Unverified Commit 61bea507 by Alex Wong Committed by GitHub

[Tutorial] Add a tutorial for PyTorch (#4936)

* Add a tutorial for PyTorch

* Fix sphinx formatting, add version support

* Remove space

* Remove version check

* Some refactoring

* Use no grad

* Rename input

* Update cat img source
parent b1428bc4
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Compile PyTorch Models
======================
**Author**: `Alex Wong <https://github.com/alexwong/>`_
This article is an introductory tutorial to deploy PyTorch models with Relay.
For us to begin with, PyTorch should be installed.
TorchVision is also required since we will be using it as our model zoo.
A quick solution is to install via pip
.. code-block:: bash
pip install torch==1.4.0
pip install torchvision==0.5.0
or please refer to official site
https://pytorch.org/get-started/locally/
PyTorch versions should be backwards compatible but should be used
with the proper TorchVision version.
Currently, TVM supports PyTorch 1.4, 1.3, and 1.2. Other versions may
be unstable.
"""
# tvm, relay
import tvm
from tvm import relay
# numpy, packaging
import numpy as np
from packaging import version
from tvm.contrib.download import download_testdata
# PyTorch imports
import torch
import torchvision
######################################################################
# Load a pretrained PyTorch model
# -------------------------------
model_name = 'resnet18'
model = getattr(torchvision.models, model_name)(pretrained=True)
model = model.eval()
# We grab the TorchScripted model via tracing
input_shape = [1, 3, 224, 224]
input_data = torch.randn(input_shape)
scripted_model = torch.jit.trace(model, input_data).eval()
######################################################################
# Load a test image
# -----------------
# Classic cat example!
from PIL import Image
img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true'
img_path = download_testdata(img_url, 'cat.png', module='data')
img = Image.open(img_path).resize((224, 224))
# Preprocess the image and convert to tensor
from torchvision import transforms
my_preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
img = my_preprocess(img)
img = np.expand_dims(img, 0)
######################################################################
# Import the graph to Relay
# -------------------------
# Convert PyTorch graph to Relay graph.
shape_dict = {'img': img.shape}
mod, params = relay.frontend.from_pytorch(scripted_model,
shape_dict)
######################################################################
# Relay Build
# -----------
# Compile the graph to llvm target with given input specification.
target = 'llvm'
target_host = 'llvm'
ctx = tvm.cpu(0)
with relay.build_config(opt_level=3):
graph, lib, params = relay.build(mod,
target=target,
target_host=target_host,
params=params)
######################################################################
# Execute the portable graph on TVM
# ---------------------------------
# Now we can try deploying the compiled model on target.
from tvm.contrib import graph_runtime
dtype = 'float32'
m = graph_runtime.create(graph, lib, ctx)
# Set inputs
m.set_input('img', tvm.nd.array(img.astype(dtype)))
m.set_input(**params)
# Execute
m.run()
# Get outputs
tvm_output = m.get_output(0, tvm.nd.empty(((1, 1000)), 'float32'))
#####################################################################
# Look up synset name
# -------------------
# Look up prediction top 1 index in 1000 class synset.
synset_url = ''.join(['https://raw.githubusercontent.com/Cadene/',
'pretrained-models.pytorch/master/data/',
'imagenet_synsets.txt'])
synset_name = 'imagenet_synsets.txt'
synset_path = download_testdata(synset_url, synset_name, module='data')
with open(synset_path) as f:
synsets = f.readlines()
synsets = [x.strip() for x in synsets]
splits = [line.split(' ') for line in synsets]
key_to_classname = {spl[0]:' '.join(spl[1:]) for spl in splits}
class_url = ''.join(['https://raw.githubusercontent.com/Cadene/',
'pretrained-models.pytorch/master/data/',
'imagenet_classes.txt'])
class_name = 'imagenet_classes.txt'
class_path = download_testdata(class_url, class_name, module='data')
with open(class_path) as f:
class_id_to_key = f.readlines()
class_id_to_key = [x.strip() for x in class_id_to_key]
# Get top-1 result for TVM
top1_tvm = np.argmax(tvm_output.asnumpy()[0])
tvm_class_key = class_id_to_key[top1_tvm]
# Convert input to PyTorch variable and get PyTorch result for comparison
with torch.no_grad():
torch_img = torch.from_numpy(img)
output = model(torch_img)
# Get top-1 result for PyTorch
top1_torch = np.argmax(output.numpy())
torch_class_key = class_id_to_key[top1_torch]
print('Relay top-1 id: {}, class name: {}'.format(top1_tvm, key_to_classname[tvm_class_key]))
print('Torch top-1 id: {}, class name: {}'.format(top1_torch, key_to_classname[torch_class_key]))
\ No newline at end of file
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment