Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
510bd8f6
Commit
510bd8f6
authored
Nov 16, 2019
by
Neo Chien
Committed by
Zhi
Nov 15, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay][Frontend][ONNX] operator support: DepthToSpace, SpaceToDepth (#4271)
parent
135587aa
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
135 additions
and
8 deletions
+135
-8
python/tvm/relay/frontend/onnx.py
+72
-0
tests/python/frontend/onnx/test_forward.py
+63
-8
No files found.
python/tvm/relay/frontend/onnx.py
View file @
510bd8f6
...
...
@@ -472,6 +472,76 @@ class Reshape(OnnxOpConverter):
static_shape
.
asnumpy
()
.
astype
(
'int32'
)))
return
out
class
DepthToSpace
(
OnnxOpConverter
):
""" Operator converter for DepthToSpace.
"""
@classmethod
def
_impl_v11
(
cls
,
inputs
,
attr
,
params
):
block_size
=
int
(
attr
[
'blocksize'
])
mode
=
attr
.
get
(
"mode"
,
"DCR"
)
# handle NCHW layout
indata
=
infer_value_simulated
(
inputs
[
0
],
params
)
in_n
,
in_c
,
in_h
,
in_w
=
indata
.
shape
# reshape to proper output
new_c
=
int
(
in_c
/
(
block_size
*
block_size
))
new_h
=
in_h
*
block_size
new_w
=
in_w
*
block_size
newshape
=
(
in_n
,
new_c
,
new_h
,
new_w
)
if
mode
==
"DCR"
:
# expand input to larger dimension.
expanded
=
_op
.
reshape
(
inputs
[
0
],
newshape
=
(
in_n
,
block_size
,
block_size
,
new_c
,
in_h
,
in_w
))
# reorder to expand spatial blocks.
transposed
=
_op
.
transpose
(
expanded
,
axes
=
(
0
,
3
,
4
,
1
,
5
,
2
))
else
:
# CRD mode
# expand input to larger dimension.
expanded
=
_op
.
reshape
(
inputs
[
0
],
newshape
=
(
in_n
,
new_c
,
block_size
,
block_size
,
in_h
,
in_w
))
# reorder to expand spatial blocks.
transposed
=
_op
.
transpose
(
expanded
,
axes
=
(
0
,
1
,
4
,
2
,
5
,
3
))
return
AttrCvt
(
op_name
=
"reshape"
,
extras
=
{
'newshape'
:
newshape
},
ignores
=
[
'mode'
,
'blocksize'
])([
transposed
],
attr
)
class
SpaceToDepth
(
OnnxOpConverter
):
""" Operator converter for SpaceToDepth.
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
block_size
=
int
(
attr
[
'blocksize'
])
# handle NCHW layout
indata
=
infer_value_simulated
(
inputs
[
0
],
params
)
in_n
,
in_c
,
in_h
,
in_w
=
indata
.
shape
# reshape to proper output
new_c
=
in_c
*
(
block_size
*
block_size
)
new_h
=
int
(
in_h
/
block_size
)
new_w
=
int
(
in_w
/
block_size
)
newshape
=
(
in_n
,
new_c
,
new_h
,
new_w
)
# expand input to larger dimension.
expanded
=
_op
.
reshape
(
inputs
[
0
],
newshape
=
(
in_n
,
in_c
,
new_h
,
block_size
,
new_w
,
block_size
))
# reorder to expand spatial blocks.
transposed
=
_op
.
transpose
(
expanded
,
axes
=
(
0
,
3
,
5
,
1
,
2
,
4
))
return
AttrCvt
(
op_name
=
"reshape"
,
extras
=
{
'newshape'
:
newshape
},
ignores
=
[
'blocksize'
])([
transposed
],
attr
)
class
Concat
(
OnnxOpConverter
):
""" Operator converter for Concat.
"""
...
...
@@ -1121,6 +1191,8 @@ def _get_convert_map(opset):
'Split'
:
Split
.
get_converter
(
opset
),
'Slice'
:
Slice
.
get_converter
(
opset
),
'Transpose'
:
AttrCvt
(
'transpose'
,
{
'perm'
:
'axes'
}),
'DepthToSpace'
:
DepthToSpace
.
get_converter
(
opset
),
'SpaceToDepth'
:
SpaceToDepth
.
get_converter
(
opset
),
'Gather'
:
Gather
.
get_converter
(
opset
),
'Squeeze'
:
AttrCvt
(
'squeeze'
,
{
'axes'
:
'axis'
}),
'Unsqueeze'
:
Unsqueeze
.
get_converter
(
opset
),
...
...
tests/python/frontend/onnx/test_forward.py
View file @
510bd8f6
...
...
@@ -77,19 +77,19 @@ def get_tvm_output(graph_def, input_data, target, ctx, output_shape=None, output
return
tvm_output
.
asnumpy
()
def
get_
caffe2
_output
(
model
,
x
,
dtype
=
'float32'
):
import
caffe2.python.onnx
.backend
prepared_backend
=
caffe2
.
python
.
onnx
.
backend
.
prepare
(
model
)
W
=
{
model
.
graph
.
input
[
0
]
.
name
:
x
.
astype
(
dtype
)}
c2_out
=
prepared_backend
.
run
(
W
)[
0
]
return
c2
_out
def
get_
onnxruntime
_output
(
model
,
x
,
dtype
=
'float32'
):
import
onnxruntime
.backend
rep
=
onnxruntime
.
backend
.
prepare
(
model
,
'CPU'
)
x
=
x
.
astype
(
dtype
)
ort_out
=
rep
.
run
(
x
)[
0
]
return
ort
_out
def
verify_onnx_forward_impl
(
graph_file
,
data_shape
,
out_shape
):
dtype
=
'float32'
x
=
np
.
random
.
uniform
(
size
=
data_shape
)
model
=
onnx
.
load_model
(
graph_file
)
c2_out
=
get_
caffe2
_output
(
model
,
x
,
dtype
)
c2_out
=
get_
onnxruntime
_output
(
model
,
x
,
dtype
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
model
,
x
,
target
,
ctx
,
out_shape
,
dtype
)
tvm
.
testing
.
assert_allclose
(
c2_out
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
...
...
@@ -142,6 +142,57 @@ def test_reshape():
tvm
.
testing
.
assert_allclose
(
ref_shape
,
tvm_out
.
shape
)
def
verify_depth_to_space
(
inshape
,
outshape
,
mode
,
blockSize
):
node
=
onnx
.
helper
.
make_node
(
'DepthToSpace'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
blocksize
=
blockSize
)
graph
=
helper
.
make_graph
([
node
],
"depth_to_space_test"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"x"
,
TensorProto
.
FLOAT
,
list
(
inshape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"y"
,
TensorProto
.
FLOAT
,
list
(
outshape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'depth_to_space_test'
)
for
target
,
ctx
in
ctx_list
():
x
=
np
.
random
.
uniform
(
size
=
inshape
)
.
astype
(
'float32'
)
tvm_out
=
get_tvm_output
(
model
,
x
,
target
,
ctx
,
outshape
,
'float32'
)
onnx_out
=
get_onnxruntime_output
(
model
,
x
,
'float32'
)
tvm
.
testing
.
assert_allclose
(
onnx_out
,
tvm_out
)
def
test_depth_to_space
():
# current onnx.checker use OpSet-1 version of DepthToSpace, which doesn't have a mode argument.
# TO-DO, we can add mode arguement to test CRD mode and DCR mode
# in the future when we update to a newer onnx version.
verify_depth_to_space
((
1
,
8
,
2
,
3
),
(
1
,
2
,
4
,
6
),
mode
=
"CRD"
,
blockSize
=
2
)
def
verify_space_to_depth
(
inshape
,
outshape
,
blockSize
):
node
=
onnx
.
helper
.
make_node
(
'SpaceToDepth'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
],
blocksize
=
blockSize
)
graph
=
helper
.
make_graph
([
node
],
"space_to_depth_test"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"x"
,
TensorProto
.
FLOAT
,
list
(
inshape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"y"
,
TensorProto
.
FLOAT
,
list
(
outshape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'space_to_depth_test'
)
for
target
,
ctx
in
ctx_list
():
x
=
np
.
random
.
uniform
(
size
=
inshape
)
.
astype
(
'float32'
)
tvm_out
=
get_tvm_output
(
model
,
x
,
target
,
ctx
,
outshape
,
'float32'
)
onnx_out
=
get_onnxruntime_output
(
model
,
x
,
'float32'
)
tvm
.
testing
.
assert_allclose
(
onnx_out
,
tvm_out
)
def
test_space_to_depth
():
verify_space_to_depth
((
1
,
1
,
4
,
6
),
(
1
,
4
,
2
,
3
),
2
)
def
test_shape
():
in_shape
=
(
4
,
3
,
3
,
4
)
ref_shape
=
(
6
,
2
,
4
,
3
)
...
...
@@ -1372,7 +1423,7 @@ def check_torch_conversion(model, input_size):
onnx_model
=
onnx
.
load
(
file_name
)
for
target
,
ctx
in
ctx_list
():
input_data
=
np
.
random
.
uniform
(
size
=
input_size
)
.
astype
(
'int32'
)
c2_out
=
get_
caffe2
_output
(
onnx_model
,
input_data
)
c2_out
=
get_
onnxruntime
_output
(
onnx_model
,
input_data
)
tvm_out
=
get_tvm_output
(
onnx_model
,
input_data
,
target
,
ctx
)
tvm
.
testing
.
assert_allclose
(
c2_out
,
tvm_out
)
...
...
@@ -1574,6 +1625,7 @@ def test_erf():
z
=
scipy
.
special
.
erf
(
x
)
verify_erf
(
x
,
z
)
def
verify_where
(
condition
,
x
,
y
,
dtype
,
outdata
):
node
=
helper
.
make_node
(
'Where'
,
inputs
=
[
'condition'
,
'x'
,
'y'
],
outputs
=
[
'out'
])
graph
=
helper
.
make_graph
([
node
],
...
...
@@ -1588,6 +1640,7 @@ def verify_where(condition, x, y, dtype, outdata):
tvm_out
=
get_tvm_output
(
model
,
[
condition
,
x
,
y
],
target
,
ctx
,
outdata
.
shape
)
tvm
.
testing
.
assert_allclose
(
outdata
,
tvm_out
)
def
test_where
():
condition
=
np
.
array
([[
1
,
0
],
[
1
,
1
]],
dtype
=
np
.
bool
)
x
=
np
.
array
([[
1
,
2
],
[
3
,
4
]],
dtype
=
np
.
int64
)
...
...
@@ -1704,3 +1757,5 @@ if __name__ == '__main__':
test_erf
()
test_where
()
test_or
()
test_depth_to_space
()
test_space_to_depth
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment