vectorize_loop.cc 14.2 KB
Newer Older
1 2 3 4
/*!
 *  Copyright (c) 2017 by Contributors
 * \file vectorize_loop.cc
 */
5
// Loop vectorizer as in Halide pipeline.
6 7 8 9 10 11 12 13 14 15 16 17 18
#include <tvm/ir.h>
#include <tvm/ir_pass.h>
#include <tvm/ir_mutator.h>
#include <unordered_set>
#include <unordered_map>
#include <vector>
#include "../arithmetic/compute_expr.h"

namespace tvm {
namespace ir {

inline Expr BroadcastTo(Expr e, int lanes) {
  if (e.type().lanes() == lanes) return e;
19 20 21 22 23
  if (const Broadcast* op = e.as<Broadcast>()) {
    if (lanes % op->lanes == 0) {
      return Broadcast::make(op->value, lanes);
    }
  }
24 25 26 27 28 29 30
  CHECK_EQ(e.type().lanes(), 1)
      << "Cannot broadcast lane=" << e.type().lanes()
      << " to " << lanes;
  return Broadcast::make(e, lanes);
}

// Rewrite vectorized allocation access
31 32 33
// This is necessary for making each vector component containing its own workspace.
// Originates from Halide's loop vectorizer
//
34
// s[i] = s[i * lanes + var]
35 36 37
//
// The same principle applies when using one thread to simulate multiple context.
//
38 39 40 41 42 43 44 45 46 47
class VecAllocAccess : public IRMutator {
 public:
  VecAllocAccess(const Variable* buf, Var var, int var_lanes)
      : buf_(buf), var_(var), var_lanes_(var_lanes) {}
  // Load
  Expr Mutate_(const Load* op, const Expr& e) final {
    Expr expr = IRMutator::Mutate_(op, e);
    op = expr.as<Load>();
    if (op->buffer_var.get() == buf_) {
      return Load::make(op->type, op->buffer_var,
48 49
                        op->index * var_lanes_ + var_,
                        op->predicate);
50 51 52 53 54 55 56 57 58 59 60
    } else {
      return expr;
    }
  }
  // Store
  Stmt Mutate_(const Store* op, const Stmt& s) final {
    Stmt stmt = IRMutator::Mutate_(op, s);
    op = stmt.as<Store>();
    if (op->buffer_var.get() == buf_) {
      return Store::make(op->buffer_var,
                         op->value,
61 62
                         op->index * var_lanes_ + var_,
                         op->predicate);
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    } else {
      return stmt;
    }
  }

 private:
  // buffer var
  const Variable* buf_;
  // variable to be replaced
  Var var_;
  // the lanes.
  int var_lanes_;
};

class Vectorizer : public IRMutator {
 public:
  Vectorizer(Var var, int var_lanes)
      : var_(var), var_lanes_(var_lanes) {
    ramp_ = Ramp::make(0, 1, var_lanes);
  }
  // user mutate from parent.
  using IRMutator::Mutate;
85 86 87 88 89 90 91 92

  Expr Mutate_(const Add* op, const Expr &e) final {
    return AddSubVec(op, e);
  }
  Expr Mutate_(const Sub* op, const Expr &e) final {
    return AddSubVec(op, e);
  }
  Expr Mutate_(const Mul* op, const Expr &e) final {
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    Expr a = this->Mutate(op->a);
    Expr b = this->Mutate(op->b);
    if (a.same_as(op->a) &&
        b.same_as(op->b)) {
      return e;
    } else {
      int lanes = std::max(a.type().lanes(), b.type().lanes());
      if (lanes != 1) {
        const Ramp* b_ramp = b.as<Ramp>();
        const Ramp* a_ramp = a.as<Ramp>();
        if (a_ramp && b.type().lanes() == 1 && can_prove(b > 0)) {
          return Ramp::make(
              a_ramp->base * b, a_ramp->stride * b, a_ramp->lanes);
        }
        if (b_ramp && a.type().lanes() == 1 && can_prove(a > 0)) {
          return Ramp::make(
              b_ramp->base * a, b_ramp->stride * a, b_ramp->lanes);
        }
      }
      return Mul::make(BroadcastTo(a, lanes), BroadcastTo(b, lanes));
    }
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    return BinaryVec(op, e);
  }
  Expr Mutate_(const Div* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const Mod* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const Min* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const Max* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const EQ* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const NE* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const LT* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const GT* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const GE* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const And* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
  Expr Mutate_(const Or* op, const Expr &e) final {
    return BinaryVec(op, e);
  }
149 150 151 152 153 154 155 156 157 158 159 160 161
  Expr Mutate_(const Ramp* op, const Expr &e) final {
    Expr base = this->Mutate(op->base);
    Expr stride = this->Mutate(op->stride);
    if (base.type().lanes() > 1 && stride.type().lanes() == 1) {
      const Ramp* base_ramp = base.as<Ramp>();
      if (can_prove(base_ramp->stride == stride * make_const(stride.type(), op->lanes))) {
        return Ramp::make(base_ramp->base, stride, op->lanes * base_ramp->lanes);
      }
    }
    int lanes = std::max(base.type().lanes(), stride.type().lanes());
    base = BroadcastTo(base, lanes);
    stride = BroadcastTo(stride, lanes);
    Array<Expr> elems;
162
    for (int i = 0; i < lanes; ++i) {
163 164 165 166 167 168 169
      elems.push_back(
          Ramp::make(Shuffle::make_extract_element(base, i),
                     Shuffle::make_extract_element(stride, i),
                     op->lanes));
    }
    return Shuffle::make_concat(elems);
  }
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
  Expr Mutate_(const Select *op, const Expr& e) final {
    Expr cond = this->Mutate(op->condition);
    Expr t = this->Mutate(op->true_value);
    Expr f = this->Mutate(op->false_value);
    if (cond.same_as(op->condition) &&
        t.same_as(op->true_value) &&
        f.same_as(op->false_value)) {
      return e;
    } else {
      int lanes = std::max(std::max(
          cond.type().lanes(),
          t.type().lanes()), f.type().lanes());
      return Select::make(cond, BroadcastTo(t, lanes), BroadcastTo(f, lanes));
    }
  }
  Expr Mutate_(const Cast *op, const Expr& e) final {
    Expr value = this->Mutate(op->value);
    if (value.same_as(op->value)) {
      return e;
    } else {
      return Cast::make(op->type.with_lanes(value.type().lanes()), value);
    }
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
  }
  // Variable
  Expr Mutate_(const Variable* v, const Expr& e) final {
    if (v == var_.get()) {
      return ramp_;
    } else if (lets_.count(v)) {
        return lets_[v];
    } else {
      return e;
    }
  }
  // Call
  Expr Mutate_(const Call* op, const Expr& e) final {
    int lane = 0;
    Array<Expr> new_args = MutateArray(op->args, &lane);
    if (op->args.same_as(new_args)) {
      return e;
    } else {
      return Call::make(
          op->type.with_lanes(lane), op->name, new_args,
          op->call_type, op->func, op->value_index);
    }
  }
  // Load
  Expr Mutate_(const Load* op, const Expr& e) final {
    Expr index = this->Mutate(op->index);
218 219
    Expr pred = this->Mutate(op->predicate);
    if (index.same_as(op->index) && pred.same_as(op->predicate)) {
220 221
      return e;
    } else {
222 223 224 225 226 227
      int lanes = std::max(index.type().lanes(), pred.type().lanes());
      return Load::make(
          op->type.with_lanes(lanes),
          op->buffer_var,
          BroadcastTo(index, lanes),
          BroadcastTo(pred, lanes));
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    }
  }
  // Let
  Expr Mutate_(const Let* op, const Expr& e) final {
    Expr value = this->Mutate(op->value);
    CHECK(!lets_.count(op->var.get())) << "not SSA";
    if (value.type().lanes() != op->value.type().lanes()) {
      Var v(op->var->name_hint, value.type());
      lets_[op->var.get()] = v;
      return Let::make(v, value, Mutate(op->body));
    } else {
      Expr body = this->Mutate(op->body);
      if (value.same_as(op->value) &&
          body.same_as(op->body)) {
        return e;
      } else {
        return Let::make(op->var, value, body);
      }
    }
  }
  // Provide
  Stmt Mutate_(const Provide* op, const Stmt& s) final {
    Expr new_value = this->Mutate(op->value);
    int lane = new_value.type().lanes();
    Array<Expr> new_args = MutateArray(op->args, &lane);
    if (op->args.same_as(new_args) && op->value.same_as(new_value)) {
      return s;
    } else {
      new_value = BroadcastTo(new_value, lane);
      return Provide::make(op->func, op->value_index, new_value, new_args);
    }
  }
  // Store
  Stmt Mutate_(const Store* op, const Stmt& s) final {
    Expr value = this->Mutate(op->value);
    Expr index = this->Mutate(op->index);
264
    Expr pred = this->Mutate(op->predicate);
265 266 267 268
    if (value.same_as(op->value) && index.same_as(op->index)) {
      return s;
    } else {
      int lanes = std::max(value.type().lanes(), index.type().lanes());
269
      lanes = std::max(lanes, pred.type().lanes());
270 271
      return Store::make(op->buffer_var,
                         BroadcastTo(value, lanes),
272 273
                         BroadcastTo(index, lanes),
                         BroadcastTo(pred, lanes));
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    }
  }
  // For
  Stmt Mutate_(const For* op, const Stmt& s) final {
    if (op->for_type == ForType::Vectorized) {
      LOG(WARNING) << "Detect vectorize inside vectorized loop, ignoring...";
    }
    CHECK(is_zero(op->min));
    CHECK(!op->extent.type().is_vector());
    Expr extent = Mutate(op->extent);
    if (extent.type().is_vector()) {
      LOG(WARNING) << "Detect vectorized extent type, scalarizing...";
      return Scalarize(s);
    }
    Stmt body = Mutate(op->body);
    if (extent.same_as(op->extent) &&
        body.same_as(op->body)) {
      return s;
    } else {
      return For::make(
          op->loop_var, op->min, extent,
          op->for_type, op->device_api, body);
    }
  }
  // IfThenElse
  Stmt Mutate_(const IfThenElse* op, const Stmt& s) final {
    CHECK(!op->condition.type().is_vector());
    Expr condition = this->Mutate(op->condition);
    if (condition.type().is_vector()) {
      LOG(WARNING) << "Detect vector condition in Vectorized Loop, scalarizing...";
      return Scalarize(s);
    }
    Stmt then_case = this->Mutate(op->then_case);
    Stmt else_case;
308
    if (op->else_case.defined()) {
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
      else_case = this->Mutate(op->else_case);
    }
    if (condition.same_as(op->condition) &&
        then_case.same_as(op->then_case) &&
        else_case.same_as(op->else_case)) {
      return s;
    } else {
      return IfThenElse::make(condition, then_case, else_case);
    }
  }
  // LetStmt
  Stmt Mutate_(const LetStmt* op, const Stmt& s) final {
    LOG(WARNING) << "Cannot vectorize with LetStmt, remove it with Simplify Before Vectorize";
    return Scalarize(s);
  }
  // Allocate
  Stmt Mutate_(const Allocate* op, const Stmt& s) final {
    if (op->new_expr.defined()) {
      LOG(WARNING) << "Cannot vectorize with new expr";
      return Scalarize(s);
    }
    Expr condition = Mutate(op->condition);
    if (condition.type().is_vector()) {
      LOG(WARNING) << "Cannot handle vector extent in alloc ";
      return Scalarize(s);
    }
    Array<Expr> extents;
    for (size_t i = 0; i < op->extents.size(); i++) {
      Expr new_ext = Mutate(op->extents[i]);
      if (new_ext.type().is_vector()) {
        LOG(WARNING) << "Cannot handle vector extent in alloc ";
        return Scalarize(s);
      }
      extents.push_back(new_ext);
    }
    // place the vector lanes in least significant dimension.
    extents.push_back(var_lanes_);
    // rewrite access to buffer internally.
    Stmt body = VecAllocAccess(
        op->buffer_var.get(), var_, var_lanes_).Mutate(op->body);
    body = Mutate(body);
    return Allocate::make(
        op->buffer_var, op->type,
        extents, condition, body,
        op->new_expr, op->free_function);
  }
  // scalarize the statment
  Stmt Scalarize(Stmt stmt) {
    Var idx(var_->name_hint + ".s", var_->type);
    stmt = Substitute(stmt, {{var_, idx}});
    return For::make(idx, 0, var_lanes_, ForType::Serial, DeviceAPI::None, stmt);
  }

 private:
  // variable to be replaced
  Var var_;
  // the lanes.
  int var_lanes_;
  // ramp representing the var.
  Expr ramp_;
  // The lets
  std::unordered_map<const Variable*, Expr> lets_;
  // mutate array, with given lane requirement
  // when finished, p_lane updates the lane requirement.
  Array<Expr> MutateArray(Array<Expr> arr, int* p_lanes) {
    if (arr.size() == 0) return arr;
    int& lanes = *p_lanes;
    bool changed = false;
    std::vector<Expr> new_arr(arr.size());
    for (size_t i = 0; i < arr.size(); i++) {
      Expr old_elem = arr[i];
      Expr new_elem = this->Mutate(old_elem);
      if (!new_elem.same_as(old_elem)) changed = true;
      new_arr[i] = new_elem;
      lanes = std::max(lanes, new_elem.type().lanes());
    }

    for (size_t i = 0; i < arr.size(); ++i) {
      if (new_arr[i].type().lanes() != lanes) {
        new_arr[i] = BroadcastTo(new_arr[i], lanes);
        changed = true;
      }
    }
    if (!changed) return arr;
    return Array<Expr>(new_arr);
  }
395 396 397 398 399 400
  template<typename T>
  Expr BinaryVec(const T* op, const Expr& e) {
    Expr a = this->Mutate(op->a);
    Expr b = this->Mutate(op->b);
    if (a.same_as(op->a) &&
        b.same_as(op->b)) {
401 402
      return e;
    } else {
403 404
      int lanes = std::max(a.type().lanes(), b.type().lanes());
      return T::make(BroadcastTo(a, lanes), BroadcastTo(b, lanes));
405
    }
406 407 408 409 410 411 412
  }
  template<typename T>
  Expr AddSubVec(const T* op, const Expr& e) {
    Expr a = this->Mutate(op->a);
    Expr b = this->Mutate(op->b);
    if (a.same_as(op->a) &&
        b.same_as(op->b)) {
413 414
      return e;
    } else {
415 416 417 418 419 420
      int lanes = std::max(a.type().lanes(), b.type().lanes());
      if (lanes != 1) {
        const Ramp* b_ramp = b.as<Ramp>();
        const Ramp* a_ramp = a.as<Ramp>();
        if (a.type().lanes() == 1 && b_ramp) {
          return Ramp::make(
421 422 423
              arith::ComputeExpr<T>(a, b_ramp->base),
              arith::ComputeExpr<T>(make_zero(b_ramp->stride.type()), b_ramp->stride),
              b_ramp->lanes);
424 425 426 427 428 429 430
        }
        if (b.type().lanes() == 1 && a_ramp) {
          return Ramp::make(
              arith::ComputeExpr<T>(a_ramp->base, b), a_ramp->stride, a_ramp->lanes);
        }
      }
      return T::make(BroadcastTo(a, lanes), BroadcastTo(b, lanes));
431
    }
432 433
  }
};
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

class LoopVectorizer : public IRMutator {
 public:
  Stmt Mutate_(const For* op, const Stmt& s) final {
    if (op->for_type == ForType::Vectorized) {
      CHECK(is_zero(op->min));
      CHECK(is_positive_const(op->extent));
      int lanes = 0;
      bool succ = arith::GetConstInt(op->extent, &lanes);
      if (!succ || lanes < 1) {
        LOG(FATAL) << "Failed to vectorize loop with extent " << op->extent;
      }
      Var var(op->loop_var.node_);
      return Vectorizer(var, lanes).Mutate(op->body);
    } else {
      return IRMutator::Mutate_(op, s);
    }
  }
};

Stmt VectorizeLoop(Stmt stmt) {
  return LoopVectorizer().Mutate(stmt);
}

}  // namespace ir
}  // namespace tvm