""" .. _tutorial-deploy-model-on-mali-gpu: Deploy the Pretrained Model on ARM Mali GPU =========================================== **Author**: `Lianmin Zheng <https://lmzheng.net/>`_, `Ziheng Jiang <https://ziheng.org/>`_ This is an example of using NNVM to compile a ResNet model and deploy it on Firefly-RK3399 with ARM Mali GPU. We will use the Mali-T860 MP4 GPU on this board to accelerate the inference. """ import tvm import nnvm.compiler import nnvm.testing from tvm import rpc from tvm.contrib import util, graph_runtime as runtime ###################################################################### # Build TVM Runtime on Device # --------------------------- # # The first step is to build tvm runtime on the remote device. # # .. note:: # # All instructions in both this section and next section should be # executed on the target device, e.g. Rk3399. And we assume it # has Linux running. # # Since we do compilation on local machine, the remote device is only used # for running the generated code. We only need to build tvm runtime on # the remote device. Make sure you have opencl driver in your board. # You can refer to `tutorial <https://gist.github.com/mli/585aed2cec0b5178b1a510f9f236afa2>`_ # to setup OS and opencl driver for rk3399. # # .. code-block:: bash # # git clone --recursive https://github.com/dmlc/tvm # cd tvm # cp cmake/config.cmake . # sed -i "s/USE_OPENCL OFF/USE_OPENCL ON/" config.cmake # make runtime -j4 # # After building runtime successfully, we need to set environment varibles # in :code:`~/.bashrc` file. We can edit :code:`~/.bashrc` # using :code:`vi ~/.bashrc` and add the line below (Assuming your TVM # directory is in :code:`~/tvm`): # # .. code-block:: bash # # export PYTHONPATH=$PYTHONPATH:~/tvm/python # # To update the environment variables, execute :code:`source ~/.bashrc`. ###################################################################### # Set Up RPC Server on Device # --------------------------- # To start an RPC server, run the following command on your remote device # (Which is RK3399 in our example). # # .. code-block:: bash # # python -m tvm.exec.rpc_server --host 0.0.0.0 --port=9090 # # If you see the line below, it means the RPC server started # successfully on your device. # # .. code-block:: bash # # INFO:root:RPCServer: bind to 0.0.0.0:9090 # ###################################################################### # Prepare the Pre-trained Model # ----------------------------- # Back to the host machine, which should have a full TVM installed (with LLVM). # # We will use pre-trained model from # `MXNet Gluon model zoo <https://mxnet.incubator.apache.org/api/python/gluon/model_zoo.html>`_. # You can found more details about this part at tutorial :ref:`tutorial-from-mxnet`. from mxnet.gluon.model_zoo.vision import get_model from mxnet.gluon.utils import download from PIL import Image import numpy as np # only one line to get the model block = get_model('resnet18_v1', pretrained=True) ###################################################################### # In order to test our model, here we download an image of cat and # transform its format. img_name = 'cat.jpg' download('https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true', img_name) image = Image.open(img_name).resize((224, 224)) def transform_image(image): image = np.array(image) - np.array([123., 117., 104.]) image /= np.array([58.395, 57.12, 57.375]) image = image.transpose((2, 0, 1)) image = image[np.newaxis, :] return image x = transform_image(image) ###################################################################### # synset is used to transform the label from number of ImageNet class to # the word human can understand. synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/', '4d0b62f3d01426887599d4f7ede23ee5/raw/', '596b27d23537e5a1b5751d2b0481ef172f58b539/', 'imagenet1000_clsid_to_human.txt']) synset_name = 'synset.txt' download(synset_url, synset_name) with open(synset_name) as f: synset = eval(f.read()) ###################################################################### # Now we would like to port the Gluon model to a portable computational graph. # It's as easy as several lines. # We support MXNet static graph(symbol) and HybridBlock in mxnet.gluon net, params = nnvm.frontend.from_mxnet(block) # we want a probability so add a softmax operator net = nnvm.sym.softmax(net) ###################################################################### # Here are some basic data workload configurations. batch_size = 1 num_classes = 1000 image_shape = (3, 224, 224) data_shape = (batch_size,) + image_shape out_shape = (batch_size, num_classes) ###################################################################### # Compile The Graph # ----------------- # To compile the graph, we call the :any:`nnvm.compiler.build` function # with the graph configuration and parameters. As we use OpenCL for # GPU computing, the tvm will generate both OpenCL kernel code and ARM # CPU host code. The CPU host code is used for calling OpenCL kernels. # In order to generate correct CPU code, we need to specify the target # triplet for host ARM device by setting the parameter :code:`target_host`. ###################################################################### # If we run the example on our x86 server for demonstration, we can simply # set it as :code:`llvm`. If running it on the RK3399, we need to # specify its instruction set. Set :code:`local_demo` to False if you # want to run this tutorial with a real device. local_demo = True if local_demo: target_host = "llvm" target = "llvm" else: # Here is the setting for my rk3399 board # If you don't use rk3399, you can query your target triple by # execute `gcc -v` on your board. target_host = "llvm -target=aarch64-linux-gnu" # set target as `tvm.target.mali` instead of 'opencl' to enable # optimization for mali target = tvm.target.mali() with nnvm.compiler.build_config(opt_level=3): graph, lib, params = nnvm.compiler.build(net, target=target, shape={"data": data_shape}, params=params, target_host=target_host) # After `nnvm.compiler.build`, you will get three return values: graph, # library and the new parameter, since we do some optimization that will # change the parameters but keep the result of model as the same. # Save the library at local temporary directory. tmp = util.tempdir() lib_fname = tmp.relpath('net.tar') lib.export_library(lib_fname) ###################################################################### # Deploy the Model Remotely by RPC # -------------------------------- # With RPC, you can deploy the model remotely from your host machine # to the remote device. # obtain an RPC session from remote device. if local_demo: remote = rpc.LocalSession() else: # The following is my environment, change this to the IP address of your target device host = '10.77.1.145' port = 9090 remote = rpc.connect(host, port) # upload the library to remote device and load it remote.upload(lib_fname) rlib = remote.load_module('net.tar') ctx = remote.cpu(0) if local_demo else remote.cl(0) # upload the parameter rparams = {k: tvm.nd.array(v, ctx) for k, v in params.items()} # create the remote runtime module module = runtime.create(graph, rlib, ctx) # set parameter module.set_input(**rparams) # set input data module.set_input('data', tvm.nd.array(x.astype('float32'))) # run module.run() # get output out = module.get_output(0, tvm.nd.empty(out_shape, ctx=ctx)) # get top1 result top1 = np.argmax(out.asnumpy()) print('TVM prediction top-1: {}'.format(synset[top1]))