deploy_resnet_on_vta.py 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Deploy Pretrained ResNet Model from MxNet on VTA
================================================
**Author**: `Thierry Moreau <https://homes.cs.washington.edu/~moreau/>`_

This tutorial provides an end-to-end demo, on how to run ResNet-18 inference
onto the VTA accelerator design to perform ImageNet classification tasks.
It showcases Relay as a front end compiler that can perform quantization (VTA
only supports int8/32 inference) as well as graph packing (in order to enable
tensorization in the core) to massage the compute graph for the hardware target.
"""

######################################################################
# Install dependencies
# --------------------
# To use the autotvm package in tvm, we need to install some extra dependencies.
# (change "3" to "2" if you use python2):
#
# .. code-block:: bash
#
#   pip3 install --user mxnet requests pillow
#
# Now return to the python code. Import packages.

from __future__ import absolute_import, print_function

import argparse, json, os, requests, time
from io import BytesIO
from os.path import join, isfile
from PIL import Image

from mxnet.gluon.model_zoo import vision
import numpy as np
from matplotlib import pyplot as plt

import tvm
from tvm import rpc, autotvm, relay
from tvm.contrib import graph_runtime, util, download
from tvm.contrib.debugger import debug_runtime

import vta
from vta.testing import simulator
from vta.top import graph_pack

# Make sure that TVM was compiled with RPC=1
assert tvm.module.enabled("rpc")


######################################################################
# Define the platform and model targets
# -------------------------------------
# Execute on CPU vs. VTA, and define the model.

# Load VTA parameters from the vta/config/vta_config.json file
env = vta.get_env()

# Set ``device=arm_cpu`` to run inference on the CPU
# or ``device=vta`` to run inference on the FPGA.
device = "vta"
target = env.target if device == "vta" else env.target_vta_cpu

# Name of Gluon model to compile
# The ``start_pack`` and ``stop_pack`` labels indicate where
# to start and end the graph packing relay pass: in other words
# where to start and finish offloading to VTA.
model = "resnet18_v1"
start_pack="nn.max_pool2d"
stop_pack="nn.global_avg_pool2d"

######################################################################
# Obtain an execution remote
# ---------------------------------
# When target is 'pynq', reconfigure FPGA and runtime.
# Otherwise, if target is 'sim', execute locally.

92
if env.TARGET not in ["sim", "tsim"]:
93 94 95 96 97

    # Get remote from tracker node if environment variable is set.
    # To set up the tracker, you'll need to follow the "Auto-tuning
    # a convolutional network for VTA" tutorial.
    tracker_host = os.environ.get("TVM_TRACKER_HOST", None)
98
    tracker_port = os.environ.get("TVM_TRACKER_PORT", None)
99 100 101 102
    # Otherwise if you have a device you want to program directly from
    # the host, make sure you've set the variables below to the IP of
    # your board.
    device_host = os.environ.get("VTA_PYNQ_RPC_HOST", "192.168.2.99")
103
    device_port = os.environ.get("VTA_PYNQ_RPC_PORT", "9091")
104
    if not tracker_host or not tracker_port:
105
        remote = rpc.connect(device_host, int(device_port))
106
    else:
107
        remote = autotvm.measure.request_remote(env.TARGET, tracker_host, int(tracker_port), timeout=10000)
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

    # Reconfigure the JIT runtime and FPGA.
    # You can program the FPGA with your own custom bitstream
    # by passing the path to the bitstream file instead of None.
    reconfig_start = time.time()
    vta.reconfig_runtime(remote)
    vta.program_fpga(remote, bitstream=None)
    reconfig_time = time.time() - reconfig_start
    print("Reconfigured FPGA and RPC runtime in {0:.2f}s!".format(reconfig_time))

# In simulation mode, host the RPC server locally.
else:
    remote = rpc.LocalSession()

# Get execution context from remote
ctx = remote.ext_dev(0) if device == "vta" else remote.cpu(0)

######################################################################
# Build the inference graph runtime
# ---------------------------------
# Grab ResNet-18 model from Gluon model zoo and compile with Relay.
# The compilation steps are:
#    1) Front end translation from MxNet into Relay module.
#    2) Apply 8-bit quantization: here we skip the first conv layer,
#       and dense layer which will both be executed in fp32 on the CPU.
#    3) Perform graph packing to alter the data layout for tensorization.
#    4) Perform constant folding to reduce number of operators (e.g. eliminate
#       batch norm multiply).
#    5) Perform relay build to object file.
#    6) Load the object file onto remote (FPGA device).
#    7) Generate graph runtime, `m`.

# Load pre-configured AutoTVM schedules
with autotvm.tophub.context(target):

    # Populate the shape and data type dictionary for ResNet input
    dtype_dict = {"data": 'float32'}
    shape_dict = {"data": (env.BATCH, 3, 224, 224)}

    # Get off the shelf gluon model, and convert to relay
    gluon_model = vision.get_model(model, pretrained=True)

    # Measure build start time
    build_start = time.time()

    # Start front end compilation
    mod, params = relay.frontend.from_mxnet(gluon_model, shape_dict)

    # Update shape and type dictionary
    shape_dict.update({k: v.shape for k, v in params.items()})
    dtype_dict.update({k: str(v.dtype) for k, v in params.items()})

    # Perform quantization in Relay
    with relay.quantize.qconfig(global_scale=8.0,
                                skip_conv_layers=[0]):
163
        relay_prog = relay.quantize.quantize(mod["main"], params=params)
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

    # Perform graph packing and constant folding for VTA target
    if target.device_name == "vta":
        assert env.BLOCK_IN == env.BLOCK_OUT
        relay_prog = graph_pack(
            relay_prog,
            env.BATCH,
            env.BLOCK_OUT,
            env.WGT_WIDTH,
            start_name=start_pack,
            stop_name=stop_pack)

    # Compile Relay program with AlterOpLayout disabled
    with relay.build_config(opt_level=3, disabled_pass={"AlterOpLayout"}):
        if target.device_name != "vta":
            graph, lib, params = relay.build(
                relay_prog, target=target,
                params=params, target_host=env.target_host)
        else:
            with vta.build_config():
                graph, lib, params = relay.build(
                    relay_prog, target=target,
                    params=params, target_host=env.target_host)

    # Measure Relay build time
    build_time = time.time() - build_start
    print(model + " inference graph built in {0:.2f}s!".format(build_time))

    # Send the inference library over to the remote RPC server
    temp = util.tempdir()
    lib.save(temp.relpath("graphlib.o"))
    remote.upload(temp.relpath("graphlib.o"))
    lib = remote.load_module("graphlib.o")

    # Graph runtime
    m = graph_runtime.create(graph, lib, ctx)

######################################################################
# Perform ResNet-18 inference
# ---------------------------
# We run classification on an image sample from ImageNet
# We just need to download the categories files, `synset.txt`
# and an input test image.

# Download ImageNet categories
categ_url = "https://github.com/uwsaml/web-data/raw/master/vta/models/"
categ_fn = "synset.txt"
download.download(join(categ_url, categ_fn), categ_fn)
synset = eval(open(categ_fn).read())

# Download test image
image_url = 'https://homes.cs.washington.edu/~moreau/media/vta/cat.jpg'
response = requests.get(image_url)

# Prepare test image for inference
image = Image.open(BytesIO(response.content)).resize((224, 224))
plt.imshow(image)
plt.show()
image = np.array(image) - np.array([123., 117., 104.])
image /= np.array([58.395, 57.12, 57.375])
image = image.transpose((2, 0, 1))
image = image[np.newaxis, :]
image = np.repeat(image, env.BATCH, axis=0)

# Set the network parameters and inputs
m.set_input(**params)
m.set_input('data', image)

232 233 234 235 236 237
# Perform inference and gather execution statistics
# More on: https://docs.tvm.ai/api/python/module.html#tvm.module.Module.time_evaluator
num = 4 # number of times we run module for a single measurement
rep = 3 # number of measurements (we derive std dev from this)
timer = m.module.time_evaluator("run", ctx, number=num, repeat=rep)

238
if env.TARGET in ["sim", "tsim"]:
239 240 241 242 243 244 245 246 247 248 249
    simulator.clear_stats()
    timer()
    sim_stats = simulator.stats()
    print("\nExecution statistics:")
    for k, v in sim_stats.items():
        # Since we execute the workload many times, we need to normalize stats
        # Note that there is always one warm up run
        # Therefore we divide the overall stats by (num * rep + 1)
        print("\t{:<16}: {:>16}".format(k, v // (num * rep + 1)))
else:
    tcost = timer()
250 251 252 253
    std = np.std(tcost.results) * 1000
    mean = tcost.mean * 1000
    print("\nPerformed inference in %.2fms (std = %.2f) for %d samples" % (mean, std, env.BATCH))
    print("Average per sample inference time: %.2fms" % (mean/env.BATCH))
254 255 256

# Get classification results
tvm_output = m.get_output(0, tvm.nd.empty((env.BATCH, 1000), "float32", remote.cpu(0)))
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
for b in range(env.BATCH):
    top_categories = np.argsort(tvm_output.asnumpy()[b])

    # Report top-5 classification results
    print("\n{} prediction for sample {}".format(model, b))
    print("\t#1:", synset[top_categories[-1]])
    print("\t#2:", synset[top_categories[-2]])
    print("\t#3:", synset[top_categories[-3]])
    print("\t#4:", synset[top_categories[-4]])
    print("\t#5:", synset[top_categories[-5]])

    # This just checks that one of the 5 top categories
    # is one variety of cat; this is by no means an accurate
    # assessment of how quantization affects classification
    # accuracy but is meant to catch changes to the
    # quantization pass that would accuracy in the CI.
    cat_detected = False
    for k in top_categories[-5:]:
        if "cat" in synset[k]:
            cat_detected = True
    assert(cat_detected)