test_forward.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23
import numpy as np
import tvm
from tvm import relay
from tvm.contrib import graph_runtime
from tvm.relay.testing.config import ctx_list
import keras

24
# prevent Keras from using up all gpu memory
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5
set_session(tf.Session(config=config))


def verify_keras_frontend(keras_model, need_transpose=True):
    # Keras frontend currently supports tensorflow backend only.
    assert(keras.backend.backend() == 'tensorflow')

    in_shapes = []
    for layer in keras_model._input_layers:
        in_shapes.append(tuple(dim.value if dim.value is not None else 1 for dim in layer.input.shape))

    def get_keras_output(xs, dtype='float32'):
        return keras_model.predict(xs)

    def get_tvm_output(xs, target, ctx, dtype='float32'):
        shape_dict = {name: x.shape for (name, x) in zip(keras_model.input_names, xs)}
45
        mod, params = relay.frontend.from_keras(keras_model, shape_dict)
46
        with relay.transform.build_config(opt_level=2):
47
            graph, lib, params = relay.build(mod,
48 49
                                             target,
                                             params=params)
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        m = graph_runtime.create(graph, lib, ctx)
        for name, x in zip(keras_model.input_names, xs):
            m.set_input(name, tvm.nd.array(x.astype(dtype)))
        m.set_input(**params)
        m.run()
        return [m.get_output(i).asnumpy() for i in range(m.get_num_outputs())]

    def to_channels_first(arr):
        return arr.transpose([0, -1] + list(range(1, arr.ndim - 1)))

    def to_channels_last(arr):
        return arr.transpose([0] + list(range(2, arr.ndim)) + [1])

    xs = [np.random.uniform(size=shape, low=-1.0, high=1.0) for shape in in_shapes]
    keras_out = get_keras_output(xs)
    keras_out = keras_out if isinstance(keras_out, list) else [keras_out]
    for target, ctx in ctx_list():
        inputs = [to_channels_first(x) for x in xs] if need_transpose else xs
        tvm_out = get_tvm_output(inputs, target, ctx)
        for kout, tout in zip(keras_out, tvm_out):
            if need_transpose:
                tout = to_channels_last(tout)
            tvm.testing.assert_allclose(kout, tout, rtol=1e-5, atol=1e-5)


def test_forward_merge():
76
    data = keras.layers.Input(shape=(32, 32, 3))
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    x = keras.layers.Conv2D(8, (3, 3), padding="same")(data)
    y = keras.layers.Conv2D(8, (3, 3), padding="same")(x)
    z = keras.layers.Conv2D(8, (3, 3), padding="same")(y)
    merge_funcs = [keras.layers.Add(),
                   keras.layers.Subtract(),
                   keras.layers.Multiply(),
                   keras.layers.Maximum(),
                   keras.layers.Average(),
                   keras.layers.Concatenate()]
    for merge_func in merge_funcs:
        if isinstance(merge_func, keras.layers.merge.Subtract):
            out = merge_func([x, y])
        else:
            out = merge_func([x, y, z])
        keras_model = keras.models.Model(data, out)
        verify_keras_frontend(keras_model)


def test_forward_activations():
96
    data = keras.layers.Input(shape=(32, 32, 3))
97 98 99 100 101 102 103 104 105
    act_funcs = [keras.layers.Activation('softmax'),
                 keras.layers.Activation('softplus'),
                 keras.layers.Activation('relu'),
                 keras.layers.Activation('softsign'),
                 keras.layers.Activation('hard_sigmoid'),
                 keras.layers.Activation('sigmoid'),
                 keras.layers.Activation('tanh'),
                 keras.layers.Activation('linear'),
                 keras.layers.Activation('selu'),
106
                 keras.layers.Softmax(),
107 108 109 110 111 112 113 114 115 116 117 118 119
                 keras.layers.ReLU(),
                 keras.layers.ReLU(max_value=6.),
                 keras.layers.LeakyReLU(alpha=0.3),
                 keras.layers.PReLU(weights=np.random.rand(1, 32, 32, 3)),
                 keras.layers.ELU(alpha=0.5),
                 keras.layers.ThresholdedReLU(theta=0.5)]
    for act_func in act_funcs:
        x = act_func(data)
        keras_model = keras.models.Model(data, x)
        verify_keras_frontend(keras_model)


def test_forward_dense():
120
    data = keras.layers.Input(shape=(32, 32, 1))
121 122 123 124 125 126
    x = keras.layers.Flatten()(data)
    x = keras.layers.Dropout(0.5)(x)
    x = keras.layers.Dense(10, activation='relu', kernel_initializer='uniform')(x)
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model)

127 128 129 130 131
def test_forward_permute():
    data = keras.layers.Input(shape=(2, 3, 4))
    x = keras.layers.Permute([2, 3, 1])(data)
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model, need_transpose=False)
132

133 134 135 136 137 138 139 140 141 142 143
def test_forward_sequential():
    keras_model = keras.models.Sequential([
        keras.layers.Dense(16, input_dim=32, activation='relu'),
        keras.layers.Dropout(0.5),
        keras.layers.Dense(8, activation='relu'),
        keras.layers.Dropout(0.5),
        keras.layers.Dense(1, activation='sigmoid')
    ])
    verify_keras_frontend(keras_model)


144
def test_forward_pool():
145
    data = keras.layers.Input(shape=(32, 32, 1))
146 147 148 149 150 151 152 153 154 155 156
    # maxpool
    x = keras.layers.MaxPooling2D((3, 3), strides=(1, 1), padding='same')(data)
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model)
    # avgpool
    y = keras.layers.AveragePooling2D((3, 3), strides=(1, 1), padding='same')(data)
    keras_model = keras.models.Model(data, y)
    verify_keras_frontend(keras_model)


def test_forward_conv():
157 158 159 160 161 162 163 164
    data = keras.layers.Input(shape=(32, 32, 3))
    conv_funcs = [keras.layers.Conv2D(filters=10, kernel_size=(3, 3),
                                      strides=(2, 2), padding='same'),
                  keras.layers.Conv2D(filters=10, kernel_size=(3, 3),
                                      dilation_rate=(2, 2), padding='same'),
                  keras.layers.DepthwiseConv2D(kernel_size=(3, 3), padding='same'),
                  keras.layers.Conv2DTranspose(filters=10, kernel_size=(3, 3), padding='valid'),
                  keras.layers.SeparableConv2D(filters=10, kernel_size=(3, 3), padding='same')]
165 166 167 168 169 170
    for conv_func in conv_funcs:
        x = conv_func(data)
        keras_model = keras.models.Model(data, x)
        verify_keras_frontend(keras_model)


171
def test_forward_upsample(interpolation='nearest'):
172 173
    data = keras.layers.Input(shape=(32, 32, 3))
    x = keras.layers.UpSampling2D(size=(3, 3), interpolation=interpolation)(data)
174 175 176 177 178
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model)


def test_forward_reshape():
179 180
    data = keras.layers.Input(shape=(32, 32, 3))
    x = keras.layers.Reshape(target_shape=(32, 32, 3))(data)
181 182 183 184 185
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model)


def test_forward_crop():
186
    data = keras.layers.Input(shape=(32, 32, 3))
187 188 189 190 191 192 193 194 195 196 197 198
    x = keras.layers.Cropping2D(cropping=((1, 1), (1, 1)))(data)
    x = keras.layers.Cropping2D(cropping=(1, 1))(x)
    x = keras.layers.Cropping2D(cropping=1)(x)
    x = keras.layers.Cropping2D(cropping=((0, 1), (1, 0)))(x)
    x = keras.layers.Cropping2D(cropping=(1, 0))(x)
    x = keras.layers.Cropping2D(cropping=0)(x)
    x = keras.layers.Add()([x, x])
    keras_model = keras.models.Model(data, x)
    verify_keras_frontend(keras_model)


def test_forward_multi_inputs():
199 200
    data1 = keras.layers.Input(shape=(32, 32, 3))
    data2 = keras.layers.Input(shape=(32, 32, 3))
201 202 203 204 205 206 207 208 209
    x = keras.layers.Conv2D(8, (3, 3), padding="same")(data1)
    y = keras.layers.Conv2D(8, (3, 3), padding="same")(data2)
    z = keras.layers.Average()([x, y])
    z = keras.layers.GlobalAveragePooling2D()(z)
    keras_model = keras.models.Model([data1, data2], z)
    verify_keras_frontend(keras_model)


def test_forward_multi_outputs():
210
    data = keras.layers.Input(shape=(32, 32, 3))
211 212 213 214 215 216 217 218 219 220
    x = keras.layers.Conv2D(8, (3, 3), padding="same")(data)
    x = keras.layers.GlobalAveragePooling2D()(x)
    y = keras.layers.Conv2D(8, (3, 3), padding="same")(data)
    y = keras.layers.GlobalAveragePooling2D()(y)
    keras_model = keras.models.Model(data, [x, y])
    verify_keras_frontend(keras_model)


def test_forward_reuse_layers():
    # reuse conv2d
221
    data = keras.layers.Input(shape=(32, 32, 3))
222 223 224 225 226 227 228 229
    conv2d = keras.layers.Conv2D(8, (3, 3), padding="same")
    x = conv2d(data)
    y = conv2d(data)
    z = keras.layers.Add()([x, y])
    z = keras.layers.GlobalAveragePooling2D()(z)
    keras_model = keras.models.Model(data, z)
    verify_keras_frontend(keras_model)
    # reuse add
230
    data = keras.layers.Input(shape=(32, 32, 3))
231 232 233 234 235 236 237 238 239 240
    x = keras.layers.Conv2D(8, (3, 3), padding="same")(data)
    add = keras.layers.Add()
    x = add([x, x])
    x = add([x, x])
    z = keras.layers.GlobalAveragePooling2D()(x)
    keras_model = keras.models.Model(data, z)
    verify_keras_frontend(keras_model)


def test_forward_rnn():
241
    data = keras.layers.Input(shape=(1, 32))
242 243 244 245 246 247 248 249 250 251 252 253 254 255
    rnn_funcs = [keras.layers.LSTM(units=16, return_state=False,
                    recurrent_activation='sigmoid', activation='tanh'),
                 keras.layers.SimpleRNN(units=16, return_state=False,
                    activation='tanh'),
                 keras.layers.GRU(units=16, return_state=False,
                    recurrent_activation='sigmoid', activation='tanh')]
    for rnn_func in rnn_funcs:
        x = rnn_func(data)
        keras_model = keras.models.Model(data, x)
        verify_keras_frontend(keras_model, need_transpose=False)


def test_forward_vgg16():
    keras_model = keras.applications.VGG16(include_top=True, weights='imagenet',
256
        input_shape=(224, 224, 3), classes=1000)
257 258 259 260 261
    verify_keras_frontend(keras_model)


def test_forward_xception():
    keras_model = keras.applications.Xception(include_top=True, weights='imagenet',
262
        input_shape=(299, 299, 3), classes=1000)
263 264 265 266 267
    verify_keras_frontend(keras_model)


def test_forward_resnet50():
    keras_model = keras.applications.ResNet50(include_top=True, weights='imagenet',
268
        input_shape=(224, 224, 3), classes=1000)
269 270 271 272 273
    verify_keras_frontend(keras_model)


def test_forward_mobilenet():
    keras_model = keras.applications.MobileNet(include_top=True, weights='imagenet',
274
        input_shape=(224, 224, 3), classes=1000)
275 276 277 278 279 280 281
    verify_keras_frontend(keras_model)


if __name__ == '__main__':
    test_forward_merge()
    test_forward_activations()
    test_forward_dense()
282
    test_forward_permute()
283
    test_forward_sequential()
284 285
    test_forward_pool()
    test_forward_conv()
286 287
    test_forward_upsample(interpolation='nearest')
    test_forward_upsample(interpolation='bilinear')
288 289 290 291 292 293 294 295 296 297
    test_forward_reshape()
    test_forward_crop()
    test_forward_multi_inputs()
    test_forward_multi_outputs()
    test_forward_reuse_layers()
    test_forward_rnn()
    test_forward_vgg16()
    test_forward_xception()
    test_forward_resnet50()
    test_forward_mobilenet()