tensorize.cc 20.6 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*!
 *  Copyright (c) 2017 by Contributors
 * \brief Logics related to tensorize, used by ComputeOpNode.
 * \file tensorize.cc
 */
#include <tvm/ir.h>
#include <tvm/ir_mutator.h>
#include <tvm/ir_pass.h>
#include <tvm/api_registry.h>
10 11
#include "op_util.h"
#include "compute_op.h"
12
#include "../schedule/message_passing.h"
13
#include "../arithmetic/compute_expr.h"
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

namespace tvm {

using namespace ir;
using namespace op;

// Detect the region of input and output to be tensrized.
// out_dom: the domain of root iter vars in output op
// in_region: region of each input tensor.
// return The location of the tensorized scope start.
size_t InferTensorizeRegion(
    const ComputeOpNode* self,
    const Stage& stage,
    const std::unordered_map<IterVar, Range>& dom_map,
    std::unordered_map<IterVar, Range>* out_dom,
    std::unordered_map<Tensor, Array<Range> >* in_region) {
  // Get the bound of the tensorized scope.
  bool found_point = false;
  size_t loc_scope = 0;
  std::unordered_map<IterVar, IntSet> up_state;
  // Loop over the leafs
  for (size_t i = stage->leaf_iter_vars.size(); i != 0; --i) {
    IterVar iv = stage->leaf_iter_vars[i - 1];
    CHECK(iv->iter_type == kDataPar ||
          iv->iter_type == kCommReduce);
    auto vit = dom_map.find(iv);
    CHECK(vit != dom_map.end());
    const Range& vrange = vit->second;
    if (is_one(vrange->extent)) {
      up_state[iv] = IntSet::single_point(vrange->min);
    } else if (found_point) {
      CHECK(is_zero(vrange->min));
      up_state[iv] = IntSet::single_point(iv->var);
    } else {
      up_state[iv] = IntSet::range(vrange);
    }
    auto iit = stage->iter_var_attrs.find(iv);
    if (iit != stage->iter_var_attrs.end()) {
      const IterVarAttr& attr = (*iit).second;
      if (!found_point) {
        CHECK(!attr->bind_thread.defined())
Siju committed
55
            << "Do not allow thread in tensorize scope";
56 57
      }
      if (attr->iter_type == kTensorized) {
Siju committed
58
        CHECK(!found_point) << "Do not allow two tensorized point";
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        found_point = true;
        loc_scope = i - 1;
      }
    }
  }
  CHECK(found_point);
  // Get domain of the tensorized scope.
  schedule::PassUpDomain(stage, dom_map, &up_state);
  // Get domains if inputs
  std::unordered_map<Tensor, TensorDom> in_dom;
  std::unordered_map<const Variable*, IntSet> temp_dmap;
  Array<Tensor> inputs = self->InputTensors();
  for (Tensor t : inputs) {
    in_dom.emplace(t, TensorDom(t.ndim()));
  }
  for (IterVar iv : self->root_iter_vars()) {
    IntSet iset = up_state.at(iv);
    (*out_dom)[iv] = iset.cover_range(dom_map.at(iv));
    temp_dmap[iv->var.get()] = iset;
  }
  // Input domains
  self->PropBoundToInputs(stage->op, temp_dmap, &in_dom);
  Range none;
  for (const auto& kv : in_dom) {
    Array<Range> vec;
    const Tensor& t = kv.first;
85
    for (size_t i = 0; i < t.ndim(); ++i) {
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
      Range r = arith::Union(kv.second.data.at(i)).cover_range(none);
      CHECK(r.defined()) << "cannot deduce region of tensorized scope for input " << t;
      vec.push_back(std::move(r));
    }
    (*in_region)[t] = std::move(vec);
  }
  return loc_scope;
}

void VerifyTensorizeLoopNest(const ComputeOpNode* self,
                             const Stage& stage,
                             const ComputeLoopNest& n,
                             size_t tloc) {
  // Veirfication step.
  std::unordered_set<const Variable*> banned;
  CHECK_EQ(n.main_nest.size(), stage->leaf_iter_vars.size() + 1);
  CHECK(n.init_nest.size() == stage->leaf_iter_vars.size() + 1 ||
        n.init_nest.size() == 0);
  auto f_push_banned = [&banned](const Stmt& s) {
    if (const For* op = s.as<For>()) {
        banned.insert(op->loop_var.get());
    } else if (const AttrStmt* op = s.as<AttrStmt>()) {
      if (const IterVarNode* iv = op->node.as<IterVarNode>()) {
        banned.insert(iv->var.get());
      }
    } else if (const LetStmt* op = s.as<LetStmt>()) {
      banned.insert(op->var.get());
    }
  };
  for (size_t i = tloc; i < stage->leaf_iter_vars.size(); ++i) {
    for (const Stmt& s : n.main_nest[i + 1]) {
      f_push_banned(s);
    }
    if (n.init_nest.size() != 0) {
      for (const Stmt& s : n.init_nest[i + 1]) {
        f_push_banned(s);
      }
    }
  }
  for (const Expr& pred : n.main_predicates) {
    if (ir::ExprUseVar(pred, banned)) {
      LOG(FATAL) << "Tensorize failed, split condition "
                 << pred << " relies on var defined inside tensorize scope";
    }
  }
  for (const Expr& pred : n.init_predicates) {
    if (ir::ExprUseVar(pred, banned)) {
      LOG(FATAL) << "Tensorize failed, split condition "
                 << pred << " relies on var defined inside tensorize scope";
    }
  }
}


// Remap the tensor placeholder, index and inline things.
class TensorIntrinMatcher final : public IRMutator {
 public:
  Expr Mutate_(const Call* op, const Expr& e) final {
    Expr expr = IRMutator::Mutate_(op, e);
    op = expr.as<Call>();
    if (op->call_type == Call::Halide) {
      Tensor t = Operation(op->func.node_).output(op->value_index);
      auto it = in_remap_.find(t);
      if (it != in_remap_.end()) {
        const InputEntry& e = it->second;
        CHECK_EQ(op->args.size(), e.region.size());
        Array<Expr> args;
        for (size_t i = e.start; i < e.region.size(); ++i) {
          args.push_back(op->args[i] - e.region[i]->min);
        }
        return Call::make(
            op->type, e.tensor->op->name, args,
            op->call_type, e.tensor->op, e.tensor->value_index);
      }
    }
    return expr;
  }

  Expr Mutate_(const Variable* op, const Expr& e) final {
    auto it = var_remap_.find(op);
    if (it != var_remap_.end()) {
      return it->second;
    } else {
      return e;
    }
  }

  Expr Mutate_(const Reduce* op, const Expr& e) final {
    Expr expr = IRMutator::Mutate_(op, e);
    op = expr.as<Reduce>();
176
    Array<IterVar> axis;
177 178 179
    for (size_t i = 0; i < op->axis.size(); ++i) {
      auto it = axis_remap_.find(op->axis[i]);
      if (it != axis_remap_.end()) {
180
        axis.push_back(it->second);
181 182
      }
    }
183 184
    return Reduce::make(
        op->combiner, op->source, axis, op->condition, op->value_index);
185 186 187 188 189 190
  }

  void Init(const ComputeOpNode* self,
            const Stage& stage,
            const std::unordered_map<IterVar, Range>& out_dom,
            const std::unordered_map<Tensor, Array<Range> >& in_region,
191 192
            const TensorIntrin& intrin,
            Map<Var, Range>* compute_intrin_iter_space) {
193
    CHECK(self == stage->op.get());
194 195 196 197 198 199 200 201 202 203 204 205
    // input remap.
    Array<Tensor> inputs = self->InputTensors();
    CHECK_EQ(inputs.size(), intrin->inputs.size());
    for (size_t i = 0; i < inputs.size(); ++i) {
      InputEntry e;
      e.tensor = intrin->inputs[i];
      e.region = Array<Range>(in_region.at(inputs[i]));
      CHECK_GE(e.region.size(), e.tensor.ndim());
      // Enable fuzzy matching, to match [1, n, m] to [n, m]
      e.start = e.region.size() - e.tensor.ndim();
      for (size_t i = 0; i < e.start; ++i) {
        CHECK(is_one(e.region[i]->extent))
206 207
            << "Tensorize " << intrin->name << ":"
            << " Input dimension mismatch with tensor intrin "
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
            << " expected shape=" << e.tensor->shape
            << ", given region=" << e.region;
      }
      in_remap_[inputs[i]] = e;
    }
    // output remap
    const ComputeOpNode* intrin_compute = intrin->op.as<ComputeOpNode>();
    CHECK(intrin_compute) << "Only support compute intrinsic for now";
    CHECK_GE(self->axis.size(), intrin_compute->axis.size())
        << "Tensorize: Output mismatch with tensor intrin ";
    // Enable fuzzy matching, to match [1, n, m] to [n, m]
    size_t axis_start = self->axis.size() - intrin_compute->axis.size();
    for (size_t i = 0; i < axis_start; ++i) {
      Range r = out_dom.at(self->axis[i]);
      CHECK(is_one(r->extent))
          << "Tensorize: Output mismatch with tensor intrin "
          << " intrin-dim=" << intrin_compute->axis.size()
          << ", tensorize-dim=" << self->axis.size();
226
      var_remap_[self->axis[i]->var.get()] = r->min;
227 228 229 230 231 232 233 234 235 236
    }
    // Assume we tensorize at regin axis i [min, min + extent)
    // The corresponding intrinsic axis is j [0, extent)
    // Remap index i to j + min
    for (size_t i = axis_start; i < self->axis.size(); ++i) {
      IterVar iv = self->axis[i];
      IterVar target_iv = intrin_compute->axis[i - axis_start];
      Range r = out_dom.at(iv);
      var_remap_[iv->var.get()] = target_iv->var + r->min;
      axis_remap_[iv] = target_iv;
237
      compute_intrin_iter_space->Set(target_iv->var, target_iv->dom);
238 239 240 241 242 243 244 245 246 247 248
    }
    // Remap reduction axis
    CHECK_GE(self->reduce_axis.size(), intrin_compute->reduce_axis.size())
        << "Tensorize: Reduction dimension mismatch with tensor intrin";
    axis_start = self->reduce_axis.size() - intrin_compute->reduce_axis.size();
    for (size_t i = 0; i < axis_start; ++i) {
      Range r = out_dom.at(self->reduce_axis[i]);
      CHECK(is_one(r->extent))
          << "Tensorize: Reduction mismatch with tensor intrin "
          << " intrin-dim=" << intrin_compute->reduce_axis.size()
          << ", tensorize-dim=" << self->reduce_axis.size();
249
      var_remap_[self->reduce_axis[i]->var.get()] = r->min;
250 251 252 253 254 255 256
    }
    for (size_t i = axis_start; i < self->reduce_axis.size(); ++i) {
      IterVar iv = self->reduce_axis[i];
      IterVar target_iv = intrin_compute->reduce_axis[i - axis_start];
      Range r = out_dom.at(iv);
      var_remap_[iv->var.get()] = target_iv->var + r->min;
      axis_remap_[iv] = target_iv;
257
      compute_intrin_iter_space->Set(target_iv->var, target_iv->dom);
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    }
  }

 private:
  // Input entry
  struct InputEntry {
    Tensor tensor;
    size_t start;
    Array<Range> region;
  };
  // input data remap
  std::unordered_map<Tensor, InputEntry> in_remap_;
  // variable remap.
  std::unordered_map<const Variable*, Expr> var_remap_;
  // IterVar remap.
  std::unordered_map<IterVar, IterVar> axis_remap_;
};

// Try to match tensor dataflow of the stage with the intrinsic
Array<Expr> MatchTensorizeBody(
    const ComputeOpNode* self,
    const Stage& stage,
    const std::unordered_map<IterVar, Range>& out_dom,
    const std::unordered_map<Tensor, Array<Range> >& in_region,
282 283
    const TensorIntrin& intrin,
    Map<Var, Range>* compute_intrin_iter_space) {
284
  TensorIntrinMatcher matcher;
285
  matcher.Init(self, stage, out_dom, in_region, intrin, compute_intrin_iter_space);
286 287 288 289 290 291 292 293 294 295 296 297 298
  Array<Expr> ret;
  for (Expr expr : self->body) {
    ret.push_back(matcher.Mutate(expr));
  }
  return ret;
}

void VerifyTensorizeBody(
    const ComputeOpNode* self,
    const Stage& stage,
    const std::unordered_map<IterVar, Range>& out_dom,
    const std::unordered_map<Tensor, Array<Range> >& in_region,
    const TensorIntrin& intrin) {
299 300 301
  Map<Var, Range> compute_intrin_iter_space;
  Array<Expr> body = MatchTensorizeBody(self, stage, out_dom, in_region, intrin,
                                        &compute_intrin_iter_space);
302 303 304 305 306
  const ComputeOpNode* intrin_compute = intrin->op.as<ComputeOpNode>();
  CHECK(intrin_compute) << "Only support compute intrinsic for now";
  CHECK_EQ(body.size(), intrin_compute->body.size())
      << "Tensorize failed: body size mismatch";
  for (size_t i = 0; i < body.size(); ++i) {
307 308 309 310
    Expr lhs = Simplify(body[i], compute_intrin_iter_space);
    lhs = CanonicalSimplify(lhs, compute_intrin_iter_space);
    Expr rhs = Simplify(intrin_compute->body[i], compute_intrin_iter_space);
    rhs = CanonicalSimplify(rhs, compute_intrin_iter_space);
311 312 313 314 315 316 317
    if (lhs.type() != rhs.type()) {
      LOG(FATAL)
          << "Failed to match the data type with TensorIntrin "
          << intrin->name << "'s declaration "
          << " provided=" << lhs.type()
          << ", intrin=" << rhs.type();
    }
318
    CHECK(Equal(lhs, rhs))
319 320 321 322
        << "Failed to match the compute with TensorIntrin "
        << intrin->name << "'s declaration "
        << " provided= " << lhs
        << ", intrin=  " << rhs;
323 324 325
  }
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/*!
 * \brief Transform the update part when there is no init func in tensorizing
 * \param stage The stage for tensorizing.
 * \param dom_map The range of each iter var.
 * \param n The loop nest structured used in compute. 
 * \param body The body func in tensorize intrin
 * \param update The update func in tensorize intrin
 * \return Transformed result.
 */
Stmt TransformUpdate(const Stage& stage,
                     const std::unordered_map<IterVar, Range>& dom_map,
                     const ComputeLoopNest& n,
                     Stmt body,
                     Stmt update) {
  Array<Expr> conds;
  std::unordered_set<const Variable*> banned;
  for (size_t i = 0; i < stage->leaf_iter_vars.size(); ++i) {
    IterVar iv = stage->leaf_iter_vars[i];
    auto iit = stage->iter_var_attrs.find(iv);
    if (iit != stage->iter_var_attrs.end()) {
      const IterVarAttr& attr = (*iit).second;
      if (attr->iter_type == kTensorized) {
        break;
      }
    }
    if (iv->iter_type == kCommReduce) {
      auto vit = dom_map.find(iv);
      CHECK(vit != dom_map.end());
      const Range& vrange = vit->second;
      conds.push_back(likely(iv->var > vrange->min));
      banned.insert(iv->var.get());
    }
  }
  for (const Expr& pred : n.main_predicates) {
    if (ir::ExprUseVar(pred, banned)) {
      LOG(FATAL) << "Tensorize update transform failed, the condition "
                 << pred << " has a conflict with the reset condition";
    }
  }

  return IfThenElse::make(arith::ComputeReduce<ir::Or>(conds, const_true(1)),
                          update, body);
}

370 371
Stmt MakeTensorize(const ComputeOpNode* self,
                   const Stage& stage,
372
                   const std::unordered_map<IterVar, Range>& dom_map,
373
                   bool debug_keep_trivial_loop) {
374 375 376 377 378 379
  std::unordered_map<IterVar, Range> out_dom;
  std::unordered_map<Tensor, Array<Range> > in_region;
  size_t tloc = InferTensorizeRegion(self, stage, dom_map, &out_dom, &in_region);
  TensorIntrin intrin = stage->iter_var_attrs.at(
      stage->leaf_iter_vars[tloc])->tensor_intrin;
  CHECK(intrin.defined());
380
  ComputeLoopNest n = ComputeLoopNest::make(self, stage, dom_map, debug_keep_trivial_loop);
381 382 383 384
  VerifyTensorizeLoopNest(self, stage, n, tloc);
  VerifyTensorizeBody(self, stage, out_dom, in_region, intrin);
  // Start bind data.
  Stmt nop = Evaluate::make(0);
385
  std::vector<Stmt> input_bind_nest, output_bind_nest;
386 387 388 389
  Array<Tensor> inputs = self->InputTensors();
  CHECK_EQ(inputs.size(), intrin->inputs.size())
      << "Tensorize failed: input size mismatch ";
  // input binding
390
  for (size_t i = 0; i < intrin->inputs.size(); ++i) {
391 392 393 394 395 396 397 398 399 400 401
    Tensor tensor = inputs[i];
    Buffer buffer = intrin->buffers[i];
    Array<NodeRef> bind_spec{buffer, tensor};
    auto it = in_region.find(tensor);
    CHECK(it != in_region.end());
    const Array<Range>& region = it->second;
    Array<Expr> tuple;
    for (const Range r : region) {
      tuple.push_back(r->min);
      tuple.push_back(r->extent);
    }
402
    input_bind_nest.emplace_back(AttrStmt::make(
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
        bind_spec, ir::attr::buffer_bind_scope,
        Call::make(Handle(), ir::intrinsic::tvm_tuple, tuple, Call::Intrinsic), nop));
  }
  // output binding
  const ComputeOpNode* intrin_compute = intrin->op.as<ComputeOpNode>();
  CHECK(intrin_compute) << "Only support compute intrinsic for now";
  CHECK_EQ(intrin->inputs.size() + intrin_compute->body.size(), intrin->buffers.size());
  CHECK_EQ(intrin_compute->body.size(), self->body.size());
  Array<Expr> tuple;
  for (IterVar iv : self->axis) {
    auto it = out_dom.find(iv);
    CHECK(it != out_dom.end());
    tuple.push_back(it->second->min);
    tuple.push_back(it->second->extent);
  }
  for (size_t i = intrin->inputs.size(); i < intrin->buffers.size(); ++i) {
    Tensor tensor = stage->op.output(i - intrin->inputs.size());
    Buffer buffer = intrin->buffers[i];
    Array<NodeRef> bind_spec{buffer, tensor};
422
    output_bind_nest.emplace_back(AttrStmt::make(
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
        bind_spec, ir::attr::buffer_bind_scope,
        Call::make(Handle(), ir::intrinsic::tvm_tuple, tuple, Call::Intrinsic), nop));
  }
  // Check variable remap
  std::unordered_map<const Variable*, Expr> vmap;
  ir::ArgBinder binder(&vmap);
  CHECK_GE(self->reduce_axis.size(), intrin_compute->reduce_axis.size())
      << "Tensorization fail: reduction axis size do not match";
  size_t start = self->reduce_axis.size() - intrin_compute->reduce_axis.size();
  for (size_t i = 0; i < start; ++i) {
    IterVar iv = self->reduce_axis[i];
    auto it = out_dom.find(iv);
    CHECK(it != out_dom.end());
    CHECK(is_one(it->second->extent))
        << "Tensorization fail: reduction axis size do not match";
  }
  for (size_t i = start; i < self->reduce_axis.size(); ++i) {
    IterVar iv = self->reduce_axis[i];
    IterVar target = intrin_compute->reduce_axis[i - start];
    auto it = out_dom.find(iv);
    CHECK(it != out_dom.end());
    binder.Bind(target->dom->min, make_const(iv->dom->min.type(), 0),
                "tensir_intrin.reduction.min");
    binder.Bind(target->dom->extent, it->second->extent,
                "tensir_intrin.reduction.extent");
  }
  if (tloc <= n.num_common_loop) {
    // Do no need to split reduction
    std::vector<std::vector<Stmt> > nest(
        n.main_nest.begin(), n.main_nest.begin() + tloc + 1);
    nest.emplace_back(op::MakeIfNest(n.main_predicates));
    CHECK_EQ(n.init_predicates.size(), 0U);
    CHECK(intrin->body.defined())
        << "Normal store op for intrin " << intrin << " is not defined";
457 458
    Stmt body = MergeNest(output_bind_nest, intrin->body);
    body = MergeNest(input_bind_nest, body);
459
    body = Substitute(body, vmap);
460
    body = MergeNest(binder.asserts(), body);
461
    body = Substitute(body, n.main_vmap);
462
    return MergeNest(nest, body);
463 464 465 466 467 468 469 470 471 472 473
  } else {
    // Need to split reduction
    CHECK(intrin->reduce_update.defined())
        << "Reduction update op for intrin " << intrin << " is not defined";
    // Need init and update steps
    CHECK_NE(self->reduce_axis.size(), 0U);
    std::vector<std::vector<Stmt> > common(
        n.main_nest.begin(), n.main_nest.begin() + n.num_common_loop + 1);
    std::vector<std::vector<Stmt> > update_nest(
        n.main_nest.begin() + n.num_common_loop + 1, n.main_nest.begin() + tloc + 1);
    update_nest.emplace_back(op::MakeIfNest(n.main_predicates));
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

    if (intrin->reduce_init.defined()) {
      // init nest
      std::vector<std::vector<Stmt> > init_nest(
          n.init_nest.begin(), n.init_nest.begin() + tloc + 1);
      init_nest.emplace_back(op::MakeIfNest(n.init_predicates));
      Stmt init = MergeNest(output_bind_nest, intrin->reduce_init);
      init = Substitute(init, n.init_vmap);
      init = MergeNest(init_nest, init);
      // The update
      Stmt update = MergeNest(output_bind_nest, intrin->reduce_update);
      update = MergeNest(input_bind_nest, update);
      update = Substitute(update, vmap);
      update = MergeNest(binder.asserts(), update);
      update = Substitute(update, n.main_vmap);
      update = MergeNest(update_nest, update);
      return MergeNest(common, Block::make(init, update));
    } else {
      // When init op is not available, use body op for reset in the first iter.
      CHECK(intrin->body.defined())
          << "Normal body op for intrin " << intrin << " is not defined";
      Stmt update = TransformUpdate(stage, dom_map, n,
                                    intrin->body,
                                    intrin->reduce_update);
      update = MergeNest(output_bind_nest, update);
      update = MergeNest(input_bind_nest, update);
      update = Substitute(update, vmap);
      update = MergeNest(binder.asserts(), update);
      update = Substitute(update, n.main_vmap);
      update = MergeNest(update_nest, update);
      return MergeNest(common, update);
    }
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
  }
}

// Register functions for unittests
TVM_REGISTER_API("test.op.InferTensorizeRegion")
.set_body([](TVMArgs args, TVMRetValue* ret) {
    Stage stage = args[0];
    Map<IterVar, Range> dmap = args[1];
    std::unordered_map<IterVar, Range> out_dom;
    std::unordered_map<Tensor, Array<Range> > in_region;
    CHECK(stage->op.as<ComputeOpNode>());
    InferTensorizeRegion(stage->op.as<ComputeOpNode>(),
                         stage,
                         as_unordered_map(dmap),
                         &out_dom, &in_region);
    *ret = Array<NodeRef>{Map<IterVar, Range>(out_dom),
                          Map<Tensor, Array<Range> >(in_region)};
  });

TVM_REGISTER_API("test.op.MatchTensorizeBody")
.set_body([](TVMArgs args, TVMRetValue* ret) {
    Stage stage = args[0];
    Map<IterVar, Range> out_dom = args[1];
    Map<Tensor, Array<Range> > in_region = args[2];
    TensorIntrin intrin = args[3];
531
    Map<Var, Range> vrange;
532 533 534 535 536
    CHECK(stage->op.as<ComputeOpNode>());
    *ret = MatchTensorizeBody(stage->op.as<ComputeOpNode>(),
                              stage,
                              as_unordered_map(out_dom),
                              as_unordered_map(in_region),
537 538
                              intrin,
                              &vrange);
539 540
  });
}  // namespace tvm