mobilenet.py 5.51 KB
Newer Older
eqy committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Port of NNVM version of MobileNet to Relay.
"""
# pylint: disable=invalid-name

from tvm import relay
from . import layers
from .init import create_workload

def conv_block(data, name, channels, kernel_size=(3, 3), strides=(1, 1),
               padding=(1, 1), epsilon=1e-5):
    """Helper function to construct conv_bn-relu"""
    # convolution + bn + relu
    conv = layers.conv2d(
        data=data,
        channels=channels,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        data_layout='NCHW',
        name=name+'_conv')
    bn = layers.batch_norm_infer(data=conv, epsilon=epsilon, name=name + '_bn')
    act = relay.nn.relu(data=bn)
    return act


def separable_conv_block(data, name, depthwise_channels, pointwise_channels,
                         kernel_size=(3, 3), downsample=False, padding=(1, 1),
                         epsilon=1e-5):
    """Helper function to get a separable conv block"""
    if downsample:
        strides = (2, 2)
    else:
        strides = (1, 1)
    # depthwise convolution + bn + relu
    conv1 = layers.conv2d(
        data=data,
        channels=depthwise_channels,
        groups=depthwise_channels,
        kernel_size=kernel_size,
        strides=strides,
        padding=padding,
        name=name+'_depthwise_conv1')
    bn1 = layers.batch_norm_infer(data=conv1, epsilon=epsilon, name=name+'_bn1')
    act1 = relay.nn.relu(data=bn1)
    # pointwise convolution + bn + relu
    conv2 = layers.conv2d(
        data=act1,
        channels=pointwise_channels,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding=(0, 0),
        data_layout='NCHW',
        name=name + '_conv2')
    bn2 = layers.batch_norm_infer(data=conv2, epsilon=epsilon, name=name+'_bn2')
    act2 = relay.nn.relu(data=bn2)
    return act2


def mobile_net(num_classes=1000, data_shape=(1, 3, 224, 224),
               dtype='float32', alpha=1.0, is_shallow=False):
    """Function to construct a MobileNet"""
    data = relay.var("data", shape=data_shape, dtype=dtype)
    body = conv_block(data, 'conv_block_1', int(32*alpha), strides=(2, 2))
    body = separable_conv_block(body, 'separable_conv_block_1',
                                int(32*alpha), int(64*alpha))
    body = separable_conv_block(body, 'separable_conv_block_2',
                                int(64*alpha), int(128*alpha), downsample=True)
    body = separable_conv_block(body, 'separable_conv_block_3',
                                int(128*alpha), int(128*alpha))
    body = separable_conv_block(body, 'separable_conv_block_4',
                                int(128*alpha), int(256*alpha), downsample=True)
    body = separable_conv_block(body, 'separable_conv_block_5',
                                int(256*alpha), int(256*alpha))
    body = separable_conv_block(body, 'separable_conv_block_6',
                                int(256*alpha), int(512*alpha), downsample=True)
    if is_shallow:
        body = separable_conv_block(body, 'separable_conv_block_7',
                                    int(512*alpha), int(1024*alpha), downsample=True)
        body = separable_conv_block(body, 'separable_conv_block_8',
                                    int(1024*alpha), int(1024*alpha), downsample=True)
    else:
        for i in range(7, 12):
            body = separable_conv_block(body, 'separable_conv_block_%d' % i,
                                        int(512*alpha), int(512*alpha))
        body = separable_conv_block(body, 'separable_conv_block_12',
                                    int(512*alpha), int(1024*alpha), downsample=True)
        body = separable_conv_block(body, 'separable_conv_block_13',
                                    int(1024*alpha), int(1024*alpha))
    pool = relay.nn.global_avg_pool2d(data=body)
    flatten = relay.nn.batch_flatten(data=pool)
    weight = relay.var('fc_weight')
    fc = relay.nn.dense(data=flatten, weight=weight, units=num_classes)
    softmax = relay.nn.softmax(data=fc)
    return relay.Function(relay.ir_pass.free_vars(softmax), softmax)


def get_workload(batch_size=1, num_classes=1000, image_shape=(3, 224, 224), dtype='float32'):
    """Get benchmark workload for mobilenet

    Parameters
    ----------
    batch_size : int, optional
        The batch size used in the model

    num_classes : int, optional
        Number of classes

    image_shape : tuple, optional
        The input image shape

    dtype : str, optional
        The data type

    Returns
    -------
    net : relay.Function
        The computational graph

    params : dict of str to NDArray
        The parameters.
    """
    data_shape = tuple([batch_size] + list(image_shape))
    net = mobile_net(num_classes=num_classes, data_shape=data_shape,
                     dtype=dtype, alpha=1.0, is_shallow=False)
    return create_workload(net)