deploy_model_on_mali_gpu.py 7.6 KB
Newer Older
1
"""
2 3
.. _tutorial-deploy-model-on-mali-gpu:

4
Deploy the Pretrained Model on ARM Mali GPU
5
===========================================
6 7 8
**Author**: `Lianmin Zheng <https://lmzheng.net/>`_, `Ziheng Jiang <https://ziheng.org/>`_

This is an example of using NNVM to compile a ResNet model and
9
deploy it on Firefly-RK3399 with ARM Mali GPU. We will use the
10 11
Mali-T860 MP4 GPU on this board to accelerate the inference.
"""
12

13 14 15
import tvm
import nnvm.compiler
import nnvm.testing
16 17
from tvm import rpc
from tvm.contrib import util, graph_runtime as runtime
18 19 20 21 22

######################################################################
# Build TVM Runtime on Device
# ---------------------------
#
23
# The first step is to build tvm runtime on the remote device.
24 25 26
#
# .. note::
#
27 28 29 30 31 32 33 34 35
#   All instructions in both this section and next section should be
#   executed on the target device, e.g. Rk3399. And we assume it
#   has Linux running.
# 
# Since we do compilation on local machine, the remote device is only used
# for running the generated code. We only need to build tvm runtime on
# the remote device. Make sure you have opencl driver in your board.
# You can refer to `tutorial <https://gist.github.com/mli/585aed2cec0b5178b1a510f9f236afa2>`_
# to setup OS and opencl driver for rk3399.
36
#
37
# .. code-block:: bash
38
#
39 40 41 42 43
#   git clone --recursive https://github.com/dmlc/tvm
#   cd tvm
#   cp cmake/config.cmake .
#   sed -i "s/USE_OPENCL OFF/USE_OPENCL ON/" config.cmake 
#   make runtime -j4
44
#
45 46 47 48
# After building runtime successfully, we need to set environment varibles
# in :code:`~/.bashrc` file. We can edit :code:`~/.bashrc`
# using :code:`vi ~/.bashrc` and add the line below (Assuming your TVM 
# directory is in :code:`~/tvm`):
49
#
50
# .. code-block:: bash
51
#
52
#   export PYTHONPATH=$PYTHONPATH:~/tvm/python
53
#
54
# To update the environment variables, execute :code:`source ~/.bashrc`.
55 56 57 58

######################################################################
# Set Up RPC Server on Device
# ---------------------------
59 60
# To start an RPC server, run the following command on your remote device
# (Which is RK3399 in our example).
61 62 63 64 65
#
#   .. code-block:: bash
#
#     python -m tvm.exec.rpc_server --host 0.0.0.0 --port=9090
#
66 67
# If you see the line below, it means the RPC server started
# successfully on your device.
68 69 70 71 72 73 74
#
#    .. code-block:: bash
#
#      INFO:root:RPCServer: bind to 0.0.0.0:9090
#

######################################################################
75 76 77 78 79 80 81
# Prepare the Pre-trained Model
# -----------------------------
# Back to the host machine, which should have a full TVM installed (with LLVM).
# 
# We will use pre-trained model from
# `MXNet Gluon model zoo <https://mxnet.incubator.apache.org/api/python/gluon/model_zoo.html>`_.
# You can found more details about this part at tutorial :ref:`tutorial-from-mxnet`.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

from mxnet.gluon.model_zoo.vision import get_model
from mxnet.gluon.utils import download
from PIL import Image
import numpy as np

# only one line to get the model
block = get_model('resnet18_v1', pretrained=True)

######################################################################
# In order to test our model, here we download an image of cat and
# transform its format.
img_name = 'cat.jpg'
download('https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true', img_name)
image = Image.open(img_name).resize((224, 224))

def transform_image(image):
    image = np.array(image) - np.array([123., 117., 104.])
    image /= np.array([58.395, 57.12, 57.375])
    image = image.transpose((2, 0, 1))
    image = image[np.newaxis, :]
    return image

x = transform_image(image)

######################################################################
# synset is used to transform the label from number of ImageNet class to
# the word human can understand.
synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/',
                      '4d0b62f3d01426887599d4f7ede23ee5/raw/',
                      '596b27d23537e5a1b5751d2b0481ef172f58b539/',
                      'imagenet1000_clsid_to_human.txt'])
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
synset_name = 'synset.txt'
download(synset_url, synset_name)
with open(synset_name) as f:
    synset = eval(f.read())

######################################################################
# Now we would like to port the Gluon model to a portable computational graph.
# It's as easy as several lines.

# We support MXNet static graph(symbol) and HybridBlock in mxnet.gluon
net, params = nnvm.frontend.from_mxnet(block)
# we want a probability so add a softmax operator
net = nnvm.sym.softmax(net)

######################################################################
# Here are some basic data workload configurations.
batch_size = 1
num_classes = 1000
image_shape = (3, 224, 224)
data_shape = (batch_size,) + image_shape
out_shape = (batch_size, num_classes)

######################################################################
# Compile The Graph
# -----------------
# To compile the graph, we call the :any:`nnvm.compiler.build` function
141
# with the graph configuration and parameters. As we use OpenCL for
142 143 144 145 146 147
# GPU computing, the tvm will generate both OpenCL kernel code and ARM
# CPU host code. The CPU host code is used for calling OpenCL kernels.
# In order to generate correct CPU code, we need to specify the target
# triplet for host ARM device by setting the parameter :code:`target_host`.

######################################################################
148 149 150 151
# If we run the example on our x86 server for demonstration, we can simply
# set it as :code:`llvm`. If running it on the RK3399, we need to
# specify its instruction set. Set :code:`local_demo` to False if you
# want to run this tutorial with a real device.
152

153 154 155
local_demo = True

if local_demo:
156
    target_host = "llvm"
157 158 159 160 161 162 163 164 165 166
    target = "llvm"
else:
    # Here is the setting for my rk3399 board
    # If you don't use rk3399, you can query your target triple by 
    # execute `gcc -v` on your board.
    target_host = "llvm -target=aarch64-linux-gnu"

    # set target as  `tvm.target.mali` instead of 'opencl' to enable
    # optimization for mali
    target = tvm.target.mali()
167

168
with nnvm.compiler.build_config(opt_level=3):
169 170
    graph, lib, params = nnvm.compiler.build(net, target=target,
            shape={"data": data_shape}, params=params, target_host=target_host)
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

# After `nnvm.compiler.build`, you will get three return values: graph,
# library and the new parameter, since we do some optimization that will
# change the parameters but keep the result of model as the same.

# Save the library at local temporary directory.
tmp = util.tempdir()
lib_fname = tmp.relpath('net.tar')
lib.export_library(lib_fname)

######################################################################
# Deploy the Model Remotely by RPC
# --------------------------------
# With RPC, you can deploy the model remotely from your host machine
# to the remote device.

187 188 189 190 191 192 193 194
# obtain an RPC session from remote device.
if local_demo:
    remote = rpc.LocalSession()
else:
    # The following is my environment, change this to the IP address of your target device
    host = '10.77.1.145'
    port = 9090
    remote = rpc.connect(host, port)
195 196 197 198 199

# upload the library to remote device and load it
remote.upload(lib_fname)
rlib = remote.load_module('net.tar')

200
ctx = remote.cpu(0) if local_demo else remote.cl(0)
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
# upload the parameter
rparams = {k: tvm.nd.array(v, ctx) for k, v in params.items()}

# create the remote runtime module
module = runtime.create(graph, rlib, ctx)
# set parameter
module.set_input(**rparams)
# set input data
module.set_input('data', tvm.nd.array(x.astype('float32')))
# run
module.run()
# get output
out = module.get_output(0, tvm.nd.empty(out_shape, ctx=ctx))
# get top1 result
top1 = np.argmax(out.asnumpy())
print('TVM prediction top-1: {}'.format(synset[top1]))