jump.c 61.1 KB
Newer Older
Richard Kenner committed
1
/* Optimize jump instructions, for GNU compiler.
Jeff Law committed
2
   Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3
   1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
Richard Kenner committed
4

5
This file is part of GCC.
Richard Kenner committed
6

7 8 9 10
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
Richard Kenner committed
11

12 13 14 15
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Kenner committed
16 17

You should have received a copy of the GNU General Public License
18 19 20
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */
Richard Kenner committed
21

Jan Hubicka committed
22 23 24
/* This is the pathetic reminder of old fame of the jump-optimization pass
   of the compiler.  Now it contains basically set of utility function to
   operate with jumps.
Richard Kenner committed
25 26 27 28 29 30 31 32 33 34 35 36 37

   Each CODE_LABEL has a count of the times it is used
   stored in the LABEL_NUSES internal field, and each JUMP_INSN
   has one label that it refers to stored in the
   JUMP_LABEL internal field.  With this we can detect labels that
   become unused because of the deletion of all the jumps that
   formerly used them.  The JUMP_LABEL info is sometimes looked
   at by later passes.

   The subroutines delete_insn, redirect_jump, and invert_jump are used
   from other passes as well.  */

#include "config.h"
38
#include "system.h"
39 40
#include "coretypes.h"
#include "tm.h"
Richard Kenner committed
41
#include "rtl.h"
42
#include "tm_p.h"
Richard Kenner committed
43 44 45 46
#include "flags.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "insn-config.h"
47
#include "insn-attr.h"
48
#include "recog.h"
49
#include "function.h"
50
#include "expr.h"
Richard Kenner committed
51
#include "real.h"
Mike Stump committed
52
#include "except.h"
Graham Stott committed
53
#include "toplev.h"
54
#include "reload.h"
Jan Hubicka committed
55
#include "predict.h"
Richard Kenner committed
56 57 58 59 60 61 62 63

/* Optimize jump y; x: ... y: jumpif... x?
   Don't know if it is worth bothering with.  */
/* Optimize two cases of conditional jump to conditional jump?
   This can never delete any instruction or make anything dead,
   or even change what is live at any point.
   So perhaps let combiner do it.  */

64
static void init_label_info		PARAMS ((rtx));
65
static void mark_all_labels		PARAMS ((rtx));
66 67
static int duplicate_loop_exit_test	PARAMS ((rtx));
static void delete_computation		PARAMS ((rtx));
68
static void redirect_exp_1		PARAMS ((rtx *, rtx, rtx, rtx));
Jan Hubicka committed
69 70 71
static int redirect_exp			PARAMS ((rtx, rtx, rtx));
static void invert_exp_1		PARAMS ((rtx));
static int invert_exp			PARAMS ((rtx));
72 73
static int returnjump_p_1	        PARAMS ((rtx *, void *));
static void delete_prior_computation    PARAMS ((rtx, rtx));
74

75 76 77 78 79 80 81
/* Alternate entry into the jump optimizer.  This entry point only rebuilds
   the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
   instructions.  */
void
rebuild_jump_labels (f)
     rtx f;
{
82
  rtx insn;
Richard Kenner committed
83

84
  init_label_info (f);
85
  mark_all_labels (f);
Richard Kenner committed
86

87 88 89
  /* Keep track of labels used from static data; we don't track them
     closely enough to delete them here, so make sure their reference
     count doesn't drop to zero.  */
Richard Kenner committed
90 91

  for (insn = forced_labels; insn; insn = XEXP (insn, 1))
92 93
    if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
      LABEL_NUSES (XEXP (insn, 0))++;
Jan Hubicka committed
94 95
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
   non-fallthru insn.  This is not generally true, as multiple barriers
   may have crept in, or the BARRIER may be separated from the last
   real insn by one or more NOTEs.

   This simple pass moves barriers and removes duplicates so that the
   old code is happy.
 */
void
cleanup_barriers ()
{
  rtx insn, next, prev;
  for (insn = get_insns (); insn; insn = next)
    {
      next = NEXT_INSN (insn);
      if (GET_CODE (insn) == BARRIER)
	{
	  prev = prev_nonnote_insn (insn);
	  if (GET_CODE (prev) == BARRIER)
	    delete_barrier (insn);
	  else if (prev != PREV_INSN (insn))
	    reorder_insns (insn, insn, prev);
	}
    }
}

Jan Hubicka committed
122 123 124 125
void
copy_loop_headers (f)
     rtx f;
{
126
  rtx insn, next;
Richard Kenner committed
127
  /* Now iterate optimizing jumps until nothing changes over one pass.  */
Jan Hubicka committed
128
  for (insn = f; insn; insn = next)
Richard Kenner committed
129
    {
Jan Hubicka committed
130
      rtx temp, temp1;
Richard Kenner committed
131

Jan Hubicka committed
132
      next = NEXT_INSN (insn);
Jeff Law committed
133

Jan Hubicka committed
134 135 136 137 138 139 140 141 142 143 144
      /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
	 jump.  Try to optimize by duplicating the loop exit test if so.
	 This is only safe immediately after regscan, because it uses
	 the values of regno_first_uid and regno_last_uid.  */
      if (GET_CODE (insn) == NOTE
	  && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
	  && (temp1 = next_nonnote_insn (insn)) != 0
	  && any_uncondjump_p (temp1) && onlyjump_p (temp1))
	{
	  temp = PREV_INSN (insn);
	  if (duplicate_loop_exit_test (insn))
Richard Kenner committed
145
	    {
Jan Hubicka committed
146
	      next = NEXT_INSN (temp);
Richard Kenner committed
147 148 149
	    }
	}
    }
Jan Hubicka committed
150
}
Richard Kenner committed
151

Jan Hubicka committed
152 153 154 155 156 157
void
purge_line_number_notes (f)
     rtx f;
{
  rtx last_note = 0;
  rtx insn;
Richard Kenner committed
158 159 160 161 162
  /* Delete extraneous line number notes.
     Note that two consecutive notes for different lines are not really
     extraneous.  There should be some indication where that line belonged,
     even if it became empty.  */

Jan Hubicka committed
163 164 165 166 167 168 169 170 171 172 173 174 175 176
  for (insn = f; insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == NOTE)
      {
	if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
	  /* Any previous line note was for the prologue; gdb wants a new
	     note after the prologue even if it is for the same line.  */
	  last_note = NULL_RTX;
	else if (NOTE_LINE_NUMBER (insn) >= 0)
	  {
	    /* Delete this note if it is identical to previous note.  */
	    if (last_note
		&& NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
		&& NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
	      {
177
		delete_related_insns (insn);
Jan Hubicka committed
178 179
		continue;
	      }
Richard Kenner committed
180

Jan Hubicka committed
181 182 183
	    last_note = insn;
	  }
      }
184 185 186 187 188
}

/* Initialize LABEL_NUSES and JUMP_LABEL fields.  Delete any REG_LABEL
   notes whose labels don't occur in the insn any more.  Returns the
   largest INSN_UID found.  */
189
static void
190 191 192 193 194 195
init_label_info (f)
     rtx f;
{
  rtx insn;

  for (insn = f; insn; insn = NEXT_INSN (insn))
196 197 198 199 200 201 202
    if (GET_CODE (insn) == CODE_LABEL)
      LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
    else if (GET_CODE (insn) == JUMP_INSN)
      JUMP_LABEL (insn) = 0;
    else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
      {
	rtx note, next;
203

204 205 206 207 208 209 210 211
	for (note = REG_NOTES (insn); note; note = next)
	  {
	    next = XEXP (note, 1);
	    if (REG_NOTE_KIND (note) == REG_LABEL
		&& ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
	      remove_note (insn, note);
	  }
      }
212 213 214
}

/* Mark the label each jump jumps to.
Jan Hubicka committed
215
   Combine consecutive labels, and count uses of labels.  */
216 217

static void
218
mark_all_labels (f)
219 220 221 222 223
     rtx f;
{
  rtx insn;

  for (insn = f; insn; insn = NEXT_INSN (insn))
224
    if (INSN_P (insn))
225
      {
226 227 228
	if (GET_CODE (insn) == CALL_INSN
	    && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
	  {
229 230 231
	    mark_all_labels (XEXP (PATTERN (insn), 0));
	    mark_all_labels (XEXP (PATTERN (insn), 1));
	    mark_all_labels (XEXP (PATTERN (insn), 2));
232 233 234 235 236 237 238

	    /* Canonicalize the tail recursion label attached to the
	       CALL_PLACEHOLDER insn.  */
	    if (XEXP (PATTERN (insn), 3))
	      {
		rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
						   XEXP (PATTERN (insn), 3));
239
		mark_jump_label (label_ref, insn, 0);
240 241 242
		XEXP (PATTERN (insn), 3) = XEXP (label_ref, 0);
	      }

243 244
	    continue;
	  }
Kazu Hirata committed
245

246
	mark_jump_label (PATTERN (insn), insn, 0);
247 248
	if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
	  {
249 250 251 252 253 254 255 256 257 258 259 260 261
	    /* When we know the LABEL_REF contained in a REG used in
	       an indirect jump, we'll have a REG_LABEL note so that
	       flow can tell where it's going.  */
	    if (JUMP_LABEL (insn) == 0)
	      {
		rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
		if (label_note)
		  {
		    /* But a LABEL_REF around the REG_LABEL note, so
		       that we can canonicalize it.  */
		    rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
						       XEXP (label_note, 0));

262
		    mark_jump_label (label_ref, insn, 0);
263 264 265 266
		    XEXP (label_note, 0) = XEXP (label_ref, 0);
		    JUMP_LABEL (insn) = XEXP (label_note, 0);
		  }
	      }
267 268 269 270
	  }
      }
}

Richard Kenner committed
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
   jump.  Assume that this unconditional jump is to the exit test code.  If
   the code is sufficiently simple, make a copy of it before INSN,
   followed by a jump to the exit of the loop.  Then delete the unconditional
   jump after INSN.

   Return 1 if we made the change, else 0.

   This is only safe immediately after a regscan pass because it uses the
   values of regno_first_uid and regno_last_uid.  */

static int
duplicate_loop_exit_test (loop_start)
     rtx loop_start;
{
286
  rtx insn, set, reg, p, link;
287
  rtx copy = 0, first_copy = 0;
Richard Kenner committed
288 289 290 291 292
  int num_insns = 0;
  rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
  rtx lastexit;
  int max_reg = max_reg_num ();
  rtx *reg_map = 0;
293
  rtx loop_pre_header_label;
Richard Kenner committed
294 295 296 297 298 299 300

  /* Scan the exit code.  We do not perform this optimization if any insn:

         is a CALL_INSN
	 is a CODE_LABEL
	 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
	 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
301 302 303 304

     We also do not do this if we find an insn with ASM_OPERANDS.  While
     this restriction should not be necessary, copying an insn with
     ASM_OPERANDS can confuse asm_noperands in some cases.
Richard Kenner committed
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

     Also, don't do this if the exit code is more than 20 insns.  */

  for (insn = exitcode;
       insn
       && ! (GET_CODE (insn) == NOTE
	     && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
       insn = NEXT_INSN (insn))
    {
      switch (GET_CODE (insn))
	{
	case CODE_LABEL:
	case CALL_INSN:
	  return 0;
	case NOTE:
320 321 322 323 324 325 326 327 328 329

	  if (optimize < 2
	      && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
		  || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
	    /* If we were to duplicate this code, we would not move
	       the BLOCK notes, and so debugging the moved code would
	       be difficult.  Thus, we only move the code with -O2 or
	       higher.  */
	    return 0;

Richard Kenner committed
330 331 332
	  break;
	case JUMP_INSN:
	case INSN:
333 334 335 336
	  /* The code below would grossly mishandle REG_WAS_0 notes,
	     so get rid of them here.  */
	  while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
	    remove_note (insn, p);
Richard Kenner committed
337
	  if (++num_insns > 20
338
	      || find_reg_note (insn, REG_RETVAL, NULL_RTX)
339
	      || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
Richard Kenner committed
340 341
	    return 0;
	  break;
342 343
	default:
	  break;
Richard Kenner committed
344 345 346 347 348 349 350 351 352 353 354 355 356 357
	}
    }

  /* Unless INSN is zero, we can do the optimization.  */
  if (insn == 0)
    return 0;

  lastexit = insn;

  /* See if any insn sets a register only used in the loop exit code and
     not a user variable.  If so, replace it with a new register.  */
  for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == INSN
	&& (set = single_set (insn)) != 0
358 359 360 361
	&& ((reg = SET_DEST (set), GET_CODE (reg) == REG)
	    || (GET_CODE (reg) == SUBREG
		&& (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
	&& REGNO (reg) >= FIRST_PSEUDO_REGISTER
362
	&& REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
Richard Kenner committed
363 364
      {
	for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
365
	  if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
Richard Kenner committed
366 367 368 369 370 371 372
	    break;

	if (p != lastexit)
	  {
	    /* We can do the replacement.  Allocate reg_map if this is the
	       first replacement we found.  */
	    if (reg_map == 0)
373
	      reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
Richard Kenner committed
374

375
	    REG_LOOP_TEST_P (reg) = 1;
Richard Kenner committed
376

377
	    reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
Richard Kenner committed
378 379
	  }
      }
380
  loop_pre_header_label = gen_label_rtx ();
Richard Kenner committed
381 382 383

  /* Now copy each insn.  */
  for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
384 385 386 387 388 389 390 391 392 393 394 395 396 397
    {
      switch (GET_CODE (insn))
	{
	case BARRIER:
	  copy = emit_barrier_before (loop_start);
	  break;
	case NOTE:
	  /* Only copy line-number notes.  */
	  if (NOTE_LINE_NUMBER (insn) >= 0)
	    {
	      copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
	      NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
	    }
	  break;
Kazu Hirata committed
398

399
	case INSN:
400
	  copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
401 402
	  if (reg_map)
	    replace_regs (PATTERN (copy), reg_map, max_reg, 1);
Kazu Hirata committed
403

404
	  mark_jump_label (PATTERN (copy), copy, 0);
405
	  INSN_SCOPE (copy) = INSN_SCOPE (insn);
Kazu Hirata committed
406

407 408 409 410
	  /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
	     make them.  */
	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
	    if (REG_NOTE_KIND (link) != REG_LABEL)
411 412 413 414 415 416 417 418 419 420 421 422 423
	      {
		if (GET_CODE (link) == EXPR_LIST)
		  REG_NOTES (copy)
		    = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
						      XEXP (link, 0),
						      REG_NOTES (copy)));
		else
		  REG_NOTES (copy)
		    = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
						      XEXP (link, 0),
						      REG_NOTES (copy)));
	      }

424 425 426
	  if (reg_map && REG_NOTES (copy))
	    replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
	  break;
Kazu Hirata committed
427

428
	case JUMP_INSN:
Kazu Hirata committed
429 430
	  copy = emit_jump_insn_before (copy_insn (PATTERN (insn)),
					loop_start);
431
	  INSN_SCOPE (copy) = INSN_SCOPE (insn);
432 433
	  if (reg_map)
	    replace_regs (PATTERN (copy), reg_map, max_reg, 1);
434
	  mark_jump_label (PATTERN (copy), copy, 0);
435 436
	  if (REG_NOTES (insn))
	    {
437
	      REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
438 439 440
	      if (reg_map)
		replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
	    }
Kazu Hirata committed
441

Jan Hubicka committed
442 443 444 445 446 447 448 449
	  /* Predict conditional jump that do make loop looping as taken.
	     Other jumps are probably exit conditions, so predict
	     them as untaken.  */
	  if (any_condjump_p (copy))
	    {
	      rtx label = JUMP_LABEL (copy);
	      if (label)
		{
450 451 452
		  /* The jump_insn after loop_start should be followed
		     by barrier and loopback label.  */
		  if (prev_nonnote_insn (label)
453 454 455 456 457 458 459 460
		      && (prev_nonnote_insn (prev_nonnote_insn (label))
			  == next_nonnote_insn (loop_start)))
		    {
		      predict_insn_def (copy, PRED_LOOP_HEADER, TAKEN);
		      /* To keep pre-header, we need to redirect all loop
		         entrances before the LOOP_BEG note.  */
		      redirect_jump (copy, loop_pre_header_label, 0);
		    }
Jan Hubicka committed
461 462 463 464
		  else
		    predict_insn_def (copy, PRED_LOOP_HEADER, NOT_TAKEN);
		}
	    }
465
	  break;
Kazu Hirata committed
466

467 468 469
	default:
	  abort ();
	}
Richard Kenner committed
470

471 472 473 474 475
      /* Record the first insn we copied.  We need it so that we can
	 scan the copied insns for new pseudo registers.  */
      if (! first_copy)
	first_copy = copy;
    }
Richard Kenner committed
476 477 478

  /* Now clean up by emitting a jump to the end label and deleting the jump
     at the start of the loop.  */
479
  if (! copy || GET_CODE (copy) != BARRIER)
Richard Kenner committed
480 481 482
    {
      copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
				    loop_start);
483 484 485 486 487 488 489 490

      /* Record the first insn we copied.  We need it so that we can
	 scan the copied insns for new pseudo registers.   This may not
	 be strictly necessary since we should have copied at least one
	 insn above.  But I am going to be safe.  */
      if (! first_copy)
	first_copy = copy;

491
      mark_jump_label (PATTERN (copy), copy, 0);
Richard Kenner committed
492 493 494
      emit_barrier_before (loop_start);
    }

495 496
  emit_label_before (loop_pre_header_label, loop_start);

497 498 499 500 501
  /* Now scan from the first insn we copied to the last insn we copied
     (copy) for new pseudo registers.  Do this after the code to jump to
     the end label since that might create a new pseudo too.  */
  reg_scan_update (first_copy, copy, max_reg);

Richard Kenner committed
502 503 504
  /* Mark the exit code as the virtual top of the converted loop.  */
  emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);

505
  delete_related_insns (next_nonnote_insn (loop_start));
Kazu Hirata committed
506

507 508 509
  /* Clean up.  */
  if (reg_map)
    free (reg_map);
510

Richard Kenner committed
511 512 513
  return 1;
}

514
/* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
515 516
   notes between START and END out before START.  START and END may be such
   notes.  Returns the values of the new starting and ending insns, which
517 518
   may be different if the original ones were such notes.
   Return true if there were only such notes and no real instructions.  */
Richard Kenner committed
519

520
bool
521 522 523
squeeze_notes (startp, endp)
     rtx* startp;
     rtx* endp;
Richard Kenner committed
524
{
525 526 527
  rtx start = *startp;
  rtx end = *endp;

Richard Kenner committed
528 529
  rtx insn;
  rtx next;
530 531
  rtx last = NULL;
  rtx past_end = NEXT_INSN (end);
Richard Kenner committed
532

533
  for (insn = start; insn != past_end; insn = next)
Richard Kenner committed
534 535 536 537 538 539 540 541
    {
      next = NEXT_INSN (insn);
      if (GET_CODE (insn) == NOTE
	  && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
542
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
Richard Kenner committed
543
	{
Jim Wilson committed
544 545 546 547 548 549 550 551 552 553 554 555
	  if (insn == start)
	    start = next;
	  else
	    {
	      rtx prev = PREV_INSN (insn);
	      PREV_INSN (insn) = PREV_INSN (start);
	      NEXT_INSN (insn) = start;
	      NEXT_INSN (PREV_INSN (insn)) = insn;
	      PREV_INSN (NEXT_INSN (insn)) = insn;
	      NEXT_INSN (prev) = next;
	      PREV_INSN (next) = prev;
	    }
Richard Kenner committed
556
	}
557 558
      else
	last = insn;
Richard Kenner committed
559
    }
Jim Wilson committed
560

561
  /* There were no real instructions.  */
562
  if (start == past_end)
563
    return true;
564 565 566 567 568

  end = last;

  *startp = start;
  *endp = end;
569
  return false;
Richard Kenner committed
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
}

/* Return the label before INSN, or put a new label there.  */

rtx
get_label_before (insn)
     rtx insn;
{
  rtx label;

  /* Find an existing label at this point
     or make a new one if there is none.  */
  label = prev_nonnote_insn (insn);

  if (label == 0 || GET_CODE (label) != CODE_LABEL)
    {
      rtx prev = PREV_INSN (insn);

      label = gen_label_rtx ();
      emit_label_after (label, prev);
      LABEL_NUSES (label) = 0;
    }
  return label;
}

/* Return the label after INSN, or put a new label there.  */

rtx
get_label_after (insn)
     rtx insn;
{
  rtx label;

  /* Find an existing label at this point
     or make a new one if there is none.  */
  label = next_nonnote_insn (insn);

  if (label == 0 || GET_CODE (label) != CODE_LABEL)
    {
      label = gen_label_rtx ();
      emit_label_after (label, insn);
      LABEL_NUSES (label) = 0;
    }
  return label;
}

616
/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
617 618 619 620 621 622 623 624 625
   of reversed comparison if it is possible to do so.  Otherwise return UNKNOWN.
   UNKNOWN may be returned in case we are having CC_MODE compare and we don't
   know whether it's source is floating point or integer comparison.  Machine
   description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
   to help this function avoid overhead in these cases.  */
enum rtx_code
reversed_comparison_code_parts (code, arg0, arg1, insn)
     rtx insn, arg0, arg1;
     enum rtx_code code;
Richard Kenner committed
626
{
627
  enum machine_mode mode;
Richard Kenner committed
628 629

  /* If this is not actually a comparison, we can't reverse it.  */
630 631 632 633 634 635 636 637 638 639 640
  if (GET_RTX_CLASS (code) != '<')
    return UNKNOWN;

  mode = GET_MODE (arg0);
  if (mode == VOIDmode)
    mode = GET_MODE (arg1);

  /* First see if machine description supply us way to reverse the comparison.
     Give it priority over everything else to allow machine description to do
     tricks.  */
#ifdef REVERSIBLE_CC_MODE
641
  if (GET_MODE_CLASS (mode) == MODE_CC
642 643 644
      && REVERSIBLE_CC_MODE (mode))
    {
#ifdef REVERSE_CONDITION
Kazu Hirata committed
645
      return REVERSE_CONDITION (code, mode);
646
#endif
Kazu Hirata committed
647 648
      return reverse_condition (code);
    }
649
#endif
Richard Kenner committed
650

651
  /* Try a few special cases based on the comparison code.  */
652 653
  switch (code)
    {
Kazu Hirata committed
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
    case GEU:
    case GTU:
    case LEU:
    case LTU:
    case NE:
    case EQ:
      /* It is always safe to reverse EQ and NE, even for the floating
	 point.  Similary the unsigned comparisons are never used for
	 floating point so we can reverse them in the default way.  */
      return reverse_condition (code);
    case ORDERED:
    case UNORDERED:
    case LTGT:
    case UNEQ:
      /* In case we already see unordered comparison, we can be sure to
	 be dealing with floating point so we don't need any more tests.  */
      return reverse_condition_maybe_unordered (code);
    case UNLT:
    case UNLE:
    case UNGT:
    case UNGE:
      /* We don't have safe way to reverse these yet.  */
      return UNKNOWN;
    default:
      break;
679 680 681
    }

  if (GET_MODE_CLASS (mode) == MODE_CC
Richard Kenner committed
682 683 684 685 686
#ifdef HAVE_cc0
      || arg0 == cc0_rtx
#endif
      )
    {
687 688 689 690 691
      rtx prev;
      /* Try to search for the comparison to determine the real mode.
         This code is expensive, but with sane machine description it
         will be never used, since REVERSIBLE_CC_MODE will return true
         in all cases.  */
692
      if (! insn)
693
	return UNKNOWN;
Kazu Hirata committed
694

Jeff Law committed
695 696 697
      for (prev = prev_nonnote_insn (insn);
	   prev != 0 && GET_CODE (prev) != CODE_LABEL;
	   prev = prev_nonnote_insn (prev))
698 699 700 701 702 703
	{
	  rtx set = set_of (arg0, prev);
	  if (set && GET_CODE (set) == SET
	      && rtx_equal_p (SET_DEST (set), arg0))
	    {
	      rtx src = SET_SRC (set);
Richard Kenner committed
704

705 706 707 708 709 710 711 712 713
	      if (GET_CODE (src) == COMPARE)
		{
		  rtx comparison = src;
		  arg0 = XEXP (src, 0);
		  mode = GET_MODE (arg0);
		  if (mode == VOIDmode)
		    mode = GET_MODE (XEXP (comparison, 1));
		  break;
		}
714
	      /* We can get past reg-reg moves.  This may be useful for model
715 716 717 718 719 720 721 722 723 724 725 726
	         of i387 comparisons that first move flag registers around.  */
	      if (REG_P (src))
		{
		  arg0 = src;
		  continue;
		}
	    }
	  /* If register is clobbered in some ununderstandable way,
	     give up.  */
	  if (set)
	    return UNKNOWN;
	}
Richard Kenner committed
727 728
    }

729 730
  /* Test for an integer condition, or a floating-point comparison
     in which NaNs can be ignored.  */
731 732 733
  if (GET_CODE (arg0) == CONST_INT
      || (GET_MODE (arg0) != VOIDmode
	  && GET_MODE_CLASS (mode) != MODE_CC
734
	  && !HONOR_NANS (mode)))
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
    return reverse_condition (code);

  return UNKNOWN;
}

/* An wrapper around the previous function to take COMPARISON as rtx
   expression.  This simplifies many callers.  */
enum rtx_code
reversed_comparison_code (comparison, insn)
     rtx comparison, insn;
{
  if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
    return UNKNOWN;
  return reversed_comparison_code_parts (GET_CODE (comparison),
					 XEXP (comparison, 0),
					 XEXP (comparison, 1), insn);
}

753 754 755 756 757
/* Given an rtx-code for a comparison, return the code for the negated
   comparison.  If no such code exists, return UNKNOWN.

   WATCH OUT!  reverse_condition is not safe to use on a jump that might
   be acting on the results of an IEEE floating point comparison, because
Kazu Hirata committed
758
   of the special treatment of non-signaling nans in comparisons.
759
   Use reversed_comparison_code instead.  */
Richard Kenner committed
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

enum rtx_code
reverse_condition (code)
     enum rtx_code code;
{
  switch (code)
    {
    case EQ:
      return NE;
    case NE:
      return EQ;
    case GT:
      return LE;
    case GE:
      return LT;
    case LT:
      return GE;
    case LE:
      return GT;
    case GTU:
      return LEU;
    case GEU:
      return LTU;
    case LTU:
      return GEU;
    case LEU:
      return GTU;
787 788 789 790 791 792 793 794 795 796
    case UNORDERED:
      return ORDERED;
    case ORDERED:
      return UNORDERED;

    case UNLT:
    case UNLE:
    case UNGT:
    case UNGE:
    case UNEQ:
797
    case LTGT:
798
      return UNKNOWN;
Richard Kenner committed
799 800 801 802 803 804

    default:
      abort ();
    }
}

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
/* Similar, but we're allowed to generate unordered comparisons, which
   makes it safe for IEEE floating-point.  Of course, we have to recognize
   that the target will support them too...  */

enum rtx_code
reverse_condition_maybe_unordered (code)
     enum rtx_code code;
{
  switch (code)
    {
    case EQ:
      return NE;
    case NE:
      return EQ;
    case GT:
      return UNLE;
    case GE:
      return UNLT;
    case LT:
      return UNGE;
    case LE:
      return UNGT;
    case LTGT:
      return UNEQ;
    case UNORDERED:
      return ORDERED;
    case ORDERED:
      return UNORDERED;
    case UNLT:
      return GE;
    case UNLE:
      return GT;
    case UNGT:
      return LE;
    case UNGE:
      return LT;
    case UNEQ:
      return LTGT;

    default:
      abort ();
    }
}

Richard Kenner committed
849 850 851 852 853 854 855 856 857 858 859
/* Similar, but return the code when two operands of a comparison are swapped.
   This IS safe for IEEE floating-point.  */

enum rtx_code
swap_condition (code)
     enum rtx_code code;
{
  switch (code)
    {
    case EQ:
    case NE:
860 861 862
    case UNORDERED:
    case ORDERED:
    case UNEQ:
863
    case LTGT:
Richard Kenner committed
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
      return code;

    case GT:
      return LT;
    case GE:
      return LE;
    case LT:
      return GT;
    case LE:
      return GE;
    case GTU:
      return LTU;
    case GEU:
      return LEU;
    case LTU:
      return GTU;
    case LEU:
      return GEU;
882 883 884 885 886 887 888 889 890
    case UNLT:
      return UNGT;
    case UNLE:
      return UNGE;
    case UNGT:
      return UNLT;
    case UNGE:
      return UNLE;

Richard Kenner committed
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
    default:
      abort ();
    }
}

/* Given a comparison CODE, return the corresponding unsigned comparison.
   If CODE is an equality comparison or already an unsigned comparison,
   CODE is returned.  */

enum rtx_code
unsigned_condition (code)
     enum rtx_code code;
{
  switch (code)
    {
    case EQ:
    case NE:
    case GTU:
    case GEU:
    case LTU:
    case LEU:
      return code;

    case GT:
      return GTU;
    case GE:
      return GEU;
    case LT:
      return LTU;
    case LE:
      return LEU;

    default:
      abort ();
    }
}

/* Similarly, return the signed version of a comparison.  */

enum rtx_code
signed_condition (code)
     enum rtx_code code;
{
  switch (code)
    {
    case EQ:
    case NE:
    case GT:
    case GE:
    case LT:
    case LE:
      return code;

    case GTU:
      return GT;
    case GEU:
      return GE;
    case LTU:
      return LT;
    case LEU:
      return LE;

    default:
      abort ();
    }
}

958
/* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
Richard Kenner committed
959 960 961 962 963 964
   truth of CODE1 implies the truth of CODE2.  */

int
comparison_dominates_p (code1, code2)
     enum rtx_code code1, code2;
{
965 966 967 968 969 970
  /* UNKNOWN comparison codes can happen as a result of trying to revert
     comparison codes.
     They can't match anything, so we have to reject them here.  */
  if (code1 == UNKNOWN || code2 == UNKNOWN)
    return 0;

Richard Kenner committed
971 972 973 974 975
  if (code1 == code2)
    return 1;

  switch (code1)
    {
976 977 978 979 980
    case UNEQ:
      if (code2 == UNLE || code2 == UNGE)
	return 1;
      break;

Richard Kenner committed
981
    case EQ:
982 983
      if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
	  || code2 == ORDERED)
Richard Kenner committed
984 985 986
	return 1;
      break;

987 988 989 990 991
    case UNLT:
      if (code2 == UNLE || code2 == NE)
	return 1;
      break;

Richard Kenner committed
992
    case LT:
993 994 995 996 997 998
      if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
	return 1;
      break;

    case UNGT:
      if (code2 == UNGE || code2 == NE)
Richard Kenner committed
999 1000 1001 1002
	return 1;
      break;

    case GT:
1003
      if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	return 1;
      break;

    case GE:
    case LE:
      if (code2 == ORDERED)
	return 1;
      break;

    case LTGT:
      if (code2 == NE || code2 == ORDERED)
Richard Kenner committed
1015 1016 1017 1018
	return 1;
      break;

    case LTU:
1019
      if (code2 == LEU || code2 == NE)
Richard Kenner committed
1020 1021 1022 1023
	return 1;
      break;

    case GTU:
1024
      if (code2 == GEU || code2 == NE)
Richard Kenner committed
1025 1026
	return 1;
      break;
1027 1028

    case UNORDERED:
1029 1030
      if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
	  || code2 == UNGE || code2 == UNGT)
1031 1032
	return 1;
      break;
Kazu Hirata committed
1033

1034 1035
    default:
      break;
Richard Kenner committed
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
    }

  return 0;
}

/* Return 1 if INSN is an unconditional jump and nothing else.  */

int
simplejump_p (insn)
     rtx insn;
{
1047 1048 1049 1050
  return (GET_CODE (insn) == JUMP_INSN
	  && GET_CODE (PATTERN (insn)) == SET
	  && GET_CODE (SET_DEST (PATTERN (insn))) == PC
	  && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
Richard Kenner committed
1051 1052 1053
}

/* Return nonzero if INSN is a (possibly) conditional jump
Kazu Hirata committed
1054 1055
   and nothing more.

1056 1057
   Use this function is deprecated, since we need to support combined
   branch and compare insns.  Use any_condjump_p instead whenever possible.  */
Richard Kenner committed
1058 1059 1060 1061 1062

int
condjump_p (insn)
     rtx insn;
{
1063
  rtx x = PATTERN (insn);
Jeff Law committed
1064 1065 1066

  if (GET_CODE (x) != SET
      || GET_CODE (SET_DEST (x)) != PC)
Richard Kenner committed
1067
    return 0;
Jeff Law committed
1068 1069 1070

  x = SET_SRC (x);
  if (GET_CODE (x) == LABEL_REF)
1071
    return 1;
Kazu Hirata committed
1072 1073 1074 1075 1076 1077 1078 1079
  else
    return (GET_CODE (x) == IF_THEN_ELSE
	    && ((GET_CODE (XEXP (x, 2)) == PC
		 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
		     || GET_CODE (XEXP (x, 1)) == RETURN))
		|| (GET_CODE (XEXP (x, 1)) == PC
		    && (GET_CODE (XEXP (x, 2)) == LABEL_REF
			|| GET_CODE (XEXP (x, 2)) == RETURN))));
Jeff Law committed
1080

1081 1082 1083
  return 0;
}

Jeff Law committed
1084
/* Return nonzero if INSN is a (possibly) conditional jump inside a
1085
   PARALLEL.
Kazu Hirata committed
1086

1087 1088
   Use this function is deprecated, since we need to support combined
   branch and compare insns.  Use any_condjump_p instead whenever possible.  */
1089 1090 1091 1092 1093

int
condjump_in_parallel_p (insn)
     rtx insn;
{
1094
  rtx x = PATTERN (insn);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

  if (GET_CODE (x) != PARALLEL)
    return 0;
  else
    x = XVECEXP (x, 0, 0);

  if (GET_CODE (x) != SET)
    return 0;
  if (GET_CODE (SET_DEST (x)) != PC)
    return 0;
  if (GET_CODE (SET_SRC (x)) == LABEL_REF)
    return 1;
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
    return 0;
  if (XEXP (SET_SRC (x), 2) == pc_rtx
Richard Kenner committed
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
      && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
	  || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
    return 1;
  if (XEXP (SET_SRC (x), 1) == pc_rtx
      && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
	  || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
    return 1;
  return 0;
}

1120 1121
/* Return set of PC, otherwise NULL.  */

1122 1123 1124 1125 1126 1127
rtx
pc_set (insn)
     rtx insn;
{
  rtx pat;
  if (GET_CODE (insn) != JUMP_INSN)
1128
    return NULL_RTX;
1129
  pat = PATTERN (insn);
1130 1131 1132 1133 1134

  /* The set is allowed to appear either as the insn pattern or
     the first set in a PARALLEL.  */
  if (GET_CODE (pat) == PARALLEL)
    pat = XVECEXP (pat, 0, 0);
1135 1136
  if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
    return pat;
1137 1138

  return NULL_RTX;
1139 1140
}

1141 1142 1143
/* Return true when insn is an unconditional direct jump,
   possibly bundled inside a PARALLEL.  */

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
int
any_uncondjump_p (insn)
     rtx insn;
{
  rtx x = pc_set (insn);
  if (!x)
    return 0;
  if (GET_CODE (SET_SRC (x)) != LABEL_REF)
    return 0;
  return 1;
}

1156
/* Return true when insn is a conditional jump.  This function works for
1157 1158
   instructions containing PC sets in PARALLELs.  The instruction may have
   various other effects so before removing the jump you must verify
1159
   onlyjump_p.
1160

1161 1162
   Note that unlike condjump_p it returns false for unconditional jumps.  */

1163 1164 1165 1166 1167
int
any_condjump_p (insn)
     rtx insn;
{
  rtx x = pc_set (insn);
1168 1169
  enum rtx_code a, b;

1170 1171
  if (!x)
    return 0;
1172 1173
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
    return 0;
1174

1175 1176
  a = GET_CODE (XEXP (SET_SRC (x), 1));
  b = GET_CODE (XEXP (SET_SRC (x), 2));
1177

1178
  return ((b == PC && (a == LABEL_REF || a == RETURN))
Kazu Hirata committed
1179
	  || (a == PC && (b == LABEL_REF || b == RETURN)));
1180 1181
}

1182 1183 1184 1185 1186 1187
/* Return the label of a conditional jump.  */

rtx
condjump_label (insn)
     rtx insn;
{
1188
  rtx x = pc_set (insn);
1189

1190
  if (!x)
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    return NULL_RTX;
  x = SET_SRC (x);
  if (GET_CODE (x) == LABEL_REF)
    return x;
  if (GET_CODE (x) != IF_THEN_ELSE)
    return NULL_RTX;
  if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
    return XEXP (x, 1);
  if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
    return XEXP (x, 2);
  return NULL_RTX;
}

1204 1205 1206 1207 1208 1209 1210 1211
/* Return true if INSN is a (possibly conditional) return insn.  */

static int
returnjump_p_1 (loc, data)
     rtx *loc;
     void *data ATTRIBUTE_UNUSED;
{
  rtx x = *loc;
1212 1213 1214

  return x && (GET_CODE (x) == RETURN
	       || (GET_CODE (x) == SET && SET_IS_RETURN_P (x)));
1215 1216 1217 1218 1219 1220
}

int
returnjump_p (insn)
     rtx insn;
{
1221 1222
  if (GET_CODE (insn) != JUMP_INSN)
    return 0;
1223 1224 1225
  return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
/* Return true if INSN is a jump that only transfers control and
   nothing more.  */

int
onlyjump_p (insn)
     rtx insn;
{
  rtx set;

  if (GET_CODE (insn) != JUMP_INSN)
    return 0;

  set = single_set (insn);
  if (set == NULL)
    return 0;
  if (GET_CODE (SET_DEST (set)) != PC)
    return 0;
  if (side_effects_p (SET_SRC (set)))
    return 0;

  return 1;
}

1249 1250
#ifdef HAVE_cc0

1251
/* Return nonzero if X is an RTX that only sets the condition codes
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
   and has no side effects.  */

int
only_sets_cc0_p (x)
     rtx x;
{

  if (! x)
    return 0;

  if (INSN_P (x))
    x = PATTERN (x);

  return sets_cc0_p (x) == 1 && ! side_effects_p (x);
}

Richard Kenner committed
1268 1269 1270 1271 1272 1273 1274
/* Return 1 if X is an RTX that does nothing but set the condition codes
   and CLOBBER or USE registers.
   Return -1 if X does explicitly set the condition codes,
   but also does other things.  */

int
sets_cc0_p (x)
1275
     rtx x;
Richard Kenner committed
1276
{
1277 1278 1279 1280 1281 1282 1283

  if (! x)
    return 0;

  if (INSN_P (x))
    x = PATTERN (x);

Richard Kenner committed
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
  if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
    return 1;
  if (GET_CODE (x) == PARALLEL)
    {
      int i;
      int sets_cc0 = 0;
      int other_things = 0;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  if (GET_CODE (XVECEXP (x, 0, i)) == SET
	      && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
	    sets_cc0 = 1;
	  else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
	    other_things = 1;
	}
      return ! sets_cc0 ? 0 : other_things ? -1 : 1;
    }
  return 0;
}
1303
#endif
Richard Kenner committed
1304 1305 1306 1307

/* Follow any unconditional jump at LABEL;
   return the ultimate label reached by any such chain of jumps.
   If LABEL is not followed by a jump, return LABEL.
1308 1309
   If the chain loops or we can't find end, return LABEL,
   since that tells caller to avoid changing the insn.
Richard Kenner committed
1310 1311 1312 1313 1314 1315 1316 1317

   If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
   a USE or CLOBBER.  */

rtx
follow_jumps (label)
     rtx label;
{
1318 1319 1320 1321
  rtx insn;
  rtx next;
  rtx value = label;
  int depth;
Richard Kenner committed
1322 1323 1324 1325 1326

  for (depth = 0;
       (depth < 10
	&& (insn = next_active_insn (value)) != 0
	&& GET_CODE (insn) == JUMP_INSN
Jan Hubicka committed
1327 1328
	&& ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
	     && onlyjump_p (insn))
1329
	    || GET_CODE (PATTERN (insn)) == RETURN)
Richard Kenner committed
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	&& (next = NEXT_INSN (insn))
	&& GET_CODE (next) == BARRIER);
       depth++)
    {
      /* Don't chain through the insn that jumps into a loop
	 from outside the loop,
	 since that would create multiple loop entry jumps
	 and prevent loop optimization.  */
      rtx tem;
      if (!reload_completed)
	for (tem = value; tem != insn; tem = NEXT_INSN (tem))
	  if (GET_CODE (tem) == NOTE
1342 1343 1344 1345
	      && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
		  /* ??? Optional.  Disables some optimizations, but makes
		     gcov output more accurate with -O.  */
		  || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
Richard Kenner committed
1346 1347 1348 1349
	    return value;

      /* If we have found a cycle, make the insn jump to itself.  */
      if (JUMP_LABEL (insn) == label)
1350
	return label;
1351 1352 1353 1354 1355 1356

      tem = next_active_insn (JUMP_LABEL (insn));
      if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
		  || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
	break;

Richard Kenner committed
1357 1358
      value = JUMP_LABEL (insn);
    }
1359 1360
  if (depth == 10)
    return label;
Richard Kenner committed
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
  return value;
}


/* Find all CODE_LABELs referred to in X, and increment their use counts.
   If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
   in INSN, then store one of them in JUMP_LABEL (INSN).
   If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
   referenced in INSN, add a REG_LABEL note containing that label to INSN.
   Also, when there are consecutive labels, canonicalize on the last of them.

   Note that two labels separated by a loop-beginning note
   must be kept distinct if we have not yet done loop-optimization,
   because the gap between them is where loop-optimize
   will want to move invariant code to.  CROSS_JUMP tells us
1376
   that loop-optimization is done with.  */
Richard Kenner committed
1377

1378
void
1379
mark_jump_label (x, insn, in_mem)
1380
     rtx x;
Richard Kenner committed
1381
     rtx insn;
1382
     int in_mem;
Richard Kenner committed
1383
{
1384 1385 1386
  RTX_CODE code = GET_CODE (x);
  int i;
  const char *fmt;
Richard Kenner committed
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

  switch (code)
    {
    case PC:
    case CC0:
    case REG:
    case CONST_INT:
    case CONST_DOUBLE:
    case CLOBBER:
    case CALL:
      return;

1399
    case MEM:
1400 1401 1402 1403 1404
      in_mem = 1;
      break;

    case SYMBOL_REF:
      if (!in_mem)
Kazu Hirata committed
1405
	return;
1406

1407
      /* If this is a constant-pool reference, see if it is a label.  */
1408
      if (CONSTANT_POOL_ADDRESS_P (x))
1409
	mark_jump_label (get_pool_constant (x), insn, in_mem);
1410 1411
      break;

Richard Kenner committed
1412 1413
    case LABEL_REF:
      {
1414 1415
	rtx label = XEXP (x, 0);

1416 1417
	/* Ignore remaining references to unreachable labels that
	   have been deleted.  */
Kazu Hirata committed
1418
	if (GET_CODE (label) == NOTE
1419 1420 1421
	    && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
	  break;

Richard Kenner committed
1422 1423
	if (GET_CODE (label) != CODE_LABEL)
	  abort ();
1424

Richard Stallman committed
1425 1426 1427
	/* Ignore references to labels of containing functions.  */
	if (LABEL_REF_NONLOCAL_P (x))
	  break;
1428

Richard Kenner committed
1429
	XEXP (x, 0) = label;
1430 1431
	if (! insn || ! INSN_DELETED_P (insn))
	  ++LABEL_NUSES (label);
1432

Richard Kenner committed
1433 1434 1435 1436
	if (insn)
	  {
	    if (GET_CODE (insn) == JUMP_INSN)
	      JUMP_LABEL (insn) = label;
1437
	    else
1438
	      {
1439 1440 1441 1442 1443
		/* Add a REG_LABEL note for LABEL unless there already
		   is one.  All uses of a label, except for labels
		   that are the targets of jumps, must have a
		   REG_LABEL note.  */
		if (! find_reg_note (insn, REG_LABEL, label))
1444
		  REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
1445
							REG_NOTES (insn));
Richard Kenner committed
1446 1447 1448 1449 1450 1451 1452 1453 1454
	      }
	  }
	return;
      }

  /* Do walk the labels in a vector, but not the first operand of an
     ADDR_DIFF_VEC.  Don't set the JUMP_LABEL of a vector.  */
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
1455 1456 1457
      if (! INSN_DELETED_P (insn))
	{
	  int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
Richard Kenner committed
1458

1459
	  for (i = 0; i < XVECLEN (x, eltnum); i++)
1460
	    mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, in_mem);
1461
	}
1462
      return;
Kazu Hirata committed
1463

1464 1465
    default:
      break;
Richard Kenner committed
1466 1467 1468 1469 1470 1471
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
1472
	mark_jump_label (XEXP (x, i), insn, in_mem);
Richard Kenner committed
1473 1474
      else if (fmt[i] == 'E')
	{
1475
	  int j;
Richard Kenner committed
1476
	  for (j = 0; j < XVECLEN (x, i); j++)
1477
	    mark_jump_label (XVECEXP (x, i, j), insn, in_mem);
Richard Kenner committed
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	}
    }
}

/* If all INSN does is set the pc, delete it,
   and delete the insn that set the condition codes for it
   if that's what the previous thing was.  */

void
delete_jump (insn)
     rtx insn;
{
1490
  rtx set = single_set (insn);
1491 1492 1493 1494 1495

  if (set && GET_CODE (SET_DEST (set)) == PC)
    delete_computation (insn);
}

Richard Kenner committed
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
/* Verify INSN is a BARRIER and delete it.  */

void
delete_barrier (insn)
     rtx insn;
{
  if (GET_CODE (insn) != BARRIER)
    abort ();

  delete_insn (insn);
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
/* Recursively delete prior insns that compute the value (used only by INSN
   which the caller is deleting) stored in the register mentioned by NOTE
   which is a REG_DEAD note associated with INSN.  */

static void
delete_prior_computation (note, insn)
     rtx note;
     rtx insn;
{
  rtx our_prev;
  rtx reg = XEXP (note, 0);

  for (our_prev = prev_nonnote_insn (insn);
1521 1522
       our_prev && (GET_CODE (our_prev) == INSN
		    || GET_CODE (our_prev) == CALL_INSN);
1523 1524 1525 1526
       our_prev = prev_nonnote_insn (our_prev))
    {
      rtx pat = PATTERN (our_prev);

1527 1528 1529
      /* If we reach a CALL which is not calling a const function
	 or the callee pops the arguments, then give up.  */
      if (GET_CODE (our_prev) == CALL_INSN
1530
	  && (! CONST_OR_PURE_CALL_P (our_prev)
1531 1532 1533
	      || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
	break;

1534
      /* If we reach a SEQUENCE, it is too complex to try to
1535 1536 1537
	 do anything with it, so give up.  We can be run during
	 and after reorg, so SEQUENCE rtl can legitimately show
	 up here.  */
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
      if (GET_CODE (pat) == SEQUENCE)
	break;

      if (GET_CODE (pat) == USE
	  && GET_CODE (XEXP (pat, 0)) == INSN)
	/* reorg creates USEs that look like this.  We leave them
	   alone because reorg needs them for its own purposes.  */
	break;

      if (reg_set_p (reg, pat))
	{
1549
	  if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	    break;

	  if (GET_CODE (pat) == PARALLEL)
	    {
	      /* If we find a SET of something else, we can't
		 delete the insn.  */

	      int i;

	      for (i = 0; i < XVECLEN (pat, 0); i++)
		{
		  rtx part = XVECEXP (pat, 0, i);

		  if (GET_CODE (part) == SET
		      && SET_DEST (part) != reg)
		    break;
		}

	      if (i == XVECLEN (pat, 0))
		delete_computation (our_prev);
	    }
	  else if (GET_CODE (pat) == SET
		   && GET_CODE (SET_DEST (pat)) == REG)
	    {
	      int dest_regno = REGNO (SET_DEST (pat));
	      int dest_endregno
Kazu Hirata committed
1576 1577
		= (dest_regno
		   + (dest_regno < FIRST_PSEUDO_REGISTER
1578
		      ? HARD_REGNO_NREGS (dest_regno,
Kazu Hirata committed
1579
					  GET_MODE (SET_DEST (pat))) : 1));
1580
	      int regno = REGNO (reg);
Kazu Hirata committed
1581 1582 1583 1584
	      int endregno
		= (regno
		   + (regno < FIRST_PSEUDO_REGISTER
		      ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1));
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

	      if (dest_regno >= regno
		  && dest_endregno <= endregno)
		delete_computation (our_prev);

	      /* We may have a multi-word hard register and some, but not
		 all, of the words of the register are needed in subsequent
		 insns.  Write REG_UNUSED notes for those parts that were not
		 needed.  */
	      else if (dest_regno <= regno
1595
		       && dest_endregno >= endregno)
1596 1597 1598 1599
		{
		  int i;

		  REG_NOTES (our_prev)
Kazu Hirata committed
1600 1601
		    = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
					 REG_NOTES (our_prev));
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

		  for (i = dest_regno; i < dest_endregno; i++)
		    if (! find_regno_note (our_prev, REG_UNUSED, i))
		      break;

		  if (i == dest_endregno)
		    delete_computation (our_prev);
		}
	    }

	  break;
	}

      /* If PAT references the register that dies here, it is an
	 additional use.  Hence any prior SET isn't dead.  However, this
	 insn becomes the new place for the REG_DEAD note.  */
      if (reg_overlap_mentioned_p (reg, pat))
	{
	  XEXP (note, 1) = REG_NOTES (our_prev);
	  REG_NOTES (our_prev) = note;
	  break;
	}
    }
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
/* Delete INSN and recursively delete insns that compute values used only
   by INSN.  This uses the REG_DEAD notes computed during flow analysis.
   If we are running before flow.c, we need do nothing since flow.c will
   delete dead code.  We also can't know if the registers being used are
   dead or not at this point.

   Otherwise, look at all our REG_DEAD notes.  If a previous insn does
   nothing other than set a register that dies in this insn, we can delete
   that insn as well.

   On machines with CC0, if CC0 is used in this insn, we may be able to
   delete the insn that set it.  */

1640
static void
1641 1642 1643 1644
delete_computation (insn)
     rtx insn;
{
  rtx note, next;
Richard Kenner committed
1645 1646

#ifdef HAVE_cc0
1647
  if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
1648
    {
1649
      rtx prev = prev_nonnote_insn (insn);
Richard Kenner committed
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
      /* We assume that at this stage
	 CC's are always set explicitly
	 and always immediately before the jump that
	 will use them.  So if the previous insn
	 exists to set the CC's, delete it
	 (unless it performs auto-increments, etc.).  */
      if (prev && GET_CODE (prev) == INSN
	  && sets_cc0_p (PATTERN (prev)))
	{
	  if (sets_cc0_p (PATTERN (prev)) > 0
1660
	      && ! side_effects_p (PATTERN (prev)))
1661
	    delete_computation (prev);
Richard Kenner committed
1662 1663
	  else
	    /* Otherwise, show that cc0 won't be used.  */
1664 1665
	    REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
						  cc0_rtx, REG_NOTES (prev));
Richard Kenner committed
1666
	}
1667
    }
1668
#endif
Richard Kenner committed
1669

1670 1671 1672
  for (note = REG_NOTES (insn); note; note = next)
    {
      next = XEXP (note, 1);
Richard Kenner committed
1673

1674 1675 1676 1677
      if (REG_NOTE_KIND (note) != REG_DEAD
	  /* Verify that the REG_NOTE is legitimate.  */
	  || GET_CODE (XEXP (note, 0)) != REG)
	continue;
Richard Kenner committed
1678

1679
      delete_prior_computation (note, insn);
Richard Kenner committed
1680
    }
1681

1682
  delete_related_insns (insn);
Richard Kenner committed
1683 1684
}

1685 1686 1687 1688
/* Delete insn INSN from the chain of insns and update label ref counts
   and delete insns now unreachable. 

   Returns the first insn after INSN that was not deleted. 
Richard Kenner committed
1689

1690 1691
   Usage of this instruction is deprecated.  Use delete_insn instead and
   subsequent cfg_cleanup pass to delete unreachable code if needed.  */
Richard Kenner committed
1692 1693

rtx
1694
delete_related_insns (insn)
1695
     rtx insn;
Richard Kenner committed
1696
{
1697
  int was_code_label = (GET_CODE (insn) == CODE_LABEL);
1698
  rtx note;
1699
  rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
Richard Kenner committed
1700 1701 1702 1703 1704 1705 1706 1707

  while (next && INSN_DELETED_P (next))
    next = NEXT_INSN (next);

  /* This insn is already deleted => return first following nondeleted.  */
  if (INSN_DELETED_P (insn))
    return next;

1708
  delete_insn (insn);
Richard Kenner committed
1709 1710 1711 1712 1713

  /* If instruction is followed by a barrier,
     delete the barrier too.  */

  if (next != 0 && GET_CODE (next) == BARRIER)
1714
    delete_insn (next);
Richard Kenner committed
1715 1716 1717 1718 1719

  /* If deleting a jump, decrement the count of the label,
     and delete the label if it is now unused.  */

  if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
1720 1721 1722
    {
      rtx lab = JUMP_LABEL (insn), lab_next;

1723
      if (LABEL_NUSES (lab) == 0)
1724 1725 1726 1727
	{
	  /* This can delete NEXT or PREV,
	     either directly if NEXT is JUMP_LABEL (INSN),
	     or indirectly through more levels of jumps.  */
1728
	  delete_related_insns (lab);
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

	  /* I feel a little doubtful about this loop,
	     but I see no clean and sure alternative way
	     to find the first insn after INSN that is not now deleted.
	     I hope this works.  */
	  while (next && INSN_DELETED_P (next))
	    next = NEXT_INSN (next);
	  return next;
	}
      else if ((lab_next = next_nonnote_insn (lab)) != NULL
	       && GET_CODE (lab_next) == JUMP_INSN
	       && (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
		   || GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
	{
	  /* If we're deleting the tablejump, delete the dispatch table.
1744
	     We may not be able to kill the label immediately preceding
1745 1746
	     just yet, as it might be referenced in code leading up to
	     the tablejump.  */
1747
	  delete_related_insns (lab_next);
1748 1749
	}
    }
Richard Kenner committed
1750

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
  /* Likewise if we're deleting a dispatch table.  */

  if (GET_CODE (insn) == JUMP_INSN
      && (GET_CODE (PATTERN (insn)) == ADDR_VEC
	  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
    {
      rtx pat = PATTERN (insn);
      int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
      int len = XVECLEN (pat, diff_vec_p);

      for (i = 0; i < len; i++)
1762 1763
	if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
	  delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1764 1765 1766 1767 1768
      while (next && INSN_DELETED_P (next))
	next = NEXT_INSN (next);
      return next;
    }

1769 1770 1771
  /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note.  */
  if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
    for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1772 1773 1774
      if (REG_NOTE_KIND (note) == REG_LABEL
	  /* This could also be a NOTE_INSN_DELETED_LABEL note.  */
	  && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
1775 1776
	if (LABEL_NUSES (XEXP (note, 0)) == 0)
	  delete_related_insns (XEXP (note, 0));
1777

Richard Kenner committed
1778 1779 1780 1781 1782 1783 1784
  while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
    prev = PREV_INSN (prev);

  /* If INSN was a label and a dispatch table follows it,
     delete the dispatch table.  The tablejump must have gone already.
     It isn't useful to fall through into a table.  */

1785
  if (was_code_label
Richard Kenner committed
1786 1787 1788 1789
      && NEXT_INSN (insn) != 0
      && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
      && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
	  || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
1790
    next = delete_related_insns (NEXT_INSN (insn));
Richard Kenner committed
1791 1792 1793

  /* If INSN was a label, delete insns following it if now unreachable.  */

1794
  if (was_code_label && prev && GET_CODE (prev) == BARRIER)
Richard Kenner committed
1795
    {
1796
      RTX_CODE code;
Richard Kenner committed
1797
      while (next != 0
1798
	     && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
1799
		 || code == NOTE || code == BARRIER
1800
		 || (code == CODE_LABEL && INSN_DELETED_P (next))))
Richard Kenner committed
1801 1802 1803 1804
	{
	  if (code == NOTE
	      && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
	    next = NEXT_INSN (next);
1805 1806 1807
	  /* Keep going past other deleted labels to delete what follows.  */
	  else if (code == CODE_LABEL && INSN_DELETED_P (next))
	    next = NEXT_INSN (next);
Richard Kenner committed
1808 1809 1810 1811 1812
	  else
	    /* Note: if this deletes a jump, it can cause more
	       deletion of unreachable code, after a different label.
	       As long as the value from this recursive call is correct,
	       this invocation functions correctly.  */
1813
	    next = delete_related_insns (next);
Richard Kenner committed
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	}
    }

  return next;
}

/* Advance from INSN till reaching something not deleted
   then return that.  May return INSN itself.  */

rtx
next_nondeleted_insn (insn)
     rtx insn;
{
  while (INSN_DELETED_P (insn))
    insn = NEXT_INSN (insn);
  return insn;
}

/* Delete a range of insns from FROM to TO, inclusive.
   This is for the sake of peephole optimization, so assume
   that whatever these insns do will still be done by a new
   peephole insn that will replace them.  */

void
delete_for_peephole (from, to)
1839
     rtx from, to;
Richard Kenner committed
1840
{
1841
  rtx insn = from;
Richard Kenner committed
1842 1843 1844

  while (1)
    {
1845 1846
      rtx next = NEXT_INSN (insn);
      rtx prev = PREV_INSN (insn);
Richard Kenner committed
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

      if (GET_CODE (insn) != NOTE)
	{
	  INSN_DELETED_P (insn) = 1;

	  /* Patch this insn out of the chain.  */
	  /* We don't do this all at once, because we
	     must preserve all NOTEs.  */
	  if (prev)
	    NEXT_INSN (prev) = next;

	  if (next)
	    PREV_INSN (next) = prev;
	}

      if (insn == to)
	break;
      insn = next;
    }

  /* Note that if TO is an unconditional jump
     we *do not* delete the BARRIER that follows,
     since the peephole that replaces this sequence
     is also an unconditional jump in that case.  */
}

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
/* We have determined that INSN is never reached, and are about to
   delete it.  Print a warning if the user asked for one.

   To try to make this warning more useful, this should only be called
   once per basic block not reached, and it only warns when the basic
   block contains more than one line from the current function, and
   contains at least one operation.  CSE and inlining can duplicate insns,
   so it's possible to get spurious warnings from this.  */

void
1883 1884
never_reached_warning (avoided_insn, finish)
     rtx avoided_insn, finish;
1885 1886 1887
{
  rtx insn;
  rtx a_line_note = NULL;
1888
  int two_avoided_lines = 0, contains_insn = 0, reached_end = 0;
Kazu Hirata committed
1889

1890 1891 1892 1893 1894
  if (! warn_notreached)
    return;

  /* Scan forwards, looking at LINE_NUMBER notes, until
     we hit a LABEL or we run out of insns.  */
Kazu Hirata committed
1895

1896 1897
  for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
    {
1898
      if (finish == NULL && GET_CODE (insn) == CODE_LABEL)
Kazu Hirata committed
1899
	break;
1900 1901 1902

      if (GET_CODE (insn) == NOTE		/* A line number note?  */
	  && NOTE_LINE_NUMBER (insn) >= 0)
1903 1904 1905 1906 1907 1908 1909
	{
	  if (a_line_note == NULL)
	    a_line_note = insn;
	  else
	    two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
				  != NOTE_LINE_NUMBER (insn));
	}
1910
      else if (INSN_P (insn))
1911
	{
1912
	  if (reached_end || a_line_note == NULL)
1913 1914 1915 1916 1917 1918
	    break;
	  contains_insn = 1;
	}

      if (insn == finish)
	reached_end = 1;
1919 1920 1921 1922 1923 1924 1925
    }
  if (two_avoided_lines && contains_insn)
    warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
				NOTE_LINE_NUMBER (a_line_note),
				"will never be executed");
}

1926 1927
/* Throughout LOC, redirect OLABEL to NLABEL.  Treat null OLABEL or
   NLABEL as a return.  Accrue modifications into the change group.  */
Richard Kenner committed
1928

1929 1930 1931 1932
static void
redirect_exp_1 (loc, olabel, nlabel, insn)
     rtx *loc;
     rtx olabel, nlabel;
Richard Kenner committed
1933 1934
     rtx insn;
{
1935 1936 1937 1938
  rtx x = *loc;
  RTX_CODE code = GET_CODE (x);
  int i;
  const char *fmt;
Richard Kenner committed
1939

1940
  if (code == LABEL_REF)
Richard Kenner committed
1941
    {
1942 1943 1944 1945 1946 1947
      if (XEXP (x, 0) == olabel)
	{
	  rtx n;
	  if (nlabel)
	    n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
	  else
Kazu Hirata committed
1948
	    n = gen_rtx_RETURN (VOIDmode);
Richard Kenner committed
1949

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	  validate_change (insn, loc, n, 1);
	  return;
	}
    }
  else if (code == RETURN && olabel == 0)
    {
      x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
      if (loc == &PATTERN (insn))
	x = gen_rtx_SET (VOIDmode, pc_rtx, x);
      validate_change (insn, loc, x, 1);
      return;
    }
Richard Kenner committed
1962

1963 1964 1965 1966 1967 1968
  if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
      && GET_CODE (SET_SRC (x)) == LABEL_REF
      && XEXP (SET_SRC (x), 0) == olabel)
    {
      validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
      return;
Richard Kenner committed
1969 1970 1971 1972 1973 1974
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
1975
	redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1976
      else if (fmt[i] == 'E')
Richard Kenner committed
1977
	{
1978
	  int j;
Richard Kenner committed
1979
	  for (j = 0; j < XVECLEN (x, i); j++)
1980
	    redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
Richard Kenner committed
1981 1982
	}
    }
1983
}
Richard Kenner committed
1984

1985 1986
/* Similar, but apply the change group and report success or failure.  */

Jan Hubicka committed
1987 1988
static int
redirect_exp (olabel, nlabel, insn)
1989 1990 1991
     rtx olabel, nlabel;
     rtx insn;
{
Jan Hubicka committed
1992 1993 1994 1995 1996 1997 1998
  rtx *loc;

  if (GET_CODE (PATTERN (insn)) == PARALLEL)
    loc = &XVECEXP (PATTERN (insn), 0, 0);
  else
    loc = &PATTERN (insn);

1999 2000 2001 2002 2003
  redirect_exp_1 (loc, olabel, nlabel, insn);
  if (num_validated_changes () == 0)
    return 0;

  return apply_change_group ();
Richard Kenner committed
2004
}
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

/* Make JUMP go to NLABEL instead of where it jumps now.  Accrue
   the modifications into the change group.  Return false if we did
   not see how to do that.  */

int
redirect_jump_1 (jump, nlabel)
     rtx jump, nlabel;
{
  int ochanges = num_validated_changes ();
Jan Hubicka committed
2015 2016 2017 2018 2019 2020 2021 2022
  rtx *loc;

  if (GET_CODE (PATTERN (jump)) == PARALLEL)
    loc = &XVECEXP (PATTERN (jump), 0, 0);
  else
    loc = &PATTERN (jump);

  redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
2023 2024 2025 2026 2027 2028
  return num_validated_changes () > ochanges;
}

/* Make JUMP go to NLABEL instead of where it jumps now.  If the old
   jump target label is unused as a result, it and the code following
   it may be deleted.
Richard Kenner committed
2029 2030 2031 2032

   If NLABEL is zero, we are to turn the jump into a (possibly conditional)
   RETURN insn.

2033 2034
   The return value will be 1 if the change was made, 0 if it wasn't
   (this can only occur for NLABEL == 0).  */
Richard Kenner committed
2035 2036

int
2037
redirect_jump (jump, nlabel, delete_unused)
Richard Kenner committed
2038
     rtx jump, nlabel;
2039
     int delete_unused;
Richard Kenner committed
2040
{
2041
  rtx olabel = JUMP_LABEL (jump);
Richard Kenner committed
2042 2043 2044 2045

  if (nlabel == olabel)
    return 1;

Jan Hubicka committed
2046
  if (! redirect_exp (olabel, nlabel, jump))
Richard Kenner committed
2047 2048 2049 2050 2051 2052
    return 0;

  JUMP_LABEL (jump) = nlabel;
  if (nlabel)
    ++LABEL_NUSES (nlabel);

2053 2054
  /* If we're eliding the jump over exception cleanups at the end of a
     function, move the function end note so that -Wreturn-type works.  */
2055 2056
  if (olabel && nlabel
      && NEXT_INSN (olabel)
2057 2058 2059 2060
      && GET_CODE (NEXT_INSN (olabel)) == NOTE
      && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
    emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);

2061 2062 2063
  if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused
      /* Undefined labels will remain outside the insn stream.  */
      && INSN_UID (olabel))
2064
    delete_related_insns (olabel);
Richard Kenner committed
2065 2066 2067 2068

  return 1;
}

Kazu Hirata committed
2069
/* Invert the jump condition of rtx X contained in jump insn, INSN.
2070 2071 2072
   Accrue the modifications into the change group.  */

static void
Jan Hubicka committed
2073
invert_exp_1 (insn)
2074 2075
     rtx insn;
{
2076
  RTX_CODE code;
Jan Hubicka committed
2077 2078 2079
  rtx x = pc_set (insn);

  if (!x)
Kazu Hirata committed
2080
    abort ();
Jan Hubicka committed
2081
  x = SET_SRC (x);
2082 2083 2084 2085 2086

  code = GET_CODE (x);

  if (code == IF_THEN_ELSE)
    {
2087 2088
      rtx comp = XEXP (x, 0);
      rtx tem;
2089
      enum rtx_code reversed_code;
2090 2091 2092 2093 2094 2095

      /* We can do this in two ways:  The preferable way, which can only
	 be done if this is not an integer comparison, is to reverse
	 the comparison code.  Otherwise, swap the THEN-part and ELSE-part
	 of the IF_THEN_ELSE.  If we can't do either, fail.  */

2096 2097 2098
      reversed_code = reversed_comparison_code (comp, insn);

      if (reversed_code != UNKNOWN)
2099 2100
	{
	  validate_change (insn, &XEXP (x, 0),
2101
			   gen_rtx_fmt_ee (reversed_code,
2102 2103 2104 2105 2106
					   GET_MODE (comp), XEXP (comp, 0),
					   XEXP (comp, 1)),
			   1);
	  return;
	}
Kazu Hirata committed
2107

2108 2109 2110 2111
      tem = XEXP (x, 1);
      validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
      validate_change (insn, &XEXP (x, 2), tem, 1);
    }
Jan Hubicka committed
2112 2113
  else
    abort ();
2114 2115
}

Kazu Hirata committed
2116
/* Invert the jump condition of conditional jump insn, INSN.
2117 2118 2119 2120

   Return 1 if we can do so, 0 if we cannot find a way to do so that
   matches a pattern.  */

Jan Hubicka committed
2121 2122
static int
invert_exp (insn)
2123 2124
     rtx insn;
{
Jan Hubicka committed
2125
  invert_exp_1 (insn);
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
  if (num_validated_changes () == 0)
    return 0;

  return apply_change_group ();
}

/* Invert the condition of the jump JUMP, and make it jump to label
   NLABEL instead of where it jumps now.  Accrue changes into the
   change group.  Return false if we didn't see how to perform the
   inversion and redirection.  */

int
invert_jump_1 (jump, nlabel)
     rtx jump, nlabel;
{
  int ochanges;

  ochanges = num_validated_changes ();
Jan Hubicka committed
2144
  invert_exp_1 (jump);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
  if (num_validated_changes () == ochanges)
    return 0;

  return redirect_jump_1 (jump, nlabel);
}

/* Invert the condition of the jump JUMP, and make it jump to label
   NLABEL instead of where it jumps now.  Return true if successful.  */

int
2155
invert_jump (jump, nlabel, delete_unused)
2156
     rtx jump, nlabel;
2157
     int delete_unused;
2158 2159 2160 2161 2162 2163
{
  /* We have to either invert the condition and change the label or
     do neither.  Either operation could fail.  We first try to invert
     the jump. If that succeeds, we try changing the label.  If that fails,
     we invert the jump back to what it was.  */

Jan Hubicka committed
2164
  if (! invert_exp (jump))
2165 2166
    return 0;

2167
  if (redirect_jump (jump, nlabel, delete_unused))
2168
    {
Jan Hubicka committed
2169
      invert_br_probabilities (jump);
2170 2171 2172 2173

      return 1;
    }

Jan Hubicka committed
2174
  if (! invert_exp (jump))
2175 2176 2177 2178 2179 2180
    /* This should just be putting it back the way it was.  */
    abort ();

  return 0;
}

Richard Kenner committed
2181 2182

/* Like rtx_equal_p except that it considers two REGs as equal
2183 2184
   if they renumber to the same value and considers two commutative
   operations to be the same if the order of the operands has been
2185 2186 2187 2188 2189 2190 2191 2192 2193
   reversed.

   ??? Addition is not commutative on the PA due to the weird implicit
   space register selection rules for memory addresses.  Therefore, we
   don't consider a + b == b + a.

   We could/should make this test a little tighter.  Possibly only
   disabling it on the PA via some backend macro or only disabling this
   case when the PLUS is inside a MEM.  */
Richard Kenner committed
2194 2195 2196 2197 2198

int
rtx_renumbered_equal_p (x, y)
     rtx x, y;
{
2199 2200 2201
  int i;
  RTX_CODE code = GET_CODE (x);
  const char *fmt;
Kazu Hirata committed
2202

Richard Kenner committed
2203 2204
  if (x == y)
    return 1;
2205

Richard Kenner committed
2206 2207 2208 2209
  if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
      && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
				  && GET_CODE (SUBREG_REG (y)) == REG)))
    {
2210
      int reg_x = -1, reg_y = -1;
2211
      int byte_x = 0, byte_y = 0;
Richard Kenner committed
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

      if (GET_MODE (x) != GET_MODE (y))
	return 0;

      /* If we haven't done any renumbering, don't
	 make any assumptions.  */
      if (reg_renumber == 0)
	return rtx_equal_p (x, y);

      if (code == SUBREG)
	{
2223
	  reg_x = REGNO (SUBREG_REG (x));
2224
	  byte_x = SUBREG_BYTE (x);
2225 2226 2227

	  if (reg_renumber[reg_x] >= 0)
	    {
2228 2229 2230 2231 2232
	      reg_x = subreg_regno_offset (reg_renumber[reg_x],
					   GET_MODE (SUBREG_REG (x)),
					   byte_x,
					   GET_MODE (x));
	      byte_x = 0;
2233
	    }
Richard Kenner committed
2234 2235 2236
	}
      else
	{
2237 2238 2239
	  reg_x = REGNO (x);
	  if (reg_renumber[reg_x] >= 0)
	    reg_x = reg_renumber[reg_x];
Richard Kenner committed
2240
	}
2241

Richard Kenner committed
2242 2243
      if (GET_CODE (y) == SUBREG)
	{
2244
	  reg_y = REGNO (SUBREG_REG (y));
2245
	  byte_y = SUBREG_BYTE (y);
2246 2247 2248

	  if (reg_renumber[reg_y] >= 0)
	    {
2249 2250 2251 2252 2253
	      reg_y = subreg_regno_offset (reg_renumber[reg_y],
					   GET_MODE (SUBREG_REG (y)),
					   byte_y,
					   GET_MODE (y));
	      byte_y = 0;
2254
	    }
Richard Kenner committed
2255 2256 2257
	}
      else
	{
2258 2259 2260
	  reg_y = REGNO (y);
	  if (reg_renumber[reg_y] >= 0)
	    reg_y = reg_renumber[reg_y];
Richard Kenner committed
2261
	}
2262

2263
      return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
Richard Kenner committed
2264
    }
2265

Kazu Hirata committed
2266
  /* Now we have disposed of all the cases
Richard Kenner committed
2267 2268 2269
     in which different rtx codes can match.  */
  if (code != GET_CODE (y))
    return 0;
2270

Richard Kenner committed
2271 2272 2273 2274 2275 2276 2277 2278 2279
  switch (code)
    {
    case PC:
    case CC0:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 0;

    case CONST_INT:
2280
      return INTVAL (x) == INTVAL (y);
Richard Kenner committed
2281 2282

    case LABEL_REF:
Richard Stallman committed
2283 2284 2285
      /* We can't assume nonlocal labels have their following insns yet.  */
      if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
	return XEXP (x, 0) == XEXP (y, 0);
2286

Richard Kenner committed
2287 2288 2289 2290 2291 2292 2293
      /* Two label-refs are equivalent if they point at labels
	 in the same position in the instruction stream.  */
      return (next_real_insn (XEXP (x, 0))
	      == next_real_insn (XEXP (y, 0)));

    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);
2294

2295 2296 2297 2298
    case CODE_LABEL:
      /* If we didn't match EQ equality above, they aren't the same.  */
      return 0;

2299 2300
    default:
      break;
Richard Kenner committed
2301 2302 2303 2304 2305 2306 2307
    }

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */

  if (GET_MODE (x) != GET_MODE (y))
    return 0;

2308
  /* For commutative operations, the RTX match if the operand match in any
2309 2310 2311 2312 2313
     order.  Also handle the simple binary and unary cases without a loop.

     ??? Don't consider PLUS a commutative operator; see comments above.  */
  if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
      && code != PLUS)
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
    return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
	     && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
	    || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
		&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
  else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
    return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
	    && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
  else if (GET_RTX_CLASS (code) == '1')
    return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));

Richard Kenner committed
2324 2325 2326 2327 2328 2329
  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
2330
      int j;
Richard Kenner committed
2331 2332
      switch (fmt[i])
	{
2333 2334 2335 2336 2337
	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
	  break;

Richard Kenner committed
2338 2339 2340 2341 2342
	case 'i':
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
	  break;

2343 2344 2345 2346 2347
	case 't':
	  if (XTREE (x, i) != XTREE (y, i))
	    return 0;
	  break;

Richard Kenner committed
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	case 's':
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
	  break;

	case 'e':
	  if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
	    return 0;
	  break;

	case 'u':
	  if (XEXP (x, i) != XEXP (y, i))
	    return 0;
	  /* fall through.  */
	case '0':
	  break;

	case 'E':
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;
	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
	      return 0;
	  break;

	default:
	  abort ();
	}
    }
  return 1;
}

/* If X is a hard register or equivalent to one or a subregister of one,
   return the hard register number.  If X is a pseudo register that was not
   assigned a hard register, return the pseudo register number.  Otherwise,
   return -1.  Any rtx is valid for X.  */

int
true_regnum (x)
     rtx x;
{
  if (GET_CODE (x) == REG)
    {
      if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
	return reg_renumber[REGNO (x)];
      return REGNO (x);
    }
  if (GET_CODE (x) == SUBREG)
    {
      int base = true_regnum (SUBREG_REG (x));
      if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
2399 2400 2401
	return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
					   GET_MODE (SUBREG_REG (x)),
					   SUBREG_BYTE (x), GET_MODE (x));
Richard Kenner committed
2402 2403 2404
    }
  return -1;
}
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416

/* Return regno of the register REG and handle subregs too.  */
unsigned int
reg_or_subregno (reg)
     rtx reg;
{
  if (REG_P (reg))
    return REGNO (reg);
  if (GET_CODE (reg) == SUBREG)
    return REGNO (SUBREG_REG (reg));
  abort ();
}