from_pytorch.py 5.61 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Compile PyTorch Models
======================
**Author**: `Alex Wong <https://github.com/alexwong/>`_

This article is an introductory tutorial to deploy PyTorch models with Relay.

For us to begin with, PyTorch should be installed.
TorchVision is also required since we will be using it as our model zoo.

A quick solution is to install via pip

.. code-block:: bash

    pip install torch==1.4.0
    pip install torchvision==0.5.0

or please refer to official site
https://pytorch.org/get-started/locally/

PyTorch versions should be backwards compatible but should be used
with the proper TorchVision version.

40
Currently, TVM supports PyTorch 1.4 and 1.3. Other versions may
41 42 43 44 45 46 47
be unstable.
"""

import tvm
from tvm import relay

import numpy as np
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
from tvm.contrib.download import download_testdata

# PyTorch imports
import torch
import torchvision

######################################################################
# Load a pretrained PyTorch model
# -------------------------------
model_name = 'resnet18'
model = getattr(torchvision.models, model_name)(pretrained=True)
model = model.eval()

# We grab the TorchScripted model via tracing
input_shape = [1, 3, 224, 224]
input_data = torch.randn(input_shape)
scripted_model = torch.jit.trace(model, input_data).eval()

######################################################################
# Load a test image
# -----------------
# Classic cat example!
from PIL import Image
img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true'
img_path = download_testdata(img_url, 'cat.png', module='data')
img = Image.open(img_path).resize((224, 224))

# Preprocess the image and convert to tensor
from torchvision import transforms
my_preprocess = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225])
])
img = my_preprocess(img)
img = np.expand_dims(img, 0)

######################################################################
# Import the graph to Relay
# -------------------------
# Convert PyTorch graph to Relay graph.
92 93
input_name = 'input0'  # only one input, set it to this name
shape_list = [(input_name, img.shape)]
94
mod, params = relay.frontend.from_pytorch(scripted_model,
95
                                          shape_list)
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

######################################################################
# Relay Build
# -----------
# Compile the graph to llvm target with given input specification.
target = 'llvm'
target_host = 'llvm'
ctx = tvm.cpu(0)
with relay.build_config(opt_level=3):
    graph, lib, params = relay.build(mod,
                                     target=target,
                                     target_host=target_host,
                                     params=params)

######################################################################
# Execute the portable graph on TVM
# ---------------------------------
# Now we can try deploying the compiled model on target.
from tvm.contrib import graph_runtime
dtype = 'float32'
m = graph_runtime.create(graph, lib, ctx)
# Set inputs
118
m.set_input(input_name, tvm.nd.array(img.astype(dtype)))
119 120 121 122
m.set_input(**params)
# Execute
m.run()
# Get outputs
123
tvm_output = m.get_output(0)
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

#####################################################################
# Look up synset name
# -------------------
# Look up prediction top 1 index in 1000 class synset.
synset_url = ''.join(['https://raw.githubusercontent.com/Cadene/',
                      'pretrained-models.pytorch/master/data/',
                      'imagenet_synsets.txt'])
synset_name = 'imagenet_synsets.txt'
synset_path = download_testdata(synset_url, synset_name, module='data')
with open(synset_path) as f:
    synsets = f.readlines()

synsets = [x.strip() for x in synsets]
splits = [line.split(' ') for line in synsets]
key_to_classname = {spl[0]:' '.join(spl[1:]) for spl in splits}

class_url = ''.join(['https://raw.githubusercontent.com/Cadene/',
                      'pretrained-models.pytorch/master/data/',
                      'imagenet_classes.txt'])
class_name = 'imagenet_classes.txt'
class_path = download_testdata(class_url, class_name, module='data')
with open(class_path) as f:
    class_id_to_key = f.readlines()

class_id_to_key = [x.strip() for x in class_id_to_key]

# Get top-1 result for TVM
top1_tvm = np.argmax(tvm_output.asnumpy()[0])
tvm_class_key = class_id_to_key[top1_tvm]

# Convert input to PyTorch variable and get PyTorch result for comparison
with torch.no_grad():
    torch_img = torch.from_numpy(img)
    output = model(torch_img)

    # Get top-1 result for PyTorch
    top1_torch = np.argmax(output.numpy())
    torch_class_key = class_id_to_key[top1_torch]

print('Relay top-1 id: {}, class name: {}'.format(top1_tvm, key_to_classname[tvm_class_key]))
165
print('Torch top-1 id: {}, class name: {}'.format(top1_torch, key_to_classname[torch_class_key]))