opt_conv_cuda.py 8.69 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20
"""
.. _opt-conv-gpu:

How to optimize convolution on GPU
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
==================================
**Author**: `Haichen Shen <https://homes.cs.washington.edu/~haichen/>`_

In this tutorial, we will demonstrate how to write a high performance
convolution implementation in TVM. We use square size input tensors and filters
as an example, and assume the input to convolution has a large batch. In this
example, we use a different layout to store the data in order to achieve better
data locality. The buffer layout is HWCN, which stands for height, width,
channel, batch.

"""

################################################################
# Preparation and Algorithm
# -------------------------
#
# We use the fixed size for input tensors with 256 channels and 14 x 14
# dimensions. The batch size is 256. Convolution filters contain 512 filters
# of size 3 x 3.  We use stride size 1 and padding size 1 for the
# convolution. The following code defines the convolution algorithm in TVM.
#

import numpy as np
import tvm
45
from tvm import te
46 47 48 49 50 51 52 53 54 55 56

# The sizes of inputs and filters
batch = 256
in_channel = 256
out_channel = 512
in_size = 14
kernel = 3
pad = 1
stride = 1

# Algorithm
57 58
A = te.placeholder((in_size, in_size, in_channel, batch), name='A')
W = te.placeholder((kernel, kernel, in_channel, out_channel), name='W')
59
out_size = (in_size - kernel + 2*pad) // stride + 1
60
# Pad input
61
Apad = te.compute(
62
    (in_size + 2*pad, in_size + 2*pad, in_channel, batch),
63 64
    lambda yy, xx, cc, nn: tvm.tir.if_then_else(
        tvm.tir.all(yy >= pad, yy - pad < in_size,
65
                xx >= pad, xx - pad < in_size),
66
        A[yy - pad, xx - pad, cc, nn], tvm.tir.const(0., "float32")),
67 68
    name='Apad')
# Create reduction variables
69 70 71
rc = te.reduce_axis((0, in_channel), name='rc')
ry = te.reduce_axis((0, kernel), name='ry')
rx = te.reduce_axis((0, kernel), name='rx')
72
# Compute the convolution
73
B = te.compute(
74
    (out_size, out_size, out_channel, batch),
75
    lambda yy, xx, ff, nn: te.sum(
76 77 78 79 80 81 82 83
        Apad[yy * stride + ry, xx * stride + rx, rc, nn] * W[ry, rx, rc, ff],
        axis=[ry, rx, rc]),
    name='B')


###############################################################################
# Memory Hierarchy
# ----------------
84
#
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
# We first specify the memory hierarchy for buffers. The figure below shows the
# GPU memory hierarchy. One important difference from CPU memory hierarchy is
# that GPU provides a cache buffer called shared memory, which is managed by
# programmers. Thus how to maximize the data reuse in the shared memory is
# critical to achieve high performance in GPU kernels.
#
# .. image:: https://github.com/dmlc/web-data/raw/master/tvm/tutorial/gpu_memory_hierarchy.png
#      :align: center
#      :height: 319px
#      :width: 271px
#
# In this example, we load both Apad and W into buffer AA and WW, which are
# stored in the shared memory. These bufferes will be later shared by all
# threads within the same thread block to compute the convolution. Each thread
# then loads its own part from shared buffer into their local registers, AL and
# WL. BL is a local cache of output B, which is also stored in the thread local
# registers.
#

# Designate the memory hierarchy
105
s = te.create_schedule(B.op)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
s[Apad].compute_inline() # compute Apad inline
AA = s.cache_read(Apad, 'shared', [B])
WW = s.cache_read(W, "shared", [B])
AL = s.cache_read(AA, "local", [B])
WL = s.cache_read(WW, "local", [B])
BL = s.cache_write(B, "local")

###############################################################################
# Blocking
# --------
#
# The following code splits the workload into thread blocks and individual
# threads. We follow the blocking scheme in the matrix multiply. As shown in the
# figure below, given a pixel coordinate (y, x), a thread block is responsible
# for computing a region of block_factor x block_factor (64 x 64) for output
# channels and batch. Due to the limit of shared memory space, we only load step
# x block_factor (8 x 64) data from Apad and B each time to buffers in the
# shared memory.
#
# .. image:: https://github.com/dmlc/web-data/raw/master/tvm/tutorial/conv_gpu_blocking.png
#      :align: center
#      :height: 308px
#      :width: 317px
#

# tile consts
tile = 8
num_thread = 8
block_factor = tile * num_thread
step = 8
vthread = 2

# Get the GPU thread indices
139 140 141 142 143 144 145
block_x = te.thread_axis("blockIdx.x")
block_y = te.thread_axis("blockIdx.y")
block_z = te.thread_axis("blockIdx.z")
thread_x = te.thread_axis((0, num_thread), "threadIdx.x")
thread_y = te.thread_axis((0, num_thread), "threadIdx.y")
thread_xz = te.thread_axis((0, vthread), "vthread", name="vx")
thread_yz = te.thread_axis((0, vthread), "vthread", name="vy")
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

# Split the workloads
hi, wi, fi, ni = s[B].op.axis
bz = s[B].fuse(hi, wi)
by, fi = s[B].split(fi, factor=block_factor)
bx, ni = s[B].split(ni, factor=block_factor)

# Bind the iteration variables to GPU thread indices
s[B].bind(bz, block_z)
s[B].bind(by, block_y)
s[B].bind(bx, block_x)

###############################################################################
# Virtual Thread Split
# --------------------
#
# We further split the workload from a thread block to individual threads. To
# avoid *memory bank conflict*, we use virtual thread to split the area into 4
# parts, and then tile into 8x8 grids. Therefore, shown in the figure below,
# each thread computes 4 strided grids, where size of each grid is 4 x 4.
#
# .. image:: https://github.com/dmlc/web-data/raw/master/tvm/tutorial/conv_gpu_vthread.png
#      :align: center
#      :height: 188px
#      :width: 268px
#

tyz, fi = s[B].split(fi, nparts=vthread)  # virtual thread split
txz, ni = s[B].split(ni, nparts=vthread)  # virtual thread split
ty, fi = s[B].split(fi, nparts=num_thread)
tx, ni = s[B].split(ni, nparts=num_thread)
s[B].reorder(bz, by, bx, tyz, txz, ty, tx, fi, ni)

s[B].bind(tyz, thread_yz)
s[B].bind(txz, thread_xz)
s[B].bind(ty, thread_y)
s[B].bind(tx, thread_x)

###############################################################################
# Cooperative Fetching
# --------------------
#
# As mentioned before, each time step we need to transfer step x block_factor
# data from GPU global memory to shared memory. In order to reduce the memory
# transfer per thread, the following code lets threads in the same thread block
# coopertively fetch dependent data from global memory.
#


# Schedule BL local write
s[BL].compute_at(s[B], tx)
yi, xi, fi, ni = s[BL].op.axis
ry, rx, rc = s[BL].op.reduce_axis
rco, rci = s[BL].split(rc, factor=step)
s[BL].reorder(rco, ry, rx, rci, fi, ni)

# Attach computation to iteration variables
s[AA].compute_at(s[BL], rx)
s[WW].compute_at(s[BL], rx)
s[AL].compute_at(s[BL], rci)
s[WL].compute_at(s[BL], rci)

# Schedule for A's shared memory load
yi, xi, ci, ni = s[AA].op.axis
ty, ci = s[AA].split(ci, nparts=num_thread)
tx, ni = s[AA].split(ni, nparts=num_thread)
_, ni = s[AA].split(ni, factor=4)
s[AA].reorder(ty, tx, yi, xi, ci, ni)
s[AA].bind(ty, thread_y)
s[AA].bind(tx, thread_x)
s[AA].vectorize(ni)  # vectorize memory load

# Schedule for W's shared memory load
yi, xi, ci, fi = s[WW].op.axis
ty, ci = s[WW].split(ci, nparts=num_thread)
tx, fi = s[WW].split(fi, nparts=num_thread)
_, fi = s[WW].split(fi, factor=4)
s[WW].reorder(ty, tx, yi, xi, ci, fi)
s[WW].bind(ty, thread_y)
s[WW].bind(tx, thread_x)
s[WW].vectorize(fi)  # vectorize memory load


###############################################################################
# Generate CUDA Kernel
# --------------------
#
# Finally we use TVM to generate and compile the CUDA kernel, and evaluate the
# latency of convolution.
#

func = tvm.build(s, [A, W, B], 'cuda')
ctx = tvm.gpu(0)
a_np = np.random.uniform(size=(in_size, in_size, in_channel, batch)).astype(A.dtype)
w_np = np.random.uniform(size=(kernel, kernel, in_channel, out_channel)).astype(W.dtype)
a = tvm.nd.array(a_np, ctx)
w = tvm.nd.array(w_np, ctx)
b = tvm.nd.array(np.zeros((out_size, out_size, out_channel, batch), dtype=B.dtype), ctx)
func(a, w, b)
evaluator = func.time_evaluator(func.entry_name, ctx, number=1)
print('Convolution: %f ms' % (evaluator(a, w, b).mean * 1e3))