
0, 1,
dout.access_ptr("rw", "int32"),
0, 0,
0, 0, 0))
inner = irb.get()
args = op.body.body.args
res_tensor = op.body.body.func.output(0)
tpl = (args[0], 1, args[1], 1, args[2], 1, args[3], 1, 0, 1, 0, env.BLOCK_OUT)
inner = tvm.make.AttrStmt(
[dout, res_tensor], 'buffer_bind_scope',
tvm.call_intrin('handle', 'tvm_tuple', *tpl), inner)
return inner
else:
conv_call, data_call, kernel_call = calls[-3:]
pad_data_tensor = data_call.func.output(0)
kernel_tensor = kernel_call.func.output(0)
res_tensor = conv_call.func.output(0)
if selects:
condition = selects[0].condition
else:
condition = tvm.const(1, 'int')
# create inner most block
irb = tvm.ir_builder.create()
with irb.if_scope(condition):
dev = env.dev
irb.scope_attr(dev.vta_axis, "coproc_scope", dev.get_task_qid(dev.QID_COMPUTE))
irb.scope_attr(dev.vta_axis, "coproc_uop_scope", dev.vta_push_uop)
irb.emit(tvm.call_extern("int32", "VTAUopPush",
0, 0,
dout.access_ptr("rw", "int32"),
dinp.access_ptr("r", "int32"),
dwgt.access_ptr("r", "int32"),
0, 0, 0))
inner = irb.get()
args = conv_call.args
tpl = (args[0], 1, args[1], 1, args[2], 1, args[3],
1, 0, 1, 0, env.BLOCK_OUT)
inner = tvm.make.AttrStmt(
[dout, res_tensor], 'buffer_bind_scope',
tvm.call_intrin('handle', 'tvm_tuple', *tpl), inner)
args = kernel_call.args
tpl = (args[0], 1, args[1], 1, args[2], 1, args[3],
1, 0, env.BLOCK_OUT, 0, env.BLOCK_IN)
inner = tvm.make.AttrStmt(
[dwgt, kernel_tensor], 'buffer_bind_scope',
tvm.call_intrin('handle', 'tvm_tuple', *tpl), inner)
args = data_call.args
tpl = (args[0], 1, args[1], 1, args[2], 1, args[3],
1, 0, 1, 0, env.BLOCK_IN)
inner = tvm.make.AttrStmt(
[dinp, pad_data_tensor], 'buffer_bind_scope',
tvm.call_intrin('handle', 'tvm_tuple', *tpl), inner)
return inner
return None
ret = tvm.ir_pass.IRTransform(
stmt_in, _do_fold, None, ["AttrStmt"])
return ret
def annotate_alu_coproc_scope(stmt_in):
"""Pass to insert ALU instruction.
......
......@@ -4,7 +4,9 @@ from . import bitpack
from .graphpack import graph_pack
from . import op
from . import vta_conv2d
from . import vta_conv2d_transpose
from . import vta_dense
from . import util
# NNVM is deprecated for VTA
# from . import nnvm_bitpack
......
......@@ -25,12 +25,14 @@ from tvm.relay.op import op as reg
from tvm.relay.op.op import OpPattern
from tvm.relay.op.nn import _nn
from .vta_conv2d import is_packed_layout
from .util import is_packed_layout
from ..environment import get_env
# override to force partition at copy
reg.register_pattern("copy", OpPattern.INJECTIVE, level=15)
@reg.register_compute("clip", level=15)
def compute_clip(attrs, inputs, output_type, target):
""" Clip operator. """
......@@ -110,6 +112,48 @@ def schedule_conv2d(attrs, outs, target):
return _nn.schedule_conv2d(attrs, outs, target)
@reg.register_compute("nn.conv2d_transpose", level=15)
def compute_conv2d_transpose(attrs, inputs, output_type, target):
""" 2D convolution algorithm.
"""
padding = topi.util.get_const_tuple(attrs.padding)
strides = topi.util.get_const_tuple(attrs.strides)
dilation = tuple([int(d) for d in attrs.dilation])
layout = attrs.data_layout
out_dtype = attrs.out_dtype
if target.device_name == "vta":
assert dilation == (1, 1), "support for dilation limited to (1, 1)"
if is_packed_layout(layout):
return [topi.nn.conv2d_transpose_nchw(
inputs[0], inputs[1], strides, padding, out_dtype)]
else:
# If it's not packed, run on ARM CPU
with tvm.target.arm_cpu(tvm.target.current_target().model):
return _nn.compute_conv2d_transpose(attrs, inputs, output_type, target)
# If VTA is not the target, default to _nn def
return _nn.compute_conv2d_transpose(attrs, inputs, output_type, target)
@reg.register_schedule("nn.conv2d_transpose", level=15)
def schedule_conv2d_transpose(attrs, outputs, target):
""" 2D convolution schedule.
"""
layout = attrs.data_layout
if target.device_name == "vta":
if is_packed_layout(layout):
return topi.nn.schedule_conv2d_transpose_nchw(outputs)
else:
# If it's not packed, run on ARM CPU
with tvm.target.arm_cpu(tvm.target.current_target().model):
return _nn.schedule_conv2d_transpose(attrs, outputs, tvm.target.current_target())
# If VTA is not the target, default to _nn def
return _nn.schedule_conv2d_transpose(attrs, outputs, tvm.target.current_target())
@reg.register_compute("nn.dense", level=15)
def compute_dense(attrs, inputs, out_type, target):
"""Compute definition of dense"""
......
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""VTA TOPI Utils."""
def is_packed_layout(layout):
"""Check if layout is packed layout"""
if layout == "NCHW":
return False
if "n" in layout and "c" in layout:
return True
return False
......@@ -17,20 +17,14 @@
"""Conv2D operator declaration and schedule registration for VTA."""
import numpy as np
import tvm
from tvm import autotvm
import topi
from .util import is_packed_layout
from ..environment import get_env
def is_packed_layout(layout):
"""Check if layout is packed layout"""
if layout == "NCHW":
return False
if "n" in layout and "c" in layout:
return True
return False
@autotvm.register_topi_compute(topi.nn.conv2d, 'vta', 'direct')
def _declaration_conv2d(cfg,
data,
......
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Conv2D_transpose operator declaration and schedule registration for VTA."""
import numpy as np
import tvm
from tvm import autotvm
import topi
from topi.util import get_const_tuple
from topi.nn.util import get_pad_tuple
from ..environment import get_env
@autotvm.register_topi_compute(topi.nn.conv2d_transpose_nchw, 'vta', 'direct')
def _declatation_conv2d_transpose(cfg,
data,
kernel,
strides,
padding,
out_dtype):
ishape = get_const_tuple(data.shape)
kshape = get_const_tuple(kernel.shape)
b, c_i, i_h, i_w, t_b, t_ci = ishape
c_o, _, k_h, k_w, t_co, t_ci = kshape
stride_h, stride_w = strides
# derive padding parameters
fpad_top, fpad_left, fpad_bottom, fpad_right = get_pad_tuple(padding, (k_h, k_w))
bpad_top = k_h - 1 - fpad_top
bpad_bottom = k_h - 1 - fpad_bottom
bpad_left = k_w - 1 - fpad_left
bpad_right = k_w - 1 - fpad_right
# padding stage
dilated_input = topi.nn.dilate(data, [1, 1, stride_h, stride_w, 1, 1])
data_pad = topi.nn.pad(dilated_input,
[0, 0, bpad_top, bpad_left, 0, 0],
[0, 0, bpad_bottom, bpad_right, 0, 0])
# convolution transpose stage
out_h = (i_h - 1) * stride_h - fpad_top - fpad_bottom + k_h
out_w = (i_w - 1) * stride_w - fpad_left - fpad_right + k_w
oshape = (b, c_o, out_h, out_w, t_b, t_co)
d_c = tvm.reduce_axis((0, c_i), name='d_c')
d_h = tvm.reduce_axis((0, k_h), name='d_h')
d_w = tvm.reduce_axis((0, k_w), name='d_w')
d_ci = tvm.reduce_axis((0, t_ci), name='d_ci')
out = tvm.compute(
oshape,
lambda i_n, i_c, i_h, i_w, j_n, j_c: tvm.sum(
data_pad(i_n, d_c, i_h + d_h, i_w + d_w, j_n, d_ci).astype(out_dtype) *
kernel[i_c, d_c, d_h, d_w, j_c, d_ci].astype(out_dtype),
axis=[d_c, d_h, d_w, d_ci]),
tag="packed_conv2d_transpose",
name='res')
cfg.add_flop(2 * np.prod(topi.util.get_const_tuple(oshape)) *
kshape[2] * kshape[3] * ishape[1] * ishape[-1])
return out
@autotvm.register_topi_schedule(topi.generic.schedule_conv2d_transpose_nchw, 'vta', 'direct')
def _schedule_conv2d_transpose(cfg, outs):
assert len(outs) == 1
output = outs[0]
ewise_inputs = []
ewise_ops = []
conv2d_res = []
assert output.dtype == "int8"
assert output.op.input_tensors[0].dtype == "int32"
def _traverse(op):
if topi.tag.is_broadcast(op.tag):
if not op.same_as(output.op):
ewise_ops.append(op)
for tensor in op.input_tensors:
if isinstance(tensor.op, tvm.tensor.PlaceholderOp):
ewise_inputs.append((op, tensor))
else:
_traverse(tensor.op)
else:
assert op.tag == "packed_conv2d_transpose"
conv2d_res.append(op)
_traverse(output.op)
assert len(conv2d_res) == 1
conv2d_stage = conv2d_res[0].output(0)
s = tvm.create_schedule(output.op)
##### space definition begin #####
b, c_o, x_i, x_j, _, c_i = s[conv2d_stage].op.axis
c_i, _, _, _ = s[conv2d_stage].op.reduce_axis
cfg.define_split('tile_b', b, num_outputs=2)
cfg.define_split('tile_h', x_i, num_outputs=2)
cfg.define_split('tile_w', x_j, num_outputs=2)
cfg.define_split('tile_ci', c_i, num_outputs=2)
cfg.define_split('tile_co', c_o, num_outputs=2)
cfg.define_knob('oc_nthread', [1, 2])
cfg.define_knob('h_nthread', [1, 2])
###### space definition end ######
data, kernel = conv2d_stage.op.input_tensors
if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag:
temp = data.op.input_tensors[0]
pad_data = data
data = temp
else:
pad_data = None
env = get_env()
# setup pad
if pad_data is not None:
cdata = pad_data
s[pad_data].set_scope(env.inp_scope)
else:
cdata = s.cache_read(data, env.inp_scope, [conv2d_stage])
ckernel = s.cache_read(kernel, env.wgt_scope, [conv2d_stage])
s[conv2d_stage].set_scope(env.acc_scope)
# cache read input
cache_read_ewise = []
for consumer, tensor in ewise_inputs:
cache_read_ewise.append(
s.cache_read(tensor, env.acc_scope, [consumer]))
# set ewise scope
for op in ewise_ops:
s[op].set_scope(env.acc_scope)
s[op].pragma(s[op].op.axis[0], env.alu)
# tile
x_bo, x_co, x_i, x_j, x_bi, x_ci = s[output].op.axis
x_co0, x_co1 = cfg['tile_co'].apply(s, output, x_co)
x_i0, x_i1 = cfg['tile_h'].apply(s, output, x_i)
x_j0, x_j1 = cfg['tile_w'].apply(s, output, x_j)
s[output].reorder(x_bo, x_i0, x_co0, x_j0, x_co1, x_i1, x_j1, x_bi, x_ci)
store_pt = x_j0
# set all compute scopes
s[conv2d_stage].compute_at(s[output], store_pt)
for op in ewise_ops:
s[op].compute_at(s[output], store_pt)
for tensor in cache_read_ewise:
s[tensor].compute_at(s[output], store_pt)
s[tensor].pragma(s[tensor].op.axis[0], env.dma_copy)
# virtual threading along output channel axes
if cfg['oc_nthread'].val > 1:
_, v_t = s[output].split(x_co0, factor=cfg['oc_nthread'].val)
s[output].reorder(v_t, x_bo)
s[output].bind(v_t, tvm.thread_axis("cthread"))
# virtual threading along spatial rows
if cfg['h_nthread'].val > 1:
_, v_t = s[output].split(x_i0, factor=cfg['h_nthread'].val)
s[output].reorder(v_t, x_bo)
s[output].bind(v_t, tvm.thread_axis("cthread"))
x_bo, x_co, x_i, x_j, x_bi, x_ci = s[conv2d_stage].op.axis
k_o, d_i, d_j, k_i = s[conv2d_stage].op.reduce_axis
x_i, x_ii = s[conv2d_stage].split(x_i, 4)
x_j, x_jj = s[conv2d_stage].split(x_j, 2)
s[conv2d_stage].reorder(x_bo, k_o, x_j, x_co, x_i, x_jj, d_j, d_i, x_ii, x_bi, x_ci, k_i)
for axis in [d_j, d_i, x_ii, x_jj]:
s[conv2d_stage].unroll(axis)
k_o, _ = cfg['tile_ci'].apply(s, conv2d_stage, k_o)
s[cdata].compute_at(s[conv2d_stage], k_o)
s[ckernel].compute_at(s[conv2d_stage], k_o)
# Use VTA instructions
s[cdata].pragma(s[cdata].op.axis[0], env.dma_copy)
s[ckernel].pragma(s[ckernel].op.axis[0], env.dma_copy)
s[conv2d_stage].pragma(x_bi, "conv2d_transpose_gemm")
s[output].pragma(x_co1, env.dma_copy)
return s
......@@ -58,22 +58,28 @@ def my_clip(x, a_min, a_max):
x = tvm.compute(x.shape, lambda *i: tvm.max(x(*i), const_min), name="clipB")
return x
def conv2d(N, CI, H, W, CO, KH, KW, strides, padding, dilation, in_dtype, out_dtype):
def conv2d(N, CI, H, W, CO, KH, KW, strides, padding, dilation):
data_shape = (N//env.BATCH, CI//env.BLOCK_IN, H, W, env.BATCH, env.BLOCK_IN)
kernel_shape = (CO//env.BLOCK_OUT, CI//env.BLOCK_IN, KH, KW, env.BLOCK_OUT, env.BLOCK_IN)
bias_shape = (N//env.BATCH, CO//env.BLOCK_OUT, 1, 1, env.BATCH, env.BLOCK_OUT)
data = tvm.placeholder(data_shape, name="data", dtype=env.inp_dtype)
bias = tvm.placeholder(bias_shape, name="bias", dtype=env.acc_dtype)
kernel = tvm.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)
bias = tvm.placeholder(bias_shape, name="bias", dtype=env.acc_dtype)
with tvm.target.vta():
res = topi.nn.conv2d(data, kernel, padding=padding, strides=strides, dilation=dilation,
layout='NCHW%dn%dc' % (env.BATCH, env.BLOCK_IN), out_dtype='int32')
res = topi.nn.conv2d(
input=data,
filter=kernel,
padding=padding,
strides=strides,
dilation=dilation,
layout='NCHW%dn%dc' % (env.BATCH, env.BLOCK_IN),
out_dtype=env.acc_dtype)
res = topi.right_shift(res, env.WGT_WIDTH)
res = topi.add(res, bias)
res = topi.right_shift(res, 8)
res = my_clip(res, 0, 127)
res = topi.cast(res, "int8")
res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
res = topi.cast(res, env.out_dtype)
if tvm.target.current_target().device_name == 'vta':
s = topi.generic.schedule_conv2d_nchw([res])
......@@ -103,10 +109,9 @@ if __name__ == '__main__':
exit()
for idx, (wl_name, wl) in enumerate(resnet_wkls):
prefix = "[Task %2d/%2d] " % (idx, len(resnet_wkls))
# Workload parameters
# Read in workload parameters
N = wl.batch
CI = wl.in_filter
H = wl.height
......@@ -117,11 +122,14 @@ if __name__ == '__main__':
strides = (wl.hstride, wl.wstride)
padding = (wl.hpad, wl.wpad)
dilation = (1, 1)
in_dtype = 'int8'
out_dtype = 'int32'
task = autotvm.task.create(conv2d, args=(N, CI, H, W, CO, KH, KW, strides, padding, dilation, in_dtype, out_dtype),
target=tvm.target.vta(), target_host=env.target_host, template_key='direct')
# Create task
task = autotvm.task.create(
conv2d,
args=(N, CI, H, W, CO, KH, KW, strides, padding, dilation),
target=tvm.target.vta(),
target_host=env.target_host,
template_key='direct')
print(task.config_space)
# Tune
......
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Tuning a single conv2d transpose operator"""
from collections import namedtuple
import logging
import os
import tvm
from tvm import autotvm
from tvm.contrib.util import get_lower_ir
import topi
import vta
import vta.testing
# Get batch info from env
env = vta.get_env()
Workload = namedtuple("Conv2DTransposeWorkload",
['batch', 'height', 'width', 'in_filter', 'out_filter',
'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride'])
dcgan_wkls = [
# dcgan
('DCGAN.CT1', Workload(env.BATCH, 4, 4, 1024, 512, 4, 4, 1, 1, 2, 2)),
('DCGAN.CT2', Workload(env.BATCH, 8, 8, 512, 256, 4, 4, 1, 1, 2, 2)),
('DCGAN.CT3', Workload(env.BATCH, 16, 16, 256, 128, 4, 4, 1, 1, 2, 2)),
]
@tvm.tag_scope(tag=topi.tag.ELEMWISE)
def my_clip(x, a_min, a_max):
"""Unlike topi's current clip, put min and max into two stages."""
const_min = tvm.const(a_min, x.dtype)
const_max = tvm.const(a_max, x.dtype)
x = tvm.compute(x.shape, lambda *i: tvm.min(x(*i), const_max), name="clipA")
x = tvm.compute(x.shape, lambda *i: tvm.max(x(*i), const_min), name="clipB")
return x
def conv2d_transpose(N, CI, H, W, CO, KH, KW, strides, padding):
data_shape = (N//env.BATCH, CI//env.BLOCK_IN, H, W, env.BATCH, env.BLOCK_IN)
kernel_shape = (CO//env.BLOCK_OUT, CI//env.BLOCK_IN, KH, KW, env.BLOCK_OUT, env.BLOCK_IN)
data = tvm.placeholder(data_shape, name="data", dtype=env.inp_dtype)
kernel = tvm.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)
with tvm.target.vta():
res = topi.nn.conv2d_transpose_nchw(
Input=data,
Filter=kernel,
strides=strides,
padding=padding,
out_dtype=env.acc_dtype)
res = topi.right_shift(res, env.WGT_WIDTH)
res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
res = topi.cast(res, env.out_dtype)
if tvm.target.current_target().device_name == 'vta':
s = topi.generic.schedule_conv2d_transpose_nchw([res])
else:
s = tvm.create_schedule([res.op])
return s, [data, kernel, res]
if __name__ == '__main__':
# Logging config (for printing tuning log to the screen)
logging.basicConfig()
# logging.getLogger('autotvm').setLevel(logging.DEBUG)
# Tuning log files
log_file = "%s.conv2d_transpose.log" % (env.TARGET)
# create tmp log file
tmp_log_file = log_file + ".tmp"
if os.path.exists(log_file):
os.remove(log_file)
# Get tracker info from env
tracker_host = os.environ.get("TVM_TRACKER_HOST", None)
tracker_port = os.environ.get("TVM_TRACKER_PORT", None)
if not tracker_host or not tracker_port:
print("Set your AutoTVM tracker node host and port variables to run the autotuner")
exit()
for idx, (wl_name, wl) in enumerate(dcgan_wkls):
prefix = "[Task %2d/%2d] " % (idx, len(dcgan_wkls))
# Read in workload parameters
N = wl.batch
H = wl.height
W = wl.width
CI = wl.in_filter
CO = wl.out_filter
KH = wl.hkernel
KW = wl.wkernel
strides = (wl.hstride, wl.wstride)
padding = (wl.hpad, wl.wpad)
# Create task
task = autotvm.task.create(
conv2d_transpose,
args=(N, CI, H, W, CO, KH, KW, strides, padding),
target=tvm.target.vta(),
target_host=env.target_host,
template_key='direct')
print(task.config_space)
# Tune
measure_option = autotvm.measure_option(
builder=autotvm.LocalBuilder(),
runner=autotvm.RPCRunner(
env.TARGET, host=tracker_host, port=int(tracker_port),
number=5, timeout=60,
check_correctness=True))
# Run Tuner
tuner = autotvm.tuner.RandomTuner(task)
tuner.tune(
n_trial=len(task.config_space),
early_stopping=None,
measure_option=measure_option,
callbacks=[
autotvm.callback.progress_bar(len(task.config_space), prefix=prefix),
autotvm.callback.log_to_file(tmp_log_file)])
# Pick best records to a cache file
autotvm.record.pick_best(tmp_log_file, log_file)
os.remove(tmp_log_file)
......@@ -17,11 +17,11 @@
"""Testing topi conv2d operator for VTA"""
import os
import json
from collections import namedtuple
import os
import numpy as np
from collections import namedtuple
import tvm
from tvm import autotvm
......@@ -34,6 +34,7 @@ from vta import program_fpga, reconfig_runtime
import vta.testing
from vta.testing import simulator
Workload = namedtuple("Conv2DWorkload",
['batch', 'height', 'width', 'in_filter', 'out_filter',
'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride'])
......@@ -88,7 +89,7 @@ def run_conv2d(env, remote, wl, target,
b_shape = (wl.batch, wl.out_filter, 1, 1)
if data_pack:
data_shape = (wl.batch//env.BATCH, wl.in_filter//env.BLOCK_IN,
wl.height, wl.width, env.BATCH, env.BLOCK_IN)
wl.height, wl.width, env.BATCH, env.BLOCK_IN)
kernel_shape = (wl.out_filter//env.BLOCK_OUT, wl.in_filter//env.BLOCK_IN,
wl.hkernel, wl.wkernel, env.BLOCK_OUT, env.BLOCK_IN)
bias_shape = (wl.batch//env.BATCH, wl.out_filter//env.BLOCK_OUT,
......@@ -205,7 +206,7 @@ def run_conv2d(env, remote, wl, target,
(0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter, fout_height, fout_width)
bias_np = bias_np.transpose(
(0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter, 1, 1)
res_ref = res_ref >> 8
res_ref = res_ref >> env.WGT_WIDTH
res_ref += bias_np
res_ref = np.clip(res_ref, 0, (1 << env.OUT_WIDTH - 1) - 1)
res_ref = res_ref.astype(env.out_dtype)
......
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Testing topi conv2d_transpose operator for VTA"""
import json
import os
import numpy as np
from collections import namedtuple
import tvm
from tvm import autotvm
from tvm.contrib import util
from tvm.contrib.pickle_memoize import memoize
import topi
import topi.testing
import vta
from vta import program_fpga, reconfig_runtime
import vta.testing
from vta.testing import simulator
Workload = namedtuple("Conv2DTransposeWorkload",
['batch', 'height', 'width', 'in_filter', 'out_filter',
'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride'])
# Get batch info from env
env = vta.get_env()
# DCGAN workloads
dcgan_wklds = [
# dcgan
('DCGAN.CT1', Workload(env.BATCH, 4, 4, 1024, 512, 4, 4, 1, 1, 2, 2)),
('DCGAN.CT2', Workload(env.BATCH, 8, 8, 512, 256, 4, 4, 1, 1, 2, 2)),
('DCGAN.CT3', Workload(env.BATCH, 16, 16, 256, 128, 4, 4, 1, 1, 2, 2)),
]
# FIXME: we need a custom clip operator to circumvent a pattern detection limitation
@tvm.tag_scope(tag=topi.tag.ELEMWISE)
def my_clip(x, a_min, a_max):
"""Unlike topi's current clip, put min and max into two stages."""
const_min = tvm.const(a_min, x.dtype)
const_max = tvm.const(a_max, x.dtype)
x = tvm.compute(x.shape, lambda *i: tvm.min(x(*i), const_max), name="clipA")
x = tvm.compute(x.shape, lambda *i: tvm.max(x(*i), const_min), name="clipB")
return x
# Helper function to get factors
def _find_factors(n):
factors = []
for f in range(1, n + 1):
if n % f == 0:
factors.append(f)
return factors
def run_conv2d_transpose(env, remote, wl, target,
check_correctness=True, print_ir=False,
samples=4):
# Workload assertions
assert wl.hpad == wl.wpad
# Perform packing only if we are targeting the accelerator
if "arm_cpu" in target.keys:
data_pack = False
layout = "NCHW"
elif "vta" in target.keys:
data_pack = True
layout = "NCHW%dn%dc" % (env.BATCH, env.BLOCK_IN)
# Derive shapes depending upon packing
a_shape = (wl.batch, wl.in_filter, wl.height, wl.width)
w_shape = (wl.out_filter, wl.in_filter, wl.hkernel, wl.wkernel)
if data_pack:
data_shape = (wl.batch//env.BATCH, wl.in_filter//env.BLOCK_IN,
wl.height, wl.width, env.BATCH, env.BLOCK_IN)
kernel_shape = (wl.out_filter//env.BLOCK_OUT, wl.in_filter//env.BLOCK_IN,
wl.hkernel, wl.wkernel, env.BLOCK_OUT, env.BLOCK_IN)
else:
data_shape = a_shape
kernel_shape = w_shape
data = tvm.placeholder(data_shape, name="data", dtype=env.inp_dtype)
kernel = tvm.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)
# Define base computation schedule
with target:
res = topi.nn.conv2d_transpose_nchw(
data, kernel, (wl.hstride, wl.wstride), (wl.hpad, wl.wpad), env.acc_dtype)
res = topi.right_shift(res, env.WGT_WIDTH)
res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
res = topi.cast(res, env.out_dtype)
# Derive base schedule
s = topi.generic.schedule_conv2d_transpose_nchw([res])
if print_ir:
print(vta.lower(s, [data, kernel, res], simple_mode=True))
# Derive number of ops
fout_height = (wl.height - 1) * wl.hstride - 2 * wl.hpad + wl.hkernel
fout_width = (wl.width - 1) * wl.wstride - 2 * wl.wpad + wl.wkernel
num_ops = 2 * wl.batch * fout_height * fout_width * wl.hkernel * wl.wkernel * wl.out_filter * wl.in_filter
# @memoize("vta.tests.test_benchmark_topi.conv2d.verify_nhwc")
def get_ref_data():
# derive min max for act and wgt types (max non inclusive)
a_min, a_max = 0 - (1 << (env.INP_WIDTH - 1)), (1 << (env.INP_WIDTH - 1))
w_min, w_max = 0 - (1 << (env.WGT_WIDTH - 1)), (1 << (env.WGT_WIDTH - 1))
a_np = np.random.randint(a_min, a_max, size=a_shape).astype(data.dtype)
w_np = np.random.randint(w_min, w_max, size=(wl.in_filter, wl.out_filter, wl.hkernel, wl.wkernel)).astype(kernel.dtype)
r_np = topi.testing.conv2d_transpose_nchw_python(
a_np.astype(env.acc_dtype), w_np.astype(env.acc_dtype), (wl.hstride, wl.wstride), wl.hpad).astype(env.acc_dtype)
return a_np, w_np, r_np
# Data in original format
data_np, kernel_np, res_ref = get_ref_data()
if data_pack:
data_np = data_np.reshape(
wl.batch//env.BATCH, env.BATCH,
wl.in_filter//env.BLOCK_IN, env.BLOCK_IN,
wl.height, wl.width).transpose((0, 2, 4, 5, 1, 3))
kernel_np = kernel_np.reshape(
wl.in_filter//env.BLOCK_IN, env.BLOCK_IN,
wl.out_filter//env.BLOCK_OUT, env.BLOCK_OUT,
wl.hkernel, wl.wkernel).transpose((2, 0, 4, 5, 3, 1))
kernel_np = np.flip(kernel_np, 2)
kernel_np = np.flip(kernel_np, 3)
# Build
if "vta" in target.keys:
mod = vta.build(s, [data, kernel, res],
target=target,
target_host=env.target_host,
name="conv2d_transpose")
else:
mod = tvm.build(s, [data, kernel, res],
target=target,
target_host=env.target_host,
name="conv2d_transpose")
temp = util.tempdir()
mod.save(temp.relpath("conv2d_transpose.o"))
remote.upload(temp.relpath("conv2d_transpose.o"))
f = remote.load_module("conv2d_transpose.o")
ctx = remote.context(str(target))
res_np = np.zeros(topi.util.get_const_tuple(res.shape)).astype(res.dtype)
data_arr = tvm.nd.array(data_np, ctx)
kernel_arr = tvm.nd.array(kernel_np, ctx)
res_arr = tvm.nd.array(res_np, ctx)
time_f = f.time_evaluator("conv2d_transpose", ctx, number=samples)
# In vta sim mode, collect simulator runtime statistics
stats = {}
cost = None
if env.TARGET in ["sim", "tsim"]:
# Check if we're in local RPC mode (allows us to rebuild the
# runtime on the fly when varying the VTA designs)
local_rpc = int(os.environ.get("VTA_LOCAL_SIM_RPC", "0"))
if local_rpc:
if env.TARGET == "sim":
remote.get_function("vta.simulator.profiler_clear")()
else:
remote.get_function("vta.tsim.profiler_clear")()
cost = time_f(data_arr, kernel_arr, res_arr)
if env.TARGET == "sim":
stats = json.loads(remote.get_function("vta.simulator.profiler_status")())
else:
stats = json.loads(remote.get_function("vta.tsim.profiler_status")())
else:
simulator.clear_stats()
cost = time_f(data_arr, kernel_arr, res_arr)
stats = simulator.stats()
else:
cost = time_f(data_arr, kernel_arr, res_arr)
# Check correctness
correct = False
if check_correctness:
res_orig = res_arr.asnumpy()
if data_pack:
res_orig = res_orig.transpose(
(0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter, fout_height, fout_width)
res_ref = res_ref >> env.WGT_WIDTH
res_ref = np.clip(res_ref, 0, (1 << env.OUT_WIDTH - 1) - 1)
res_ref = res_ref.astype(env.out_dtype)
correct = np.allclose(res_orig, res_ref)
gops = (num_ops / cost.mean) / float(10 ** 9)
status = "PASSED" if correct else "FAILED"
if "arm_cpu" in target.keys:
device = "CPU"
elif "vta" in target.keys:
device = "VTA"
print("%s CONV2D TEST %s: Time cost = %g sec/op, %g GOPS" % (device, status, cost.mean, gops))
return correct, cost, stats
def test_conv2d_transpose(device="vta"):
def _run(env, remote):
if device == "vta":
target = env.target
if env.TARGET not in ["sim", "tsim"]:
assert tvm.module.enabled("rpc")
program_fpga(remote, bitstream=None)
reconfig_runtime(remote)
elif device == "arm_cpu":
target = env.target_vta_cpu
with autotvm.tophub.context(target): # load pre-tuned schedule parameters
for _, wl in dcgan_wklds:
print(wl)
run_conv2d_transpose(env, remote, wl, target)
vta.testing.run(_run)
if __name__ == "__main__":
# test_conv2d_transpose(device="arm_cpu")
test_conv2d_transpose(device="vta")
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment