Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
7a3e389b
Commit
7a3e389b
authored
Oct 31, 2018
by
eqy
Committed by
Tianqi Chen
Oct 31, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[RELAY] MobileNet (#1997)
parent
dd9d76ac
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
148 additions
and
0 deletions
+148
-0
python/tvm/relay/testing/__init__.py
+1
-0
python/tvm/relay/testing/mobilenet.py
+142
-0
tests/python/relay/test_ir_text_printer.py
+5
-0
No files found.
python/tvm/relay/testing/__init__.py
View file @
7a3e389b
...
...
@@ -5,3 +5,4 @@ from . import mlp
from
.
import
resnet
from
.
import
dqn
from
.
import
dcgan
from
.
import
mobilenet
python/tvm/relay/testing/mobilenet.py
0 → 100644
View file @
7a3e389b
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Port of NNVM version of MobileNet to Relay.
"""
# pylint: disable=invalid-name
from
tvm
import
relay
from
.
import
layers
from
.init
import
create_workload
def
conv_block
(
data
,
name
,
channels
,
kernel_size
=
(
3
,
3
),
strides
=
(
1
,
1
),
padding
=
(
1
,
1
),
epsilon
=
1e-5
):
"""Helper function to construct conv_bn-relu"""
# convolution + bn + relu
conv
=
layers
.
conv2d
(
data
=
data
,
channels
=
channels
,
kernel_size
=
kernel_size
,
strides
=
strides
,
padding
=
padding
,
data_layout
=
'NCHW'
,
name
=
name
+
'_conv'
)
bn
=
layers
.
batch_norm_infer
(
data
=
conv
,
epsilon
=
epsilon
,
name
=
name
+
'_bn'
)
act
=
relay
.
nn
.
relu
(
data
=
bn
)
return
act
def
separable_conv_block
(
data
,
name
,
depthwise_channels
,
pointwise_channels
,
kernel_size
=
(
3
,
3
),
downsample
=
False
,
padding
=
(
1
,
1
),
epsilon
=
1e-5
):
"""Helper function to get a separable conv block"""
if
downsample
:
strides
=
(
2
,
2
)
else
:
strides
=
(
1
,
1
)
# depthwise convolution + bn + relu
conv1
=
layers
.
conv2d
(
data
=
data
,
channels
=
depthwise_channels
,
groups
=
depthwise_channels
,
kernel_size
=
kernel_size
,
strides
=
strides
,
padding
=
padding
,
name
=
name
+
'_depthwise_conv1'
)
bn1
=
layers
.
batch_norm_infer
(
data
=
conv1
,
epsilon
=
epsilon
,
name
=
name
+
'_bn1'
)
act1
=
relay
.
nn
.
relu
(
data
=
bn1
)
# pointwise convolution + bn + relu
conv2
=
layers
.
conv2d
(
data
=
act1
,
channels
=
pointwise_channels
,
kernel_size
=
(
1
,
1
),
strides
=
(
1
,
1
),
padding
=
(
0
,
0
),
data_layout
=
'NCHW'
,
name
=
name
+
'_conv2'
)
bn2
=
layers
.
batch_norm_infer
(
data
=
conv2
,
epsilon
=
epsilon
,
name
=
name
+
'_bn2'
)
act2
=
relay
.
nn
.
relu
(
data
=
bn2
)
return
act2
def
mobile_net
(
num_classes
=
1000
,
data_shape
=
(
1
,
3
,
224
,
224
),
dtype
=
'float32'
,
alpha
=
1.0
,
is_shallow
=
False
):
"""Function to construct a MobileNet"""
data
=
relay
.
var
(
"data"
,
shape
=
data_shape
,
dtype
=
dtype
)
body
=
conv_block
(
data
,
'conv_block_1'
,
int
(
32
*
alpha
),
strides
=
(
2
,
2
))
body
=
separable_conv_block
(
body
,
'separable_conv_block_1'
,
int
(
32
*
alpha
),
int
(
64
*
alpha
))
body
=
separable_conv_block
(
body
,
'separable_conv_block_2'
,
int
(
64
*
alpha
),
int
(
128
*
alpha
),
downsample
=
True
)
body
=
separable_conv_block
(
body
,
'separable_conv_block_3'
,
int
(
128
*
alpha
),
int
(
128
*
alpha
))
body
=
separable_conv_block
(
body
,
'separable_conv_block_4'
,
int
(
128
*
alpha
),
int
(
256
*
alpha
),
downsample
=
True
)
body
=
separable_conv_block
(
body
,
'separable_conv_block_5'
,
int
(
256
*
alpha
),
int
(
256
*
alpha
))
body
=
separable_conv_block
(
body
,
'separable_conv_block_6'
,
int
(
256
*
alpha
),
int
(
512
*
alpha
),
downsample
=
True
)
if
is_shallow
:
body
=
separable_conv_block
(
body
,
'separable_conv_block_7'
,
int
(
512
*
alpha
),
int
(
1024
*
alpha
),
downsample
=
True
)
body
=
separable_conv_block
(
body
,
'separable_conv_block_8'
,
int
(
1024
*
alpha
),
int
(
1024
*
alpha
),
downsample
=
True
)
else
:
for
i
in
range
(
7
,
12
):
body
=
separable_conv_block
(
body
,
'separable_conv_block_
%
d'
%
i
,
int
(
512
*
alpha
),
int
(
512
*
alpha
))
body
=
separable_conv_block
(
body
,
'separable_conv_block_12'
,
int
(
512
*
alpha
),
int
(
1024
*
alpha
),
downsample
=
True
)
body
=
separable_conv_block
(
body
,
'separable_conv_block_13'
,
int
(
1024
*
alpha
),
int
(
1024
*
alpha
))
pool
=
relay
.
nn
.
global_avg_pool2d
(
data
=
body
)
flatten
=
relay
.
nn
.
batch_flatten
(
data
=
pool
)
weight
=
relay
.
var
(
'fc_weight'
)
fc
=
relay
.
nn
.
dense
(
data
=
flatten
,
weight
=
weight
,
units
=
num_classes
)
softmax
=
relay
.
nn
.
softmax
(
data
=
fc
)
return
relay
.
Function
(
relay
.
ir_pass
.
free_vars
(
softmax
),
softmax
)
def
get_workload
(
batch_size
=
1
,
num_classes
=
1000
,
image_shape
=
(
3
,
224
,
224
),
dtype
=
'float32'
):
"""Get benchmark workload for mobilenet
Parameters
----------
batch_size : int, optional
The batch size used in the model
num_classes : int, optional
Number of classes
image_shape : tuple, optional
The input image shape
dtype : str, optional
The data type
Returns
-------
net : relay.Function
The computational graph
params : dict of str to NDArray
The parameters.
"""
data_shape
=
tuple
([
batch_size
]
+
list
(
image_shape
))
net
=
mobile_net
(
num_classes
=
num_classes
,
data_shape
=
data_shape
,
dtype
=
dtype
,
alpha
=
1.0
,
is_shallow
=
False
)
return
create_workload
(
net
)
tests/python/relay/test_ir_text_printer.py
View file @
7a3e389b
...
...
@@ -104,6 +104,10 @@ def test_resnet():
net
,
params
=
tvm
.
relay
.
testing
.
resnet
.
get_workload
(
batch_size
=
1
)
net
.
astext
()
def
test_mobilenet
():
net
,
params
=
tvm
.
relay
.
testing
.
mobilenet
.
get_workload
(
batch_size
=
1
)
net
.
astext
()
def
test_dqn
():
net
,
params
=
tvm
.
relay
.
testing
.
dqn
.
get_workload
(
batch_size
=
1
)
net
.
astext
()
...
...
@@ -115,6 +119,7 @@ def test_dcgan():
if
__name__
==
"__main__"
:
do_print
[
0
]
=
True
test_resnet
()
test_mobilenet
()
test_mlp
()
test_dqn
()
test_dcgan
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment