pack_args.h 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*!
 *  Copyright (c) 2017 by Contributors
 * \file pack_args.h
 * \brief Utility to pack TVMArgs to other type-erased fution calling convention.
 *
 *  Two type erased function signatures are supported.
 *   - cuda_style(void** args, int num_args);
 *      - Pack everything by address
 *   - metal_style(void** buffers, int num_buffers,
 *                 union_32bit args[N], int num_args);
 *      - Pack buffer by address, pack rest parameter into 32bit union buffer.
 */
#ifndef TVM_RUNTIME_PACK_ARGS_H_
#define TVM_RUNTIME_PACK_ARGS_H_

#include <tvm/runtime/c_runtime_api.h>
#include <vector>
37
#include <cstring>
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

namespace tvm {
namespace runtime {
/*!
 * \brief argument union type of 32bit.
 * Choose 32 bit because most GPU API do not work well with 64 bit.
 */
union ArgUnion {
  int32_t v_int32;
  uint32_t v_uint32;
  float v_float32;
};
/*!
 * \brief Create a packed function from void addr types.
 *
 * \param f with signiture (TVMArgs args, TVMRetValue* rv, void* void_args)
54
 * \param arg_types The arguments type information.
Tianqi Chen committed
55
 * \tparam F the function type
56 57 58 59 60 61 62 63 64
 *
 * \return The wrapped packed function.
 */
template<typename F>
inline PackedFunc PackFuncVoidAddr(F f, const std::vector<TVMType>& arg_types);
/*!
 * \brief Create a packed function that from function only packs buffer arguments.
 *
 * \param f with signiture (TVMArgs args, TVMRetValue* rv, ArgUnion* pack_args)
65
 * \param arg_types The arguments type information.
Tianqi Chen committed
66
 * \tparam F the function type
67 68 69 70 71 72
 *
 * \return The wrapped packed function.
 */
template<typename F>
inline PackedFunc PackFuncNonBufferArg(F f, const std::vector<TVMType>& arg_types);
/*!
73 74 75 76 77 78 79 80 81 82 83
 * \brief Create a packed function that from function that takes a packed arguments.
 *
 * \param f with signature (TVMArgs args, TVMRetValue* rv, void* pack_args, size_t nbytes)
 * \param arg_types The arguments that wish to get from
 * \tparam F the function type
 *
 * \return The wrapped packed function.
 */
template<typename F>
inline PackedFunc PackFuncPackedArg(F f, const std::vector<TVMType>& arg_types);
/*!
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
 * \brief Extract number of buffer argument from the argument types.
 * \param arg_types The argument types.
 * \return number of buffer arguments
 */
inline size_t NumBufferArgs(const std::vector<TVMType>& arg_types);

// implementations details
namespace detail {
template<typename T, int kSize>
class TempArray {
 public:
  explicit TempArray(int size) {}
  T* data() {
    return data_;
  }
 private:
  T data_[kSize];
};
template<typename T>
class TempArray<T, 0> {
 public:
  explicit TempArray(int size) : data_(size) {}
  T* data() {
    return data_.data();
  }
 private:
  std::vector<T> data_;
};

/*! \brief conversion code used in void arg. */
enum ArgConvertCode {
  INT64_TO_INT64,
  INT64_TO_INT32,
  INT64_TO_UINT32,
  FLOAT64_TO_FLOAT32,
  FLOAT64_TO_FLOAT64,
  HANDLE_TO_HANDLE
};

inline ArgConvertCode GetArgConvertCode(TVMType t) {
  CHECK_EQ(t.lanes, 1U)
      << "Cannot pass vector type argument to devic function for now";
126
  if (t.code == kDLInt) {
127 128
    if (t.bits == 64U) return INT64_TO_INT64;
    if (t.bits == 32U) return INT64_TO_INT32;
129
  } else if (t.code == kDLUInt) {
130
    if (t.bits == 32U) return INT64_TO_UINT32;
131
  } else if (t.code == kDLFloat) {
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    if (t.bits == 64U) return FLOAT64_TO_FLOAT64;
    if (t.bits == 32U) return FLOAT64_TO_FLOAT32;
  } else if (t.code == kHandle) {
    return HANDLE_TO_HANDLE;
  }
  LOG(FATAL) << "Cannot handle " << t << " as device function argument";
  return HANDLE_TO_HANDLE;
}

template<int N, typename F>
inline PackedFunc PackFuncVoidAddr_(F f, const std::vector<ArgConvertCode>& codes) {
  int num_args = static_cast<int>(codes.size());
  auto ret = [f, codes, num_args](TVMArgs args, TVMRetValue* ret) {
    TempArray<void*, N> addr_(num_args);
    TempArray<ArgUnion, N> holder_(num_args);
    void** addr = addr_.data();
    ArgUnion* holder = holder_.data();
    for (int i = 0; i < num_args; ++i) {
      switch (codes[i]) {
        case INT64_TO_INT64:
        case FLOAT64_TO_FLOAT64:
        case HANDLE_TO_HANDLE: {
          addr[i] = (void*)&(args.values[i]);  // NOLINT(*)
          break;
        }
        case INT64_TO_INT32: {
          holder[i].v_int32 = static_cast<int32_t>(args.values[i].v_int64);
          addr[i] = &(holder[i]);
          break;
        }
        case INT64_TO_UINT32 : {
          holder[i].v_uint32 = static_cast<uint32_t>(args.values[i].v_int64);
          addr[i] = &(holder[i]);
          break;
        }
        case FLOAT64_TO_FLOAT32: {
          holder[i].v_float32 = static_cast<float>(args.values[i].v_float64);
          addr[i] = &(holder[i]);
          break;
        }
      }
    }
    f(args, ret, addr);
  };
  return PackedFunc(ret);
}

template<int N, typename F>
inline PackedFunc PackFuncNonBufferArg_(
    F f, int base, const std::vector<ArgConvertCode>& codes) {
  int num_args = static_cast<int>(codes.size());
  auto ret = [f, codes, base, num_args](TVMArgs args, TVMRetValue* ret) {
    TempArray<ArgUnion, N> holder_(num_args);
    ArgUnion* holder = holder_.data();
    for (int i = 0; i < num_args; ++i) {
      switch (codes[i]) {
        case INT64_TO_INT64:
        case FLOAT64_TO_FLOAT64: {
Siju committed
190
          LOG(FATAL) << "Do not support 64bit argument to device function"; break;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        }
        case INT64_TO_INT32: {
          holder[i].v_int32 = static_cast<int32_t>(args.values[base + i].v_int64);
          break;
        }
        case INT64_TO_UINT32 : {
          holder[i].v_uint32 = static_cast<uint32_t>(args.values[base + i].v_int64);
          break;
        }
        case FLOAT64_TO_FLOAT32: {
          holder[i].v_float32 = static_cast<float>(args.values[base + i].v_float64);
          break;
        }
        case HANDLE_TO_HANDLE: {
          LOG(FATAL) << "not reached"; break;
        }
      }
    }
    f(args, ret, holder);
  };
  return PackedFunc(ret);
}
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

template<int N, typename F>
inline PackedFunc PackFuncPackedArg_(
    F f, const std::vector<ArgConvertCode>& codes) {
  int num_args = static_cast<int>(codes.size());
  auto ret = [f, codes, num_args](TVMArgs args, TVMRetValue* ret) {
    TempArray<uint64_t, N> pack_(num_args);
    int32_t* pack = reinterpret_cast<int32_t*>(pack_.data());
    int32_t* ptr = pack;
    static_assert(sizeof(TVMValue) == 8, "invariant");
    static_assert(sizeof(void*) % sizeof(int32_t) == 0, "invariant");
    for (int i = 0; i < num_args; ++i) {
      switch (codes[i]) {
        case HANDLE_TO_HANDLE: {
          std::memcpy(ptr, &(args.values[i].v_handle), sizeof(void*));
          ptr += sizeof(void*) / sizeof(int32_t);
          break;
        }
        case INT64_TO_INT64:
        case FLOAT64_TO_FLOAT64: {
          std::memcpy(ptr, &args.values[i], sizeof(TVMValue));
          ptr += 2;
          break;
        }
        case INT64_TO_INT32: {
          *ptr = static_cast<int32_t>(args.values[i].v_int64);
          ++ptr;
          break;
        }
        case INT64_TO_UINT32 : {
          *reinterpret_cast<uint32_t*>(ptr) =
              static_cast<uint32_t>(args.values[i].v_int64);
          ++ptr;
          break;
        }
        case FLOAT64_TO_FLOAT32: {
          *reinterpret_cast<float*>(ptr) =
              static_cast<float>(args.values[i].v_float64);
          ++ptr;
          break;
        }
        default: {
          LOG(FATAL) << "not reached"; break;
        }
      }
    }
    f(args, ret, pack, (ptr - pack) * sizeof(int32_t));
  };
  return PackedFunc(ret);
}
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
}  // namespace detail

template<typename F>
inline PackedFunc PackFuncVoidAddr(F f, const std::vector<TVMType>& arg_types) {
  std::vector<detail::ArgConvertCode> codes(arg_types.size());
  for (size_t i = 0; i < arg_types.size(); ++i) {
    codes[i] = detail::GetArgConvertCode(arg_types[i]);
  }
  size_t num_void_args = arg_types.size();
  // specialization
  if (num_void_args <= 4) {
    return detail::PackFuncVoidAddr_<4>(f, codes);
  } else if (num_void_args <= 8) {
    return detail::PackFuncVoidAddr_<8>(f, codes);
  } else {
    return detail::PackFuncVoidAddr_<0>(f, codes);
  }
}

inline size_t NumBufferArgs(const std::vector<TVMType>& arg_types) {
  size_t base = arg_types.size();
  for (size_t i = 0; i < arg_types.size(); ++i) {
    if (arg_types[i].code != kHandle) {
      base = i; break;
    }
  }
  for (size_t i = base; i < arg_types.size(); ++i) {
    CHECK(arg_types[i].code != kHandle)
        << "Device function need to be organized";
  }
  return base;
}

template<typename F>
inline PackedFunc PackFuncNonBufferArg(F f, const std::vector<TVMType>& arg_types) {
  size_t num_buffer = NumBufferArgs(arg_types);
  std::vector<detail::ArgConvertCode> codes;
  for (size_t i = num_buffer; i < arg_types.size(); ++i) {
    codes.push_back(detail::GetArgConvertCode(arg_types[i]));
  }
  int base = static_cast<int>(num_buffer);
  size_t nargs = codes.size();
  // specialization
  if (nargs <= 4) {
    return detail::PackFuncNonBufferArg_<4>(f, base, codes);
  } else {
    return detail::PackFuncNonBufferArg_<0>(f, base, codes);
  }
}
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

template<typename F>
inline PackedFunc PackFuncPackedArg(F f, const std::vector<TVMType>& arg_types) {
  std::vector<detail::ArgConvertCode> codes;
  for (size_t i = 0; i < arg_types.size(); ++i) {
    codes.push_back(detail::GetArgConvertCode(arg_types[i]));
  }
  size_t nargs = codes.size();
  // specialization
  if (nargs <= 4) {
    return detail::PackFuncPackedArg_<4>(f, codes);
  } else {
    return detail::PackFuncPackedArg_<0>(f, codes);
  }
}
327 328 329
}  // namespace runtime
}  // namespace tvm
#endif  // TVM_RUNTIME_PACK_ARGS_H_