onnx.py 49.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21
# pylint: disable=invalid-name, import-self, len-as-condition, unused-argument, too-many-lines
"""ONNX: Open Neural Network Exchange frontend for Relay."""
from __future__ import absolute_import as _abs

import numpy as np
Zhi committed
22
import tvm
23
from ... import nd as _nd
Zhi committed
24
from .. import analysis
25
from .. import expr as _expr
26
from .. import module as _module
27 28
from .. import op as _op
from .common import AttrCvt, Renamer
29 30
from .common import get_relay_op, new_var, infer_shape, infer_channels
from .common import infer_type, infer_value, infer_value_simulated, get_name
31 32 33

__all__ = ['from_onnx']

34 35 36 37 38 39 40 41 42 43 44

def get_numpy(tensor_proto):
    """Grab data in TensorProto and convert to numpy array."""
    try:
        from onnx.numpy_helper import to_array
    except ImportError as e:
        raise ImportError(
            "Unable to import onnx which is required {}".format(e))
    return to_array(tensor_proto)


45 46 47 48 49
def dimension_picker(prefix, surfix=''):
    def _impl(attr):
        kernel = attr['kernel_shape']
        if len(kernel) == 2:
            return prefix + '2d' + surfix
50 51 52
        msg = 'Only 2D kernels are supported for operator {}.'
        op_name = prefix + '2d'
        raise tvm.error.OpAttributeInvalid(msg.format(op_name))
53 54 55

    return _impl

56

57 58 59 60 61 62 63
def revert_caffe2_pad(pads):
    """Caffe2 requires two times the normal padding."""
    if len(pads) == 4:
        pads = pads[:2]
    elif len(pads) == 2:
        pass
    else:
64 65
        raise tvm.error.OpAttributeInvalid(
            'Number of pads must be either 2 or 4.')
66 67
    return pads

68 69 70 71 72 73

def onnx_storage_order2layout(storage_order):
    """converter of onnx storage order parameter to tvm storage order format"""
    if storage_order not in (0, 1):
        raise tvm.error.OpAttributeInvalid('Mode of storage_order must be either 0 or 1')

74
    return 'NCHW' if storage_order == 0 else 'NHWC'
75 76


77 78 79 80 81 82 83 84
def dimension_constraint():
    def _dim_check(attrs):
        if len(attrs['kernel_shape']) == 2:
            return True
        return False

    return _dim_check, "Only 2d kernel supported."

85

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
class OnnxOpConverter(object):
    """ A helper class for holding onnx op converters.
    """

    @classmethod
    def get_converter(cls, opset):
        """ Get converter matches given opset.

        Parameters
        ----------
        opset: int
            opset from model.

        Returns
        -------
        converter, which should be `_impl_vx`. Number x is the biggest
            number smaller than or equal to opset belongs to all support versions.
        """
        versions = [
            int(d.replace('_impl_v', '')) for d in dir(cls) if '_impl_v' in d
        ]
        versions = sorted(versions + [opset])
        version = versions[
            max([i for i, v in enumerate(versions) if v == opset]) - 1]
        if hasattr(cls, '_impl_v{}'.format(version)):
            return getattr(cls, '_impl_v{}'.format(version))
        raise NotImplementedError(
            'opset version {} of {} not implemented'.format(
                version, cls.__name__))


class Elemwise(OnnxOpConverter):
    """ A helper class for elemwise op converters.
    """
    name = ''

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        assert len(inputs) == 2, "Math op take 2 inputs, {} given".format(
            len(inputs))
        op_name = cls.name
        conv_ops = ["conv2d", "conv2d_transpose"]
        if attr.get('broadcast', 0) and any(x in str(inputs[0]) for x in conv_ops):
            # TODO(zhreshold): remove hard coded infershape
            axis = int(attr.get('axis', 0))
            inputs[1] = _op.expand_dims(inputs[1], axis=axis, num_newaxis=2)
        return get_relay_op(op_name)(*inputs)

134

135 136 137 138 139 140 141 142 143 144 145 146 147 148
class Pool(OnnxOpConverter):
    """ A helper class for pool op converters.
    """
    name = ''

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return AttrCvt(
            op_name=dimension_picker(cls.name),
            transforms={
                'kernel_shape': 'pool_size',
                'pads': ('padding', (0, 0), revert_caffe2_pad)
            },
            # very weird attributes here in onnx, force check
149
            ignores=['dilations', 'auto_pad'],
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
            # TODO(zhreshold): make sure ceil_mode in onnx, and layout?
            extras={'ceil_mode': False},
            custom_check=dimension_constraint())(inputs, attr, params)


class Absolute(OnnxOpConverter):
    """ Operator converter for Absolute.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _op.nn.relu(inputs[0]) + _op.nn.relu(_op.negative(inputs[0]))


class Add(Elemwise):
    """ Operator converter for Add.
    """
    name = 'add'


class AveragePool(Pool):
    """ Operator converter for AveragePool.
    """
    name = 'avg_pool'


class BatchNorm(OnnxOpConverter):
    """ Operator converter for BatchNorm.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        # TODO(zhreshold): 'spatial' is not properly handled here.
        out = AttrCvt(
            op_name='batch_norm',
            ignores=['spatial', 'is_test', 'consumed_inputs', 'momentum'])(inputs, attr,
                                                                           params)
        return out[0]


190 191 192 193 194 195 196 197 198
class InstanceNorm(OnnxOpConverter):
    """ Operator converter for BatchNorm.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return AttrCvt(op_name='instance_norm')(inputs, attr, params)


199 200 201 202 203 204 205 206 207 208 209 210
class Conv(OnnxOpConverter):
    """ Operator converter for Conv.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        out = AttrCvt(op_name=dimension_picker('conv'),
                      transforms={
                          'kernel_shape': 'kernel_size',
                          'dilations': ('dilation', (0, 0)),
                          'pads': ('padding', (0, 0), revert_caffe2_pad),
                          'group': ('groups', 1)},
211
                      ignores=['auto_pad'],
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
                      custom_check=dimension_constraint())(inputs[:2], attr, params)
        use_bias = len(inputs) == 3
        if use_bias:
            out = _op.nn.bias_add(out, inputs[2])
        return out


class ConvTranspose(OnnxOpConverter):
    """ Operator converter for ConvTranspose.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        # get number of channels
        channels = infer_channels(inputs[1], True)
        attr['channels'] = channels
        groups = attr.pop('group')
        attr['groups'] = groups
        out = AttrCvt(
            op_name=dimension_picker('conv', '_transpose'),
            transforms={
                'kernel_shape': 'kernel_size',
                'dilations': ('dilation', (0, 0)),
                'pads': ('padding', (0, 0), revert_caffe2_pad)
            },
            disables=['output_shape'],
            custom_check=dimension_constraint())(inputs[:2], attr, params)
        use_bias = len(inputs) == 3
        if use_bias:
            out = _op.nn.bias_add(out, inputs[2])
        return out


class Div(Elemwise):
245 246
    """ Operator converter for Divide.
    """
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    name = 'divide'


class Elu(OnnxOpConverter):
    """ Operator converter for Elu.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        alpha = float(attr.get('alpha', 1.0))
        return _expr.const(-alpha) * _op.nn.relu(_expr.const(1.) - _op.exp(inputs[0])) + \
                                     _op.nn.relu(inputs[0])


class Gemm(OnnxOpConverter):
    """ Operator converter for Gemm.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        assert len(inputs) == 3, "Gemm op take 3 inputs, {} given".format(
            len(inputs))
        # Y = alpha * A * B + beta * C
        alpha = float(attr.get('alpha', 1.0))
        beta = float(attr.get('beta', 1.0))
        transA = int(attr.get('transA', 0))
        transB = int(attr.get('transB', 0))
        # get number of channels
        channels = infer_channels(inputs[1], not transB)
        if transA:
            inputs[0] = _op.transpose(inputs[0], axes=(1, 0))
        if not transB:
            inputs[1] = _op.transpose(inputs[1], axes=(1, 0))
        inputs[0] = _op.nn.batch_flatten(inputs[0])
        out = _op.nn.dense(_expr.const(alpha) * inputs[0],
                           inputs[1], units=channels)
        return _op.nn.bias_add(out, _expr.const(beta) * inputs[2])

285

286 287 288 289 290 291 292
class MatMul(OnnxOpConverter):
    """ Operator converter for MatMul.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        assert len(inputs) == 2, "MatMul op take 2 inputs, {} given".format(len(inputs))
293 294 295 296 297 298 299 300
        # Need to check input shape as batch matmul must be supported.
        a_shape = infer_shape(inputs[0])
        # When performing a batch matmul, we need to properly handle N-dim shapes.
        if len(a_shape) > 2:
            b_shape = infer_shape(inputs[1])
            # Convert a and b into 3 dimensional tensors.
            a = _op.reshape(inputs[0], [-1, a_shape[-2], a_shape[-1]])
            b = _op.reshape(inputs[1], [-1, b_shape[-2], b_shape[-1]])
301 302 303 304 305 306
            # Broadcast b to match batch size of a
            new_b_shape = list(infer_shape(b))
            new_a_shape = infer_shape(a)
            if new_a_shape[0] > new_b_shape[0]:
                new_b_shape[0] = new_a_shape[0]
                b = _op.broadcast_to(b, new_b_shape)
307 308 309 310 311 312 313
            # Transpose matrix dimensions of b.
            b = _op.transpose(b, [0, 2, 1])
            # Perform a batch matmul.
            output = _op.nn.batch_matmul(a, b)
            # Reshape output to original dimensions.
            return _op.reshape(output, [*a_shape[:-2], a_shape[-2], b_shape[-1]])
        # Otherwise a simple dense op will get the job done.
314 315 316
        input_1_t = _op.transpose(inputs[1], axes=(1, 0))
        return _op.nn.dense(inputs[0], input_1_t)

317

318
class MaxPool(Pool):
319 320
    """ Operator converter for MaxPool
    """
321 322
    name = 'max_pool'

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    @classmethod
    def _impl_v8(cls, inputs, attr, params):
        return AttrCvt(
            op_name=dimension_picker(cls.name),
            transforms={
                'kernel_shape': 'pool_size',
                'pads': ('padding', (0, 0), revert_caffe2_pad),
                'storage_order': ('layout', 'NCHW', onnx_storage_order2layout),
            },
            # very weird attributes here in onnx, force check
            ignores=['dilations', 'auto_pad'],
            # TODO(higumachan): make sure ceil_mode in onnx, and layout?
            extras={'ceil_mode': False},
            custom_check=dimension_constraint())(inputs, attr, params)

    @classmethod
    def _impl_v10(cls, inputs, attr, params):
        return AttrCvt(
            op_name=dimension_picker(cls.name),
            transforms={
                'kernel_shape': 'pool_size',
                'pads': ('padding', (0, 0), revert_caffe2_pad),
                'storage_order': ('layout', 'NCHW', onnx_storage_order2layout),
                'ceil_mode': 'ceil_mode'
            },
            # very weird attributes here in onnx, force check
            ignores=['dilations', 'auto_pad'],
            custom_check=dimension_constraint())(inputs, attr, params)
351 352

class Mul(Elemwise):
353 354
    """ Operator converter for Multiply.
    """
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    name = 'multiply'


class Pad(OnnxOpConverter):
    """ Operator converter for Pad.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        pad_width = []
        pads = attr.pop('paddings')
        dims = int(len(pads) / 2)
        for i in range(dims):
            pad_width.append((pads[i], pads[i+dims]))
        attr['pad_width'] = pad_width
370 371 372 373 374 375 376
        pad_mode = attr.get('mode', 'constant').decode('utf-8')
        if pad_mode in ['constant', 'edge', 'reflect']:
            attr['pad_mode'] = pad_mode
            attr.pop('mode', None)
        else:
            raise tvm.error.OpAttributeInvalid(
                'Value ' + pad_mode + ' in attribute "mode" is invalid for operator Pad.')
377 378 379 380 381 382

        return AttrCvt(
            _op.nn.pad,
            transforms={
                'value': 'pad_value',
            },
383
            )(inputs, attr, params)
384 385 386 387 388 389 390 391 392

    @classmethod
    def _impl_v2(cls, inputs, attr, params):
        pad_width = []
        pads = attr.pop('pads')
        dims = int(len(pads) / 2)
        for i in range(dims):
            pad_width.append((pads[i], pads[i+dims]))
        attr['pad_width'] = pad_width
393 394 395 396 397 398 399
        pad_mode = attr.get('mode', 'constant').decode('utf-8')
        if pad_mode in ['constant', 'edge', 'reflect']:
            attr['pad_mode'] = pad_mode
            attr.pop('mode', None)
        else:
            raise tvm.error.OpAttributeInvalid(
                'Value ' + pad_mode + ' in attribute "mode" is invalid for operator Pad.')
400 401 402 403 404 405

        return AttrCvt(
            'pad',
            transforms={
                'value': 'pad_value',
            },
406
            )(inputs, attr, params)
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437


class ParametricSoftPlus(OnnxOpConverter):
    """ Operator converter for ParametricSoftPlus.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        alpha = _expr.const(float(attr.get('alpha', 1.0)))
        beta = _expr.const(float(attr.get('beta', 1.0)))
        return _op.log(_op.exp(beta * inputs[0]) + _expr.const(1.)) * alpha


class Prelu(OnnxOpConverter):
    """ Operator converter for Prelu.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        assert len(inputs) == 2, "Prelu need 2 inputs, {} given".format(len(inputs))
        return _op.nn.prelu(inputs[0], inputs[1])


class Reciprocal(OnnxOpConverter):
    """ Operator converter for Reciprocal.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _expr.const(1.0) / inputs[0]

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

class Flatten(OnnxOpConverter):
    """ Operator converter for Flatten.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        axis = attr.get('axis', 1)
        if axis == 1:
            out = _op.nn.batch_flatten(inputs[0])
        else:
            newshape = [0] * (axis + 1)
            newshape[axis] = -1
            out = _op.reshape(inputs[0], list(newshape))
        return out


455 456 457 458 459 460
class Reshape(OnnxOpConverter):
    """ Operator converter for Reshape.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
461
        return _op.reshape(inputs[0], attr['shape'])
462

463 464
    @classmethod
    def _impl_v5(cls, inputs, attr, params):
465 466 467 468
        if get_name(inputs[1]) in params:
            shape = tuple(params[inputs[1].name_hint].asnumpy())
            out = _op.reshape(inputs[0], shape)
        else:
Zhi committed
469
            data, shape = inputs
470 471 472
            static_shape = infer_value_simulated(shape, params)
            out = _op.reshape(data, newshape=tuple(
                static_shape.asnumpy().astype('int32')))
473 474
        return out

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544

class DepthToSpace(OnnxOpConverter):
    """ Operator converter for DepthToSpace.
    """

    @classmethod
    def _impl_v11(cls, inputs, attr, params):

        block_size = int(attr['blocksize'])
        mode = attr.get("mode", "DCR")

        # handle NCHW layout
        indata = infer_value_simulated(inputs[0], params)
        in_n, in_c, in_h, in_w = indata.shape

        # reshape to proper output
        new_c = int(in_c / (block_size * block_size))
        new_h = in_h * block_size
        new_w = in_w * block_size
        newshape = (in_n, new_c, new_h, new_w)

        if mode == "DCR":
            # expand input to larger dimension.
            expanded = _op.reshape(inputs[0],
                                   newshape=(in_n, block_size, block_size, new_c, in_h, in_w))
            # reorder to expand spatial blocks.
            transposed = _op.transpose(expanded, axes=(0, 3, 4, 1, 5, 2))

        else:  # CRD mode
            # expand input to larger dimension.
            expanded = _op.reshape(inputs[0],
                                   newshape=(in_n, new_c, block_size, block_size, in_h, in_w))
            # reorder to expand spatial blocks.
            transposed = _op.transpose(expanded, axes=(0, 1, 4, 2, 5, 3))

        return AttrCvt(op_name="reshape",
                       extras={'newshape': newshape},
                       ignores=['mode', 'blocksize'])([transposed], attr)


class SpaceToDepth(OnnxOpConverter):
    """ Operator converter for SpaceToDepth.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):

        block_size = int(attr['blocksize'])

        # handle NCHW layout
        indata = infer_value_simulated(inputs[0], params)
        in_n, in_c, in_h, in_w = indata.shape

        # reshape to proper output
        new_c = in_c * (block_size * block_size)
        new_h = int(in_h / block_size)
        new_w = int(in_w / block_size)
        newshape = (in_n, new_c, new_h, new_w)

        # expand input to larger dimension.
        expanded = _op.reshape(inputs[0],
                               newshape=(in_n, in_c, new_h, block_size, new_w, block_size))
        # reorder to expand spatial blocks.
        transposed = _op.transpose(expanded, axes=(0, 3, 5, 1, 2, 4))

        return AttrCvt(op_name="reshape",
                       extras={'newshape': newshape},
                       ignores=['blocksize'])([transposed], attr)


545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
class Concat(OnnxOpConverter):
    """ Operator converter for Concat.
    """

    @classmethod
    def _impl_v1(cls, inputs, args, params):
        return AttrCvt(op_name='concatenate')((inputs,), args)

class Scale(OnnxOpConverter):
    """ Operator converter for Scale.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        scale = float(attr.get('scale', 1.0))
        return inputs[0] * _expr.const(scale)


class Selu(OnnxOpConverter):
    """ Operator converter for Selu.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        alpha = float(attr.get('alpha', 1.6732))
        gamma = float(attr.get('gamma', 1.0507))
        return _expr.const(gamma) * (_expr.const(-alpha) *
                                     _op.nn.relu(_expr.const(1.) - _op.exp(inputs[0])) +
                                     _op.nn.relu(inputs[0]))


class ScaledTanh(OnnxOpConverter):
    """ Operator converter for ScaledTanh.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        alpha = float(attr.get('alpha', 1.0))
        beta = float(attr.get('beta', 1.0))
        return _op.tanh(_expr.const(beta) * inputs[0]) * _expr.const(alpha)


class SoftPlus(OnnxOpConverter):
    """ Operator converter for SoftPlus.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _op.log(_op.exp(inputs[0]) + _expr.const(1.))


class Softsign(OnnxOpConverter):
    """ Operator converter for Softsign.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return inputs[0] / (_expr.const(1.) + Absolute.get_converter(1)(inputs, attr, params))


class Sub(Elemwise):
606 607
    """ Operator converter for Subtract.
    """
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    name = 'subtract'


class Sum(OnnxOpConverter):
    """ Operator converter for Sum.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        # Onnx Sum Operator
        for in_index in range(len(inputs) - 1):
            inputs[in_index + 1] = _op.add(inputs[in_index], inputs[in_index + 1])

        return inputs[len(inputs) - 1]


class ThresholdedRelu(OnnxOpConverter):
    """ Operator converter for ThresholdedRelu.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        alpha = float(attr.get('alpha', 0.0))
        alpha_tensor = _op.full_like(inputs[0], fill_value=_expr.const(alpha))
        mask = _op.greater(inputs[0], alpha_tensor).astype("float32")
        return inputs[0] * mask


def _broadcast_constraint():

    def _broadcast_check(attrs):
        if attrs.get('axis', None):
            return False
        return True

    return _broadcast_check, "Specifying broadcast axis not allowed."


def _fully_connected(opset):

    def _impl(inputs, attr, params):
        # get number of channels
        channels = infer_channels(inputs[1], params)
        attr['units'] = channels
        return AttrCvt('dense', ignores=['axis', 'axis_w'])(inputs, attr)

    return _impl


class Upsample(OnnxOpConverter):
    """ Operator converter for Upsample (nearest mode).
    """

    @classmethod
662
    def _impl_v9(cls, inputs, attr, params):
663
        scales = attr.get('scales')
664 665 666 667 668
        if not scales:
            #Here we are going to higher OPSET version.
            assert len(inputs) == 2, "Upsample op take 2 inputs, {} given".format(len(inputs))
            scales = params[inputs[1].name_hint].asnumpy()
            inputs = inputs[:1]
669
        assert len(scales) == 4 and scales[0] == 1.0 and scales[1] == 1.0
670 671
        mode = attr.get('mode')
        if mode == b'nearest':
672
            method = "nearest_neighbor"
673
        elif mode == b'linear':
674
            method = "bilinear"
675
        else:
676 677
            raise tvm.error.OpAttributeInvalid(
                'Value {} in attribute "mode" of operator Upsample is not valid.'.format(mode))
678 679
        attr = {'scale_h':scales[-2], 'scale_w':scales[-1], 'method':method,
                'layout':'NCHW', 'align_corners':True}
680 681 682 683 684 685 686 687 688
        return AttrCvt('upsampling')(inputs, attr)


class Shape(OnnxOpConverter):
    """ Operator converter for Shape.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
Zhi committed
689
        # TODO(@jroesch): use shape_of once it has been fixed)
690
        return _op.shape_of(inputs[0])
691 692 693 694 695 696 697 698 699 700 701 702 703

class Cast(OnnxOpConverter):
    """ Operator converter for Cast.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return AttrCvt(op_name='cast', transforms={'to': 'dtype'})(inputs, attr)

    @classmethod
    def _impl_v5(cls, inputs, attr, params):
        try:
            from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
704
            attr['to'] = str(TENSOR_TYPE_TO_NP_TYPE[attr['to']])
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
        except ImportError as e:
            raise ImportError(
                "Unable to import onnx.mapping which is required {}".format(e))
        return AttrCvt(op_name='cast', transforms={'to': 'dtype'})(inputs, attr)


class Unsqueeze(OnnxOpConverter):
    """ Operator converter for Unsqueeze.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        for axes in attr['axes']:
            inputs[0] = _op.expand_dims(inputs[0], axis=axes, num_newaxis=1)
        return inputs[0]


class Split(OnnxOpConverter):
    """ Operator converter for Split.
    """

    @classmethod
    def _impl_v1(cls, inputs, attr, params):
728 729 730 731 732 733 734 735 736 737 738
        splits = attr.get('split', False)
        if splits:
            attr['indices_or_sections'] = []
            index = 0
            for i in splits[:-1]:
                index += i
                attr['indices_or_sections'].append(index)
        # When splits isnt specified divide evenly over axis.
        else:
            in_shape = infer_shape(inputs[0])
            attr['indices_or_sections'] = in_shape[attr['axis']]
739 740 741 742 743 744 745 746
        return AttrCvt(
            'split',
            ignores=['split'])(inputs, attr, params)


class Slice(OnnxOpConverter):
    """ Operator converter for Slice.
    """
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765

    @classmethod
    def _common(cls, starts, ends, axes):
        new_axes = []
        new_starts = []
        new_ends = []
        pop_index = 0
        for i in range(max(axes) + 1):
            if i in axes:
                new_axes.append(i)
                new_starts.append(starts[pop_index])
                new_ends.append(ends[pop_index])
                pop_index += 1
            else:
                new_axes.append(i)
                new_starts.append(0)
                new_ends.append(np.iinfo(np.int32).max)
        return new_starts, new_ends, new_axes

766 767 768 769 770 771 772 773 774 775 776
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        if isinstance(attr['starts'], int):
            attr['starts'] = (attr['starts'],)
            attr['ends'] = (attr['ends'],)

        try:
            # Update the starts and ends according to axes if required.
            if isinstance(attr['axes'], int):
                attr['axes'] = (attr['axes'],)
            if (max(attr['axes']) + 1) != len(attr['axes']):
777 778
                new_starts, new_ends, new_axes = cls._common(
                    attr['starts'], attr['ends'], attr['axes'])
779 780 781 782 783 784 785 786 787 788 789
                attr['axes'] = new_axes
                attr['starts'] = new_starts
                attr['ends'] = new_ends
        except KeyError:
            pass

        return AttrCvt('strided_slice',
                       transforms={'starts': 'begin',
                                   'ends': 'end'},
                       ignores=['axes'])(inputs, attr)

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
    @classmethod
    def _impl_v10(cls, inputs, attr, params):
        starts = params[get_name(inputs[1])].asnumpy()
        ends = params[get_name(inputs[2])].asnumpy()

        # Update the starts and ends according to axes if required.
        if len(inputs) >= 4:
            axes = params[get_name(inputs[3])].asnumpy()

            if max(axes + 1) != len(axes):
                new_starts, new_ends, _ = cls._common(
                    starts, ends, axes)
                starts = new_starts
                ends = new_ends
        return _op.strided_slice(inputs[0], begin=starts, end=ends)


807 808 809 810 811 812 813 814 815
class Gather(OnnxOpConverter):
    """ Operator converter for Gather.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        axis = attr.get('axis', 0)
        return AttrCvt('take',
                       extras={'axis':axis})(inputs, {})

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832

class Greater(OnnxOpConverter):
    """ Operator logical greater.
    """
    @classmethod
    def _impl_v7(cls, inputs, attr, params):
        return _op.greater(inputs[0], inputs[1])


class Less(OnnxOpConverter):
    """ Operator logical less than.
    """
    @classmethod
    def _impl_v7(cls, inputs, attr, params):
        return _op.less(inputs[0], inputs[1])


833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
class LRN(OnnxOpConverter):
    """ Operator converter for Local Response Normalization.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        """LRN support only NCHW format
        https://github.com/onnx/onnx/blob/master/docs/Operators.md#LRN
        """
        axis = 1
        alpha = attr.get('alpha', 0.0001)
        beta = attr.get('beta', 0.75)
        bias = attr.get('bias', 1.0)
        nsize = attr.get('size')
        attr = {'size':nsize, 'axis':axis, 'alpha':alpha, 'beta':beta, 'bias':bias}
        return AttrCvt('lrn')(inputs, attr)

class Maximum(OnnxOpConverter):
    """ Operator converter for Maximum.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        if not isinstance(inputs, list) or len(inputs) < 2:
            raise ValueError("Expect minimum 2 inputs")
        _max = inputs[0]
        for i in range(1, len(inputs)):
            _max = AttrCvt('maximum')([_max, inputs[i]], {})
        return _max

class Minimum(OnnxOpConverter):
    """ Operator converter for Minimum.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        if not isinstance(inputs, list) or len(inputs) < 2:
            raise ValueError("Expect minimum 2 inputs")
        _min = inputs[0]
        for i in range(1, len(inputs)):
            _min = AttrCvt('minimum')([_min, inputs[i]], {})
        return _min

class Mean(OnnxOpConverter):
    """ Operator converter for Mean.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        if not isinstance(inputs, list) or len(inputs) < 2:
            raise ValueError("Expect minimum 2 inputs")
        # avoid overflow
        concat = _op.concatenate([_op.expand_dims(x, axis=0) for x in inputs], axis=0)
        return _op.mean(concat, axis=0, keepdims=False)

class HardSigmoid(OnnxOpConverter):
    """ Operator converter for HardSigmoid.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        alpha = attr.get('alpha', 0.2)
        beta = attr.get('beta', 0.5)
        transformX = (inputs[0] * _expr.const(alpha)) + _expr.const(beta)
        attr = {'a_min':0, 'a_max':1}
        return AttrCvt('clip')([transformX], attr)

class Reduce(OnnxOpConverter):
    """ Operator converter for reduce ops.
    """
    name = ''
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        if 'axes' in attr:
            axis = attr.get('axes', 0)
        else:
            axis_len = len(infer_shape(inputs[0]))
            axis = list(range(axis_len))
        attr = {'axis':axis, 'keepdims':attr.get('keepdims', True)}
        return AttrCvt(cls.name)(inputs, attr)

class ReduceMax(Reduce):
910
    """ Operator converter for ReduceMax.
911 912 913 914
    """
    name = 'max'

class ReduceMin(Reduce):
915
    """ Operator converter for ReduceMin.
916 917 918 919
    """
    name = 'min'

class ReduceSum(Reduce):
920
    """ Operator converter for ReduceSum.
921 922 923 924
    """
    name = 'sum'

class ReduceMean(Reduce):
925
    """ Operator converter for ReduceMean.
926 927 928
    """
    name = 'mean'

929
class ReduceProd(Reduce):
930
    """ Operator converter for ReduceProd.
931 932 933
    """
    name = 'prod'

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
class ArgMax(OnnxOpConverter):
    """ Operator converter for ArgMax.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        axis = attr.get('axis', 0)
        keepdims = attr.get('keepdims', True)
        attr = {'axis':axis, 'keepdims':keepdims}
        return AttrCvt('argmax')(inputs, attr)

class ArgMin(OnnxOpConverter):
    """ Operator converter for ArgMin.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        axis = attr.get('axis', 0)
        keepdims = attr.get('keepdims', True)
        attr = {'axis':axis, 'keepdims':keepdims}
        return AttrCvt('argmin')(inputs, attr)

class Softmax(OnnxOpConverter):
    """ Operator converter for Softmax.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        # set default value when axis is not set in the model
        if 'axis' not in attr:
            attr['axis'] = 1
        return AttrCvt('softmax', transforms={'axis': ('axis', 1)})(inputs, attr, params)

964 965 966

class OneHot(OnnxOpConverter):
    """ Operator converter for OneHot.
967 968
    """
    @classmethod
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
    def _impl_v9(cls, inputs, attr, params):
        # Extract relay one_hot inputs.
        indices, depth, values = inputs
        # Split onnx on off values into two separate expressions.
        off_value, on_value = _op.take(
            values, _op.const(0)), _op.take(values, _op.const(1))
        # Extract the datatype of the output from on_value.
        dtype = infer_type(on_value).checked_type.dtype
        # Convert depth into an integer.
        depth = int(infer_value(depth, params).asnumpy()[0])
        # set default value when axis is not set in the model
        if 'axis' not in attr:
            attr['axis'] = -1
        return _op.one_hot(indices,
                           on_value,
                           off_value,
                           depth,
                           int(attr['axis']),
                           dtype=dtype)


class ConstantOfShape(OnnxOpConverter):
    """ Operator converter for ConstantOfShape.
    """
    @classmethod
    def _impl_v9(cls, inputs, attr, params):
        if 'value' in attr:
            np_value = get_numpy(attr.pop('value'))[0]
            value = _expr.const(np_value)
            dtype = np_value.dtype.name
999
        else:
1000 1001 1002 1003 1004 1005
            value = _expr.const(0)
            dtype = 'float32'
        static_shape = infer_value_simulated(inputs[0], params)
        output = _op.full(
            value, shape=tuple(static_shape.asnumpy().astype('int32')), dtype=dtype)
        return output
1006 1007


1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
class Sign(OnnxOpConverter):
    """ Operator converter for Sign.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _op.sign(inputs[0])

class Equal(Elemwise):
    """ Operator converter for Equal.
    """
    name = 'equal'

1020 1021 1022 1023 1024 1025 1026 1027 1028

class Not(Elemwise):
    """ Operator converter for Not.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _op.logical_not(inputs[0])


1029 1030 1031 1032 1033 1034 1035 1036
class And(Elemwise):
    """ Operator converter for And.
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _op.logical_and(inputs[0], inputs[1])


1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
class Tile(Elemwise):
    """Operator converter for Tile
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        if 'repeats' not in attr:
            raise tvm.error.OpAttributeInvalid('Attribute "repeats" should be set '
                                               'for operator Tile.')
        reps = attr.pop('repeats')  # The number of times repeating the tensor data.
        return _op.tile(inputs[0], reps)

1048 1049 1050 1051 1052 1053
    @classmethod
    def _impl_v6(cls, inputs, attr, params):
        reps = tuple(infer_value_simulated(
            inputs[1], params).asnumpy().astype('int32'))
        return _op.tile(inputs[0], reps)

1054 1055 1056 1057 1058 1059 1060
class Erf(OnnxOpConverter):
    """Operator converter for Erf
    """
    @classmethod
    def _impl_v1(cls, inputs, attr, params):
        return _op.erf(inputs[0])

1061 1062 1063 1064 1065
class Where(OnnxOpConverter):
    """Operator converter for Where
    """
    @classmethod
    def _impl_v9(cls, inputs, attr, params):
1066 1067 1068 1069 1070 1071 1072 1073
        # x and y can be broadcasted
        condition_shape = infer_shape(inputs[0])
        x_shape = infer_shape(inputs[1])
        y_shape = infer_shape(inputs[2])
        if len(condition_shape) > len(x_shape):
            inputs[1] = _op.broadcast_to(inputs[1], condition_shape)
        if len(condition_shape) > len(y_shape):
            inputs[2] = _op.broadcast_to(inputs[2], condition_shape)
1074 1075
        return _op.where(inputs[0], inputs[1], inputs[2])

1076 1077 1078 1079 1080 1081
class Or(Elemwise):
    """ Operator converter for Or.
    """
    @classmethod
    def _impl_v7(cls, inputs, attr, params):
        return _op.logical_or(inputs[0], inputs[1])
1082

1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
# compatible operators that do NOT require any conversion.
_identity_list = []


# _convert_map defines maps of name to converter functor(callable)
# for 1 to 1 mapping, use Renamer if nothing but name is different
# use AttrCvt if attributes need to be converted
# for 1 to N mapping(composed), use custom callable functions
# for N to 1 mapping, currently not supported(?)
def _get_convert_map(opset):
    return {
        # defs/experimental
        'Identity': Renamer('copy'),
        # 'Affine'
        'ThresholdedRelu': ThresholdedRelu.get_converter(opset),
        'ScaledTanh': ScaledTanh.get_converter(opset),
        'ParametricSoftplus': ParametricSoftPlus.get_converter(opset),
1101
        'ConstantOfShape': ConstantOfShape.get_converter(opset),
1102 1103 1104 1105 1106 1107 1108 1109 1110
        # 'GivenTensorFill'
        'FC': AttrCvt('dense', ignores=['axis', 'axis_w']),
        'Scale': Scale.get_converter(opset),
        # 'GRUUnit'
        # 'ATen'
        # 'ImageScaler'
        # 'MeanVarianceNormalization'
        # 'Crop'
        # 'Embedding'
1111
        'Upsample': Upsample.get_converter(opset),
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
        'SpatialBN': BatchNorm.get_converter(opset),

        # defs/generator
        # 'Constant' # Implemented
        # 'RandomUniform'
        # 'RandomNormal'
        # 'RandomUniformLike'
        # 'RandomNormalLike'

        # defs/logical

        # defs/math
        'Add': Add.get_converter(opset),
        'Sub': Sub.get_converter(opset),
        'Mul': Mul.get_converter(opset),
        'Div': Div.get_converter(opset),
        'Neg': Renamer('negative'),
        'Abs': Absolute.get_converter(opset),
        'Reciprocal': Reciprocal.get_converter(opset),
        'Floor': Renamer('floor'),
        'Ceil': Renamer('ceil'),
        'Sqrt': Renamer('sqrt'),
        'Relu': Renamer('relu'),
        'LeakyRelu': Renamer('leaky_relu'),
        'Selu': Selu.get_converter(opset),
        'Elu': Elu.get_converter(opset),
        'Exp': Renamer('exp'),
1139 1140
        'Greater': Greater.get_converter(opset),
        'Less': Less.get_converter(opset),
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
        'Log': Renamer('log'),
        'Tanh': Renamer('tanh'),
        'Pow': Renamer('power'),
        'PRelu': Prelu.get_converter(opset),
        'Sigmoid': Renamer('sigmoid'),
        'HardSigmoid': HardSigmoid.get_converter(opset),
        'Max': Maximum.get_converter(opset),
        'Min': Minimum.get_converter(opset),
        'Sum': Sum.get_converter(opset),
        'Mean': Mean.get_converter(opset),
        'Clip': AttrCvt('clip', transforms={'min': 'a_min', 'max': 'a_max'}),
        # softmax default axis is different in onnx
        'Softmax': Softmax.get_converter(opset),
        'LogSoftmax': AttrCvt('log_softmax', {'axis': ('axis', 1)}),
1155
        'OneHot': OneHot.get_converter(opset),
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
        # 'Hardmax'
        'Softsign': Softsign.get_converter(opset),
        'SoftPlus': SoftPlus.get_converter(opset),
        'Gemm': Gemm.get_converter(opset),
        'MatMul': MatMul.get_converter(opset),

        # defs/nn
        'AveragePool': AveragePool.get_converter(opset),
        'MaxPool': MaxPool.get_converter(opset),
        'Conv': Conv.get_converter(opset),
        'ConvTranspose': ConvTranspose.get_converter(opset),
        'GlobalAveragePool': Renamer('global_avg_pool2d'),
        'GlobalMaxPool': Renamer('global_max_pool2d'),
        'BatchNormalization': BatchNorm.get_converter(opset),
1170
        'InstanceNormalization': InstanceNorm.get_converter(opset),
1171 1172
        # 'LpNormalization'
        'Dropout': AttrCvt('dropout', {'ratio': 'rate'}, ignores=['is_test']),
1173
        'Flatten': Flatten.get_converter(opset),
1174 1175 1176 1177 1178 1179 1180
        'LRN': LRN.get_converter(opset),

        # defs/reduction
        'ReduceMax': ReduceMax.get_converter(opset),
        'ReduceMin': ReduceMin.get_converter(opset),
        'ReduceSum': ReduceSum.get_converter(opset),
        'ReduceMean': ReduceMean.get_converter(opset),
1181
        'ReduceProd': ReduceProd.get_converter(opset),
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
        # 'ReduceProd'
        # 'ReduceLogSumExp'
        'ArgMax': ArgMax.get_converter(opset),
        'ArgMin': ArgMin.get_converter(opset),

        # defs/tensor
        'Cast': Cast.get_converter(opset),
        'Reshape': Reshape.get_converter(opset),
        'Concat': Concat.get_converter(opset),
        'Split': Split.get_converter(opset),
        'Slice': Slice.get_converter(opset),
        'Transpose': AttrCvt('transpose', {'perm': 'axes'}),
1194 1195
        'DepthToSpace': DepthToSpace.get_converter(opset),
        'SpaceToDepth': SpaceToDepth.get_converter(opset),
1196 1197 1198 1199
        'Gather': Gather.get_converter(opset),
        'Squeeze': AttrCvt('squeeze', {'axes': 'axis'}),
        'Unsqueeze': Unsqueeze.get_converter(opset),
        'Pad': Pad.get_converter(opset),
1200
        'Shape': Shape.get_converter(opset),
1201
        'Sign': Sign.get_converter(opset),
1202
        'Equal': Equal.get_converter(opset),
1203
        'Not': Not.get_converter(opset),
1204
        'And': And.get_converter(opset),
1205
        'Tile': Tile.get_converter(opset),
1206
        'Erf': Erf.get_converter(opset),
1207 1208
        'Where': Where.get_converter(opset),
        'Or': Or.get_converter(opset)
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    }


class GraphProto(object):
    """A helper class for handling Relay expression copying from pb2.GraphProto.
    Definition: https://github.com/onnx/onnx/blob/master/onnx/onnx.proto

        Parameters
    ----------
    shape : dict of str to tuple, optional
        The input shape to the graph

    dtype : str or dict of str to str
        The input types to the graph
    """

    def __init__(self, shape, dtype):
        self._nodes = {}
        self._params = {}
        self._renames = {}
        self._num_input = 0
        self._num_param = 0
1231
        self._shape = shape if shape else {}
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
        self._dtype = dtype

    def from_onnx(self, graph, opset):
        """Construct Relay expression from ONNX graph.

        Onnx graph is a python protobuf object.
        The companion parameters will be handled automatically.
        However, the input names from onnx graph is vague, mixing inputs and
        network weights/bias such as "1", "2"...
        For convenience, we rename the `real` input names to "input_0",
        "input_1"... And renaming parameters to "param_0", "param_1"...

        Parameters
        ----------
        graph : onnx protobuf object
            The loaded onnx graph
1248

1249 1250 1251 1252
        opset : opset version

        Returns
        -------
1253 1254 1255
        mod : tvm.relay.Module
            The returned relay module

1256 1257 1258 1259 1260 1261 1262 1263
        params : dict
            A dict of name: tvm.nd.array pairs, used as pretrained weights
        """
        # parse network inputs to relay, aka parameters
        for init_tensor in graph.initializer:
            if not init_tensor.name.strip():
                raise ValueError("Tensor's name is required.")
            self._params[init_tensor.name] = self._parse_array(init_tensor)
1264 1265 1266
            self._nodes[init_tensor.name] = new_var(init_tensor.name,
                                                    shape=self._params[init_tensor.name].shape,
                                                    dtype=self._params[init_tensor.name].dtype)
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
        for i in graph.input:
            # from onnx v0.2, GraphProto.input has type ValueInfoProto,
            #  and the name is 'i.name'
            i_name = self._parse_value_proto(i)
            d_type = self._parse_dtype(i, 'float32')
            if i_name in self._params:
                # i is a param instead of input
                self._num_param += 1
                self._params[i_name] = self._params.pop(i_name)
                self._nodes[i_name] = new_var(i_name,
                                              shape=self._params[i_name].shape,
                                              dtype=self._params[i_name].dtype)
            else:
                self._num_input += 1
1281 1282 1283 1284
                if i_name in self._shape:
                    tshape = self._shape[i_name]
                else:
                    raise ValueError("Must provide an input shape for `{0}`.".format(i_name))
1285 1286 1287 1288
                if isinstance(self._dtype, dict):
                    dtype = self._dtype[i_name] if i_name in self._dtype else d_type
                else:
                    dtype = d_type
1289
                self._nodes[i_name] = new_var(i_name, shape=tshape, dtype=dtype)
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
        # get list of unsupported ops
        convert_map = _get_convert_map(opset)
        unsupported_ops = set()
        for node in graph.node:
            op_name = node.op_type
            if op_name not in convert_map and \
               op_name != 'Constant' and \
               op_name not in _identity_list:
                unsupported_ops.add(op_name)
        if unsupported_ops:
            msg = 'The following operators are not supported for frontend ONNX: '
            msg += ', '.join(unsupported_ops)
            raise tvm.error.OpNotImplemented(msg)
1303 1304 1305 1306 1307 1308 1309 1310
        # construct nodes, nodes are stored as directed acyclic graph
        for node in graph.node:
            op_name = node.op_type
            attr = self._parse_attr(node.attribute)
            inputs = [self._nodes[self._renames.get(i, i)] for i in node.input]
            if op_name == "Constant":
                t_proto = self._parse_attr(node.attribute)["value"]
                self._num_param += 1
Zhi committed
1311 1312 1313 1314 1315 1316 1317 1318 1319
                # We should convert scalar integers to int32, to normalize.
                array = self._parse_array(t_proto)
                if len(array.shape) == 0 and array.dtype == 'int64':
                    array = _nd.array(array.asnumpy().astype('int32'))
                self._params[node.output[0]] = array
                self._nodes[node.output[0]] = new_var(
                    node.output[0],
                    shape=list(t_proto.dims),
                    dtype=array.dtype)
1320
            else:
1321 1322 1323 1324
                i_name = self._parse_value_proto(node)
                attr['tvm_custom'] = {}
                attr['tvm_custom']['name'] = i_name

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
                op = self._convert_operator(op_name, inputs, attr, opset)
                node_output = self._fix_outputs(op_name, node.output)
                if not isinstance(op, _expr.TupleWrapper):
                    outputs_num = 1
                else:
                    outputs_num = len(op)
                assert len(node_output) == outputs_num, (
                    "Number of output mismatch {} vs {} in {}.".format(
                        len(node_output), outputs_num, op_name))
                if outputs_num == 1:
                    self._nodes[node_output[0]] = op
                else:
                    for k, i in zip(list(node_output), range(len(node_output))):
                        self._nodes[k] = op[i]

        # now return the outputs
        outputs = [self._nodes[self._parse_value_proto(i)] for i in graph.output]
        outputs = outputs[0] if len(outputs) == 1 else _expr.Tuple(outputs)
Zhi committed
1343
        func = _expr.Function(analysis.free_vars(outputs), outputs)
1344
        return _module.Module.from_expr(func), self._params
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

    def _parse_value_proto(self, value_proto):
        """Parse ValueProto or raw str."""
        try:
            name = value_proto.name
        except AttributeError:
            name = value_proto
        return name

    def _parse_dtype(self, value_proto, dtype):
        """Parse dtype."""
        try:
            from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
            return TENSOR_TYPE_TO_NP_TYPE[value_proto.type.tensor_type.elem_type].name
        except AttributeError:
            return dtype

    def _parse_array(self, tensor_proto):
1363
        np_array = get_numpy(tensor_proto).reshape(tuple(tensor_proto.dims))
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
        return _nd.array(np_array)

    def _parse_attr(self, attr_proto):
        """Convert a list of AttributeProto to a dict, with names as keys."""
        attrs = {}
        for a in attr_proto:
            for f in ['f', 'i', 's']:
                if a.HasField(f):
                    attrs[a.name] = getattr(a, f)
            for f in ['floats', 'ints', 'strings']:
                if list(getattr(a, f)):
                    assert a.name not in attrs, "Only one type of attr is allowed"
                    attrs[a.name] = tuple(getattr(a, f))
            for f in ['t']:
                if a.HasField(f):
                    attrs[a.name] = getattr(a, f)
            for f in ['tensors']:
                if list(getattr(a, f)):
                    assert a.name not in attrs, "Only one type of attr is allowed"
                    attrs[a.name] = tuple(getattr(a, f))
            for f in ['g']:
                if a.HasField(f):
                    raise NotImplementedError(
                        "Filed {} is not supported in relay.".format(f))
            for f in ['graphs']:
                if list(getattr(a, f)):
                    raise NotImplementedError(
                        "Filed {} is not supported in relay.".format(f))
            if a.name not in attrs:
                raise ValueError("Cannot parse attribute: \n{}\n.".format(a))
        return attrs

    def _convert_operator(self,
                          op_name,
                          inputs,
                          attrs,
                          opset):
        """Convert ONNX operator into a Relay operator.
1402
        The converter must specify conversions explicitly for incompatible name, and
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
        apply handlers to operator attributes.

        Parameters
        ----------
        op_name : str
            Operator name, such as Convolution, FullyConnected
        inputs : list of tvm.relay.expr.Function
            List of inputs.
        attrs : dict
            Dict of operator attributes
        opset : int
            Opset version

        Returns
        -------
        sym : tvm.relay.expr.Function
            Converted relay function
        """
        convert_map = _get_convert_map(opset)
        if op_name in _identity_list:
            sym = get_relay_op(op_name)(*inputs, **attrs)
        elif op_name in convert_map:
            sym = convert_map[op_name](inputs, attrs, self._params)
        else:
            raise NotImplementedError(
                "Operator {} not implemented.".format(op_name))
        return sym

    def _fix_outputs(self, op_name, outputs):
        """A hack to handle dropout or similar operator that have more than one out
        in ONNX.
        """
        if op_name == 'Dropout':
            if len(outputs) == 1:
                return outputs
            # TODO(zhreshold): support dropout mask?
            outputs = outputs[:-1]
        return outputs

def from_onnx(model,
              shape=None,
1444 1445
              dtype="float32",
              opset=None):
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
    """Convert a ONNX model into an equivalent Relay Function.

    ONNX graphs are represented as Python Protobuf objects.
    The companion parameters will be handled automatically.
    However, the input names from onnx graph is vague, mixing inputs and
    network weights/bias such as "1", "2"...
    For convenience, we rename the `real` input names to "input_0",
    "input_1"... And renaming parameters to "param_0", "param_1"...

    Parameters
    ----------
    model : protobuf object
        ONNX ModelProto after ONNX v1.1.0

    shape : dict of str to tuple, optional
        The input shape to the graph

    dtype : str or dict of str to str
        The input types to the graph

1466 1467 1468 1469
    opset : int, optional
        Override to autodetected opset.
        This can be helpful for some testing.

1470 1471
    Returns
    -------
1472 1473
    mod : tvm.relay.Module
        The relay module for compilation
1474 1475 1476 1477

    params : dict of str to tvm.NDArray
        The parameter dict to be used by relay
    """
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
    try:
        import onnx
        if hasattr(onnx.checker, 'check_model'):
            # try use onnx's own model checker before converting any model
            try:
                onnx.checker.check_model(model)
            except onnx.onnx_cpp2py_export.checker.ValidationError as e:
                import warnings
                # the checker is a bit violent about errors, so simply print warnings here
                warnings.warn(str(e))
    except ImportError:
        pass
1490 1491
    g = GraphProto(shape, dtype)
    graph = model.graph
1492 1493 1494 1495 1496
    if opset is None:
        try:
            opset = model.opset_import[0].version if model.opset_import else 1
        except AttributeError:
            opset = 1
1497 1498
    mod, params = g.from_onnx(graph, opset)
    return mod, params