cse.c 228 KB
Newer Older
Richard Kenner committed
1
/* Common subexpression elimination for GNU compiler.
2
   Copyright (C) 1987, 88, 89, 92-99, 2000 Free Software Foundation, Inc.
Richard Kenner committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
Richard Kenner committed
18 19
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */
Richard Kenner committed
20 21 22


#include "config.h"
23 24
/* stdio.h must precede rtl.h for FFS.  */
#include "system.h"
Kaveh R. Ghazi committed
25
#include <setjmp.h>
26

Richard Kenner committed
27
#include "rtl.h"
28
#include "tm_p.h"
Richard Kenner committed
29 30 31 32 33 34
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
35
#include "function.h"
Jeff Law committed
36
#include "expr.h"
Kaveh R. Ghazi committed
37 38
#include "toplev.h"
#include "output.h"
39
#include "ggc.h"
Richard Kenner committed
40 41 42 43 44 45 46

/* The basic idea of common subexpression elimination is to go
   through the code, keeping a record of expressions that would
   have the same value at the current scan point, and replacing
   expressions encountered with the cheapest equivalent expression.

   It is too complicated to keep track of the different possibilities
Jeffrey A Law committed
47 48 49 50 51 52 53 54
   when control paths merge in this code; so, at each label, we forget all
   that is known and start fresh.  This can be described as processing each
   extended basic block separately.  We have a separate pass to perform
   global CSE.

   Note CSE can turn a conditional or computed jump into a nop or
   an unconditional jump.  When this occurs we arrange to run the jump
   optimizer after CSE to delete the unreachable code.
Richard Kenner committed
55 56

   We use two data structures to record the equivalent expressions:
57 58
   a hash table for most expressions, and a vector of "quantity
   numbers" to record equivalent (pseudo) registers.
Richard Kenner committed
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

   The use of the special data structure for registers is desirable
   because it is faster.  It is possible because registers references
   contain a fairly small number, the register number, taken from
   a contiguously allocated series, and two register references are
   identical if they have the same number.  General expressions
   do not have any such thing, so the only way to retrieve the
   information recorded on an expression other than a register
   is to keep it in a hash table.

Registers and "quantity numbers":
   
   At the start of each basic block, all of the (hardware and pseudo)
   registers used in the function are given distinct quantity
   numbers to indicate their contents.  During scan, when the code
   copies one register into another, we copy the quantity number.
   When a register is loaded in any other way, we allocate a new
   quantity number to describe the value generated by this operation.
   `reg_qty' records what quantity a register is currently thought
   of as containing.

   All real quantity numbers are greater than or equal to `max_reg'.
   If register N has not been assigned a quantity, reg_qty[N] will equal N.

83 84
   Quantity numbers below `max_reg' do not exist and none of the `qty_table'
   entries should be referenced with an index below `max_reg'.
Richard Kenner committed
85 86

   We also maintain a bidirectional chain of registers for each
87 88
   quantity number.  The `qty_table` members `first_reg' and `last_reg',
   and `reg_eqv_table' members `next' and `prev' hold these chains.
Richard Kenner committed
89 90 91 92 93 94

   The first register in a chain is the one whose lifespan is least local.
   Among equals, it is the one that was seen first.
   We replace any equivalent register with that one.

   If two registers have the same quantity number, it must be true that
95
   REG expressions with qty_table `mode' must be in the hash table for both
Richard Kenner committed
96 97 98 99 100 101 102 103 104 105
   registers and must be in the same class.

   The converse is not true.  Since hard registers may be referenced in
   any mode, two REG expressions might be equivalent in the hash table
   but not have the same quantity number if the quantity number of one
   of the registers is not the same mode as those expressions.
   
Constants and quantity numbers

   When a quantity has a known constant value, that value is stored
106
   in the appropriate qty_table `const_rtx'.  This is in addition to
Richard Kenner committed
107 108
   putting the constant in the hash table as is usual for non-regs.

109
   Whether a reg or a constant is preferred is determined by the configuration
Richard Kenner committed
110 111 112 113
   macro CONST_COSTS and will often depend on the constant value.  In any
   event, expressions containing constants can be simplified, by fold_rtx.

   When a quantity has a known nearly constant value (such as an address
114 115
   of a stack slot), that value is stored in the appropriate qty_table
   `const_rtx'.
Richard Kenner committed
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

   Integer constants don't have a machine mode.  However, cse
   determines the intended machine mode from the destination
   of the instruction that moves the constant.  The machine mode
   is recorded in the hash table along with the actual RTL
   constant expression so that different modes are kept separate.

Other expressions:

   To record known equivalences among expressions in general
   we use a hash table called `table'.  It has a fixed number of buckets
   that contain chains of `struct table_elt' elements for expressions.
   These chains connect the elements whose expressions have the same
   hash codes.

   Other chains through the same elements connect the elements which
   currently have equivalent values.

   Register references in an expression are canonicalized before hashing
135
   the expression.  This is done using `reg_qty' and qty_table `first_reg'.
Richard Kenner committed
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
   The hash code of a register reference is computed using the quantity
   number, not the register number.

   When the value of an expression changes, it is necessary to remove from the
   hash table not just that expression but all expressions whose values
   could be different as a result.

     1. If the value changing is in memory, except in special cases
     ANYTHING referring to memory could be changed.  That is because
     nobody knows where a pointer does not point.
     The function `invalidate_memory' removes what is necessary.

     The special cases are when the address is constant or is
     a constant plus a fixed register such as the frame pointer
     or a static chain pointer.  When such addresses are stored in,
     we can tell exactly which other such addresses must be invalidated
     due to overlap.  `invalidate' does this.
     All expressions that refer to non-constant
     memory addresses are also invalidated.  `invalidate_memory' does this.

     2. If the value changing is a register, all expressions
     containing references to that register, and only those,
     must be removed.

   Because searching the entire hash table for expressions that contain
   a register is very slow, we try to figure out when it isn't necessary.
   Precisely, this is necessary only when expressions have been
   entered in the hash table using this register, and then the value has
   changed, and then another expression wants to be added to refer to
   the register's new value.  This sequence of circumstances is rare
   within any one basic block.

   The vectors `reg_tick' and `reg_in_table' are used to detect this case.
   reg_tick[i] is incremented whenever a value is stored in register i.
   reg_in_table[i] holds -1 if no references to register i have been
   entered in the table; otherwise, it contains the value reg_tick[i] had
   when the references were entered.  If we want to enter a reference
   and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
   Until we want to enter a new entry, the mere fact that the two vectors
   don't match makes the entries be ignored if anyone tries to match them.

   Registers themselves are entered in the hash table as well as in
   the equivalent-register chains.  However, the vectors `reg_tick'
   and `reg_in_table' do not apply to expressions which are simple
   register references.  These expressions are removed from the table
   immediately when they become invalid, and this can be done even if
   we do not immediately search for all the expressions that refer to
   the register.

   A CLOBBER rtx in an instruction invalidates its operand for further
   reuse.  A CLOBBER or SET rtx whose operand is a MEM:BLK
   invalidates everything that resides in memory.

Related expressions:

   Constant expressions that differ only by an additive integer
   are called related.  When a constant expression is put in
   the table, the related expression with no constant term
   is also entered.  These are made to point at each other
   so that it is possible to find out if there exists any
   register equivalent to an expression related to a given expression.  */
   
/* One plus largest register number used in this function.  */

static int max_reg;

202 203 204 205 206
/* One plus largest instruction UID used in this function at time of
   cse_main call.  */

static int max_insn_uid;

207 208
/* Length of qty_table vector.  We know in advance we will not need
   a quantity number this big.  */
Richard Kenner committed
209 210 211 212 213 214 215 216

static int max_qty;

/* Next quantity number to be allocated.
   This is 1 + the largest number needed so far.  */

static int next_qty;

217
/* Per-qty information tracking.
Richard Kenner committed
218

219 220
   `first_reg' and `last_reg' track the head and tail of the
   chain of registers which currently contain this quantity.
Richard Kenner committed
221

222
   `mode' contains the machine mode of this quantity.
Richard Kenner committed
223

224 225 226 227 228
   `const_rtx' holds the rtx of the constant value of this
   quantity, if known.  A summations of the frame/arg pointer
   and a constant can also be entered here.  When this holds
   a known value, `const_insn' is the insn which stored the
   constant value.
Richard Kenner committed
229

230 231 232 233 234 235 236 237 238 239 240
   `comparison_{code,const,qty}' are used to track when a
   comparison between a quantity and some constant or register has
   been passed.  In such a case, we know the results of the comparison
   in case we see it again.  These members record a comparison that
   is known to be true.  `comparison_code' holds the rtx code of such
   a comparison, else it is set to UNKNOWN and the other two
   comparison members are undefined.  `comparison_const' holds
   the constant being compared against, or zero if the comparison
   is not against a constant.  `comparison_qty' holds the quantity
   being compared against when the result is known.  If the comparison
   is not with a register, `comparison_qty' is -1.  */
Richard Kenner committed
241

242 243 244 245 246 247 248 249 250 251
struct qty_table_elem
{
  rtx const_rtx;
  rtx const_insn;
  rtx comparison_const;
  int comparison_qty;
  int first_reg, last_reg;
  enum machine_mode mode;
  enum rtx_code comparison_code;
};
Richard Kenner committed
252

253 254
/* The table of all qtys, indexed by qty number.  */
static struct qty_table_elem *qty_table;
Richard Kenner committed
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

#ifdef HAVE_cc0
/* For machines that have a CC0, we do not record its value in the hash
   table since its use is guaranteed to be the insn immediately following
   its definition and any other insn is presumed to invalidate it.

   Instead, we store below the value last assigned to CC0.  If it should
   happen to be a constant, it is stored in preference to the actual
   assigned value.  In case it is a constant, we store the mode in which
   the constant should be interpreted.  */

static rtx prev_insn_cc0;
static enum machine_mode prev_insn_cc0_mode;
#endif

/* Previous actual insn.  0 if at first insn of basic block.  */

static rtx prev_insn;

/* Insn being scanned.  */

static rtx this_insn;

278 279
/* Index by register number, gives the number of the next (or
   previous) register in the chain of registers sharing the same
Richard Kenner committed
280 281 282 283
   value.

   Or -1 if this register is at the end of the chain.

284 285 286 287 288 289 290
   If reg_qty[N] == N, reg_eqv_table[N].next is undefined.  */

/* Per-register equivalence chain.  */
struct reg_eqv_elem
{
  int next, prev;
};
Richard Kenner committed
291

292 293
/* The table of all register equivalence chains.  */
static struct reg_eqv_elem *reg_eqv_table;
Richard Kenner committed
294

Richard Kenner committed
295 296
struct cse_reg_info
{
297 298
  /* Next in hash chain.  */
  struct cse_reg_info *hash_next;
299 300

  /* The next cse_reg_info structure in the free or used list.  */
Richard Kenner committed
301
  struct cse_reg_info *next;
302

303 304 305 306 307 308 309 310 311 312
  /* Search key */
  int regno;

  /* The quantity number of the register's current contents.  */
  int reg_qty;

  /* The number of times the register has been altered in the current
     basic block.  */
  int reg_tick;

313 314 315 316 317 318
  /* The REG_TICK value at which rtx's containing this register are
     valid in the hash table.  If this does not equal the current
     reg_tick value, such expressions existing in the hash table are
     invalid.  */
  int reg_in_table;
};
Richard Kenner committed
319

320 321
/* A free list of cse_reg_info entries.  */
static struct cse_reg_info *cse_reg_info_free_list;
Richard Kenner committed
322

323 324 325 326
/* A used list of cse_reg_info entries.  */
static struct cse_reg_info *cse_reg_info_used_list;
static struct cse_reg_info *cse_reg_info_used_list_end;

327
/* A mapping from registers to cse_reg_info data structures.  */
328 329 330 331 332 333 334
#define REGHASH_SHIFT	7
#define REGHASH_SIZE	(1 << REGHASH_SHIFT)
#define REGHASH_MASK	(REGHASH_SIZE - 1)
static struct cse_reg_info *reg_hash[REGHASH_SIZE];

#define REGHASH_FN(REGNO)	\
	(((REGNO) ^ ((REGNO) >> REGHASH_SHIFT)) & REGHASH_MASK)
Richard Kenner committed
335

336 337 338 339
/* The last lookup we did into the cse_reg_info_tree.  This allows us
   to cache repeated lookups.  */
static int cached_regno;
static struct cse_reg_info *cached_cse_reg_info;
Richard Kenner committed
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

/* A HARD_REG_SET containing all the hard registers for which there is 
   currently a REG expression in the hash table.  Note the difference
   from the above variables, which indicate if the REG is mentioned in some
   expression in the table.  */

static HARD_REG_SET hard_regs_in_table;

/* A HARD_REG_SET containing all the hard registers that are invalidated
   by a CALL_INSN.  */

static HARD_REG_SET regs_invalidated_by_call;

/* CUID of insn that starts the basic block currently being cse-processed.  */

static int cse_basic_block_start;

/* CUID of insn that ends the basic block currently being cse-processed.  */

static int cse_basic_block_end;

/* Vector mapping INSN_UIDs to cuids.
362
   The cuids are like uids but increase monotonically always.
Richard Kenner committed
363 364
   We use them to see whether a reg is used outside a given basic block.  */

365
static int *uid_cuid;
Richard Kenner committed
366

367 368 369
/* Highest UID in UID_CUID.  */
static int max_uid;

Richard Kenner committed
370 371 372 373 374 375 376 377 378
/* Get the cuid of an insn.  */

#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])

/* Nonzero if cse has altered conditional jump insns
   in such a way that jump optimization should be redone.  */

static int cse_jumps_altered;

379 380 381 382 383
/* Nonzero if we put a LABEL_REF into the hash table.  Since we may have put
   it into an INSN without a REG_LABEL, we have to rerun jump after CSE
   to put in the note.  */
static int recorded_label_ref;

Richard Kenner committed
384 385 386 387 388 389
/* canon_hash stores 1 in do_not_record
   if it notices a reference to CC0, PC, or some other volatile
   subexpression.  */

static int do_not_record;

390 391 392 393 394 395
#ifdef LOAD_EXTEND_OP

/* Scratch rtl used when looking for load-extended copy of a MEM.  */
static rtx memory_extend_rtx;
#endif

Richard Kenner committed
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
/* canon_hash stores 1 in hash_arg_in_memory
   if it notices a reference to memory within the expression being hashed.  */

static int hash_arg_in_memory;

/* The hash table contains buckets which are chains of `struct table_elt's,
   each recording one expression's information.
   That expression is in the `exp' field.

   Those elements with the same hash code are chained in both directions
   through the `next_same_hash' and `prev_same_hash' fields.

   Each set of expressions with equivalent values
   are on a two-way chain through the `next_same_value'
   and `prev_same_value' fields, and all point with
   the `first_same_value' field at the first element in
   that chain.  The chain is in order of increasing cost.
   Each element's cost value is in its `cost' field.

   The `in_memory' field is nonzero for elements that
   involve any reference to memory.  These elements are removed
   whenever a write is done to an unidentified location in memory.
   To be safe, we assume that a memory address is unidentified unless
   the address is either a symbol constant or a constant plus
   the frame pointer or argument pointer.

   The `related_value' field is used to connect related expressions
   (that differ by adding an integer).
   The related expressions are chained in a circular fashion.
   `related_value' is zero for expressions for which this
   chain is not useful.

   The `cost' field stores the cost of this element's expression.

   The `is_const' flag is set if the element is a constant (including
   a fixed address).

   The `flag' field is used as a temporary during some search routines.

   The `mode' field is usually the same as GET_MODE (`exp'), but
   if `exp' is a CONST_INT and has no machine mode then the `mode'
   field is the mode it was being used as.  Each constant is
   recorded separately for each mode it is used with.  */


struct table_elt
{
  rtx exp;
  struct table_elt *next_same_hash;
  struct table_elt *prev_same_hash;
  struct table_elt *next_same_value;
  struct table_elt *prev_same_value;
  struct table_elt *first_same_value;
  struct table_elt *related_value;
  int cost;
  enum machine_mode mode;
  char in_memory;
  char is_const;
  char flag;
};

/* We don't want a lot of buckets, because we rarely have very many
   things stored in the hash table, and a lot of buckets slows
   down a lot of loops that happen frequently.  */
460 461 462
#define HASH_SHIFT	5
#define HASH_SIZE	(1 << HASH_SHIFT)
#define HASH_MASK	(HASH_SIZE - 1)
Richard Kenner committed
463 464 465 466 467

/* Compute hash code of X in mode M.  Special-case case where X is a pseudo
   register (hard registers may require `do_not_record' to be set).  */

#define HASH(X, M)	\
468 469 470
 ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
  ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
  : canon_hash (X, M)) & HASH_MASK)
Richard Kenner committed
471 472 473 474

/* Determine whether register number N is considered a fixed register for CSE.
   It is desirable to replace other regs with fixed regs, to reduce need for
   non-fixed hard regs.
Bernd Schmidt committed
475
   A reg wins if it is either the frame pointer or designated as fixed.  */
Richard Kenner committed
476
#define FIXED_REGNO_P(N)  \
477
  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
478
   || fixed_regs[N] || global_regs[N])
Richard Kenner committed
479 480

/* Compute cost of X, as stored in the `cost' field of a table_elt.  Fixed
481 482 483 484
   hard registers and pointers into the frame are the cheapest with a cost
   of 0.  Next come pseudos with a cost of one and other hard registers with
   a cost of 2.  Aside from these special cases, call `rtx_cost'.  */

485
#define CHEAP_REGNO(N) \
486 487 488 489
  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM 	\
   || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM	     	\
   || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) 	\
   || ((N) < FIRST_PSEUDO_REGISTER					\
490
       && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
Richard Kenner committed
491

492 493 494 495 496 497 498
/* A register is cheap if it is a user variable assigned to the register
   or if its register number always corresponds to a cheap register.  */

#define CHEAP_REG(N) \
  ((REG_USERVAR_P (N) && REGNO (N) < FIRST_PSEUDO_REGISTER)	\
   || CHEAP_REGNO (REGNO (N)))

499 500 501 502 503
#define COST(X)								\
  (GET_CODE (X) == REG							\
   ? (CHEAP_REG (X) ? 0							\
      : REGNO (X) >= FIRST_PSEUDO_REGISTER ? 1				\
      : 2)								\
504
   : notreg_cost(X))
Richard Kenner committed
505

506 507 508 509 510 511 512 513 514
/* Get the info associated with register N.  */

#define GET_CSE_REG_INFO(N) 			\
  (((N) == cached_regno && cached_cse_reg_info)	\
   ? cached_cse_reg_info : get_cse_reg_info ((N)))

/* Get the number of times this register has been updated in this
   basic block.  */

515
#define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)
516 517 518 519 520 521 522 523 524

/* Get the point at which REG was recorded in the table.  */

#define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)

/* Get the quantity number for REG.  */

#define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)

Richard Kenner committed
525
/* Determine if the quantity number for register X represents a valid index
526
   into the qty_table.  */
Richard Kenner committed
527

528
#define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (N))
Richard Kenner committed
529

530 531 532 533 534 535 536 537 538 539
#ifdef ADDRESS_COST
/* The ADDRESS_COST macro does not deal with ADDRESSOF nodes.  But,
   during CSE, such nodes are present.  Using an ADDRESSOF node which
   refers to the address of a REG is a good thing because we can then
   turn (MEM (ADDRESSSOF (REG))) into just plain REG.  */
#define CSE_ADDRESS_COST(RTX)					\
  ((GET_CODE (RTX) == ADDRESSOF && REG_P (XEXP ((RTX), 0)))	\
   ? -1 : ADDRESS_COST(RTX))
#endif 

540
static struct table_elt *table[HASH_SIZE];
Richard Kenner committed
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

/* Chain of `struct table_elt's made so far for this function
   but currently removed from the table.  */

static struct table_elt *free_element_chain;

/* Number of `struct table_elt' structures made so far for this function.  */

static int n_elements_made;

/* Maximum value `n_elements_made' has had so far in this compilation
   for functions previously processed.  */

static int max_elements_made;

/* Surviving equivalence class when two equivalence classes are merged 
   by recording the effects of a jump in the last insn.  Zero if the
   last insn was not a conditional jump.  */

static struct table_elt *last_jump_equiv_class;

/* Set to the cost of a constant pool reference if one was found for a
   symbolic constant.  If this was found, it means we should try to
   convert constants into constant pool entries if they don't fit in
   the insn.  */

static int constant_pool_entries_cost;

569 570 571 572 573 574
/* Define maximum length of a branch path.  */

#define PATHLENGTH	10

/* This data describes a block that will be processed by cse_basic_block.  */

Richard Kenner committed
575 576
struct cse_basic_block_data
{
577 578 579 580 581 582 583 584 585 586 587
  /* Lowest CUID value of insns in block.  */
  int low_cuid;
  /* Highest CUID value of insns in block.  */
  int high_cuid;
  /* Total number of SETs in block.  */
  int nsets;
  /* Last insn in the block.  */
  rtx last;
  /* Size of current branch path, if any.  */
  int path_size;
  /* Current branch path, indicating which branches will be taken.  */
Richard Kenner committed
588 589 590 591 592 593
  struct branch_path
    {
      /* The branch insn.  */
      rtx branch;
      /* Whether it should be taken or not.  AROUND is the same as taken
	 except that it is used when the destination label is not preceded
594
       by a BARRIER.  */
Richard Kenner committed
595 596
      enum taken {TAKEN, NOT_TAKEN, AROUND} status;
    } path[PATHLENGTH];
597 598
};

Richard Kenner committed
599 600
/* Nonzero if X has the form (PLUS frame-pointer integer).  We check for
   virtual regs here because the simplify_*_operation routines are called
601 602 603 604 605 606
   by integrate.c, which is called before virtual register instantiation. 

   ?!? FIXED_BASE_PLUS_P and NONZERO_BASE_PLUS_P need to move into
   a header file so that their definitions can be shared with the
   simplification routines in simplify-rtx.c.  Until then, do not
   change these macros without also changing the copy in simplify-rtx.c.  */
Richard Kenner committed
607 608

#define FIXED_BASE_PLUS_P(X)					\
609
  ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx	\
610
   || ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
Richard Kenner committed
611 612 613 614
   || (X) == virtual_stack_vars_rtx				\
   || (X) == virtual_incoming_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == frame_pointer_rtx			\
615
	   || XEXP (X, 0) == hard_frame_pointer_rtx		\
616 617
	   || ((X) == arg_pointer_rtx				\
	       && fixed_regs[ARG_POINTER_REGNUM])		\
Richard Kenner committed
618
	   || XEXP (X, 0) == virtual_stack_vars_rtx		\
619 620
	   || XEXP (X, 0) == virtual_incoming_args_rtx))	\
   || GET_CODE (X) == ADDRESSOF)
Richard Kenner committed
621

Jim Wilson committed
622 623 624 625 626
/* Similar, but also allows reference to the stack pointer.

   This used to include FIXED_BASE_PLUS_P, however, we can't assume that
   arg_pointer_rtx by itself is nonzero, because on at least one machine,
   the i960, the arg pointer is zero when it is unused.  */
Richard Kenner committed
627 628

#define NONZERO_BASE_PLUS_P(X)					\
629
  ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx	\
Jim Wilson committed
630 631 632 633
   || (X) == virtual_stack_vars_rtx				\
   || (X) == virtual_incoming_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == frame_pointer_rtx			\
634
	   || XEXP (X, 0) == hard_frame_pointer_rtx		\
635 636
	   || ((X) == arg_pointer_rtx				\
	       && fixed_regs[ARG_POINTER_REGNUM])		\
Jim Wilson committed
637 638
	   || XEXP (X, 0) == virtual_stack_vars_rtx		\
	   || XEXP (X, 0) == virtual_incoming_args_rtx))	\
Richard Kenner committed
639 640 641 642 643 644
   || (X) == stack_pointer_rtx					\
   || (X) == virtual_stack_dynamic_rtx				\
   || (X) == virtual_outgoing_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == stack_pointer_rtx			\
	   || XEXP (X, 0) == virtual_stack_dynamic_rtx		\
645 646
	   || XEXP (X, 0) == virtual_outgoing_args_rtx))	\
   || GET_CODE (X) == ADDRESSOF)
Richard Kenner committed
647

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
static int notreg_cost		PARAMS ((rtx));
static void new_basic_block	PARAMS ((void));
static void make_new_qty	PARAMS ((int, enum machine_mode));
static void make_regs_eqv	PARAMS ((int, int));
static void delete_reg_equiv	PARAMS ((int));
static int mention_regs		PARAMS ((rtx));
static int insert_regs		PARAMS ((rtx, struct table_elt *, int));
static void remove_from_table	PARAMS ((struct table_elt *, unsigned));
static struct table_elt *lookup	PARAMS ((rtx, unsigned, enum machine_mode)),
       *lookup_for_remove PARAMS ((rtx, unsigned, enum machine_mode));
static rtx lookup_as_function	PARAMS ((rtx, enum rtx_code));
static struct table_elt *insert PARAMS ((rtx, struct table_elt *, unsigned,
					 enum machine_mode));
static void merge_equiv_classes PARAMS ((struct table_elt *,
					 struct table_elt *));
static void invalidate		PARAMS ((rtx, enum machine_mode));
static int cse_rtx_varies_p	PARAMS ((rtx));
static void remove_invalid_refs	PARAMS ((int));
static void remove_invalid_subreg_refs	PARAMS ((int, int, enum machine_mode));
static void rehash_using_reg	PARAMS ((rtx));
static void invalidate_memory	PARAMS ((void));
static void invalidate_for_call	PARAMS ((void));
static rtx use_related_value	PARAMS ((rtx, struct table_elt *));
static unsigned canon_hash	PARAMS ((rtx, enum machine_mode));
static unsigned safe_hash	PARAMS ((rtx, enum machine_mode));
static int exp_equiv_p		PARAMS ((rtx, rtx, int, int));
static rtx canon_reg		PARAMS ((rtx, rtx));
static void find_best_addr	PARAMS ((rtx, rtx *));
static enum rtx_code find_comparison_args PARAMS ((enum rtx_code, rtx *, rtx *,
						   enum machine_mode *,
						   enum machine_mode *));
static rtx fold_rtx		PARAMS ((rtx, rtx));
static rtx equiv_constant	PARAMS ((rtx));
static void record_jump_equiv	PARAMS ((rtx, int));
static void record_jump_cond	PARAMS ((enum rtx_code, enum machine_mode,
					 rtx, rtx, int));
static void cse_insn		PARAMS ((rtx, rtx));
static int addr_affects_sp_p	PARAMS ((rtx));
static void invalidate_from_clobbers PARAMS ((rtx));
static rtx cse_process_notes	PARAMS ((rtx, rtx));
static void cse_around_loop	PARAMS ((rtx));
static void invalidate_skipped_set PARAMS ((rtx, rtx, void *));
static void invalidate_skipped_block PARAMS ((rtx));
static void cse_check_loop_start PARAMS ((rtx, rtx, void *));
static void cse_set_around_loop	PARAMS ((rtx, rtx, rtx));
static rtx cse_basic_block	PARAMS ((rtx, rtx, struct branch_path *, int));
static void count_reg_usage	PARAMS ((rtx, int *, rtx, int));
extern void dump_class          PARAMS ((struct table_elt*));
static struct cse_reg_info* get_cse_reg_info PARAMS ((int));

static void flush_hash_table	PARAMS ((void));
Richard Kenner committed
699

700 701
/* Dump the expressions in the equivalence class indicated by CLASSP.
   This function is used only for debugging.  */
702
void
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
dump_class (classp)
     struct table_elt *classp;
{
  struct table_elt *elt;

  fprintf (stderr, "Equivalence chain for ");
  print_rtl (stderr, classp->exp);
  fprintf (stderr, ": \n");
  
  for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
    {
      print_rtl (stderr, elt->exp);
      fprintf (stderr, "\n");
    }
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
/* Internal function, to compute cost when X is not a register; called
   from COST macro to keep it simple.  */

static int
notreg_cost (x)
     rtx x;
{
  return ((GET_CODE (x) == SUBREG
	   && GET_CODE (SUBREG_REG (x)) == REG
	   && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
	   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
	   && (GET_MODE_SIZE (GET_MODE (x))
	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
	   && subreg_lowpart_p (x)
	   && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
				     GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
	  ? (CHEAP_REG (SUBREG_REG (x)) ? 0
	     : (REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER ? 1
		: 2))
	  : rtx_cost (x, SET) * 2);
}

Richard Kenner committed
741 742 743 744 745 746
/* Return the right cost to give to an operation
   to make the cost of the corresponding register-to-register instruction
   N times that of a fast register-to-register instruction.  */

#define COSTS_N_INSNS(N) ((N) * 4 - 2)

747 748 749 750 751
/* Return an estimate of the cost of computing rtx X.
   One use is in cse, to decide which expression to keep in the hash table.
   Another is in rtl generation, to pick the cheapest way to multiply.
   Other uses like the latter are expected in the future.  */

Richard Kenner committed
752
int
753
rtx_cost (x, outer_code)
Richard Kenner committed
754
     rtx x;
Kaveh R. Ghazi committed
755
     enum rtx_code outer_code ATTRIBUTE_UNUSED;
Richard Kenner committed
756 757 758
{
  register int i, j;
  register enum rtx_code code;
759
  register const char *fmt;
Richard Kenner committed
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
  register int total;

  if (x == 0)
    return 0;

  /* Compute the default costs of certain things.
     Note that RTX_COSTS can override the defaults.  */

  code = GET_CODE (x);
  switch (code)
    {
    case MULT:
      /* Count multiplication by 2**n as a shift,
	 because if we are considering it, we would output it as a shift.  */
      if (GET_CODE (XEXP (x, 1)) == CONST_INT
	  && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
	total = 2;
      else
	total = COSTS_N_INSNS (5);
      break;
    case DIV:
    case UDIV:
    case MOD:
    case UMOD:
      total = COSTS_N_INSNS (7);
      break;
    case USE:
      /* Used in loop.c and combine.c as a marker.  */
      total = 0;
      break;
790 791 792 793 794 795
    case ASM_OPERANDS:
      /* We don't want these to be used in substitutions because
	 we have no way of validating the resulting insn.  So assign
	 anything containing an ASM_OPERANDS a very high cost.  */
      total = 1000;
      break;
Richard Kenner committed
796 797 798 799 800 801 802
    default:
      total = 2;
    }

  switch (code)
    {
    case REG:
803
      return ! CHEAP_REG (x);
804

Richard Kenner committed
805
    case SUBREG:
806 807 808 809 810
      /* If we can't tie these modes, make this expensive.  The larger
	 the mode, the more expensive it is.  */
      if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
	return COSTS_N_INSNS (2
			      + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
Richard Kenner committed
811 812
      return 2;
#ifdef RTX_COSTS
813
      RTX_COSTS (x, code, outer_code);
Richard Kenner committed
814
#endif 
815
#ifdef CONST_COSTS
816
      CONST_COSTS (x, code, outer_code);
817
#endif
818 819 820 821 822 823

    default:
#ifdef DEFAULT_RTX_COSTS
      DEFAULT_RTX_COSTS(x, code, outer_code);
#endif
      break;
Richard Kenner committed
824 825 826 827 828 829 830 831
    }

  /* Sum the costs of the sub-rtx's, plus cost of this operation,
     which is already in total.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
832
      total += rtx_cost (XEXP (x, i), code);
Richard Kenner committed
833 834
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
835
	total += rtx_cost (XVECEXP (x, i, j), code);
Richard Kenner committed
836 837 838 839

  return total;
}

840 841 842 843
static struct cse_reg_info *
get_cse_reg_info (regno)
     int regno;
{
844 845 846 847 848 849 850 851
  struct cse_reg_info **hash_head = &reg_hash[REGHASH_FN (regno)];
  struct cse_reg_info *p;

  for (p = *hash_head ; p != NULL; p = p->hash_next)
    if (p->regno == regno)
      break;

  if (p == NULL)
852 853
    {
      /* Get a new cse_reg_info structure.  */
854
      if (cse_reg_info_free_list)
855
	{
856 857
	  p = cse_reg_info_free_list;
	  cse_reg_info_free_list = p->next;
858 859
	}
      else
860 861 862 863 864
	p = (struct cse_reg_info *) xmalloc (sizeof (struct cse_reg_info));

      /* Insert into hash table.  */
      p->hash_next = *hash_head;
      *hash_head = p;
865 866

      /* Initialize it.  */
867 868 869 870 871 872
      p->reg_tick = 1;
      p->reg_in_table = -1;
      p->reg_qty = regno;
      p->regno = regno;
      p->next = cse_reg_info_used_list;
      cse_reg_info_used_list = p;
873
      if (!cse_reg_info_used_list_end)
874
	cse_reg_info_used_list_end = p;
875 876 877 878 879
    }

  /* Cache this lookup; we tend to be looking up information about the
     same register several times in a row.  */
  cached_regno = regno;
880
  cached_cse_reg_info = p;
881

882
  return p;
883 884
}

Richard Kenner committed
885 886 887 888 889 890 891 892 893 894
/* Clear the hash table and initialize each register with its own quantity,
   for a new basic block.  */

static void
new_basic_block ()
{
  register int i;

  next_qty = max_reg;

895 896 897 898 899
  /* Clear out hash table state for this pass.  */

  bzero ((char *) reg_hash, sizeof reg_hash);

  if (cse_reg_info_used_list)
900
    {
901 902 903
      cse_reg_info_used_list_end->next = cse_reg_info_free_list;
      cse_reg_info_free_list = cse_reg_info_used_list;
      cse_reg_info_used_list = cse_reg_info_used_list_end = 0;
904
    }
905
  cached_cse_reg_info = 0;
Richard Kenner committed
906 907 908 909 910 911

  CLEAR_HARD_REG_SET (hard_regs_in_table);

  /* The per-quantity values used to be initialized here, but it is
     much faster to initialize each as it is made in `make_new_qty'.  */

912
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
913
    {
914 915 916 917
      struct table_elt *first;

      first = table[i];
      if (first != NULL)
Richard Kenner committed
918
	{
919 920 921 922 923 924 925 926 927 928 929 930
	  struct table_elt *last = first;

	  table[i] = NULL;

	  while (last->next_same_hash != NULL)
	    last = last->next_same_hash;

	  /* Now relink this hash entire chain into
	     the free element list.  */

	  last->next_same_hash = free_element_chain;
	  free_element_chain = first;
Richard Kenner committed
931 932 933 934 935 936 937 938 939 940
	}
    }

  prev_insn = 0;

#ifdef HAVE_cc0
  prev_insn_cc0 = 0;
#endif
}

941 942
/* Say that register REG contains a quantity in mode MODE not in any
   register before and initialize that quantity.  */
Richard Kenner committed
943 944

static void
945
make_new_qty (reg, mode)
Richard Kenner committed
946
     register int reg;
947
     register enum machine_mode mode;
Richard Kenner committed
948 949
{
  register int q;
950 951
  register struct qty_table_elem *ent;
  register struct reg_eqv_elem *eqv;
Richard Kenner committed
952 953 954 955

  if (next_qty >= max_qty)
    abort ();

956
  q = REG_QTY (reg) = next_qty++;
957 958 959 960 961 962 963 964 965
  ent = &qty_table[q];
  ent->first_reg = reg;
  ent->last_reg = reg;
  ent->mode = mode;
  ent->const_rtx = ent->const_insn = NULL_RTX;
  ent->comparison_code = UNKNOWN;

  eqv = &reg_eqv_table[reg];
  eqv->next = eqv->prev = -1;
Richard Kenner committed
966 967 968 969 970 971 972 973 974 975
}

/* Make reg NEW equivalent to reg OLD.
   OLD is not changing; NEW is.  */

static void
make_regs_eqv (new, old)
     register int new, old;
{
  register int lastr, firstr;
976
  register int q = REG_QTY (old);
977 978 979
  register struct qty_table_elem *ent;

  ent = &qty_table[q];
Richard Kenner committed
980 981 982 983 984

  /* Nothing should become eqv until it has a "non-invalid" qty number.  */
  if (! REGNO_QTY_VALID_P (old))
    abort ();

985
  REG_QTY (new) = q;
986 987
  firstr = ent->first_reg;
  lastr = ent->last_reg;
Richard Kenner committed
988 989 990 991 992 993 994 995

  /* Prefer fixed hard registers to anything.  Prefer pseudo regs to other
     hard regs.  Among pseudos, if NEW will live longer than any other reg
     of the same qty, and that is beyond the current basic block,
     make it the new canonical replacement for this qty.  */
  if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
      /* Certain fixed registers might be of the class NO_REGS.  This means
	 that not only can they not be allocated by the compiler, but
996
	 they cannot be used in substitutions or canonicalizations
Richard Kenner committed
997 998 999 1000 1001
	 either.  */
      && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
      && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
	  || (new >= FIRST_PSEUDO_REGISTER
	      && (firstr < FIRST_PSEUDO_REGISTER
1002 1003
		  || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
		       || (uid_cuid[REGNO_FIRST_UID (new)]
Richard Kenner committed
1004
			   < cse_basic_block_start))
1005 1006
		      && (uid_cuid[REGNO_LAST_UID (new)]
			  > uid_cuid[REGNO_LAST_UID (firstr)]))))))
Richard Kenner committed
1007
    {
1008 1009 1010 1011
      reg_eqv_table[firstr].prev = new;
      reg_eqv_table[new].next = firstr;
      reg_eqv_table[new].prev = -1;
      ent->first_reg = new;
Richard Kenner committed
1012 1013 1014 1015 1016 1017 1018
    }
  else
    {
      /* If NEW is a hard reg (known to be non-fixed), insert at end.
	 Otherwise, insert before any non-fixed hard regs that are at the
	 end.  Registers of class NO_REGS cannot be used as an
	 equivalent for anything.  */
1019
      while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
Richard Kenner committed
1020 1021
	     && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
	     && new >= FIRST_PSEUDO_REGISTER)
1022 1023 1024 1025
	lastr = reg_eqv_table[lastr].prev;
      reg_eqv_table[new].next = reg_eqv_table[lastr].next;
      if (reg_eqv_table[lastr].next >= 0)
	reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
Richard Kenner committed
1026
      else
1027 1028 1029
	qty_table[q].last_reg = new;
      reg_eqv_table[lastr].next = new;
      reg_eqv_table[new].prev = lastr;
Richard Kenner committed
1030 1031 1032 1033 1034 1035 1036 1037 1038
    }
}

/* Remove REG from its equivalence class.  */

static void
delete_reg_equiv (reg)
     register int reg;
{
1039
  register struct qty_table_elem *ent;
1040
  register int q = REG_QTY (reg);
1041
  register int p, n;
Richard Kenner committed
1042

1043
  /* If invalid, do nothing.  */
Richard Kenner committed
1044 1045 1046
  if (q == reg)
    return;

1047 1048 1049 1050
  ent = &qty_table[q];

  p = reg_eqv_table[reg].prev;
  n = reg_eqv_table[reg].next;
1051

Richard Kenner committed
1052
  if (n != -1)
1053
    reg_eqv_table[n].prev = p;
Richard Kenner committed
1054
  else
1055
    ent->last_reg = p;
Richard Kenner committed
1056
  if (p != -1)
1057
    reg_eqv_table[p].next = n;
Richard Kenner committed
1058
  else
1059
    ent->first_reg = n;
Richard Kenner committed
1060

1061
  REG_QTY (reg) = reg;
Richard Kenner committed
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
}

/* Remove any invalid expressions from the hash table
   that refer to any of the registers contained in expression X.

   Make sure that newly inserted references to those registers
   as subexpressions will be considered valid.

   mention_regs is not called when a register itself
   is being stored in the table.

   Return 1 if we have done something that may have changed the hash code
   of X.  */

static int
mention_regs (x)
     rtx x;
{
  register enum rtx_code code;
  register int i, j;
1082
  register const char *fmt;
Richard Kenner committed
1083 1084 1085
  register int changed = 0;

  if (x == 0)
1086
    return 0;
Richard Kenner committed
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098

  code = GET_CODE (x);
  if (code == REG)
    {
      register int regno = REGNO (x);
      register int endregno
	= regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
		   : HARD_REGNO_NREGS (regno, GET_MODE (x)));
      int i;

      for (i = regno; i < endregno; i++)
	{
1099
	  if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
Richard Kenner committed
1100 1101
	    remove_invalid_refs (i);

1102
	  REG_IN_TABLE (i) = REG_TICK (i);
Richard Kenner committed
1103 1104 1105 1106 1107
	}

      return 0;
    }

1108 1109 1110 1111 1112 1113 1114 1115
  /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
     pseudo if they don't use overlapping words.  We handle only pseudos
     here for simplicity.  */
  if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
      && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
    {
      int i = REGNO (SUBREG_REG (x));

1116
      if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1117 1118 1119 1120 1121
	{
	  /* If reg_tick has been incremented more than once since
	     reg_in_table was last set, that means that the entire
	     register has been set before, so discard anything memorized
	     for the entrire register, including all SUBREG expressions.  */
1122
	  if (REG_IN_TABLE (i) != REG_TICK (i) - 1)
1123 1124 1125 1126 1127
	    remove_invalid_refs (i);
	  else
	    remove_invalid_subreg_refs (i, SUBREG_WORD (x), GET_MODE (x));
	}

1128
      REG_IN_TABLE (i) = REG_TICK (i);
1129 1130 1131
      return 0;
    }

Richard Kenner committed
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
  /* If X is a comparison or a COMPARE and either operand is a register
     that does not have a quantity, give it one.  This is so that a later
     call to record_jump_equiv won't cause X to be assigned a different
     hash code and not found in the table after that call.

     It is not necessary to do this here, since rehash_using_reg can
     fix up the table later, but doing this here eliminates the need to
     call that expensive function in the most common case where the only
     use of the register is in the comparison.  */

  if (code == COMPARE || GET_RTX_CLASS (code) == '<')
    {
      if (GET_CODE (XEXP (x, 0)) == REG
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1146
	if (insert_regs (XEXP (x, 0), NULL_PTR, 0))
Richard Kenner committed
1147 1148 1149 1150 1151 1152 1153
	  {
	    rehash_using_reg (XEXP (x, 0));
	    changed = 1;
	  }

      if (GET_CODE (XEXP (x, 1)) == REG
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1154
	if (insert_regs (XEXP (x, 1), NULL_PTR, 0))
Richard Kenner committed
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	  {
	    rehash_using_reg (XEXP (x, 1));
	    changed = 1;
	  }
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      changed |= mention_regs (XEXP (x, i));
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	changed |= mention_regs (XVECEXP (x, i, j));

  return changed;
}

/* Update the register quantities for inserting X into the hash table
   with a value equivalent to CLASSP.
   (If the class does not contain a REG, it is irrelevant.)
   If MODIFIED is nonzero, X is a destination; it is being modified.
   Note that delete_reg_equiv should be called on a register
   before insert_regs is done on that register with MODIFIED != 0.

   Nonzero value means that elements of reg_qty have changed
   so X's hash code may be different.  */

static int
insert_regs (x, classp, modified)
     rtx x;
     struct table_elt *classp;
     int modified;
{
  if (GET_CODE (x) == REG)
    {
      register int regno = REGNO (x);
1191
      register int qty_valid;
Richard Kenner committed
1192

1193 1194 1195
      /* If REGNO is in the equivalence table already but is of the
	 wrong mode for that equivalence, don't do anything here.  */

1196 1197 1198 1199
      qty_valid = REGNO_QTY_VALID_P (regno);
      if (qty_valid)
	{
	  struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1200

1201 1202 1203 1204 1205
	  if (ent->mode != GET_MODE (x))
	    return 0;
	}

      if (modified || ! qty_valid)
Richard Kenner committed
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	{
	  if (classp)
	    for (classp = classp->first_same_value;
		 classp != 0;
		 classp = classp->next_same_value)
	      if (GET_CODE (classp->exp) == REG
		  && GET_MODE (classp->exp) == GET_MODE (x))
		{
		  make_regs_eqv (regno, REGNO (classp->exp));
		  return 1;
		}

1218
	  make_new_qty (regno, GET_MODE (x));
Richard Kenner committed
1219 1220
	  return 1;
	}
1221 1222

      return 0;
Richard Kenner committed
1223
    }
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

  /* If X is a SUBREG, we will likely be inserting the inner register in the
     table.  If that register doesn't have an assigned quantity number at
     this point but does later, the insertion that we will be doing now will
     not be accessible because its hash code will have changed.  So assign
     a quantity number now.  */

  else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
	   && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
    {
1234 1235
      int regno = REGNO (SUBREG_REG (x));

1236
      insert_regs (SUBREG_REG (x), NULL_PTR, 0);
1237 1238 1239 1240 1241 1242
      /* Mention_regs checks if REG_TICK is exactly one larger than
	 REG_IN_TABLE to find out if there was only a single preceding
	 invalidation - for the SUBREG - or another one, which would be
	 for the full register.  Since we don't invalidate the SUBREG
	 here first, we might have to bump up REG_TICK so that mention_regs
	 will do the right thing.  */
1243 1244 1245
      if (REG_IN_TABLE (regno) >= 0
	  && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
	REG_TICK (regno)++;
1246
      mention_regs (x);
1247 1248
      return 1;
    }
Richard Kenner committed
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
  else
    return mention_regs (x);
}

/* Look in or update the hash table.  */

/* Remove table element ELT from use in the table.
   HASH is its hash code, made using the HASH macro.
   It's an argument because often that is known in advance
   and we save much time not recomputing it.  */

static void
remove_from_table (elt, hash)
     register struct table_elt *elt;
Richard Kenner committed
1263
     unsigned hash;
Richard Kenner committed
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
{
  if (elt == 0)
    return;

  /* Mark this element as removed.  See cse_insn.  */
  elt->first_same_value = 0;

  /* Remove the table element from its equivalence class.  */
     
  {
    register struct table_elt *prev = elt->prev_same_value;
    register struct table_elt *next = elt->next_same_value;

    if (next) next->prev_same_value = prev;

    if (prev)
      prev->next_same_value = next;
    else
      {
	register struct table_elt *newfirst = next;
	while (next)
	  {
	    next->first_same_value = newfirst;
	    next = next->next_same_value;
	  }
      }
  }

  /* Remove the table element from its hash bucket.  */

  {
    register struct table_elt *prev = elt->prev_same_hash;
    register struct table_elt *next = elt->next_same_hash;

    if (next) next->prev_same_hash = prev;

    if (prev)
      prev->next_same_hash = next;
    else if (table[hash] == elt)
      table[hash] = next;
    else
      {
	/* This entry is not in the proper hash bucket.  This can happen
	   when two classes were merged by `merge_equiv_classes'.  Search
	   for the hash bucket that it heads.  This happens only very
	   rarely, so the cost is acceptable.  */
1310
	for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	  if (table[hash] == elt)
	    table[hash] = next;
      }
  }

  /* Remove the table element from its related-value circular chain.  */

  if (elt->related_value != 0 && elt->related_value != elt)
    {
      register struct table_elt *p = elt->related_value;
      while (p->related_value != elt)
	p = p->related_value;
      p->related_value = elt->related_value;
      if (p->related_value == p)
	p->related_value = 0;
    }

1328 1329 1330
  /* Now add it to the free element chain.  */
  elt->next_same_hash = free_element_chain;
  free_element_chain = elt;
Richard Kenner committed
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
}

/* Look up X in the hash table and return its table element,
   or 0 if X is not in the table.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   Here we are satisfied to find an expression whose tree structure
   looks like X.  */

static struct table_elt *
lookup (x, hash, mode)
     rtx x;
Richard Kenner committed
1345
     unsigned hash;
Richard Kenner committed
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
     enum machine_mode mode;
{
  register struct table_elt *p;

  for (p = table[hash]; p; p = p->next_same_hash)
    if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
			    || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
      return p;

  return 0;
}

/* Like `lookup' but don't care whether the table element uses invalid regs.
   Also ignore discrepancies in the machine mode of a register.  */

static struct table_elt *
lookup_for_remove (x, hash, mode)
     rtx x;
Richard Kenner committed
1364
     unsigned hash;
Richard Kenner committed
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
     enum machine_mode mode;
{
  register struct table_elt *p;

  if (GET_CODE (x) == REG)
    {
      int regno = REGNO (x);
      /* Don't check the machine mode when comparing registers;
	 invalidating (REG:SI 0) also invalidates (REG:DF 0).  */
      for (p = table[hash]; p; p = p->next_same_hash)
	if (GET_CODE (p->exp) == REG
	    && REGNO (p->exp) == regno)
	  return p;
    }
  else
    {
      for (p = table[hash]; p; p = p->next_same_hash)
	if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
	  return p;
    }

  return 0;
}

/* Look for an expression equivalent to X and with code CODE.
   If one is found, return that expression.  */

static rtx
lookup_as_function (x, code)
     rtx x;
     enum rtx_code code;
{
1397
  register struct table_elt *p = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK,
Richard Kenner committed
1398
					 GET_MODE (x));
1399 1400 1401 1402 1403 1404 1405 1406
  /* If we are looking for a CONST_INT, the mode doesn't really matter, as
     long as we are narrowing.  So if we looked in vain for a mode narrower
     than word_mode before, look for word_mode now.  */
  if (p == 0 && code == CONST_INT
      && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
    {
      x = copy_rtx (x);
      PUT_MODE (x, word_mode);
1407
      p = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, word_mode);
1408 1409
    }

Richard Kenner committed
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
  if (p == 0)
    return 0;

  for (p = p->first_same_value; p; p = p->next_same_value)
    {
      if (GET_CODE (p->exp) == code
	  /* Make sure this is a valid entry in the table.  */
	  && exp_equiv_p (p->exp, p->exp, 1, 0))
	return p->exp;
    }
  
  return 0;
}

/* Insert X in the hash table, assuming HASH is its hash code
   and CLASSP is an element of the class it should go in
   (or 0 if a new class should be made).
   It is inserted at the proper position to keep the class in
   the order cheapest first.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   For elements of equal cheapness, the most recent one
   goes in front, except that the first element in the list
   remains first unless a cheaper element is added.  The order of
   pseudo-registers does not matter, as canon_reg will be called to
1437
   find the cheapest when a register is retrieved from the table.
Richard Kenner committed
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

   The in_memory field in the hash table element is set to 0.
   The caller must set it nonzero if appropriate.

   You should call insert_regs (X, CLASSP, MODIFY) before calling here,
   and if insert_regs returns a nonzero value
   you must then recompute its hash code before calling here.

   If necessary, update table showing constant values of quantities.  */

#define CHEAPER(X,Y)   ((X)->cost < (Y)->cost)

static struct table_elt *
insert (x, classp, hash, mode)
     register rtx x;
     register struct table_elt *classp;
Richard Kenner committed
1454
     unsigned hash;
Richard Kenner committed
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
     enum machine_mode mode;
{
  register struct table_elt *elt;

  /* If X is a register and we haven't made a quantity for it,
     something is wrong.  */
  if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
    abort ();

  /* If X is a hard register, show it is being put in the table.  */
  if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
    {
      int regno = REGNO (x);
      int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
      int i;

      for (i = regno; i < endregno; i++)
	    SET_HARD_REG_BIT (hard_regs_in_table, i);
    }

1475
  /* If X is a label, show we recorded it.  */
1476 1477 1478
  if (GET_CODE (x) == LABEL_REF
      || (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF))
1479
    recorded_label_ref = 1;
Richard Kenner committed
1480 1481 1482

  /* Put an element for X into the right hash bucket.  */

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
  elt = free_element_chain;
  if (elt)
    {
      free_element_chain = elt->next_same_hash;
    }
  else
    {
      n_elements_made++;
      elt = (struct table_elt *) oballoc (sizeof (struct table_elt));
    }

Richard Kenner committed
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
  elt->exp = x;
  elt->cost = COST (x);
  elt->next_same_value = 0;
  elt->prev_same_value = 0;
  elt->next_same_hash = table[hash];
  elt->prev_same_hash = 0;
  elt->related_value = 0;
  elt->in_memory = 0;
  elt->mode = mode;
  elt->is_const = (CONSTANT_P (x)
		   /* GNU C++ takes advantage of this for `this'
		      (and other const values).  */
		   || (RTX_UNCHANGING_P (x)
		       && GET_CODE (x) == REG
		       && REGNO (x) >= FIRST_PSEUDO_REGISTER)
		   || FIXED_BASE_PLUS_P (x));

  if (table[hash])
    table[hash]->prev_same_hash = elt;
  table[hash] = elt;

  /* Put it into the proper value-class.  */
  if (classp)
    {
      classp = classp->first_same_value;
      if (CHEAPER (elt, classp))
	/* Insert at the head of the class */
	{
	  register struct table_elt *p;
	  elt->next_same_value = classp;
	  classp->prev_same_value = elt;
	  elt->first_same_value = elt;

	  for (p = classp; p; p = p->next_same_value)
	    p->first_same_value = elt;
	}
      else
	{
	  /* Insert not at head of the class.  */
	  /* Put it after the last element cheaper than X.  */
	  register struct table_elt *p, *next;
	  for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
	       p = next);
	  /* Put it after P and before NEXT.  */
	  elt->next_same_value = next;
	  if (next)
	    next->prev_same_value = elt;
	  elt->prev_same_value = p;
	  p->next_same_value = elt;
	  elt->first_same_value = classp;
	}
    }
  else
    elt->first_same_value = elt;

  /* If this is a constant being set equivalent to a register or a register
     being set equivalent to a constant, note the constant equivalence.

     If this is a constant, it cannot be equivalent to a different constant,
     and a constant is the only thing that can be cheaper than a register.  So
     we know the register is the head of the class (before the constant was
     inserted).

     If this is a register that is not already known equivalent to a
     constant, we must check the entire class.

     If this is a register that is already known equivalent to an insn,
1561
     update the qtys `const_insn' to show that `this_insn' is the latest
Richard Kenner committed
1562 1563
     insn making that quantity equivalent to the constant.  */

1564 1565
  if (elt->is_const && classp && GET_CODE (classp->exp) == REG
      && GET_CODE (x) != REG)
Richard Kenner committed
1566
    {
1567 1568 1569 1570 1571
      int exp_q = REG_QTY (REGNO (classp->exp));
      struct qty_table_elem *exp_ent = &qty_table[exp_q];

      exp_ent->const_rtx = gen_lowpart_if_possible (exp_ent->mode, x);
      exp_ent->const_insn = this_insn;
Richard Kenner committed
1572 1573
    }

1574 1575 1576
  else if (GET_CODE (x) == REG
	   && classp
	   && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1577
	   && ! elt->is_const)
Richard Kenner committed
1578 1579 1580 1581 1582
    {
      register struct table_elt *p;

      for (p = classp; p != 0; p = p->next_same_value)
	{
1583
	  if (p->is_const && GET_CODE (p->exp) != REG)
Richard Kenner committed
1584
	    {
1585 1586 1587 1588 1589
	      int x_q = REG_QTY (REGNO (x));
	      struct qty_table_elem *x_ent = &qty_table[x_q];

	      x_ent->const_rtx = gen_lowpart_if_possible (GET_MODE (x), p->exp);
	      x_ent->const_insn = this_insn;
Richard Kenner committed
1590 1591 1592 1593 1594
	      break;
	    }
	}
    }

1595 1596 1597 1598
  else if (GET_CODE (x) == REG
	   && qty_table[REG_QTY (REGNO (x))].const_rtx
	   && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
    qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
Richard Kenner committed
1599 1600 1601 1602 1603 1604 1605

  /* If this is a constant with symbolic value,
     and it has a term with an explicit integer value,
     link it up with related expressions.  */
  if (GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
Richard Kenner committed
1606
      unsigned subhash;
Richard Kenner committed
1607 1608 1609 1610 1611
      struct table_elt *subelt, *subelt_prev;

      if (subexp != 0)
	{
	  /* Get the integer-free subexpression in the hash table.  */
1612
	  subhash = safe_hash (subexp, mode) & HASH_MASK;
Richard Kenner committed
1613 1614
	  subelt = lookup (subexp, subhash, mode);
	  if (subelt == 0)
1615
	    subelt = insert (subexp, NULL_PTR, subhash, mode);
Richard Kenner committed
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	  /* Initialize SUBELT's circular chain if it has none.  */
	  if (subelt->related_value == 0)
	    subelt->related_value = subelt;
	  /* Find the element in the circular chain that precedes SUBELT.  */
	  subelt_prev = subelt;
	  while (subelt_prev->related_value != subelt)
	    subelt_prev = subelt_prev->related_value;
	  /* Put new ELT into SUBELT's circular chain just before SUBELT.
	     This way the element that follows SUBELT is the oldest one.  */
	  elt->related_value = subelt_prev->related_value;
	  subelt_prev->related_value = elt;
	}
    }

  return elt;
}

/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
   CLASS2 into CLASS1.  This is done when we have reached an insn which makes
   the two classes equivalent.

   CLASS1 will be the surviving class; CLASS2 should not be used after this
   call.

   Any invalid entries in CLASS2 will not be copied.  */

static void
merge_equiv_classes (class1, class2)
     struct table_elt *class1, *class2;
{
  struct table_elt *elt, *next, *new;

  /* Ensure we start with the head of the classes.  */
  class1 = class1->first_same_value;
  class2 = class2->first_same_value;

  /* If they were already equal, forget it.  */
  if (class1 == class2)
    return;

  for (elt = class2; elt; elt = next)
    {
Richard Kenner committed
1658
      unsigned hash;
Richard Kenner committed
1659 1660 1661 1662 1663 1664 1665
      rtx exp = elt->exp;
      enum machine_mode mode = elt->mode;

      next = elt->next_same_value;

      /* Remove old entry, make a new one in CLASS1's class.
	 Don't do this for invalid entries as we cannot find their
Mike Stump committed
1666
	 hash code (it also isn't necessary).  */
Richard Kenner committed
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
      if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
	{
	  hash_arg_in_memory = 0;
	  hash = HASH (exp, mode);
	      
	  if (GET_CODE (exp) == REG)
	    delete_reg_equiv (REGNO (exp));
	      
	  remove_from_table (elt, hash);

	  if (insert_regs (exp, class1, 0))
1678 1679 1680 1681
	    {
	      rehash_using_reg (exp);
	      hash = HASH (exp, mode);
	    }
Richard Kenner committed
1682 1683 1684 1685 1686 1687
	  new = insert (exp, class1, hash, mode);
	  new->in_memory = hash_arg_in_memory;
	}
    }
}

1688 1689 1690 1691 1692 1693 1694 1695 1696

/* Flush the entire hash table.  */

static void
flush_hash_table ()
{
  int i;
  struct table_elt *p;

1697
  for (i = 0; i < HASH_SIZE; i++)
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
    for (p = table[i]; p; p = table[i])
      {
	/* Note that invalidate can remove elements
	   after P in the current hash chain.  */
	if (GET_CODE (p->exp) == REG)
	  invalidate (p->exp, p->mode);
	else
	  remove_from_table (p, i);
      }
}
Richard Kenner committed
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

/* Remove from the hash table, or mark as invalid, all expressions whose
   values could be altered by storing in X.  X is a register, a subreg, or
   a memory reference with nonvarying address (because, when a memory
   reference with a varying address is stored in, all memory references are
   removed by invalidate_memory so specific invalidation is superfluous).
   FULL_MODE, if not VOIDmode, indicates that this much should be
   invalidated instead of just the amount indicated by the mode of X.  This
   is only used for bitfield stores into memory.

   A nonvarying address may be just a register or just a symbol reference,
   or it may be either of those plus a numeric offset.  */
Richard Kenner committed
1720 1721

static void
1722
invalidate (x, full_mode)
Richard Kenner committed
1723
     rtx x;
1724
     enum machine_mode full_mode;
Richard Kenner committed
1725 1726 1727 1728
{
  register int i;
  register struct table_elt *p;

Richard Kenner committed
1729
  switch (GET_CODE (x))
Richard Kenner committed
1730
    {
Richard Kenner committed
1731 1732 1733 1734 1735 1736 1737 1738
    case REG:
      {
	/* If X is a register, dependencies on its contents are recorded
	   through the qty number mechanism.  Just change the qty number of
	   the register, mark it as invalid for expressions that refer to it,
	   and remove it itself.  */
	register int regno = REGNO (x);
	register unsigned hash = HASH (x, GET_MODE (x));
Richard Kenner committed
1739

Richard Kenner committed
1740 1741 1742
	/* Remove REGNO from any quantity list it might be on and indicate
	   that its value might have changed.  If it is a pseudo, remove its
	   entry from the hash table.
Richard Kenner committed
1743

Richard Kenner committed
1744 1745 1746 1747
	   For a hard register, we do the first two actions above for any
	   additional hard registers corresponding to X.  Then, if any of these
	   registers are in the table, we must remove any REG entries that
	   overlap these registers.  */
Richard Kenner committed
1748

Richard Kenner committed
1749 1750
	delete_reg_equiv (regno);
	REG_TICK (regno)++;
1751

Richard Kenner committed
1752 1753 1754 1755 1756
	if (regno >= FIRST_PSEUDO_REGISTER)
	  {
	    /* Because a register can be referenced in more than one mode,
	       we might have to remove more than one table entry.  */
	    struct table_elt *elt;
1757

Richard Kenner committed
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	    while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
	      remove_from_table (elt, hash);
	  }
	else
	  {
	    HOST_WIDE_INT in_table
	      = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
	    int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
	    int tregno, tendregno;
	    register struct table_elt *p, *next;
Richard Kenner committed
1768

Richard Kenner committed
1769
	    CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
Richard Kenner committed
1770

Richard Kenner committed
1771 1772 1773 1774 1775 1776 1777
	    for (i = regno + 1; i < endregno; i++)
	      {
		in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, i);
		CLEAR_HARD_REG_BIT (hard_regs_in_table, i);
		delete_reg_equiv (i);
		REG_TICK (i)++;
	      }
Richard Kenner committed
1778

Richard Kenner committed
1779
	    if (in_table)
1780
	      for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
1781 1782 1783
		for (p = table[hash]; p; p = next)
		  {
		    next = p->next_same_hash;
Richard Kenner committed
1784 1785 1786 1787

		  if (GET_CODE (p->exp) != REG
		      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
		    continue;
Richard Kenner committed
1788 1789 1790 1791 1792 1793 1794 1795 1796
		  
		    tregno = REGNO (p->exp);
		    tendregno
		      = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
		    if (tendregno > regno && tregno < endregno)
		      remove_from_table (p, hash);
		  }
	  }
      }
Richard Kenner committed
1797 1798
      return;

Richard Kenner committed
1799
    case SUBREG:
1800
      invalidate (SUBREG_REG (x), VOIDmode);
Richard Kenner committed
1801
      return;
1802

Richard Kenner committed
1803
    case PARALLEL:
1804 1805 1806 1807
      for (i = XVECLEN (x, 0) - 1; i >= 0 ; --i)
	invalidate (XVECEXP (x, 0, i), VOIDmode);
      return;

Richard Kenner committed
1808 1809 1810
    case EXPR_LIST:
      /* This is part of a disjoint return value; extract the location in
	 question ignoring the offset.  */
1811 1812
      invalidate (XEXP (x, 0), VOIDmode);
      return;
Richard Kenner committed
1813

Richard Kenner committed
1814 1815 1816 1817 1818
    case MEM:
      /* Remove all hash table elements that refer to overlapping pieces of
	 memory.  */
      if (full_mode == VOIDmode)
	full_mode = GET_MODE (x);
1819

1820
      for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1821
	{
Richard Kenner committed
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	  register struct table_elt *next;

	  for (p = table[i]; p; p = next)
	    {
	      next = p->next_same_hash;
	      if (p->in_memory
		  && (GET_CODE (p->exp) != MEM
		      || true_dependence (x, full_mode, p->exp,
					  cse_rtx_varies_p)))
		remove_from_table (p, i);
	    }
Richard Kenner committed
1833
	}
Richard Kenner committed
1834 1835 1836 1837
      return;

    default:
      abort ();
Richard Kenner committed
1838 1839
    }
}
Richard Kenner committed
1840

Richard Kenner committed
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
/* Remove all expressions that refer to register REGNO,
   since they are already invalid, and we are about to
   mark that register valid again and don't want the old
   expressions to reappear as valid.  */

static void
remove_invalid_refs (regno)
     int regno;
{
  register int i;
  register struct table_elt *p, *next;

1853
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1854 1855 1856 1857
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (GET_CODE (p->exp) != REG
1858
	    && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
Richard Kenner committed
1859 1860 1861
	  remove_from_table (p, i);
      }
}
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

/* Likewise for a subreg with subreg_reg WORD and mode MODE.  */
static void
remove_invalid_subreg_refs (regno, word, mode)
     int regno;
     int word;
     enum machine_mode mode;
{
  register int i;
  register struct table_elt *p, *next;
  int end = word + (GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD;

1874
  for (i = 0; i < HASH_SIZE; i++)
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
    for (p = table[i]; p; p = next)
      {
	rtx exp;
	next = p->next_same_hash;
	
	exp = p->exp;
	if (GET_CODE (p->exp) != REG
	    && (GET_CODE (exp) != SUBREG
		|| GET_CODE (SUBREG_REG (exp)) != REG
		|| REGNO (SUBREG_REG (exp)) != regno
		|| (((SUBREG_WORD (exp)
		      + (GET_MODE_SIZE (GET_MODE (exp)) - 1) / UNITS_PER_WORD)
		     >= word)
		 && SUBREG_WORD (exp) <= end))
	    && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
	  remove_from_table (p, i);
      }
}
Richard Kenner committed
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

/* Recompute the hash codes of any valid entries in the hash table that
   reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.

   This is called when we make a jump equivalence.  */

static void
rehash_using_reg (x)
     rtx x;
{
Kaveh R. Ghazi committed
1903
  unsigned int i;
Richard Kenner committed
1904
  struct table_elt *p, *next;
Richard Kenner committed
1905
  unsigned hash;
Richard Kenner committed
1906 1907 1908 1909 1910 1911 1912 1913

  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  /* If X is not a register or if the register is known not to be in any
     valid entries in the table, we have no work to do.  */

  if (GET_CODE (x) != REG
1914 1915
      || REG_IN_TABLE (REGNO (x)) < 0
      || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
Richard Kenner committed
1916 1917 1918 1919 1920 1921
    return;

  /* Scan all hash chains looking for valid entries that mention X.
     If we find one and it is in the wrong hash chain, move it.  We can skip
     objects that are registers, since they are handled specially.  */

1922
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1923 1924 1925 1926
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
1927
	    && exp_equiv_p (p->exp, p->exp, 1, 0)
1928
	    && i != (hash = safe_hash (p->exp, p->mode) & HASH_MASK))
Richard Kenner committed
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
	  {
	    if (p->next_same_hash)
	      p->next_same_hash->prev_same_hash = p->prev_same_hash;

	    if (p->prev_same_hash)
	      p->prev_same_hash->next_same_hash = p->next_same_hash;
	    else
	      table[i] = p->next_same_hash;

	    p->next_same_hash = table[hash];
	    p->prev_same_hash = 0;
	    if (table[hash])
	      table[hash]->prev_same_hash = p;
	    table[hash] = p;
	  }
      }
}

/* Remove from the hash table any expression that is a call-clobbered
   register.  Also update their TICK values.  */

static void
invalidate_for_call ()
{
  int regno, endregno;
  int i;
Richard Kenner committed
1955
  unsigned hash;
Richard Kenner committed
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
  struct table_elt *p, *next;
  int in_table = 0;

  /* Go through all the hard registers.  For each that is clobbered in
     a CALL_INSN, remove the register from quantity chains and update
     reg_tick if defined.  Also see if any of these registers is currently
     in the table.  */

  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
      {
	delete_reg_equiv (regno);
1968 1969
	if (REG_TICK (regno) >= 0)
	  REG_TICK (regno)++;
Richard Kenner committed
1970

1971
	in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
Richard Kenner committed
1972 1973 1974 1975 1976 1977 1978
      }

  /* In the case where we have no call-clobbered hard registers in the
     table, we are done.  Otherwise, scan the table and remove any
     entry that overlaps a call-clobbered register.  */

  if (in_table)
1979
    for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
      for (p = table[hash]; p; p = next)
	{
	  next = p->next_same_hash;

	  if (GET_CODE (p->exp) != REG
	      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
	    continue;

	  regno = REGNO (p->exp);
	  endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));

	  for (i = regno; i < endregno; i++)
	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
	      {
		remove_from_table (p, hash);
		break;
	      }
	}
}

/* Given an expression X of type CONST,
   and ELT which is its table entry (or 0 if it
   is not in the hash table),
   return an alternate expression for X as a register plus integer.
   If none can be found, return 0.  */

static rtx
use_related_value (x, elt)
     rtx x;
     struct table_elt *elt;
{
  register struct table_elt *relt = 0;
  register struct table_elt *p, *q;
2013
  HOST_WIDE_INT offset;
Richard Kenner committed
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

  /* First, is there anything related known?
     If we have a table element, we can tell from that.
     Otherwise, must look it up.  */

  if (elt != 0 && elt->related_value != 0)
    relt = elt;
  else if (elt == 0 && GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
      if (subexp != 0)
	relt = lookup (subexp,
2026
		       safe_hash (subexp, GET_MODE (subexp)) & HASH_MASK,
Richard Kenner committed
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
		       GET_MODE (subexp));
    }

  if (relt == 0)
    return 0;

  /* Search all related table entries for one that has an
     equivalent register.  */

  p = relt;
  while (1)
    {
      /* This loop is strange in that it is executed in two different cases.
	 The first is when X is already in the table.  Then it is searching
	 the RELATED_VALUE list of X's class (RELT).  The second case is when
	 X is not in the table.  Then RELT points to a class for the related
	 value.

	 Ensure that, whatever case we are in, that we ignore classes that have
	 the same value as X.  */

      if (rtx_equal_p (x, p->exp))
	q = 0;
      else
	for (q = p->first_same_value; q; q = q->next_same_value)
	  if (GET_CODE (q->exp) == REG)
	    break;

      if (q)
	break;

      p = p->related_value;

      /* We went all the way around, so there is nothing to be found.
	 Alternatively, perhaps RELT was in the table for some other reason
	 and it has no related values recorded.  */
      if (p == relt || p == 0)
	break;
    }

  if (q == 0)
    return 0;

  offset = (get_integer_term (x) - get_integer_term (p->exp));
  /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity.  */
  return plus_constant (q->exp, offset);
}

/* Hash an rtx.  We are careful to make sure the value is never negative.
   Equivalent registers hash identically.
   MODE is used in hashing for CONST_INTs only;
   otherwise the mode of X is used.

   Store 1 in do_not_record if any subexpression is volatile.

   Store 1 in hash_arg_in_memory if X contains a MEM rtx
   which does not have the RTX_UNCHANGING_P bit set.

   Note that cse_insn knows that the hash code of a MEM expression
   is just (int) MEM plus the hash code of the address.  */

Richard Kenner committed
2088
static unsigned
Richard Kenner committed
2089 2090 2091 2092 2093
canon_hash (x, mode)
     rtx x;
     enum machine_mode mode;
{
  register int i, j;
Richard Kenner committed
2094
  register unsigned hash = 0;
Richard Kenner committed
2095
  register enum rtx_code code;
2096
  register const char *fmt;
Richard Kenner committed
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

  /* repeat is used to turn tail-recursion into iteration.  */
 repeat:
  if (x == 0)
    return hash;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      {
	register int regno = REGNO (x);

	/* On some machines, we can't record any non-fixed hard register,
	   because extending its life will cause reload problems.  We
2112 2113 2114 2115 2116 2117
	   consider ap, fp, and sp to be fixed for this purpose. 

	   We also consider CCmode registers to be fixed for this purpose;
	   failure to do so leads to failure to simplify 0<100 type of
	   conditionals.

Mike Stump committed
2118
	   On all machines, we can't record any global registers.  */
Richard Kenner committed
2119 2120 2121

	if (regno < FIRST_PSEUDO_REGISTER
	    && (global_regs[regno]
2122 2123
		|| (SMALL_REGISTER_CLASSES
		    && ! fixed_regs[regno]
Richard Kenner committed
2124
		    && regno != FRAME_POINTER_REGNUM
2125
		    && regno != HARD_FRAME_POINTER_REGNUM
Richard Kenner committed
2126
		    && regno != ARG_POINTER_REGNUM
2127 2128
		    && regno != STACK_POINTER_REGNUM
		    && GET_MODE_CLASS (GET_MODE (x)) != MODE_CC)))
Richard Kenner committed
2129 2130 2131 2132
	  {
	    do_not_record = 1;
	    return 0;
	  }
2133
	hash += ((unsigned) REG << 7) + (unsigned) REG_QTY (regno);
Richard Kenner committed
2134
	return hash;
Richard Kenner committed
2135 2136
      }

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
    /* We handle SUBREG of a REG specially because the underlying
       reg changes its hash value with every value change; we don't
       want to have to forget unrelated subregs when one subreg changes.  */
    case SUBREG:
      {
	if (GET_CODE (SUBREG_REG (x)) == REG)
	  {
	    hash += (((unsigned) SUBREG << 7)
		     + REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
	    return hash;
	  }
	break;
      }

Richard Kenner committed
2151
    case CONST_INT:
Richard Kenner committed
2152 2153 2154 2155 2156
      {
	unsigned HOST_WIDE_INT tem = INTVAL (x);
	hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
	return hash;
      }
Richard Kenner committed
2157 2158 2159 2160

    case CONST_DOUBLE:
      /* This is like the general case, except that it only counts
	 the integers representing the constant.  */
Richard Kenner committed
2161
      hash += (unsigned) code + (unsigned) GET_MODE (x);
2162 2163 2164
      if (GET_MODE (x) != VOIDmode)
	for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
	  {
2165
	    unsigned HOST_WIDE_INT tem = XWINT (x, i);
2166 2167 2168 2169 2170
	    hash += tem;
	  }
      else
	hash += ((unsigned) CONST_DOUBLE_LOW (x)
		 + (unsigned) CONST_DOUBLE_HIGH (x));
Richard Kenner committed
2171 2172 2173 2174
      return hash;

      /* Assume there is only one rtx object for any given label.  */
    case LABEL_REF:
2175
      hash
2176
	+= ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
Richard Kenner committed
2177
      return hash;
Richard Kenner committed
2178 2179

    case SYMBOL_REF:
2180
      hash
2181
	+= ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
Richard Kenner committed
2182
      return hash;
Richard Kenner committed
2183 2184

    case MEM:
Richard Kenner committed
2185 2186 2187
      /* We don't record if marked volatile or if BLKmode since we don't
	 know the size of the move.  */
      if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
Richard Kenner committed
2188 2189 2190 2191
	{
	  do_not_record = 1;
	  return 0;
	}
2192
      if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
Richard Kenner committed
2193 2194 2195 2196 2197
	{
	  hash_arg_in_memory = 1;
	}
      /* Now that we have already found this special case,
	 might as well speed it up as much as possible.  */
Richard Kenner committed
2198
      hash += (unsigned) MEM;
Richard Kenner committed
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
      x = XEXP (x, 0);
      goto repeat;

    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
    case PC:
    case CC0:
    case CALL:
    case UNSPEC_VOLATILE:
      do_not_record = 1;
      return 0;

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	{
	  do_not_record = 1;
	  return 0;
	}
2219 2220 2221 2222
      break;
      
    default:
      break;
Richard Kenner committed
2223 2224 2225
    }

  i = GET_RTX_LENGTH (code) - 1;
Richard Kenner committed
2226
  hash += (unsigned) code + (unsigned) GET_MODE (x);
Richard Kenner committed
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
  fmt = GET_RTX_FORMAT (code);
  for (; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  rtx tem = XEXP (x, i);

	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function  is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = tem;
	      goto repeat;
	    }
	  hash += canon_hash (tem, 0);
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  hash += canon_hash (XVECEXP (x, i, j), 0);
      else if (fmt[i] == 's')
	{
Richard Kenner committed
2249
	  register unsigned char *p = (unsigned char *) XSTR (x, i);
Richard Kenner committed
2250 2251
	  if (p)
	    while (*p)
Richard Kenner committed
2252
	      hash += *p++;
Richard Kenner committed
2253 2254 2255
	}
      else if (fmt[i] == 'i')
	{
Richard Kenner committed
2256 2257
	  register unsigned tem = XINT (x, i);
	  hash += tem;
Richard Kenner committed
2258
	}
2259
      else if (fmt[i] == '0' || fmt[i] == 't')
2260
	/* unused */;
Richard Kenner committed
2261 2262 2263 2264 2265 2266 2267 2268
      else
	abort ();
    }
  return hash;
}

/* Like canon_hash but with no side effects.  */

Richard Kenner committed
2269
static unsigned
Richard Kenner committed
2270 2271 2272 2273 2274 2275
safe_hash (x, mode)
     rtx x;
     enum machine_mode mode;
{
  int save_do_not_record = do_not_record;
  int save_hash_arg_in_memory = hash_arg_in_memory;
Richard Kenner committed
2276
  unsigned hash = canon_hash (x, mode);
Richard Kenner committed
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
  hash_arg_in_memory = save_hash_arg_in_memory;
  do_not_record = save_do_not_record;
  return hash;
}

/* Return 1 iff X and Y would canonicalize into the same thing,
   without actually constructing the canonicalization of either one.
   If VALIDATE is nonzero,
   we assume X is an expression being processed from the rtl
   and Y was found in the hash table.  We check register refs
   in Y for being marked as valid.

   If EQUAL_VALUES is nonzero, we allow a register to match a constant value
   that is known to be in the register.  Ordinarily, we don't allow them
   to match, because letting them match would cause unpredictable results
   in all the places that search a hash table chain for an equivalent
   for a given value.  A possible equivalent that has different structure
   has its hash code computed from different data.  Whether the hash code
Jeff Law committed
2295
   is the same as that of the given value is pure luck.  */
Richard Kenner committed
2296 2297 2298 2299 2300 2301 2302

static int
exp_equiv_p (x, y, validate, equal_values)
     rtx x, y;
     int validate;
     int equal_values;
{
2303
  register int i, j;
Richard Kenner committed
2304
  register enum rtx_code code;
2305
  register const char *fmt;
Richard Kenner committed
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

  /* Note: it is incorrect to assume an expression is equivalent to itself
     if VALIDATE is nonzero.  */
  if (x == y && !validate)
    return 1;
  if (x == 0 || y == 0)
    return x == y;

  code = GET_CODE (x);
  if (code != GET_CODE (y))
    {
      if (!equal_values)
	return 0;

      /* If X is a constant and Y is a register or vice versa, they may be
	 equivalent.  We only have to validate if Y is a register.  */
      if (CONSTANT_P (x) && GET_CODE (y) == REG
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	  && REGNO_QTY_VALID_P (REGNO (y)))
	{
	  int y_q = REG_QTY (REGNO (y));
	  struct qty_table_elem *y_ent = &qty_table[y_q];

	  if (GET_MODE (y) == y_ent->mode
	      && rtx_equal_p (x, y_ent->const_rtx)
	      && (! validate || REG_IN_TABLE (REGNO (y)) == REG_TICK (REGNO (y))))
	    return 1;
	}
Richard Kenner committed
2333 2334

      if (CONSTANT_P (y) && code == REG
2335 2336 2337 2338 2339 2340 2341 2342 2343
	  && REGNO_QTY_VALID_P (REGNO (x)))
	{
	  int x_q = REG_QTY (REGNO (x));
	  struct qty_table_elem *x_ent = &qty_table[x_q];

	  if (GET_MODE (x) == x_ent->mode
	      && rtx_equal_p (y, x_ent->const_rtx))
	    return 1;
	}
Richard Kenner committed
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358

      return 0;
    }

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
  if (GET_MODE (x) != GET_MODE (y))
    return 0;

  switch (code)
    {
    case PC:
    case CC0:
      return x == y;

    case CONST_INT:
Richard Kenner committed
2359
      return INTVAL (x) == INTVAL (y);
Richard Kenner committed
2360 2361 2362 2363

    case LABEL_REF:
      return XEXP (x, 0) == XEXP (y, 0);

2364 2365 2366
    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);

Richard Kenner committed
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
    case REG:
      {
	int regno = REGNO (y);
	int endregno
	  = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
		     : HARD_REGNO_NREGS (regno, GET_MODE (y)));
	int i;

	/* If the quantities are not the same, the expressions are not
	   equivalent.  If there are and we are not to validate, they
	   are equivalent.  Otherwise, ensure all regs are up-to-date.  */

2379
	if (REG_QTY (REGNO (x)) != REG_QTY (regno))
Richard Kenner committed
2380 2381 2382 2383 2384 2385
	  return 0;

	if (! validate)
	  return 1;

	for (i = regno; i < endregno; i++)
2386
	  if (REG_IN_TABLE (i) != REG_TICK (i))
Richard Kenner committed
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	    return 0;

	return 1;
      }

    /*  For commutative operations, check both orders.  */
    case PLUS:
    case MULT:
    case AND:
    case IOR:
    case XOR:
    case NE:
    case EQ:
      return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
	       && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
			       validate, equal_values))
	      || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
			       validate, equal_values)
		  && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
				  validate, equal_values)));
2407 2408 2409
      
    default:
      break;
Richard Kenner committed
2410 2411 2412 2413 2414 2415 2416 2417
    }

  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
2418
      switch (fmt[i])
Richard Kenner committed
2419
	{
2420
	case 'e':
Richard Kenner committed
2421 2422
	  if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
	    return 0;
2423 2424 2425
	  break;

	case 'E':
Richard Kenner committed
2426 2427 2428 2429 2430 2431
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
			       validate, equal_values))
	      return 0;
2432 2433 2434
	  break;

	case 's':
Richard Kenner committed
2435 2436
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
2437 2438 2439
	  break;

	case 'i':
Richard Kenner committed
2440 2441
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
2442 2443 2444 2445 2446 2447 2448 2449
	  break;

	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
	break;

	case '0':
2450
	case 't':
2451 2452 2453 2454
	  break;

	default:
	  abort ();
Richard Kenner committed
2455
	}
2456 2457
      }

Richard Kenner committed
2458 2459 2460
  return 1;
}

2461 2462 2463
/* Return 1 if X has a value that can vary even between two
   executions of the program.  0 means X can be compared reliably
   against certain constants or near-constants.  */
Richard Kenner committed
2464 2465

static int
2466 2467
cse_rtx_varies_p (x)
     register rtx x;
Richard Kenner committed
2468 2469 2470 2471 2472
{
  /* We need not check for X and the equivalence class being of the same
     mode because if X is equivalent to a constant in some mode, it
     doesn't vary in any mode.  */

2473
  if (GET_CODE (x) == REG
2474 2475 2476 2477 2478 2479 2480 2481 2482
      && REGNO_QTY_VALID_P (REGNO (x)))
    {
      int x_q = REG_QTY (REGNO (x));
      struct qty_table_elem *x_ent = &qty_table[x_q];

      if (GET_MODE (x) == x_ent->mode
	  && x_ent->const_rtx != NULL_RTX)
	return 0;
    }
Richard Kenner committed
2483

2484 2485 2486
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 1)) == CONST_INT
      && GET_CODE (XEXP (x, 0)) == REG
2487 2488 2489 2490 2491 2492 2493 2494 2495
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
    {
      int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
      struct qty_table_elem *x0_ent = &qty_table[x0_q];

      if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
	  && x0_ent->const_rtx != NULL_RTX)
	return 0;
    }
Richard Kenner committed
2496

2497 2498 2499 2500 2501
  /* This can happen as the result of virtual register instantiation, if
     the initial constant is too large to be a valid address.  This gives
     us a three instruction sequence, load large offset into a register,
     load fp minus a constant into a register, then a MEM which is the
     sum of the two `constant' registers.  */
2502 2503 2504 2505
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == REG
      && GET_CODE (XEXP (x, 1)) == REG
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
    {
      int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
      int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
      struct qty_table_elem *x0_ent = &qty_table[x0_q];
      struct qty_table_elem *x1_ent = &qty_table[x1_q];

      if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
	  && x0_ent->const_rtx != NULL_RTX
	  && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
	  && x1_ent->const_rtx != NULL_RTX)
	return 0;
    }
2519

2520
  return rtx_varies_p (x);
Richard Kenner committed
2521 2522 2523 2524 2525 2526 2527
}

/* Canonicalize an expression:
   replace each register reference inside it
   with the "oldest" equivalent register.

   If INSN is non-zero and we are replacing a pseudo with a hard register
2528 2529 2530 2531 2532
   or vice versa, validate_change is used to ensure that INSN remains valid
   after we make our substitution.  The calls are made with IN_GROUP non-zero
   so apply_change_group must be called upon the outermost return from this
   function (unless INSN is zero).  The result of apply_change_group can
   generally be discarded since the changes we are making are optional.  */
Richard Kenner committed
2533 2534 2535 2536 2537 2538 2539 2540

static rtx
canon_reg (x, insn)
     rtx x;
     rtx insn;
{
  register int i;
  register enum rtx_code code;
2541
  register const char *fmt;
Richard Kenner committed
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562

  if (x == 0)
    return x;

  code = GET_CODE (x);
  switch (code)
    {
    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return x;

    case REG:
      {
	register int first;
2563 2564
	register int q;
	register struct qty_table_elem *ent;
Richard Kenner committed
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574

	/* Never replace a hard reg, because hard regs can appear
	   in more than one machine mode, and we must preserve the mode
	   of each occurrence.  Also, some hard regs appear in
	   MEMs that are shared and mustn't be altered.  Don't try to
	   replace any reg that maps to a reg of class NO_REGS.  */
	if (REGNO (x) < FIRST_PSEUDO_REGISTER
	    || ! REGNO_QTY_VALID_P (REGNO (x)))
	  return x;

2575 2576 2577
	q = REG_QTY (REGNO(x));
	ent = &qty_table[q];
	first = ent->first_reg;
Richard Kenner committed
2578 2579
	return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
		: REGNO_REG_CLASS (first) == NO_REGS ? x
2580
		: gen_rtx_REG (ent->mode, first));
Richard Kenner committed
2581
      }
2582 2583 2584
      
    default:
      break;
Richard Kenner committed
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      register int j;

      if (fmt[i] == 'e')
	{
	  rtx new = canon_reg (XEXP (x, i), insn);
2595
	  int insn_code;
Richard Kenner committed
2596 2597

	  /* If replacing pseudo with hard reg or vice versa, ensure the
2598
	     insn remains valid.  Likewise if the insn has MATCH_DUPs.  */
2599 2600
	  if (insn != 0 && new != 0
	      && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
2601 2602
	      && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
		   != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
2603
		  || (insn_code = recog_memoized (insn)) < 0
2604
		  || insn_data[insn_code].n_dups > 0))
2605
	    validate_change (insn, &XEXP (x, i), new, 1);
Richard Kenner committed
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	  else
	    XEXP (x, i) = new;
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
    }

  return x;
}

Richard Kenner committed
2617
/* LOC is a location within INSN that is an operand address (the contents of
Richard Kenner committed
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
   a MEM).  Find the best equivalent address to use that is valid for this
   insn.

   On most CISC machines, complicated address modes are costly, and rtx_cost
   is a good approximation for that cost.  However, most RISC machines have
   only a few (usually only one) memory reference formats.  If an address is
   valid at all, it is often just as cheap as any other address.  Hence, for
   RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
   costs of various addresses.  For two addresses of equal cost, choose the one
   with the highest `rtx_cost' value as that has the potential of eliminating
   the most insns.  For equal costs, we choose the first in the equivalence
   class.  Note that we ignore the fact that pseudo registers are cheaper
   than hard registers here because we would also prefer the pseudo registers.
  */

2633
static void
Richard Kenner committed
2634 2635 2636 2637
find_best_addr (insn, loc)
     rtx insn;
     rtx *loc;
{
2638
  struct table_elt *elt;
Richard Kenner committed
2639
  rtx addr = *loc;
2640 2641
#ifdef ADDRESS_COST
  struct table_elt *p;
Richard Kenner committed
2642
  int found_better = 1;
2643
#endif
Richard Kenner committed
2644 2645 2646 2647
  int save_do_not_record = do_not_record;
  int save_hash_arg_in_memory = hash_arg_in_memory;
  int addr_volatile;
  int regno;
Richard Kenner committed
2648
  unsigned hash;
Richard Kenner committed
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662

  /* Do not try to replace constant addresses or addresses of local and
     argument slots.  These MEM expressions are made only once and inserted
     in many instructions, as well as being used to control symbol table
     output.  It is not safe to clobber them.

     There are some uncommon cases where the address is already in a register
     for some reason, but we cannot take advantage of that because we have
     no easy way to unshare the MEM.  In addition, looking up all stack
     addresses is costly.  */
  if ((GET_CODE (addr) == PLUS
       && GET_CODE (XEXP (addr, 0)) == REG
       && GET_CODE (XEXP (addr, 1)) == CONST_INT
       && (regno = REGNO (XEXP (addr, 0)),
2663 2664
	   regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
	   || regno == ARG_POINTER_REGNUM))
Richard Kenner committed
2665
      || (GET_CODE (addr) == REG
2666 2667 2668
	  && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
	      || regno == HARD_FRAME_POINTER_REGNUM
	      || regno == ARG_POINTER_REGNUM))
2669
      || GET_CODE (addr) == ADDRESSOF
Richard Kenner committed
2670 2671 2672 2673 2674 2675 2676
      || CONSTANT_ADDRESS_P (addr))
    return;

  /* If this address is not simply a register, try to fold it.  This will
     sometimes simplify the expression.  Many simplifications
     will not be valid, but some, usually applying the associative rule, will
     be valid and produce better code.  */
2677 2678 2679 2680 2681 2682
  if (GET_CODE (addr) != REG)
    {
      rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);

      if (1
#ifdef ADDRESS_COST
2683 2684
	  && (CSE_ADDRESS_COST (folded) < CSE_ADDRESS_COST (addr)
	      || (CSE_ADDRESS_COST (folded) == CSE_ADDRESS_COST (addr)
2685
		  && rtx_cost (folded, MEM) > rtx_cost (addr, MEM)))
2686
#else
2687
	  && rtx_cost (folded, MEM) < rtx_cost (addr, MEM)
2688 2689 2690 2691
#endif
	  && validate_change (insn, loc, folded, 0))
	addr = folded;
    }
Richard Kenner committed
2692
	
2693 2694 2695
  /* If this address is not in the hash table, we can't look for equivalences
     of the whole address.  Also, ignore if volatile.  */

Richard Kenner committed
2696
  do_not_record = 0;
Richard Kenner committed
2697
  hash = HASH (addr, Pmode);
Richard Kenner committed
2698 2699 2700 2701 2702 2703 2704
  addr_volatile = do_not_record;
  do_not_record = save_do_not_record;
  hash_arg_in_memory = save_hash_arg_in_memory;

  if (addr_volatile)
    return;

Richard Kenner committed
2705
  elt = lookup (addr, hash, Pmode);
Richard Kenner committed
2706 2707

#ifndef ADDRESS_COST
2708 2709
  if (elt)
    {
2710
      int our_cost = elt->cost;
2711 2712 2713 2714 2715 2716 2717

      /* Find the lowest cost below ours that works.  */
      for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
	if (elt->cost < our_cost
	    && (GET_CODE (elt->exp) == REG
		|| exp_equiv_p (elt->exp, elt->exp, 1, 0))
	    && validate_change (insn, loc,
2718
				canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
2719 2720 2721
	  return;
    }
#else
Richard Kenner committed
2722

2723 2724 2725 2726 2727 2728
  if (elt)
    {
      /* We need to find the best (under the criteria documented above) entry
	 in the class that is valid.  We use the `flag' field to indicate
	 choices that were invalid and iterate until we can't find a better
	 one that hasn't already been tried.  */
Richard Kenner committed
2729

2730 2731
      for (p = elt->first_same_value; p; p = p->next_same_value)
	p->flag = 0;
Richard Kenner committed
2732

2733 2734
      while (found_better)
	{
2735
	  int best_addr_cost = CSE_ADDRESS_COST (*loc);
2736 2737 2738 2739 2740
	  int best_rtx_cost = (elt->cost + 1) >> 1;
	  struct table_elt *best_elt = elt; 

	  found_better = 0;
	  for (p = elt->first_same_value; p; p = p->next_same_value)
2741
	    if (! p->flag)
2742
	      {
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
		if ((GET_CODE (p->exp) == REG
		     || exp_equiv_p (p->exp, p->exp, 1, 0))
		    && (CSE_ADDRESS_COST (p->exp) < best_addr_cost
			|| (CSE_ADDRESS_COST (p->exp) == best_addr_cost
			    && (p->cost + 1) >> 1 > best_rtx_cost)))
		  {
		    found_better = 1;
		    best_addr_cost = CSE_ADDRESS_COST (p->exp);
		    best_rtx_cost = (p->cost + 1) >> 1;
		    best_elt = p;
		  }
2754
	      }
Richard Kenner committed
2755

2756 2757 2758
	  if (found_better)
	    {
	      if (validate_change (insn, loc,
2759 2760
				   canon_reg (copy_rtx (best_elt->exp),
					      NULL_RTX), 0))
2761 2762 2763 2764 2765 2766
		return;
	      else
		best_elt->flag = 1;
	    }
	}
    }
Richard Kenner committed
2767

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
  /* If the address is a binary operation with the first operand a register
     and the second a constant, do the same as above, but looking for
     equivalences of the register.  Then try to simplify before checking for
     the best address to use.  This catches a few cases:  First is when we
     have REG+const and the register is another REG+const.  We can often merge
     the constants and eliminate one insn and one register.  It may also be
     that a machine has a cheap REG+REG+const.  Finally, this improves the
     code on the Alpha for unaligned byte stores.  */

  if (flag_expensive_optimizations
      && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
	  || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
      && GET_CODE (XEXP (*loc, 0)) == REG
      && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
Richard Kenner committed
2782
    {
2783 2784 2785
      rtx c = XEXP (*loc, 1);

      do_not_record = 0;
Richard Kenner committed
2786
      hash = HASH (XEXP (*loc, 0), Pmode);
2787 2788 2789
      do_not_record = save_do_not_record;
      hash_arg_in_memory = save_hash_arg_in_memory;

Richard Kenner committed
2790
      elt = lookup (XEXP (*loc, 0), hash, Pmode);
2791 2792 2793 2794 2795 2796 2797
      if (elt == 0)
	return;

      /* We need to find the best (under the criteria documented above) entry
	 in the class that is valid.  We use the `flag' field to indicate
	 choices that were invalid and iterate until we can't find a better
	 one that hasn't already been tried.  */
Richard Kenner committed
2798 2799

      for (p = elt->first_same_value; p; p = p->next_same_value)
2800
	p->flag = 0;
Richard Kenner committed
2801

2802
      while (found_better)
Richard Kenner committed
2803
	{
2804
	  int best_addr_cost = CSE_ADDRESS_COST (*loc);
2805 2806 2807
	  int best_rtx_cost = (COST (*loc) + 1) >> 1;
	  struct table_elt *best_elt = elt; 
	  rtx best_rtx = *loc;
2808 2809 2810 2811 2812
	  int count;

	  /* This is at worst case an O(n^2) algorithm, so limit our search
	     to the first 32 elements on the list.  This avoids trouble
	     compiling code with very long basic blocks that can easily
2813 2814
	     call simplify_gen_binary so many times that we run out of
	     memory.  */
2815

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
	  found_better = 0;
	  for (p = elt->first_same_value, count = 0;
	       p && count < 32;
	       p = p->next_same_value, count++)
	    if (! p->flag
		&& (GET_CODE (p->exp) == REG
		    || exp_equiv_p (p->exp, p->exp, 1, 0)))
	      {
		rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
					       p->exp, c);
2826

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
		if ((CSE_ADDRESS_COST (new) < best_addr_cost
		    || (CSE_ADDRESS_COST (new) == best_addr_cost
			&& (COST (new) + 1) >> 1 > best_rtx_cost)))
		  {
		    found_better = 1;
		    best_addr_cost = CSE_ADDRESS_COST (new);
		    best_rtx_cost = (COST (new) + 1) >> 1;
		    best_elt = p;
		    best_rtx = new;
		  }
	      }
2838

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	  if (found_better)
	    {
	      if (validate_change (insn, loc,
				   canon_reg (copy_rtx (best_rtx),
					      NULL_RTX), 0))
		return;
	      else
		best_elt->flag = 1;
	    }
	}
    }
#endif
2851 2852
}

2853 2854 2855
/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
   operation (EQ, NE, GT, etc.), follow it back through the hash table and
   what values are being compared.
2856

2857 2858 2859 2860
   *PARG1 and *PARG2 are updated to contain the rtx representing the values
   actually being compared.  For example, if *PARG1 was (cc0) and *PARG2
   was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
   compared to produce cc0.
2861

2862 2863
   The return value is the comparison operator and is either the code of
   A or the code corresponding to the inverse of the comparison.  */
Richard Kenner committed
2864

2865 2866
static enum rtx_code
find_comparison_args (code, parg1, parg2, pmode1, pmode2)
Richard Kenner committed
2867
     enum rtx_code code;
2868 2869
     rtx *parg1, *parg2;
     enum machine_mode *pmode1, *pmode2;
Richard Kenner committed
2870
{
2871
  rtx arg1, arg2;
2872

2873
  arg1 = *parg1, arg2 = *parg2;
Richard Kenner committed
2874

2875
  /* If ARG2 is const0_rtx, see what ARG1 is equivalent to.  */
Richard Kenner committed
2876

2877
  while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2878
    {
2879 2880 2881 2882
      /* Set non-zero when we find something of interest.  */
      rtx x = 0;
      int reverse_code = 0;
      struct table_elt *p = 0;
2883

2884 2885 2886 2887
      /* If arg1 is a COMPARE, extract the comparison arguments from it.
	 On machines with CC0, this is the only case that can occur, since
	 fold_rtx will return the COMPARE or item being compared with zero
	 when given CC0.  */
2888

2889 2890
      if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
	x = arg1;
2891

2892 2893
      /* If ARG1 is a comparison operator and CODE is testing for
	 STORE_FLAG_VALUE, get the inner arguments.  */
2894

2895
      else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
Richard Kenner committed
2896
	{
2897 2898 2899 2900 2901
	  if (code == NE
	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		  && code == LT && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
2902 2903
		  && (REAL_VALUE_NEGATIVE
		      (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
Richard Kenner committed
2904
#endif
2905
	      )
2906 2907 2908 2909 2910 2911
	    x = arg1;
	  else if (code == EQ
		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		       && code == GE && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
2912 2913
		       && (REAL_VALUE_NEGATIVE
			   (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
2914 2915 2916
#endif
		   )
	    x = arg1, reverse_code = 1;
Richard Kenner committed
2917 2918
	}

2919
      /* ??? We could also check for
Richard Kenner committed
2920

2921
	 (ne (and (eq (...) (const_int 1))) (const_int 0))
Richard Kenner committed
2922

2923
	 and related forms, but let's wait until we see them occurring.  */
Richard Kenner committed
2924

2925 2926 2927
      if (x == 0)
	/* Look up ARG1 in the hash table and see if it has an equivalence
	   that lets us see what is being compared.  */
2928
	p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) & HASH_MASK,
2929 2930
		    GET_MODE (arg1));
      if (p) p = p->first_same_value;
Richard Kenner committed
2931

2932
      for (; p; p = p->next_same_value)
Richard Kenner committed
2933
	{
2934
	  enum machine_mode inner_mode = GET_MODE (p->exp);
Richard Kenner committed
2935

2936 2937 2938
	  /* If the entry isn't valid, skip it.  */
	  if (! exp_equiv_p (p->exp, p->exp, 1, 0))
	    continue;
2939

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
	  if (GET_CODE (p->exp) == COMPARE
	      /* Another possibility is that this machine has a compare insn
		 that includes the comparison code.  In that case, ARG1 would
		 be equivalent to a comparison operation that would set ARG1 to
		 either STORE_FLAG_VALUE or zero.  If this is an NE operation,
		 ORIG_CODE is the actual comparison being done; if it is an EQ,
		 we must reverse ORIG_CODE.  On machine with a negative value
		 for STORE_FLAG_VALUE, also look at LT and GE operations.  */
	      || ((code == NE
		   || (code == LT
		       && GET_MODE_CLASS (inner_mode) == MODE_INT
		       && (GET_MODE_BITSIZE (inner_mode)
			   <= HOST_BITS_PER_WIDE_INT)
		       && (STORE_FLAG_VALUE
			   & ((HOST_WIDE_INT) 1
			      << (GET_MODE_BITSIZE (inner_mode) - 1))))
#ifdef FLOAT_STORE_FLAG_VALUE
		   || (code == LT
		       && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
2959 2960
		       && (REAL_VALUE_NEGATIVE
			   (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
2961 2962 2963
#endif
		   )
		  && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
Richard Kenner committed
2964
	    {
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	      x = p->exp;
	      break;
	    }
	  else if ((code == EQ
		    || (code == GE
			&& GET_MODE_CLASS (inner_mode) == MODE_INT
			&& (GET_MODE_BITSIZE (inner_mode)
			    <= HOST_BITS_PER_WIDE_INT)
			&& (STORE_FLAG_VALUE
			    & ((HOST_WIDE_INT) 1
			       << (GET_MODE_BITSIZE (inner_mode) - 1))))
#ifdef FLOAT_STORE_FLAG_VALUE
		    || (code == GE
			&& GET_MODE_CLASS (inner_mode) == MODE_FLOAT
2979 2980
		        && (REAL_VALUE_NEGATIVE
			    (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
2981 2982 2983 2984 2985 2986 2987
#endif
		    )
		   && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
	    {
	      reverse_code = 1;
	      x = p->exp;
	      break;
Richard Kenner committed
2988 2989
	    }

2990 2991 2992 2993 2994 2995 2996
	  /* If this is fp + constant, the equivalent is a better operand since
	     it may let us predict the value of the comparison.  */
	  else if (NONZERO_BASE_PLUS_P (p->exp))
	    {
	      arg1 = p->exp;
	      continue;
	    }
Richard Kenner committed
2997 2998
	}

2999 3000 3001 3002
      /* If we didn't find a useful equivalence for ARG1, we are done.
	 Otherwise, set up for the next iteration.  */
      if (x == 0)
	break;
Richard Kenner committed
3003

3004 3005 3006 3007 3008 3009
      arg1 = XEXP (x, 0),  arg2 = XEXP (x, 1);
      if (GET_RTX_CLASS (GET_CODE (x)) == '<')
	code = GET_CODE (x);

      if (reverse_code)
	code = reverse_condition (code);
Richard Kenner committed
3010 3011
    }

3012 3013 3014 3015 3016 3017
  /* Return our results.  Return the modes from before fold_rtx
     because fold_rtx might produce const_int, and then it's too late.  */
  *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
  *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);

  return code;
Richard Kenner committed
3018 3019 3020 3021 3022 3023 3024 3025
}

/* If X is a nontrivial arithmetic operation on an argument
   for which a constant value can be determined, return
   the result of operating on that value, as a constant.
   Otherwise, return X, possibly with one or more operands
   modified by recursive calls to this function.

3026 3027 3028
   If X is a register whose contents are known, we do NOT
   return those contents here.  equiv_constant is called to
   perform that task.
Richard Kenner committed
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039

   INSN is the insn that we may be modifying.  If it is 0, make a copy
   of X before modifying it.  */

static rtx
fold_rtx (x, insn)
     rtx x;
     rtx insn;    
{
  register enum rtx_code code;
  register enum machine_mode mode;
3040
  register const char *fmt;
3041
  register int i;
Richard Kenner committed
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
  rtx new = 0;
  int copied = 0;
  int must_swap = 0;

  /* Folded equivalents of first two operands of X.  */
  rtx folded_arg0;
  rtx folded_arg1;

  /* Constant equivalents of first three operands of X;
     0 when no such equivalent is known.  */
  rtx const_arg0;
  rtx const_arg1;
  rtx const_arg2;

  /* The mode of the first operand of X.  We need this for sign and zero
     extends.  */
  enum machine_mode mode_arg0;

  if (x == 0)
    return x;

  mode = GET_MODE (x);
  code = GET_CODE (x);
  switch (code)
    {
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case REG:
      /* No use simplifying an EXPR_LIST
	 since they are used only for lists of args
	 in a function call's REG_EQUAL note.  */
    case EXPR_LIST:
Jeff Law committed
3077 3078 3079 3080
      /* Changing anything inside an ADDRESSOF is incorrect; we don't
	 want to (e.g.,) make (addressof (const_int 0)) just because
	 the location is known to be zero.  */
    case ADDRESSOF:
Richard Kenner committed
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
      return x;

#ifdef HAVE_cc0
    case CC0:
      return prev_insn_cc0;
#endif

    case PC:
      /* If the next insn is a CODE_LABEL followed by a jump table,
	 PC's value is a LABEL_REF pointing to that label.  That
	 lets us fold switch statements on the Vax.  */
      if (insn && GET_CODE (insn) == JUMP_INSN)
	{
	  rtx next = next_nonnote_insn (insn);

	  if (next && GET_CODE (next) == CODE_LABEL
	      && NEXT_INSN (next) != 0
	      && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
	      && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
		  || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
3101
	    return gen_rtx_LABEL_REF (Pmode, next);
Richard Kenner committed
3102 3103 3104 3105
	}
      break;

    case SUBREG:
3106 3107 3108
      /* See if we previously assigned a constant value to this SUBREG.  */
      if ((new = lookup_as_function (x, CONST_INT)) != 0
	  || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
Richard Kenner committed
3109 3110
	return new;

3111 3112 3113 3114
      /* If this is a paradoxical SUBREG, we have no idea what value the
	 extra bits would have.  However, if the operand is equivalent
	 to a SUBREG whose operand is the same as our mode, and all the
	 modes are within a word, we can just use the inner operand
3115 3116 3117
	 because these SUBREGs just say how to treat the register.

	 Similarly if we find an integer constant.  */
3118

3119
      if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3120 3121 3122 3123 3124 3125 3126 3127
	{
	  enum machine_mode imode = GET_MODE (SUBREG_REG (x));
	  struct table_elt *elt;

	  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
	      && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
	      && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
				imode)) != 0)
3128 3129 3130 3131 3132 3133 3134
	    for (elt = elt->first_same_value;
		 elt; elt = elt->next_same_value)
	      {
		if (CONSTANT_P (elt->exp)
		    && GET_MODE (elt->exp) == VOIDmode)
		  return elt->exp;

3135 3136
		if (GET_CODE (elt->exp) == SUBREG
		    && GET_MODE (SUBREG_REG (elt->exp)) == mode
3137
		    && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3138
		  return copy_rtx (SUBREG_REG (elt->exp));
3139
	      }
3140 3141 3142

	  return x;
	}
3143

Richard Kenner committed
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
      /* Fold SUBREG_REG.  If it changed, see if we can simplify the SUBREG.
	 We might be able to if the SUBREG is extracting a single word in an
	 integral mode or extracting the low part.  */

      folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
      const_arg0 = equiv_constant (folded_arg0);
      if (const_arg0)
	folded_arg0 = const_arg0;

      if (folded_arg0 != SUBREG_REG (x))
	{
	  new = 0;

	  if (GET_MODE_CLASS (mode) == MODE_INT
	      && GET_MODE_SIZE (mode) == UNITS_PER_WORD
	      && GET_MODE (SUBREG_REG (x)) != VOIDmode)
	    new = operand_subword (folded_arg0, SUBREG_WORD (x), 0,
				   GET_MODE (SUBREG_REG (x)));
	  if (new == 0 && subreg_lowpart_p (x))
	    new = gen_lowpart_if_possible (mode, folded_arg0);
	  if (new)
	    return new;
	}
3167 3168

      /* If this is a narrowing SUBREG and our operand is a REG, see if
3169
	 we can find an equivalence for REG that is an arithmetic operation
3170 3171 3172 3173 3174 3175
	 in a wider mode where both operands are paradoxical SUBREGs
	 from objects of our result mode.  In that case, we couldn't report
	 an equivalent value for that operation, since we don't know what the
	 extra bits will be.  But we can find an equivalence for this SUBREG
	 by folding that operation is the narrow mode.  This allows us to
	 fold arithmetic in narrow modes when the machine only supports
3176 3177 3178 3179 3180 3181
	 word-sized arithmetic.  

	 Also look for a case where we have a SUBREG whose operand is the
	 same as our result.  If both modes are smaller than a word, we
	 are simply interpreting a register in different modes and we
	 can use the inner value.  */
3182 3183

      if (GET_CODE (folded_arg0) == REG
3184 3185
	  && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
	  && subreg_lowpart_p (x))
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	{
	  struct table_elt *elt;

	  /* We can use HASH here since we know that canon_hash won't be
	     called.  */
	  elt = lookup (folded_arg0,
			HASH (folded_arg0, GET_MODE (folded_arg0)),
			GET_MODE (folded_arg0));

	  if (elt)
	    elt = elt->first_same_value;

	  for (; elt; elt = elt->next_same_value)
	    {
3200 3201
	      enum rtx_code eltcode = GET_CODE (elt->exp);

3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	      /* Just check for unary and binary operations.  */
	      if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
		  && GET_CODE (elt->exp) != SIGN_EXTEND
		  && GET_CODE (elt->exp) != ZERO_EXTEND
		  && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
		  && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode)
		{
		  rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));

		  if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3212
		    op0 = fold_rtx (op0, NULL_RTX);
3213 3214 3215 3216 3217 3218 3219 3220

		  op0 = equiv_constant (op0);
		  if (op0)
		    new = simplify_unary_operation (GET_CODE (elt->exp), mode,
						    op0, mode);
		}
	      else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
			|| GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
3221 3222 3223 3224
		       && eltcode != DIV && eltcode != MOD
		       && eltcode != UDIV && eltcode != UMOD
		       && eltcode != ASHIFTRT && eltcode != LSHIFTRT
		       && eltcode != ROTATE && eltcode != ROTATERT
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
		       && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
			    && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
				== mode))
			   || CONSTANT_P (XEXP (elt->exp, 0)))
		       && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
			    && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
				== mode))
			   || CONSTANT_P (XEXP (elt->exp, 1))))
		{
		  rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
		  rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));

		  if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3238
		    op0 = fold_rtx (op0, NULL_RTX);
3239 3240 3241 3242 3243

		  if (op0)
		    op0 = equiv_constant (op0);

		  if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
3244
		    op1 = fold_rtx (op1, NULL_RTX);
3245 3246 3247 3248

		  if (op1)
		    op1 = equiv_constant (op1);

3249 3250 3251 3252 3253
		  /* If we are looking for the low SImode part of 
		     (ashift:DI c (const_int 32)), it doesn't work
		     to compute that in SImode, because a 32-bit shift
		     in SImode is unpredictable.  We know the value is 0.  */
		  if (op0 && op1
3254
		      && GET_CODE (elt->exp) == ASHIFT
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
		      && GET_CODE (op1) == CONST_INT
		      && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
		    {
		      if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
			
			/* If the count fits in the inner mode's width,
			   but exceeds the outer mode's width,
			   the value will get truncated to 0
			   by the subreg.  */
			new = const0_rtx;
		      else
			/* If the count exceeds even the inner mode's width,
			   don't fold this expression.  */
			new = 0;
		    }
		  else if (op0 && op1)
3271 3272 3273 3274
		    new = simplify_binary_operation (GET_CODE (elt->exp), mode,
						     op0, op1);
		}

3275 3276 3277 3278
	      else if (GET_CODE (elt->exp) == SUBREG
		       && GET_MODE (SUBREG_REG (elt->exp)) == mode
		       && (GET_MODE_SIZE (GET_MODE (folded_arg0))
			   <= UNITS_PER_WORD)
3279
		       && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3280 3281
		new = copy_rtx (SUBREG_REG (elt->exp));

3282 3283 3284 3285 3286
	      if (new)
		return new;
	    }
	}

Richard Kenner committed
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
      return x;

    case NOT:
    case NEG:
      /* If we have (NOT Y), see if Y is known to be (NOT Z).
	 If so, (NOT Y) simplifies to Z.  Similarly for NEG.  */
      new = lookup_as_function (XEXP (x, 0), code);
      if (new)
	return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
      break;
3297

Richard Kenner committed
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
    case MEM:
      /* If we are not actually processing an insn, don't try to find the
	 best address.  Not only don't we care, but we could modify the
	 MEM in an invalid way since we have no insn to validate against.  */
      if (insn != 0)
	find_best_addr (insn, &XEXP (x, 0));

      {
	/* Even if we don't fold in the insn itself,
	   we can safely do so here, in hopes of getting a constant.  */
3308
	rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
3309
	rtx base = 0;
3310
	HOST_WIDE_INT offset = 0;
Richard Kenner committed
3311 3312

	if (GET_CODE (addr) == REG
3313 3314 3315 3316 3317 3318 3319 3320 3321
	    && REGNO_QTY_VALID_P (REGNO (addr)))
	  {
	    int addr_q = REG_QTY (REGNO (addr));
	    struct qty_table_elem *addr_ent = &qty_table[addr_q];

	    if (GET_MODE (addr) == addr_ent->mode
		&& addr_ent->const_rtx != NULL_RTX)
	      addr = addr_ent->const_rtx;
	  }
Richard Kenner committed
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

	/* If address is constant, split it into a base and integer offset.  */
	if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
	  base = addr;
	else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
		 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
	  {
	    base = XEXP (XEXP (addr, 0), 0);
	    offset = INTVAL (XEXP (XEXP (addr, 0), 1));
	  }
	else if (GET_CODE (addr) == LO_SUM
		 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
	  base = XEXP (addr, 1);
3335
	else if (GET_CODE (addr) == ADDRESSOF)
Jeff Law committed
3336
	  return change_address (x, VOIDmode, addr);
Richard Kenner committed
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353

	/* If this is a constant pool reference, we can fold it into its
	   constant to allow better value tracking.  */
	if (base && GET_CODE (base) == SYMBOL_REF
	    && CONSTANT_POOL_ADDRESS_P (base))
	  {
	    rtx constant = get_pool_constant (base);
	    enum machine_mode const_mode = get_pool_mode (base);
	    rtx new;

	    if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
	      constant_pool_entries_cost = COST (constant);

	    /* If we are loading the full constant, we have an equivalence.  */
	    if (offset == 0 && mode == const_mode)
	      return constant;

Richard Kenner committed
3354
	    /* If this actually isn't a constant (weird!), we can't do
Richard Kenner committed
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	       anything.  Otherwise, handle the two most common cases:
	       extracting a word from a multi-word constant, and extracting
	       the low-order bits.  Other cases don't seem common enough to
	       worry about.  */
	    if (! CONSTANT_P (constant))
	      return x;

	    if (GET_MODE_CLASS (mode) == MODE_INT
		&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
		&& offset % UNITS_PER_WORD == 0
		&& (new = operand_subword (constant,
					   offset / UNITS_PER_WORD,
					   0, const_mode)) != 0)
	      return new;

	    if (((BYTES_BIG_ENDIAN
		  && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
		 || (! BYTES_BIG_ENDIAN && offset == 0))
		&& (new = gen_lowpart_if_possible (mode, constant)) != 0)
	      return new;
	  }

	/* If this is a reference to a label at a known position in a jump
	   table, we also know its value.  */
	if (base && GET_CODE (base) == LABEL_REF)
	  {
	    rtx label = XEXP (base, 0);
	    rtx table_insn = NEXT_INSN (label);
	    
	    if (table_insn && GET_CODE (table_insn) == JUMP_INSN
		&& GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
	      {
		rtx table = PATTERN (table_insn);

		if (offset >= 0
		    && (offset / GET_MODE_SIZE (GET_MODE (table))
			< XVECLEN (table, 0)))
		  return XVECEXP (table, 0,
				  offset / GET_MODE_SIZE (GET_MODE (table)));
	      }
	    if (table_insn && GET_CODE (table_insn) == JUMP_INSN
		&& GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
	      {
		rtx table = PATTERN (table_insn);

		if (offset >= 0
		    && (offset / GET_MODE_SIZE (GET_MODE (table))
			< XVECLEN (table, 1)))
		  {
		    offset /= GET_MODE_SIZE (GET_MODE (table));
3405 3406
		    new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
					 XEXP (table, 0));
Richard Kenner committed
3407 3408

		    if (GET_MODE (table) != Pmode)
3409
		      new = gen_rtx_TRUNCATE (GET_MODE (table), new);
Richard Kenner committed
3410

3411 3412 3413
		    /* Indicate this is a constant.  This isn't a 
		       valid form of CONST, but it will only be used
		       to fold the next insns and then discarded, so
3414 3415 3416 3417 3418
		       it should be safe.

		       Note this expression must be explicitly discarded,
		       by cse_insn, else it may end up in a REG_EQUAL note
		       and "escape" to cause problems elsewhere.  */
3419
		    return gen_rtx_CONST (GET_MODE (new), new);
Richard Kenner committed
3420 3421 3422 3423 3424 3425
		  }
	      }
	  }

	return x;
      }
3426 3427 3428 3429 3430 3431

    case ASM_OPERANDS:
      for (i = XVECLEN (x, 3) - 1; i >= 0; i--)
	validate_change (insn, &XVECEXP (x, 3, i),
			 fold_rtx (XVECEXP (x, 3, i), insn), 0);
      break;
3432 3433 3434
      
    default:
      break;
Richard Kenner committed
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    }

  const_arg0 = 0;
  const_arg1 = 0;
  const_arg2 = 0;
  mode_arg0 = VOIDmode;

  /* Try folding our operands.
     Then see which ones have constant values known.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	rtx arg = XEXP (x, i);
	rtx folded_arg = arg, const_arg = 0;
	enum machine_mode mode_arg = GET_MODE (arg);
	rtx cheap_arg, expensive_arg;
	rtx replacements[2];
	int j;

	/* Most arguments are cheap, so handle them specially.  */
	switch (GET_CODE (arg))
	  {
	  case REG:
	    /* This is the same as calling equiv_constant; it is duplicated
	       here for speed.  */
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	    if (REGNO_QTY_VALID_P (REGNO (arg)))
	      {
		int arg_q = REG_QTY (REGNO (arg));
		struct qty_table_elem *arg_ent = &qty_table[arg_q];

		if (arg_ent->const_rtx != NULL_RTX
		    && GET_CODE (arg_ent->const_rtx) != REG
		    && GET_CODE (arg_ent->const_rtx) != PLUS)
		  const_arg
		    = gen_lowpart_if_possible (GET_MODE (arg),
					       arg_ent->const_rtx);
	      }
Richard Kenner committed
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
	    break;

	  case CONST:
	  case CONST_INT:
	  case SYMBOL_REF:
	  case LABEL_REF:
	  case CONST_DOUBLE:
	    const_arg = arg;
	    break;

#ifdef HAVE_cc0
	  case CC0:
	    folded_arg = prev_insn_cc0;
	    mode_arg = prev_insn_cc0_mode;
	    const_arg = equiv_constant (folded_arg);
	    break;
#endif

	  default:
	    folded_arg = fold_rtx (arg, insn);
	    const_arg = equiv_constant (folded_arg);
	  }

	/* For the first three operands, see if the operand
	   is constant or equivalent to a constant.  */
	switch (i)
	  {
	  case 0:
	    folded_arg0 = folded_arg;
	    const_arg0 = const_arg;
	    mode_arg0 = mode_arg;
	    break;
	  case 1:
	    folded_arg1 = folded_arg;
	    const_arg1 = const_arg;
	    break;
	  case 2:
	    const_arg2 = const_arg;
	    break;
	  }

	/* Pick the least expensive of the folded argument and an
	   equivalent constant argument.  */
	if (const_arg == 0 || const_arg == folded_arg
	    || COST (const_arg) > COST (folded_arg))
	  cheap_arg = folded_arg, expensive_arg = const_arg;
	else
	  cheap_arg = const_arg, expensive_arg = folded_arg;

	/* Try to replace the operand with the cheapest of the two
	   possibilities.  If it doesn't work and this is either of the first
	   two operands of a commutative operation, try swapping them.
	   If THAT fails, try the more expensive, provided it is cheaper
	   than what is already there.  */

	if (cheap_arg == XEXP (x, i))
	  continue;

	if (insn == 0 && ! copied)
	  {
	    x = copy_rtx (x);
	    copied = 1;
	  }

	replacements[0] = cheap_arg, replacements[1] = expensive_arg;
	for (j = 0;
	     j < 2 && replacements[j]
	     && COST (replacements[j]) < COST (XEXP (x, i));
	     j++)
	  {
	    if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
	      break;

	    if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c')
	      {
		validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
		validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);

		if (apply_change_group ())
		  {
		    /* Swap them back to be invalid so that this loop can
		       continue and flag them to be swapped back later.  */
		    rtx tem;

		    tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
				       XEXP (x, 1) = tem;
		    must_swap = 1;
		    break;
		  }
	      }
	  }
      }

3567 3568 3569 3570 3571 3572 3573
    else
      {
	if (fmt[i] == 'E')
	  /* Don't try to fold inside of a vector of expressions.
	     Doing nothing is harmless.  */
	  {;}	
      }
Richard Kenner committed
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608

  /* If a commutative operation, place a constant integer as the second
     operand unless the first operand is also a constant integer.  Otherwise,
     place any constant second unless the first operand is also a constant.  */

  if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
    {
      if (must_swap || (const_arg0
	  		&& (const_arg1 == 0
	      		    || (GET_CODE (const_arg0) == CONST_INT
			        && GET_CODE (const_arg1) != CONST_INT))))
	{
	  register rtx tem = XEXP (x, 0);

	  if (insn == 0 && ! copied)
	    {
	      x = copy_rtx (x);
	      copied = 1;
	    }

	  validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
	  validate_change (insn, &XEXP (x, 1), tem, 1);
	  if (apply_change_group ())
	    {
	      tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
	      tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
	    }
	}
    }

  /* If X is an arithmetic operation, see if we can simplify it.  */

  switch (GET_RTX_CLASS (code))
    {
    case '1':
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
      {
	int is_const = 0;

	/* We can't simplify extension ops unless we know the
	   original mode.  */
	if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
	    && mode_arg0 == VOIDmode)
	  break;

	/* If we had a CONST, strip it off and put it back later if we
	   fold.  */
	if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
	  is_const = 1, const_arg0 = XEXP (const_arg0, 0);

	new = simplify_unary_operation (code, mode,
					const_arg0 ? const_arg0 : folded_arg0,
					mode_arg0);
	if (new != 0 && is_const)
3627
	  new = gen_rtx_CONST (mode, new);
3628
      }
Richard Kenner committed
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
      break;
      
    case '<':
      /* See what items are actually being compared and set FOLDED_ARG[01]
	 to those values and CODE to the actual comparison code.  If any are
	 constant, set CONST_ARG0 and CONST_ARG1 appropriately.  We needn't
	 do anything if both operands are already known to be constant.  */

      if (const_arg0 == 0 || const_arg1 == 0)
	{
	  struct table_elt *p0, *p1;
3640
	  rtx true = const_true_rtx, false = const0_rtx;
3641
	  enum machine_mode mode_arg1;
3642 3643

#ifdef FLOAT_STORE_FLAG_VALUE
3644
	  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3645
	    {
3646 3647
	      true = (CONST_DOUBLE_FROM_REAL_VALUE
		      (FLOAT_STORE_FLAG_VALUE (mode), mode));
3648 3649 3650
	      false = CONST0_RTX (mode);
	    }
#endif
Richard Kenner committed
3651

3652 3653
	  code = find_comparison_args (code, &folded_arg0, &folded_arg1,
				       &mode_arg0, &mode_arg1);
Richard Kenner committed
3654 3655 3656
	  const_arg0 = equiv_constant (folded_arg0);
	  const_arg1 = equiv_constant (folded_arg1);

3657 3658 3659
	  /* If the mode is VOIDmode or a MODE_CC mode, we don't know
	     what kinds of things are being compared, so we can't do
	     anything with this comparison.  */
Richard Kenner committed
3660 3661 3662 3663

	  if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
	    break;

Mike Stump committed
3664 3665 3666
	  /* If we do not now have two constants being compared, see
	     if we can nevertheless deduce some things about the
	     comparison.  */
Richard Kenner committed
3667 3668
	  if (const_arg0 == 0 || const_arg1 == 0)
	    {
Mike Stump committed
3669 3670 3671
	      /* Is FOLDED_ARG0 frame-pointer plus a constant?  Or
		 non-explicit constant?  These aren't zero, but we
		 don't know their sign.  */
Richard Kenner committed
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
	      if (const_arg1 == const0_rtx
		  && (NONZERO_BASE_PLUS_P (folded_arg0)
#if 0  /* Sad to say, on sysvr4, #pragma weak can make a symbol address
	  come out as 0.  */
		      || GET_CODE (folded_arg0) == SYMBOL_REF
#endif
		      || GET_CODE (folded_arg0) == LABEL_REF
		      || GET_CODE (folded_arg0) == CONST))
		{
		  if (code == EQ)
3682
		    return false;
Richard Kenner committed
3683
		  else if (code == NE)
3684
		    return true;
Richard Kenner committed
3685 3686 3687 3688 3689 3690 3691
		}

	      /* See if the two operands are the same.  We don't do this
		 for IEEE floating-point since we can't assume x == x
		 since x might be a NaN.  */

	      if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3692
		   || ! FLOAT_MODE_P (mode_arg0) || flag_fast_math)
Richard Kenner committed
3693 3694 3695
		  && (folded_arg0 == folded_arg1
		      || (GET_CODE (folded_arg0) == REG
			  && GET_CODE (folded_arg1) == REG
3696 3697
			  && (REG_QTY (REGNO (folded_arg0))
			      == REG_QTY (REGNO (folded_arg1))))
Richard Kenner committed
3698 3699
		      || ((p0 = lookup (folded_arg0,
					(safe_hash (folded_arg0, mode_arg0)
3700
					 & HASH_MASK), mode_arg0))
Richard Kenner committed
3701 3702
			  && (p1 = lookup (folded_arg1,
					   (safe_hash (folded_arg1, mode_arg0)
3703
					    & HASH_MASK), mode_arg0))
Richard Kenner committed
3704 3705 3706
			  && p0->first_same_value == p1->first_same_value)))
		return ((code == EQ || code == LE || code == GE
			 || code == LEU || code == GEU)
3707
			? true : false);
Richard Kenner committed
3708 3709 3710 3711 3712 3713

	      /* If FOLDED_ARG0 is a register, see if the comparison we are
		 doing now is either the same as we did before or the reverse
		 (we only check the reverse if not floating-point).  */
	      else if (GET_CODE (folded_arg0) == REG)
		{
3714
		  int qty = REG_QTY (REGNO (folded_arg0));
Richard Kenner committed
3715

3716 3717 3718 3719 3720
		  if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
		    {
		      struct qty_table_elem *ent = &qty_table[qty];

		      if ((comparison_dominates_p (ent->comparison_code, code)
3721 3722 3723
			   || (! FLOAT_MODE_P (mode_arg0)
			       && comparison_dominates_p (ent->comparison_code,
						          reverse_condition (code))))
3724 3725 3726 3727 3728 3729 3730 3731 3732
			  && (rtx_equal_p (ent->comparison_const, folded_arg1)
			      || (const_arg1
				  && rtx_equal_p (ent->comparison_const,
						  const_arg1))
			      || (GET_CODE (folded_arg1) == REG
				  && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
			return (comparison_dominates_p (ent->comparison_code, code)
				? true : false);
		    }
Richard Kenner committed
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
		}
	    }
	}

      /* If we are comparing against zero, see if the first operand is
	 equivalent to an IOR with a constant.  If so, we may be able to
	 determine the result of this comparison.  */

      if (const_arg1 == const0_rtx)
	{
	  rtx y = lookup_as_function (folded_arg0, IOR);
	  rtx inner_const;

	  if (y != 0
	      && (inner_const = equiv_constant (XEXP (y, 1))) != 0
	      && GET_CODE (inner_const) == CONST_INT
	      && INTVAL (inner_const) != 0)
	    {
	      int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
3752 3753 3754
	      int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
			      && (INTVAL (inner_const)
				  & ((HOST_WIDE_INT) 1 << sign_bitnum)));
3755 3756 3757
	      rtx true = const_true_rtx, false = const0_rtx;

#ifdef FLOAT_STORE_FLAG_VALUE
3758
	      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3759
		{
3760 3761
		  true = (CONST_DOUBLE_FROM_REAL_VALUE
			  (FLOAT_STORE_FLAG_VALUE (mode), mode));
3762 3763 3764
		  false = CONST0_RTX (mode);
		}
#endif
Richard Kenner committed
3765 3766 3767 3768

	      switch (code)
		{
		case EQ:
3769
		  return false;
Richard Kenner committed
3770
		case NE:
3771
		  return true;
Richard Kenner committed
3772 3773
		case LT:  case LE:
		  if (has_sign)
3774
		    return true;
Richard Kenner committed
3775 3776 3777
		  break;
		case GT:  case GE:
		  if (has_sign)
3778
		    return false;
Richard Kenner committed
3779
		  break;
3780 3781
		default:
		  break;
Richard Kenner committed
3782 3783 3784 3785 3786 3787 3788
		}
	    }
	}

      new = simplify_relational_operation (code, mode_arg0,
					   const_arg0 ? const_arg0 : folded_arg0,
					   const_arg1 ? const_arg1 : folded_arg1);
3789 3790
#ifdef FLOAT_STORE_FLAG_VALUE
      if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3791 3792 3793 3794 3795 3796 3797
	{
	  if (new == const0_rtx)
	    new = CONST0_RTX (mode);
	  else
	    new = (CONST_DOUBLE_FROM_REAL_VALUE
		   (FLOAT_STORE_FLAG_VALUE (mode), mode));
	}
3798
#endif
Richard Kenner committed
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
      break;

    case '2':
    case 'c':
      switch (code)
	{
	case PLUS:
	  /* If the second operand is a LABEL_REF, see if the first is a MINUS
	     with that LABEL_REF as its second operand.  If so, the result is
	     the first operand of that MINUS.  This handles switches with an
	     ADDR_DIFF_VEC table.  */
	  if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
	    {
3812 3813 3814
	      rtx y
		= GET_CODE (folded_arg0) == MINUS ? folded_arg0
		  : lookup_as_function (folded_arg0, MINUS);
Richard Kenner committed
3815 3816 3817 3818

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
		return XEXP (y, 0);
3819 3820

	      /* Now try for a CONST of a MINUS like the above.  */
3821 3822
	      if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
			: lookup_as_function (folded_arg0, CONST))) != 0
3823 3824 3825 3826
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
		  && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg1, 0))
		return XEXP (XEXP (y, 0), 0);
Richard Kenner committed
3827
	    }
Richard Kenner committed
3828

3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
	  /* Likewise if the operands are in the other order.  */
	  if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
	    {
	      rtx y
		= GET_CODE (folded_arg1) == MINUS ? folded_arg1
		  : lookup_as_function (folded_arg1, MINUS);

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
		return XEXP (y, 0);

	      /* Now try for a CONST of a MINUS like the above.  */
	      if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
			: lookup_as_function (folded_arg1, CONST))) != 0
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
		  && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg0, 0))
		return XEXP (XEXP (y, 0), 0);
	    }

Richard Kenner committed
3849 3850 3851
	  /* If second operand is a register equivalent to a negative
	     CONST_INT, see if we can find a register equivalent to the
	     positive constant.  Make a MINUS if so.  Don't do this for
3852
	     a non-negative constant since we might then alternate between
Richard Kenner committed
3853
	     chosing positive and negative constants.  Having the positive
3854 3855 3856 3857 3858 3859 3860
	     constant previously-used is the more common case.  Be sure
	     the resulting constant is non-negative; if const_arg1 were
	     the smallest negative number this would overflow: depending
	     on the mode, this would either just be the same value (and
	     hence not save anything) or be incorrect.  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
	      && INTVAL (const_arg1) < 0
3861 3862 3863 3864 3865 3866 3867
	      /* This used to test

	         - INTVAL (const_arg1) >= 0

		 But The Sun V5.0 compilers mis-compiled that test.  So
		 instead we test for the problematic value in a more direct
		 manner and hope the Sun compilers get it correct.  */
3868 3869
	      && INTVAL (const_arg1) !=
	        ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3870
	      && GET_CODE (folded_arg1) == REG)
Richard Kenner committed
3871 3872 3873
	    {
	      rtx new_const = GEN_INT (- INTVAL (const_arg1));
	      struct table_elt *p
3874
		= lookup (new_const, safe_hash (new_const, mode) & HASH_MASK,
Richard Kenner committed
3875 3876 3877 3878 3879
			  mode);

	      if (p)
		for (p = p->first_same_value; p; p = p->next_same_value)
		  if (GET_CODE (p->exp) == REG)
3880 3881
		    return simplify_gen_binary (MINUS, mode, folded_arg0,
						canon_reg (p->exp, NULL_RTX));
Richard Kenner committed
3882
	    }
3883 3884 3885 3886 3887 3888 3889 3890 3891
	  goto from_plus;

	case MINUS:
	  /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
	     If so, produce (PLUS Z C2-C).  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      rtx y = lookup_as_function (XEXP (x, 0), PLUS);
	      if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3892 3893
		return fold_rtx (plus_constant (copy_rtx (y),
						-INTVAL (const_arg1)),
3894
				 NULL_RTX);
3895
	    }
Richard Kenner committed
3896

Mike Stump committed
3897
	  /* ... fall through ...  */
Richard Kenner committed
3898

3899
	from_plus:
Richard Kenner committed
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
	case SMIN:    case SMAX:      case UMIN:    case UMAX:
	case IOR:     case AND:       case XOR:
	case MULT:    case DIV:       case UDIV:
	case ASHIFT:  case LSHIFTRT:  case ASHIFTRT:
	  /* If we have (<op> <reg> <const_int>) for an associative OP and REG
	     is known to be of similar form, we may be able to replace the
	     operation with a combined operation.  This may eliminate the
	     intermediate operation if every use is simplified in this way.
	     Note that the similar optimization done by combine.c only works
	     if the intermediate operation's result has only one reference.  */

	  if (GET_CODE (folded_arg0) == REG
	      && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      int is_shift
		= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
	      rtx y = lookup_as_function (folded_arg0, code);
	      rtx inner_const;
	      enum rtx_code associate_code;
	      rtx new_const;

	      if (y == 0
		  || 0 == (inner_const
			   = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
		  || GET_CODE (inner_const) != CONST_INT
		  /* If we have compiled a statement like
		     "if (x == (x & mask1))", and now are looking at
		     "x & mask2", we will have a case where the first operand
		     of Y is the same as our first operand.  Unless we detect
		     this case, an infinite loop will result.  */
		  || XEXP (y, 0) == folded_arg0)
		break;

	      /* Don't associate these operations if they are a PLUS with the
		 same constant and it is a power of two.  These might be doable
		 with a pre- or post-increment.  Similarly for two subtracts of
		 identical powers of two with post decrement.  */

	      if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
3939 3940 3941 3942 3943 3944 3945 3946
		  && ((HAVE_PRE_INCREMENT
			  && exact_log2 (INTVAL (const_arg1)) >= 0)
		      || (HAVE_POST_INCREMENT
			  && exact_log2 (INTVAL (const_arg1)) >= 0)
		      || (HAVE_PRE_DECREMENT
			  && exact_log2 (- INTVAL (const_arg1)) >= 0)
		      || (HAVE_POST_DECREMENT
			  && exact_log2 (- INTVAL (const_arg1)) >= 0)))
Richard Kenner committed
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
		break;

	      /* Compute the code used to compose the constants.  For example,
		 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT.  */

	      associate_code
		= (code == MULT || code == DIV || code == UDIV ? MULT
		   : is_shift || code == PLUS || code == MINUS ? PLUS : code);

	      new_const = simplify_binary_operation (associate_code, mode,
						     const_arg1, inner_const);

	      if (new_const == 0)
		break;

	      /* If we are associating shift operations, don't let this
3963 3964 3965 3966
		 produce a shift of the size of the object or larger.
		 This could occur when we follow a sign-extend by a right
		 shift on a machine that does a sign-extend as a pair
		 of shifts.  */
Richard Kenner committed
3967 3968

	      if (is_shift && GET_CODE (new_const) == CONST_INT
3969 3970 3971 3972 3973 3974 3975 3976 3977
		  && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
		{
		  /* As an exception, we can turn an ASHIFTRT of this
		     form into a shift of the number of bits - 1.  */
		  if (code == ASHIFTRT)
		    new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
		  else
		    break;
		}
Richard Kenner committed
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987

	      y = copy_rtx (XEXP (y, 0));

	      /* If Y contains our first operand (the most common way this
		 can happen is if Y is a MEM), we would do into an infinite
		 loop if we tried to fold it.  So don't in that case.  */

	      if (! reg_mentioned_p (folded_arg0, y))
		y = fold_rtx (y, insn);

3988
	      return simplify_gen_binary (code, mode, y, new_const);
Richard Kenner committed
3989
	    }
3990 3991 3992 3993
	  break;

	default:
	  break;
Richard Kenner committed
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
	}

      new = simplify_binary_operation (code, mode,
				       const_arg0 ? const_arg0 : folded_arg0,
				       const_arg1 ? const_arg1 : folded_arg1);
      break;

    case 'o':
      /* (lo_sum (high X) X) is simply X.  */
      if (code == LO_SUM && const_arg0 != 0
	  && GET_CODE (const_arg0) == HIGH
	  && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
	return const_arg1;
      break;

    case '3':
    case 'b':
      new = simplify_ternary_operation (code, mode, mode_arg0,
					const_arg0 ? const_arg0 : folded_arg0,
					const_arg1 ? const_arg1 : folded_arg1,
					const_arg2 ? const_arg2 : XEXP (x, 2));
      break;
4016 4017 4018 4019 4020 4021

    case 'x':
      /* Always eliminate CONSTANT_P_RTX at this stage. */
      if (code == CONSTANT_P_RTX)
	return (const_arg0 ? const1_rtx : const0_rtx);
      break;
Richard Kenner committed
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
    }

  return new ? new : x;
}

/* Return a constant value currently equivalent to X.
   Return 0 if we don't know one.  */

static rtx
equiv_constant (x)
     rtx x;
{
  if (GET_CODE (x) == REG
4035 4036 4037 4038 4039 4040 4041 4042
      && REGNO_QTY_VALID_P (REGNO (x)))
    {
      int x_q = REG_QTY (REGNO (x));
      struct qty_table_elem *x_ent = &qty_table[x_q];

      if (x_ent->const_rtx)
	x = gen_lowpart_if_possible (GET_MODE (x), x_ent->const_rtx);
    }
Richard Kenner committed
4043

4044
  if (x == 0 || CONSTANT_P (x))
Richard Kenner committed
4045 4046
    return x;

4047 4048 4049 4050 4051 4052 4053 4054 4055
  /* If X is a MEM, try to fold it outside the context of any insn to see if
     it might be equivalent to a constant.  That handles the case where it
     is a constant-pool reference.  Then try to look it up in the hash table
     in case it is something whose value we have seen before.  */

  if (GET_CODE (x) == MEM)
    {
      struct table_elt *elt;

4056
      x = fold_rtx (x, NULL_RTX);
4057 4058 4059
      if (CONSTANT_P (x))
	return x;

4060
      elt = lookup (x, safe_hash (x, GET_MODE (x)) & HASH_MASK, GET_MODE (x));
4061 4062 4063 4064 4065 4066 4067 4068
      if (elt == 0)
	return 0;

      for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
	if (elt->is_const && CONSTANT_P (elt->exp))
	  return elt->exp;
    }

Richard Kenner committed
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
  return 0;
}

/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
   number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
   least-significant part of X.
   MODE specifies how big a part of X to return.  

   If the requested operation cannot be done, 0 is returned.

   This is similar to gen_lowpart in emit-rtl.c.  */

rtx
gen_lowpart_if_possible (mode, x)
     enum machine_mode mode;
     register rtx x;
{
  rtx result = gen_lowpart_common (mode, x);

  if (result)
    return result;
  else if (GET_CODE (x) == MEM)
    {
      /* This is the only other case we handle.  */
      register int offset = 0;
      rtx new;

4096 4097 4098 4099 4100 4101 4102 4103
      if (WORDS_BIG_ENDIAN)
	offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
		  - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
      if (BYTES_BIG_ENDIAN)
	/* Adjust the address so that the address-after-the-data is
	   unchanged.  */
	offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
		   - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4104
      new = gen_rtx_MEM (mode, plus_constant (XEXP (x, 0), offset));
Richard Kenner committed
4105 4106 4107
      if (! memory_address_p (mode, XEXP (new, 0)))
	return 0;
      RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
4108
      MEM_COPY_ATTRIBUTES (new, x);
Richard Kenner committed
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
      return new;
    }
  else
    return 0;
}

/* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
   branch.  It will be zero if not.

   In certain cases, this can cause us to add an equivalence.  For example,
   if we are following the taken case of 
   	if (i == 2)
   we can add the fact that `i' and '2' are now equivalent.

   In any case, we can record that this comparison was passed.  If the same
   comparison is seen later, we will know its value.  */

static void
record_jump_equiv (insn, taken)
     rtx insn;
     int taken;
{
  int cond_known_true;
  rtx op0, op1;
4133
  enum machine_mode mode, mode0, mode1;
Richard Kenner committed
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
  int reversed_nonequality = 0;
  enum rtx_code code;

  /* Ensure this is the right kind of insn.  */
  if (! condjump_p (insn) || simplejump_p (insn))
    return;

  /* See if this jump condition is known true or false.  */
  if (taken)
    cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 2) == pc_rtx);
  else
    cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx);

  /* Get the type of comparison being done and the operands being compared.
     If we had to reverse a non-equality condition, record that fact so we
     know that it isn't valid for floating-point.  */
  code = GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0));
  op0 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0), insn);
  op1 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1), insn);

4154
  code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
Richard Kenner committed
4155 4156 4157 4158
  if (! cond_known_true)
    {
      reversed_nonequality = (code != EQ && code != NE);
      code = reverse_condition (code);
4159 4160 4161 4162

      /* Don't remember if we can't find the inverse.  */
      if (code == UNKNOWN)
	return;
Richard Kenner committed
4163 4164 4165
    }

  /* The mode is the mode of the non-constant.  */
4166 4167 4168
  mode = mode0;
  if (mode1 != VOIDmode)
    mode = mode1;
Richard Kenner committed
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184

  record_jump_cond (code, mode, op0, op1, reversed_nonequality);
}

/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
   REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
   Make any useful entries we can with that information.  Called from
   above function and called recursively.  */

static void
record_jump_cond (code, mode, op0, op1, reversed_nonequality)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
     int reversed_nonequality;
{
Richard Kenner committed
4185
  unsigned op0_hash, op1_hash;
Bernd Schmidt committed
4186
  int op0_in_memory, op1_in_memory;
Richard Kenner committed
4187 4188 4189 4190 4191
  struct table_elt *op0_elt, *op1_elt;

  /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
     we know that they are also equal in the smaller mode (this is also
     true for all smaller modes whether or not there is a SUBREG, but
4192
     is not worth testing for with no SUBREG).  */
Richard Kenner committed
4193

4194
  /* Note that GET_MODE (op0) may not equal MODE.  */
Richard Kenner committed
4195
  if (code == EQ && GET_CODE (op0) == SUBREG
4196 4197
      && (GET_MODE_SIZE (GET_MODE (op0))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
Richard Kenner committed
4198 4199 4200 4201 4202
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
      rtx tem = gen_lowpart_if_possible (inner_mode, op1);

      record_jump_cond (code, mode, SUBREG_REG (op0),
4203
			tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
Richard Kenner committed
4204 4205 4206 4207
			reversed_nonequality);
    }

  if (code == EQ && GET_CODE (op1) == SUBREG
4208 4209
      && (GET_MODE_SIZE (GET_MODE (op1))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
Richard Kenner committed
4210 4211 4212 4213 4214
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
      rtx tem = gen_lowpart_if_possible (inner_mode, op0);

      record_jump_cond (code, mode, SUBREG_REG (op1),
4215
			tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
Richard Kenner committed
4216 4217 4218 4219 4220 4221
			reversed_nonequality);
    }

  /* Similarly, if this is an NE comparison, and either is a SUBREG 
     making a smaller mode, we know the whole thing is also NE.  */

4222 4223 4224 4225
  /* Note that GET_MODE (op0) may not equal MODE;
     if we test MODE instead, we can get an infinite recursion
     alternating between two modes each wider than MODE.  */

Richard Kenner committed
4226 4227
  if (code == NE && GET_CODE (op0) == SUBREG
      && subreg_lowpart_p (op0)
4228 4229
      && (GET_MODE_SIZE (GET_MODE (op0))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
Richard Kenner committed
4230 4231 4232 4233 4234
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
      rtx tem = gen_lowpart_if_possible (inner_mode, op1);

      record_jump_cond (code, mode, SUBREG_REG (op0),
4235
			tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
Richard Kenner committed
4236 4237 4238 4239 4240
			reversed_nonequality);
    }

  if (code == NE && GET_CODE (op1) == SUBREG
      && subreg_lowpart_p (op1)
4241 4242
      && (GET_MODE_SIZE (GET_MODE (op1))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
Richard Kenner committed
4243 4244 4245 4246 4247
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
      rtx tem = gen_lowpart_if_possible (inner_mode, op0);

      record_jump_cond (code, mode, SUBREG_REG (op1),
4248
			tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
Richard Kenner committed
4249 4250 4251 4252 4253 4254 4255
			reversed_nonequality);
    }

  /* Hash both operands.  */

  do_not_record = 0;
  hash_arg_in_memory = 0;
Richard Kenner committed
4256
  op0_hash = HASH (op0, mode);
Richard Kenner committed
4257 4258 4259 4260 4261 4262 4263
  op0_in_memory = hash_arg_in_memory;

  if (do_not_record)
    return;

  do_not_record = 0;
  hash_arg_in_memory = 0;
Richard Kenner committed
4264
  op1_hash = HASH (op1, mode);
Richard Kenner committed
4265 4266 4267 4268 4269 4270
  op1_in_memory = hash_arg_in_memory;
  
  if (do_not_record)
    return;

  /* Look up both operands.  */
Richard Kenner committed
4271 4272
  op0_elt = lookup (op0, op0_hash, mode);
  op1_elt = lookup (op1, op1_hash, mode);
Richard Kenner committed
4273

4274 4275 4276 4277 4278 4279 4280
  /* If both operands are already equivalent or if they are not in the
     table but are identical, do nothing.  */
  if ((op0_elt != 0 && op1_elt != 0
       && op0_elt->first_same_value == op1_elt->first_same_value)
      || op0 == op1 || rtx_equal_p (op0, op1))
    return;

Richard Kenner committed
4281
  /* If we aren't setting two things equal all we can do is save this
4282 4283 4284 4285 4286
     comparison.   Similarly if this is floating-point.  In the latter
     case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
     If we record the equality, we might inadvertently delete code
     whose intent was to change -0 to +0.  */

4287
  if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
Richard Kenner committed
4288
    {
4289 4290 4291
      struct qty_table_elem *ent;
      int qty;

Richard Kenner committed
4292 4293 4294 4295 4296 4297 4298
      /* If we reversed a floating-point comparison, if OP0 is not a
	 register, or if OP1 is neither a register or constant, we can't
	 do anything.  */

      if (GET_CODE (op1) != REG)
	op1 = equiv_constant (op1);

4299
      if ((reversed_nonequality && FLOAT_MODE_P (mode))
Richard Kenner committed
4300 4301 4302 4303 4304 4305 4306
	  || GET_CODE (op0) != REG || op1 == 0)
	return;

      /* Put OP0 in the hash table if it isn't already.  This gives it a
	 new quantity number.  */
      if (op0_elt == 0)
	{
4307
	  if (insert_regs (op0, NULL_PTR, 0))
Richard Kenner committed
4308 4309
	    {
	      rehash_using_reg (op0);
Richard Kenner committed
4310
	      op0_hash = HASH (op0, mode);
4311 4312 4313 4314 4315

	      /* If OP0 is contained in OP1, this changes its hash code
		 as well.  Faster to rehash than to check, except
		 for the simple case of a constant.  */
	      if (! CONSTANT_P (op1))
Richard Kenner committed
4316
		op1_hash = HASH (op1,mode);
Richard Kenner committed
4317 4318
	    }

Richard Kenner committed
4319
	  op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
Richard Kenner committed
4320 4321 4322
	  op0_elt->in_memory = op0_in_memory;
	}

4323 4324 4325 4326
      qty = REG_QTY (REGNO (op0));
      ent = &qty_table[qty];

      ent->comparison_code = code;
Richard Kenner committed
4327 4328
      if (GET_CODE (op1) == REG)
	{
4329
	  /* Look it up again--in case op0 and op1 are the same.  */
Richard Kenner committed
4330
	  op1_elt = lookup (op1, op1_hash, mode);
4331

Richard Kenner committed
4332 4333 4334
	  /* Put OP1 in the hash table so it gets a new quantity number.  */
	  if (op1_elt == 0)
	    {
4335
	      if (insert_regs (op1, NULL_PTR, 0))
Richard Kenner committed
4336 4337
		{
		  rehash_using_reg (op1);
Richard Kenner committed
4338
		  op1_hash = HASH (op1, mode);
Richard Kenner committed
4339 4340
		}

Richard Kenner committed
4341
	      op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
Richard Kenner committed
4342 4343 4344
	      op1_elt->in_memory = op1_in_memory;
	    }

4345 4346
	  ent->comparison_const = NULL_RTX;
	  ent->comparison_qty = REG_QTY (REGNO (op1));
Richard Kenner committed
4347 4348 4349
	}
      else
	{
4350 4351
	  ent->comparison_const = op1;
	  ent->comparison_qty = -1;
Richard Kenner committed
4352 4353 4354 4355 4356
	}

      return;
    }

4357 4358
  /* If either side is still missing an equivalence, make it now,
     then merge the equivalences.  */
Richard Kenner committed
4359 4360 4361

  if (op0_elt == 0)
    {
4362
      if (insert_regs (op0, NULL_PTR, 0))
Richard Kenner committed
4363 4364
	{
	  rehash_using_reg (op0);
Richard Kenner committed
4365
	  op0_hash = HASH (op0, mode);
Richard Kenner committed
4366 4367
	}

Richard Kenner committed
4368
      op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
Richard Kenner committed
4369 4370 4371 4372 4373
      op0_elt->in_memory = op0_in_memory;
    }

  if (op1_elt == 0)
    {
4374
      if (insert_regs (op1, NULL_PTR, 0))
Richard Kenner committed
4375 4376
	{
	  rehash_using_reg (op1);
Richard Kenner committed
4377
	  op1_hash = HASH (op1, mode);
Richard Kenner committed
4378 4379
	}

Richard Kenner committed
4380
      op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
Richard Kenner committed
4381 4382
      op1_elt->in_memory = op1_in_memory;
    }
4383 4384 4385

  merge_equiv_classes (op0_elt, op1_elt);
  last_jump_equiv_class = op0_elt;
Richard Kenner committed
4386 4387 4388 4389 4390 4391 4392 4393
}

/* CSE processing for one instruction.
   First simplify sources and addresses of all assignments
   in the instruction, using previously-computed equivalents values.
   Then install the new sources and destinations in the table
   of available values. 

4394 4395 4396
   If LIBCALL_INSN is nonzero, don't record any equivalence made in
   the insn.  It means that INSN is inside libcall block.  In this
   case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
Richard Kenner committed
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407

/* Data on one SET contained in the instruction.  */

struct set
{
  /* The SET rtx itself.  */
  rtx rtl;
  /* The SET_SRC of the rtx (the original value, if it is changing).  */
  rtx src;
  /* The hash-table element for the SET_SRC of the SET.  */
  struct table_elt *src_elt;
Richard Kenner committed
4408 4409 4410 4411
  /* Hash value for the SET_SRC.  */
  unsigned src_hash;
  /* Hash value for the SET_DEST.  */
  unsigned dest_hash;
Richard Kenner committed
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
  /* The SET_DEST, with SUBREG, etc., stripped.  */
  rtx inner_dest;
  /* Nonzero if the SET_SRC is in memory.  */ 
  char src_in_memory;
  /* Nonzero if the SET_SRC contains something
     whose value cannot be predicted and understood.  */
  char src_volatile;
  /* Original machine mode, in case it becomes a CONST_INT.  */
  enum machine_mode mode;
  /* A constant equivalent for SET_SRC, if any.  */
  rtx src_const;
4423 4424
  /* Original SET_SRC value used for libcall notes.  */
  rtx orig_src;
Richard Kenner committed
4425 4426
  /* Hash value of constant equivalent for SET_SRC.  */
  unsigned src_const_hash;
Richard Kenner committed
4427 4428 4429 4430 4431
  /* Table entry for constant equivalent for SET_SRC, if any.  */
  struct table_elt *src_const_elt;
};

static void
4432
cse_insn (insn, libcall_insn)
Richard Kenner committed
4433
     rtx insn;
4434
     rtx libcall_insn;
Richard Kenner committed
4435 4436 4437
{
  register rtx x = PATTERN (insn);
  register int i;
4438
  rtx tem;
Richard Kenner committed
4439 4440
  register int n_sets = 0;

4441
#ifdef HAVE_cc0
Richard Kenner committed
4442 4443
  /* Records what this insn does to set CC0.  */
  rtx this_insn_cc0 = 0;
4444
  enum machine_mode this_insn_cc0_mode = VOIDmode;
4445
#endif
Richard Kenner committed
4446 4447 4448

  rtx src_eqv = 0;
  struct table_elt *src_eqv_elt = 0;
Kaveh R. Ghazi committed
4449 4450 4451
  int src_eqv_volatile = 0;
  int src_eqv_in_memory = 0;
  unsigned src_eqv_hash = 0;
Richard Kenner committed
4452

4453
  struct set *sets = (struct set *) NULL_PTR;
Richard Kenner committed
4454 4455 4456 4457 4458 4459 4460 4461

  this_insn = insn;

  /* Find all the SETs and CLOBBERs in this instruction.
     Record all the SETs in the array `set' and count them.
     Also determine whether there is a CLOBBER that invalidates
     all memory references, or all references at varying addresses.  */

4462 4463 4464 4465
  if (GET_CODE (insn) == CALL_INSN)
    {
      for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
	if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4466
          invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4467 4468
    }

Richard Kenner committed
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
  if (GET_CODE (x) == SET)
    {
      sets = (struct set *) alloca (sizeof (struct set));
      sets[0].rtl = x;

      /* Ignore SETs that are unconditional jumps.
	 They never need cse processing, so this does not hurt.
	 The reason is not efficiency but rather
	 so that we can test at the end for instructions
	 that have been simplified to unconditional jumps
	 and not be misled by unchanged instructions
	 that were unconditional jumps to begin with.  */
      if (SET_DEST (x) == pc_rtx
	  && GET_CODE (SET_SRC (x)) == LABEL_REF)
	;

      /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
	 The hard function value register is used only once, to copy to
	 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
	 Ensure we invalidate the destination register.  On the 80386 no
4489
	 other code would invalidate it since it is a fixed_reg.
Mike Stump committed
4490
	 We need not check the return of apply_change_group; see canon_reg.  */
Richard Kenner committed
4491 4492 4493 4494

      else if (GET_CODE (SET_SRC (x)) == CALL)
	{
	  canon_reg (SET_SRC (x), insn);
4495
	  apply_change_group ();
Richard Kenner committed
4496
	  fold_rtx (SET_SRC (x), insn);
4497
	  invalidate (SET_DEST (x), VOIDmode);
Richard Kenner committed
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
	}
      else
	n_sets = 1;
    }
  else if (GET_CODE (x) == PARALLEL)
    {
      register int lim = XVECLEN (x, 0);

      sets = (struct set *) alloca (lim * sizeof (struct set));

      /* Find all regs explicitly clobbered in this insn,
	 and ensure they are not replaced with any other regs
	 elsewhere in this insn.
	 When a reg that is clobbered is also used for input,
	 we should presume that that is for a reason,
	 and we should not substitute some other register
	 which is not supposed to be clobbered.
	 Therefore, this loop cannot be merged into the one below
4516
	 because a CALL may precede a CLOBBER and refer to the
Richard Kenner committed
4517 4518 4519 4520 4521
	 value clobbered.  We must not let a canonicalization do
	 anything in that case.  */
      for (i = 0; i < lim; i++)
	{
	  register rtx y = XVECEXP (x, 0, i);
4522 4523 4524 4525 4526 4527
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx clobbered = XEXP (y, 0);

	      if (GET_CODE (clobbered) == REG
		  || GET_CODE (clobbered) == SUBREG)
4528
		invalidate (clobbered, VOIDmode);
4529 4530
	      else if (GET_CODE (clobbered) == STRICT_LOW_PART
		       || GET_CODE (clobbered) == ZERO_EXTRACT)
4531
		invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4532
	    }
Richard Kenner committed
4533 4534 4535 4536 4537 4538 4539
	}
	    
      for (i = 0; i < lim; i++)
	{
	  register rtx y = XVECEXP (x, 0, i);
	  if (GET_CODE (y) == SET)
	    {
4540 4541
	      /* As above, we ignore unconditional jumps and call-insns and
		 ignore the result of apply_change_group.  */
Richard Kenner committed
4542 4543 4544
	      if (GET_CODE (SET_SRC (y)) == CALL)
		{
		  canon_reg (SET_SRC (y), insn);
4545
		  apply_change_group ();
Richard Kenner committed
4546
		  fold_rtx (SET_SRC (y), insn);
4547
		  invalidate (SET_DEST (y), VOIDmode);
Richard Kenner committed
4548 4549 4550 4551 4552 4553 4554 4555 4556
		}
	      else if (SET_DEST (y) == pc_rtx
		       && GET_CODE (SET_SRC (y)) == LABEL_REF)
		;
	      else
		sets[n_sets++].rtl = y;
	    }
	  else if (GET_CODE (y) == CLOBBER)
	    {
4557
	      /* If we clobber memory, canon the address.
Richard Kenner committed
4558 4559 4560
		 This does nothing when a register is clobbered
		 because we have already invalidated the reg.  */
	      if (GET_CODE (XEXP (y, 0)) == MEM)
4561
		canon_reg (XEXP (y, 0), NULL_RTX);
Richard Kenner committed
4562 4563 4564 4565
	    }
	  else if (GET_CODE (y) == USE
		   && ! (GET_CODE (XEXP (y, 0)) == REG
			 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4566
	    canon_reg (y, NULL_RTX);
Richard Kenner committed
4567 4568
	  else if (GET_CODE (y) == CALL)
	    {
4569 4570
	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */
Richard Kenner committed
4571
	      canon_reg (y, insn);
4572
	      apply_change_group ();
Richard Kenner committed
4573 4574 4575 4576 4577 4578 4579
	      fold_rtx (y, insn);
	    }
	}
    }
  else if (GET_CODE (x) == CLOBBER)
    {
      if (GET_CODE (XEXP (x, 0)) == MEM)
4580
	canon_reg (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
4581 4582 4583 4584 4585 4586
    }

  /* Canonicalize a USE of a pseudo register or memory location.  */
  else if (GET_CODE (x) == USE
	   && ! (GET_CODE (XEXP (x, 0)) == REG
		 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4587
    canon_reg (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
4588 4589
  else if (GET_CODE (x) == CALL)
    {
4590
      /* The result of apply_change_group can be ignored; see canon_reg.  */
Richard Kenner committed
4591
      canon_reg (x, insn);
4592
      apply_change_group ();
Richard Kenner committed
4593 4594 4595
      fold_rtx (x, insn);
    }

4596 4597 4598
  /* Store the equivalent value in SRC_EQV, if different, or if the DEST
     is a STRICT_LOW_PART.  The latter condition is necessary because SRC_EQV
     is handled specially for this case, and if it isn't set, then there will
Richard Kenner committed
4599
     be no equivalence for the destination.  */
4600 4601
  if (n_sets == 1 && REG_NOTES (insn) != 0
      && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4602 4603
      && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
	  || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4604
    src_eqv = canon_reg (XEXP (tem, 0), NULL_RTX);
Richard Kenner committed
4605 4606 4607 4608 4609 4610 4611 4612 4613

  /* Canonicalize sources and addresses of destinations.
     We do this in a separate pass to avoid problems when a MATCH_DUP is
     present in the insn pattern.  In that case, we want to ensure that
     we don't break the duplicate nature of the pattern.  So we will replace
     both operands at the same time.  Otherwise, we would fail to find an
     equivalent substitution in the loop calling validate_change below.

     We used to suppress canonicalization of DEST if it appears in SRC,
4614
     but we don't do this any more.  */
Richard Kenner committed
4615 4616 4617 4618 4619 4620

  for (i = 0; i < n_sets; i++)
    {
      rtx dest = SET_DEST (sets[i].rtl);
      rtx src = SET_SRC (sets[i].rtl);
      rtx new = canon_reg (src, insn);
4621
      int insn_code;
Richard Kenner committed
4622

4623
      sets[i].orig_src = src;
4624 4625 4626
      if ((GET_CODE (new) == REG && GET_CODE (src) == REG
	   && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
	       != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4627
	  || (insn_code = recog_memoized (insn)) < 0
4628
	  || insn_data[insn_code].n_dups > 0)
4629
	validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
Richard Kenner committed
4630 4631 4632 4633 4634 4635
      else
	SET_SRC (sets[i].rtl) = new;

      if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
	{
	  validate_change (insn, &XEXP (dest, 1),
4636
			   canon_reg (XEXP (dest, 1), insn), 1);
Richard Kenner committed
4637
	  validate_change (insn, &XEXP (dest, 2),
4638
			   canon_reg (XEXP (dest, 2), insn), 1);
Richard Kenner committed
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
	}

      while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SIGN_EXTRACT)
	dest = XEXP (dest, 0);

      if (GET_CODE (dest) == MEM)
	canon_reg (dest, insn);
    }

4650 4651 4652 4653
  /* Now that we have done all the replacements, we can apply the change
     group and see if they all work.  Note that this will cause some
     canonicalizations that would have worked individually not to be applied
     because some other canonicalization didn't work, but this should not
4654 4655 4656
     occur often. 

     The result of apply_change_group can be ignored; see canon_reg.  */
4657 4658 4659

  apply_change_group ();

Richard Kenner committed
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
  /* Set sets[i].src_elt to the class each source belongs to.
     Detect assignments from or to volatile things
     and set set[i] to zero so they will be ignored
     in the rest of this function.

     Nothing in this loop changes the hash table or the register chains.  */

  for (i = 0; i < n_sets; i++)
    {
      register rtx src, dest;
      register rtx src_folded;
      register struct table_elt *elt = 0, *p;
      enum machine_mode mode;
      rtx src_eqv_here;
      rtx src_const = 0;
      rtx src_related = 0;
      struct table_elt *src_const_elt = 0;
      int src_cost = 10000, src_eqv_cost = 10000, src_folded_cost = 10000;
      int src_related_cost = 10000, src_elt_cost = 10000;
      /* Set non-zero if we need to call force_const_mem on with the
	 contents of src_folded before using it.  */
      int src_folded_force_flag = 0;

      dest = SET_DEST (sets[i].rtl);
      src = SET_SRC (sets[i].rtl);

      /* If SRC is a constant that has no machine mode,
	 hash it with the destination's machine mode.
	 This way we can keep different modes separate.  */

      mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
      sets[i].mode = mode;

      if (src_eqv)
	{
	  enum machine_mode eqvmode = mode;
	  if (GET_CODE (dest) == STRICT_LOW_PART)
	    eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  do_not_record = 0;
	  hash_arg_in_memory = 0;
	  src_eqv = fold_rtx (src_eqv, insn);
Richard Kenner committed
4701
	  src_eqv_hash = HASH (src_eqv, eqvmode);
Richard Kenner committed
4702 4703 4704 4705

	  /* Find the equivalence class for the equivalent expression.  */

	  if (!do_not_record)
Richard Kenner committed
4706
	    src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
Richard Kenner committed
4707 4708 4709 4710 4711 4712 4713

	  src_eqv_volatile = do_not_record;
	  src_eqv_in_memory = hash_arg_in_memory;
	}

      /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
	 value of the INNER register, not the destination.  So it is not
Richard Kenner committed
4714
	 a valid substitution for the source.  But save it for later.  */
Richard Kenner committed
4715 4716 4717 4718 4719 4720 4721 4722 4723
      if (GET_CODE (dest) == STRICT_LOW_PART)
	src_eqv_here = 0;
      else
	src_eqv_here = src_eqv;

      /* Simplify and foldable subexpressions in SRC.  Then get the fully-
	 simplified result, which may not necessarily be valid.  */
      src_folded = fold_rtx (src, insn);

4724 4725 4726 4727 4728 4729 4730
#if 0
      /* ??? This caused bad code to be generated for the m68k port with -O2.
	 Suppose src is (CONST_INT -1), and that after truncation src_folded
	 is (CONST_INT 3).  Suppose src_folded is then used for src_const.
	 At the end we will add src and src_const to the same equivalence
	 class.  We now have 3 and -1 on the same equivalence class.  This
	 causes later instructions to be mis-optimized.  */
Richard Kenner committed
4731 4732 4733 4734 4735 4736 4737 4738 4739
      /* If storing a constant in a bitfield, pre-truncate the constant
	 so we will be able to record it later.  */
      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
	  || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (GET_CODE (src) == CONST_INT
	      && GET_CODE (width) == CONST_INT
4740 4741 4742 4743 4744
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
	    src_folded
	      = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
					  << INTVAL (width)) - 1));
Richard Kenner committed
4745
	}
4746
#endif
Richard Kenner committed
4747 4748 4749 4750 4751 4752 4753 4754

      /* Compute SRC's hash code, and also notice if it
	 should not be recorded at all.  In that case,
	 prevent any further processing of this assignment.  */
      do_not_record = 0;
      hash_arg_in_memory = 0;

      sets[i].src = src;
Richard Kenner committed
4755
      sets[i].src_hash = HASH (src, mode);
Richard Kenner committed
4756 4757 4758
      sets[i].src_volatile = do_not_record;
      sets[i].src_in_memory = hash_arg_in_memory;

4759 4760 4761 4762
      /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
	 a pseudo that is set more than once, do not record SRC.  Using
	 SRC as a replacement for anything else will be incorrect in that
	 situation.  Note that this usually occurs only for stack slots,
Jeff Law committed
4763
	 in which case all the RTL would be referring to SRC, so we don't
4764 4765 4766 4767 4768 4769 4770
	 lose any optimization opportunities by not having SRC in the
	 hash table.  */

      if (GET_CODE (src) == MEM
	  && find_reg_note (insn, REG_EQUIV, src) != 0
	  && GET_CODE (dest) == REG
	  && REGNO (dest) >= FIRST_PSEUDO_REGISTER
4771
	  && REG_N_SETS (REGNO (dest)) != 1)
4772 4773
	sets[i].src_volatile = 1;

4774 4775 4776 4777
#if 0
      /* It is no longer clear why we used to do this, but it doesn't
	 appear to still be needed.  So let's try without it since this
	 code hurts cse'ing widened ops.  */
Richard Kenner committed
4778 4779 4780 4781 4782 4783 4784 4785
      /* If source is a perverse subreg (such as QI treated as an SI),
	 treat it as volatile.  It may do the work of an SI in one context
	 where the extra bits are not being used, but cannot replace an SI
	 in general.  */
      if (GET_CODE (src) == SUBREG
	  && (GET_MODE_SIZE (GET_MODE (src))
	      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
	sets[i].src_volatile = 1;
4786
#endif
Richard Kenner committed
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804

      /* Locate all possible equivalent forms for SRC.  Try to replace
         SRC in the insn with each cheaper equivalent.

         We have the following types of equivalents: SRC itself, a folded
         version, a value given in a REG_EQUAL note, or a value related
	 to a constant.

         Each of these equivalents may be part of an additional class
         of equivalents (if more than one is in the table, they must be in
         the same class; we check for this).

	 If the source is volatile, we don't do any table lookups.

         We note any constant equivalent for possible later use in a
         REG_NOTE.  */

      if (!sets[i].src_volatile)
Richard Kenner committed
4805
	elt = lookup (src, sets[i].src_hash, mode);
Richard Kenner committed
4806 4807 4808 4809 4810 4811 4812 4813 4814 4815

      sets[i].src_elt = elt;

      if (elt && src_eqv_here && src_eqv_elt)
        {
          if (elt->first_same_value != src_eqv_elt->first_same_value)
	    {
	      /* The REG_EQUAL is indicating that two formerly distinct
		 classes are now equivalent.  So merge them.  */
	      merge_equiv_classes (elt, src_eqv_elt);
Richard Kenner committed
4816 4817
	      src_eqv_hash = HASH (src_eqv, elt->mode);
	      src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
Richard Kenner committed
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
	    }

          src_eqv_here = 0;
        }

      else if (src_eqv_elt)
        elt = src_eqv_elt;

      /* Try to find a constant somewhere and record it in `src_const'.
	 Record its table element, if any, in `src_const_elt'.  Look in
	 any known equivalences first.  (If the constant is not in the
Richard Kenner committed
4829
	 table, also set `sets[i].src_const_hash').  */
Richard Kenner committed
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
      if (elt)
        for (p = elt->first_same_value; p; p = p->next_same_value)
	  if (p->is_const)
	    {
	      src_const = p->exp;
	      src_const_elt = elt;
	      break;
	    }

      if (src_const == 0
	  && (CONSTANT_P (src_folded)
	      /* Consider (minus (label_ref L1) (label_ref L2)) as 
		 "constant" here so we will record it. This allows us
		 to fold switch statements when an ADDR_DIFF_VEC is used.  */
	      || (GET_CODE (src_folded) == MINUS
		  && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
		  && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
	src_const = src_folded, src_const_elt = elt;
      else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
	src_const = src_eqv_here, src_const_elt = src_eqv_elt;

      /* If we don't know if the constant is in the table, get its
	 hash code and look it up.  */
      if (src_const && src_const_elt == 0)
	{
Richard Kenner committed
4855 4856
	  sets[i].src_const_hash = HASH (src_const, mode);
	  src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
Richard Kenner committed
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
	}

      sets[i].src_const = src_const;
      sets[i].src_const_elt = src_const_elt;

      /* If the constant and our source are both in the table, mark them as
	 equivalent.  Otherwise, if a constant is in the table but the source
	 isn't, set ELT to it.  */
      if (src_const_elt && elt
	  && src_const_elt->first_same_value != elt->first_same_value)
	merge_equiv_classes (elt, src_const_elt);
      else if (src_const_elt && elt == 0)
	elt = src_const_elt;

      /* See if there is a register linearly related to a constant
         equivalent of SRC.  */
      if (src_const
	  && (GET_CODE (src_const) == CONST
	      || (src_const_elt && src_const_elt->related_value != 0)))
        {
          src_related = use_related_value (src_const, src_const_elt);
          if (src_related)
            {
	      struct table_elt *src_related_elt
		    = lookup (src_related, HASH (src_related, mode), mode);
	      if (src_related_elt && elt)
	        {
		  if (elt->first_same_value
		      != src_related_elt->first_same_value)
		    /* This can occur when we previously saw a CONST 
		       involving a SYMBOL_REF and then see the SYMBOL_REF
		       twice.  Merge the involved classes.  */
		    merge_equiv_classes (elt, src_related_elt);

	          src_related = 0;
		  src_related_elt = 0;
	        }
              else if (src_related_elt && elt == 0)
	        elt = src_related_elt;
	    }
        }

4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
      /* See if we have a CONST_INT that is already in a register in a
	 wider mode.  */

      if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
	  && GET_MODE_CLASS (mode) == MODE_INT
	  && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
	{
	  enum machine_mode wider_mode;

	  for (wider_mode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
	       && src_related == 0;
	       wider_mode = GET_MODE_WIDER_MODE (wider_mode))
	    {
	      struct table_elt *const_elt
		= lookup (src_const, HASH (src_const, wider_mode), wider_mode);

	      if (const_elt == 0)
		continue;

	      for (const_elt = const_elt->first_same_value;
		   const_elt; const_elt = const_elt->next_same_value)
		if (GET_CODE (const_elt->exp) == REG)
		  {
		    src_related = gen_lowpart_if_possible (mode,
							   const_elt->exp);
		    break;
		  }
	    }
	}

4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
      /* Another possibility is that we have an AND with a constant in
	 a mode narrower than a word.  If so, it might have been generated
	 as part of an "if" which would narrow the AND.  If we already
	 have done the AND in a wider mode, we can use a SUBREG of that
	 value.  */

      if (flag_expensive_optimizations && ! src_related
	  && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
	  && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	{
	  enum machine_mode tmode;
4941
	  rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971

	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
	      rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
	      struct table_elt *larger_elt;

	      if (inner)
		{
		  PUT_MODE (new_and, tmode);
		  XEXP (new_and, 0) = inner;
		  larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
		  if (larger_elt == 0)
		    continue;

		  for (larger_elt = larger_elt->first_same_value;
		       larger_elt; larger_elt = larger_elt->next_same_value)
		    if (GET_CODE (larger_elt->exp) == REG)
		      {
			src_related
			  = gen_lowpart_if_possible (mode, larger_elt->exp);
			break;
		      }

		  if (src_related)
		    break;
		}
	    }
	}
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018

#ifdef LOAD_EXTEND_OP
      /* See if a MEM has already been loaded with a widening operation;
	 if it has, we can use a subreg of that.  Many CISC machines
	 also have such operations, but this is only likely to be
	 beneficial these machines.  */
      
      if (flag_expensive_optimizations &&  src_related == 0
	  && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	  && GET_MODE_CLASS (mode) == MODE_INT
	  && GET_CODE (src) == MEM && ! do_not_record
	  && LOAD_EXTEND_OP (mode) != NIL)
	{
	  enum machine_mode tmode;
	  
	  /* Set what we are trying to extend and the operation it might
	     have been extended with.  */
	  PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
	  XEXP (memory_extend_rtx, 0) = src;
	  
	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
	      struct table_elt *larger_elt;
	      
	      PUT_MODE (memory_extend_rtx, tmode);
	      larger_elt = lookup (memory_extend_rtx, 
				   HASH (memory_extend_rtx, tmode), tmode);
	      if (larger_elt == 0)
		continue;
	      
	      for (larger_elt = larger_elt->first_same_value;
		   larger_elt; larger_elt = larger_elt->next_same_value)
		if (GET_CODE (larger_elt->exp) == REG)
		  {
		    src_related = gen_lowpart_if_possible (mode, 
							   larger_elt->exp);
		    break;
		  }
	      
	      if (src_related)
		break;
	    }
	}
#endif /* LOAD_EXTEND_OP */
 
Richard Kenner committed
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
      if (src == src_folded)
        src_folded = 0;

      /* At this point, ELT, if non-zero, points to a class of expressions
         equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
	 and SRC_RELATED, if non-zero, each contain additional equivalent
	 expressions.  Prune these latter expressions by deleting expressions
	 already in the equivalence class.

	 Check for an equivalent identical to the destination.  If found,
	 this is the preferred equivalent since it will likely lead to
	 elimination of the insn.  Indicate this by placing it in
	 `src_related'.  */

      if (elt) elt = elt->first_same_value;
      for (p = elt; p; p = p->next_same_value)
        {
	  enum rtx_code code = GET_CODE (p->exp);

	  /* If the expression is not valid, ignore it.  Then we do not
	     have to check for validity below.  In most cases, we can use
	     `rtx_equal_p', since canonicalization has already been done.  */
	  if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
	    continue;

5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
	  /* Also skip paradoxical subregs, unless that's what we're
	     looking for.  */
	  if (code == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (p->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (p->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
	    continue;

Richard Kenner committed
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
          if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
	    src = 0;
          else if (src_folded && GET_CODE (src_folded) == code
		   && rtx_equal_p (src_folded, p->exp))
	    src_folded = 0;
          else if (src_eqv_here && GET_CODE (src_eqv_here) == code
		   && rtx_equal_p (src_eqv_here, p->exp))
	    src_eqv_here = 0;
          else if (src_related && GET_CODE (src_related) == code
		   && rtx_equal_p (src_related, p->exp))
	    src_related = 0;

	  /* This is the same as the destination of the insns, we want
	     to prefer it.  Copy it to src_related.  The code below will
	     then give it a negative cost.  */
	  if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
	    src_related = dest;

        }

      /* Find the cheapest valid equivalent, trying all the available
         possibilities.  Prefer items not in the hash table to ones
         that are when they are equal cost.  Note that we can never
         worsen an insn as the current contents will also succeed.
5080
	 If we find an equivalent identical to the destination, use it as best,
Mike Stump committed
5081
	 since this insn will probably be eliminated in that case.  */
Richard Kenner committed
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
      if (src)
	{
	  if (rtx_equal_p (src, dest))
	    src_cost = -1;
	  else
	    src_cost = COST (src);
	}

      if (src_eqv_here)
	{
	  if (rtx_equal_p (src_eqv_here, dest))
	    src_eqv_cost = -1;
	  else
	    src_eqv_cost = COST (src_eqv_here);
	}

      if (src_folded)
	{
	  if (rtx_equal_p (src_folded, dest))
	    src_folded_cost = -1;
	  else
	    src_folded_cost = COST (src_folded);
	}

      if (src_related)
	{
	  if (rtx_equal_p (src_related, dest))
	    src_related_cost = -1;
	  else
	    src_related_cost = COST (src_related);
	}

      /* If this was an indirect jump insn, a known label will really be
	 cheaper even though it looks more expensive.  */
      if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
	src_folded = src_const, src_folded_cost = -1;
	  
      /* Terminate loop when replacement made.  This must terminate since
         the current contents will be tested and will always be valid.  */
      while (1)
        {
5123
          rtx trial;
Richard Kenner committed
5124 5125 5126 5127 5128

          /* Skip invalid entries.  */
          while (elt && GET_CODE (elt->exp) != REG
	         && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
	    elt = elt->next_same_value;	     
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147

	  /* A paradoxical subreg would be bad here: it'll be the right
	     size, but later may be adjusted so that the upper bits aren't
	     what we want.  So reject it.  */
	  if (elt != 0
	      && GET_CODE (elt->exp) == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (elt->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
	      /* It is okay, though, if the rtx we're trying to match
		 will ignore any of the bits we can't predict.  */
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (elt->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
	    {
	      elt = elt->next_same_value;
	      continue;
	    }
Richard Kenner committed
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
	      
          if (elt) src_elt_cost = elt->cost;

          /* Find cheapest and skip it for the next time.   For items
	     of equal cost, use this order:
	     src_folded, src, src_eqv, src_related and hash table entry.  */
          if (src_folded_cost <= src_cost
	      && src_folded_cost <= src_eqv_cost
	      && src_folded_cost <= src_related_cost
	      && src_folded_cost <= src_elt_cost)
	    {
	      trial = src_folded, src_folded_cost = 10000;
	      if (src_folded_force_flag)
		trial = force_const_mem (mode, trial);
	    }
          else if (src_cost <= src_eqv_cost
	           && src_cost <= src_related_cost
	           && src_cost <= src_elt_cost)
	    trial = src, src_cost = 10000;
          else if (src_eqv_cost <= src_related_cost
	           && src_eqv_cost <= src_elt_cost)
5169
	    trial = copy_rtx (src_eqv_here), src_eqv_cost = 10000;
Richard Kenner committed
5170
          else if (src_related_cost <= src_elt_cost)
5171
	    trial = copy_rtx (src_related), src_related_cost = 10000;
Richard Kenner committed
5172 5173
          else
	    {
5174
	      trial = copy_rtx (elt->exp);
Richard Kenner committed
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
	      elt = elt->next_same_value;
	      src_elt_cost = 10000;
	    }

	  /* We don't normally have an insn matching (set (pc) (pc)), so
	     check for this separately here.  We will delete such an
	     insn below.

	     Tablejump insns contain a USE of the table, so simply replacing
	     the operand with the constant won't match.  This is simply an
	     unconditional branch, however, and is therefore valid.  Just
	     insert the substitution here and we will delete and re-emit
	     the insn later.  */

	  if (n_sets == 1 && dest == pc_rtx
	      && (trial == pc_rtx
		  || (GET_CODE (trial) == LABEL_REF
		      && ! condjump_p (insn))))
	    {
	      /* If TRIAL is a label in front of a jump table, we are
		 really falling through the switch (this is how casesi
		 insns work), so we must branch around the table.  */
	      if (GET_CODE (trial) == CODE_LABEL
		  && NEXT_INSN (trial) != 0
		  && GET_CODE (NEXT_INSN (trial)) == JUMP_INSN
		  && (GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_DIFF_VEC
		      || GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_VEC))

5203
		trial = gen_rtx_LABEL_REF (Pmode, get_label_after (trial));
Richard Kenner committed
5204

5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
	      if (trial == pc_rtx)
		{
		  SET_SRC (sets[i].rtl) = trial;
		  cse_jumps_altered = 1;
		  break;
		}

	      /* We must actually validate the change.  Consider a target
		 where unconditional jumps are more complex than
		 (set (pc) (label_ref)) such as the fr30.  */
	      if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
		cse_jumps_altered = 1;
Richard Kenner committed
5217 5218 5219 5220 5221
	      break;
	    }
	   
	  /* Look for a substitution that makes a valid insn.  */
          else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5222
	    {
5223 5224 5225
	      /* If we just made a substitution inside a libcall, then we
		 need to make the same substitution in any notes attached
		 to the RETVAL insn.  */
5226
	      if (libcall_insn
5227 5228 5229 5230
		  && (GET_CODE (sets[i].orig_src) == REG
		      || GET_CODE (sets[i].orig_src) == SUBREG
		      ||  GET_CODE (sets[i].orig_src) == MEM))
		replace_rtx (REG_NOTES (libcall_insn), sets[i].orig_src, 
5231 5232
			     canon_reg (SET_SRC (sets[i].rtl), insn));

5233 5234 5235 5236 5237 5238
	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */

	      validate_change (insn, &SET_SRC (sets[i].rtl),
			       canon_reg (SET_SRC (sets[i].rtl), insn),
			       1);
5239
	      apply_change_group ();
5240 5241
	      break;
	    }
Richard Kenner committed
5242 5243 5244 5245 5246 5247 5248 5249

	  /* If we previously found constant pool entries for 
	     constants and this is a constant, try making a
	     pool entry.  Put it in src_folded unless we already have done
	     this since that is where it likely came from.  */

	  else if (constant_pool_entries_cost
		   && CONSTANT_P (trial)
5250 5251 5252 5253 5254
		   && ! (GET_CODE (trial) == CONST
			 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
		   && (src_folded == 0
		       || (GET_CODE (src_folded) != MEM
			   && ! src_folded_force_flag))
5255 5256
		   && GET_MODE_CLASS (mode) != MODE_CC
		   && mode != VOIDmode)
Richard Kenner committed
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	    {
	      src_folded_force_flag = 1;
	      src_folded = trial;
	      src_folded_cost = constant_pool_entries_cost;
	    }
        }

      src = SET_SRC (sets[i].rtl);

      /* In general, it is good to have a SET with SET_SRC == SET_DEST.
	 However, there is an important exception:  If both are registers
	 that are not the head of their equivalence class, replace SET_SRC
	 with the head of the class.  If we do not do this, we will have
	 both registers live over a portion of the basic block.  This way,
	 their lifetimes will likely abut instead of overlapping.  */
      if (GET_CODE (dest) == REG
5273
	  && REGNO_QTY_VALID_P (REGNO (dest)))
Richard Kenner committed
5274
	{
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
	  int dest_q = REG_QTY (REGNO (dest));
	  struct qty_table_elem *dest_ent = &qty_table[dest_q];

	  if (dest_ent->mode == GET_MODE (dest)
	      && dest_ent->first_reg != REGNO (dest)
	      && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
	      /* Don't do this if the original insn had a hard reg as
		 SET_SRC or SET_DEST.  */
	      && (GET_CODE (sets[i].src) != REG
		  || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
	      && (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
	    /* We can't call canon_reg here because it won't do anything if
	       SRC is a hard register.  */
5288
	    {
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
	      int src_q = REG_QTY (REGNO (src));
	      struct qty_table_elem *src_ent = &qty_table[src_q];
	      int first = src_ent->first_reg;
	      rtx new_src
		= (first >= FIRST_PSEUDO_REGISTER
		   ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));

	      /* We must use validate-change even for this, because this
		 might be a special no-op instruction, suitable only to
		 tag notes onto.  */
	      if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
		{
		  src = new_src;
		  /* If we had a constant that is cheaper than what we are now
		     setting SRC to, use that constant.  We ignored it when we
		     thought we could make this into a no-op.  */
		  if (src_const && COST (src_const) < COST (src)
		      && validate_change (insn, &SET_SRC (sets[i].rtl), src_const,
					  0))
		    src = src_const;
		}
5310
	    }
Richard Kenner committed
5311 5312 5313 5314 5315 5316 5317 5318
	}

      /* If we made a change, recompute SRC values.  */
      if (src != sets[i].src)
        {
          do_not_record = 0;
          hash_arg_in_memory = 0;
	  sets[i].src = src;
Richard Kenner committed
5319
          sets[i].src_hash = HASH (src, mode);
Richard Kenner committed
5320 5321
          sets[i].src_volatile = do_not_record;
          sets[i].src_in_memory = hash_arg_in_memory;
Richard Kenner committed
5322
          sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
Richard Kenner committed
5323 5324 5325 5326 5327
        }

      /* If this is a single SET, we are setting a register, and we have an
	 equivalent constant, we want to add a REG_NOTE.   We don't want
	 to write a REG_EQUAL note for a constant pseudo since verifying that
5328
	 that pseudo hasn't been eliminated is a pain.  Such a note also
5329 5330 5331 5332 5333 5334
	 won't help anything. 

	 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
	 which can be created for a reference to a compile time computable
	 entry in a jump table.  */

Richard Kenner committed
5335
      if (n_sets == 1 && src_const && GET_CODE (dest) == REG
5336 5337 5338 5339 5340
	  && GET_CODE (src_const) != REG
	  && ! (GET_CODE (src_const) == CONST
		&& GET_CODE (XEXP (src_const, 0)) == MINUS
		&& GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
		&& GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
Richard Kenner committed
5341
	{
5342
	  tem = find_reg_note (insn, REG_EQUAL, NULL_RTX);
Richard Kenner committed
5343
	  
5344 5345 5346
	  /* Make sure that the rtx is not shared with any other insn.  */
	  src_const = copy_rtx (src_const);

Richard Kenner committed
5347 5348 5349 5350 5351
	  /* Record the actual constant value in a REG_EQUAL note, making
	     a new one if one does not already exist.  */
	  if (tem)
	    XEXP (tem, 0) = src_const;
	  else
5352 5353
	    REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL,
						  src_const, REG_NOTES (insn));
Richard Kenner committed
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365

          /* If storing a constant value in a register that
	     previously held the constant value 0,
	     record this fact with a REG_WAS_0 note on this insn.

	     Note that the *register* is required to have previously held 0,
	     not just any register in the quantity and we must point to the
	     insn that set that register to zero.

	     Rather than track each register individually, we just see if
	     the last set for this quantity was for this register.  */

5366
	  if (REGNO_QTY_VALID_P (REGNO (dest)))
Richard Kenner committed
5367
	    {
5368 5369
	      int dest_q = REG_QTY (REGNO (dest));
	      struct qty_table_elem *dest_ent = &qty_table[dest_q];
Richard Kenner committed
5370

5371
	      if (dest_ent->const_rtx == const0_rtx)
Richard Kenner committed
5372
		{
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386
		  /* See if we previously had a REG_WAS_0 note.  */
		  rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
		  rtx const_insn = dest_ent->const_insn;

		  if ((tem = single_set (const_insn)) != 0
		      && rtx_equal_p (SET_DEST (tem), dest))
		    {
		      if (note)
			XEXP (note, 0) = const_insn;
		      else
			REG_NOTES (insn)
			  = gen_rtx_INSN_LIST (REG_WAS_0, const_insn,
					       REG_NOTES (insn));
		    }
Richard Kenner committed
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
		}
	    }
	}

      /* Now deal with the destination.  */
      do_not_record = 0;

      /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
	 to the MEM or REG within it.  */
      while (GET_CODE (dest) == SIGN_EXTRACT
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SUBREG
	     || GET_CODE (dest) == STRICT_LOW_PART)
5400
	dest = XEXP (dest, 0);
Richard Kenner committed
5401 5402 5403 5404 5405

      sets[i].inner_dest = dest;

      if (GET_CODE (dest) == MEM)
	{
5406 5407 5408 5409 5410 5411 5412 5413
#ifdef PUSH_ROUNDING
	  /* Stack pushes invalidate the stack pointer.  */
	  rtx addr = XEXP (dest, 0);
	  if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
	       || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
	      && XEXP (addr, 0) == stack_pointer_rtx)
	    invalidate (stack_pointer_rtx, Pmode);
#endif
Richard Kenner committed
5414 5415 5416 5417 5418 5419 5420
	  dest = fold_rtx (dest, insn);
	}

      /* Compute the hash code of the destination now,
	 before the effects of this instruction are recorded,
	 since the register values used in the address computation
	 are those before this instruction.  */
Richard Kenner committed
5421
      sets[i].dest_hash = HASH (dest, mode);
Richard Kenner committed
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433

      /* Don't enter a bit-field in the hash table
	 because the value in it after the store
	 may not equal what was stored, due to truncation.  */

      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
	  || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (src_const != 0 && GET_CODE (src_const) == CONST_INT
	      && GET_CODE (width) == CONST_INT
5434 5435 5436
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && ! (INTVAL (src_const)
		    & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
Richard Kenner committed
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
	    /* Exception: if the value is constant,
	       and it won't be truncated, record it.  */
	    ;
	  else
	    {
	      /* This is chosen so that the destination will be invalidated
		 but no new value will be recorded.
		 We must invalidate because sometimes constant
		 values can be recorded for bitfields.  */
	      sets[i].src_elt = 0;
	      sets[i].src_volatile = 1;
	      src_eqv = 0;
	      src_eqv_elt = 0;
	    }
	}

      /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
	 the insn.  */
      else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
	{
5457 5458 5459
	  /* One less use of the label this insn used to jump to.  */
	  if (JUMP_LABEL (insn) != 0)
	    --LABEL_NUSES (JUMP_LABEL (insn));
Richard Kenner committed
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
	  PUT_CODE (insn, NOTE);
	  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	  NOTE_SOURCE_FILE (insn) = 0;
	  cse_jumps_altered = 1;
	  /* No more processing for this set.  */
	  sets[i].rtl = 0;
	}

      /* If this SET is now setting PC to a label, we know it used to
	 be a conditional or computed branch.  So we see if we can follow
	 it.  If it was a computed branch, delete it and re-emit.  */
      else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
	{
	  /* If this is not in the format for a simple branch and
	     we are the only SET in it, re-emit it.  */
	  if (! simplejump_p (insn) && n_sets == 1)
	    {
	      rtx new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
	      JUMP_LABEL (new) = XEXP (src, 0);
	      LABEL_NUSES (XEXP (src, 0))++;
	      insn = new;
	    }
5482 5483 5484 5485 5486 5487 5488
	  else
	    /* Otherwise, force rerecognition, since it probably had
	       a different pattern before.
	       This shouldn't really be necessary, since whatever
	       changed the source value above should have done this.
	       Until the right place is found, might as well do this here.  */
	    INSN_CODE (insn) = -1;
Richard Kenner committed
5489

5490 5491
	  never_reached_warning (insn);

Jeffrey A Law committed
5492 5493 5494 5495 5496
	  /* Now emit a BARRIER after the unconditional jump.  Do not bother
	     deleting any unreachable code, let jump/flow do that.  */
	  if (NEXT_INSN (insn) != 0
	      && GET_CODE (NEXT_INSN (insn)) != BARRIER)
	    emit_barrier_after (insn);
Richard Kenner committed
5497 5498 5499 5500 5501

	  cse_jumps_altered = 1;
	  sets[i].rtl = 0;
	}

5502 5503
      /* If destination is volatile, invalidate it and then do no further
	 processing for this assignment.  */
Richard Kenner committed
5504 5505

      else if (do_not_record)
5506 5507 5508
	{
	  if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
	      || GET_CODE (dest) == MEM)
5509
	    invalidate (dest, VOIDmode);
5510 5511
	  else if (GET_CODE (dest) == STRICT_LOW_PART
		   || GET_CODE (dest) == ZERO_EXTRACT)
5512
	    invalidate (XEXP (dest, 0), GET_MODE (dest));
5513 5514
	  sets[i].rtl = 0;
	}
Richard Kenner committed
5515 5516

      if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
Richard Kenner committed
5517
	sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
Richard Kenner committed
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529

#ifdef HAVE_cc0
      /* If setting CC0, record what it was set to, or a constant, if it
	 is equivalent to a constant.  If it is being set to a floating-point
	 value, make a COMPARE with the appropriate constant of 0.  If we
	 don't do this, later code can interpret this as a test against
	 const0_rtx, which can cause problems if we try to put it into an
	 insn as a floating-point operand.  */
      if (dest == cc0_rtx)
	{
	  this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
	  this_insn_cc0_mode = mode;
5530
	  if (FLOAT_MODE_P (mode))
5531 5532
	    this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
					     CONST0_RTX (mode));
Richard Kenner committed
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
	}
#endif
    }

  /* Now enter all non-volatile source expressions in the hash table
     if they are not already present.
     Record their equivalence classes in src_elt.
     This way we can insert the corresponding destinations into
     the same classes even if the actual sources are no longer in them
     (having been invalidated).  */

  if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
      && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
    {
      register struct table_elt *elt;
      register struct table_elt *classp = sets[0].src_elt;
      rtx dest = SET_DEST (sets[0].rtl);
      enum machine_mode eqvmode = GET_MODE (dest);

      if (GET_CODE (dest) == STRICT_LOW_PART)
	{
	  eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  classp = 0;
	}
      if (insert_regs (src_eqv, classp, 0))
5558 5559 5560 5561
	{
	  rehash_using_reg (src_eqv);
	  src_eqv_hash = HASH (src_eqv, eqvmode);
	}
Richard Kenner committed
5562
      elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
Richard Kenner committed
5563 5564
      elt->in_memory = src_eqv_in_memory;
      src_eqv_elt = elt;
5565 5566 5567 5568 5569

      /* Check to see if src_eqv_elt is the same as a set source which
	 does not yet have an elt, and if so set the elt of the set source
	 to src_eqv_elt.  */
      for (i = 0; i < n_sets; i++)
5570 5571
	if (sets[i].rtl && sets[i].src_elt == 0
	    && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5572
	  sets[i].src_elt = src_eqv_elt;
Richard Kenner committed
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
    }

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl && ! sets[i].src_volatile
	&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
      {
	if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
	  {
	    /* REG_EQUAL in setting a STRICT_LOW_PART
	       gives an equivalent for the entire destination register,
	       not just for the subreg being stored in now.
	       This is a more interesting equivalence, so we arrange later
	       to treat the entire reg as the destination.  */
	    sets[i].src_elt = src_eqv_elt;
Richard Kenner committed
5587
	    sets[i].src_hash = src_eqv_hash;
Richard Kenner committed
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
	  }
	else
	  {
	    /* Insert source and constant equivalent into hash table, if not
	       already present.  */
	    register struct table_elt *classp = src_eqv_elt;
	    register rtx src = sets[i].src;
	    register rtx dest = SET_DEST (sets[i].rtl);
	    enum machine_mode mode
	      = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);

5599
	    if (sets[i].src_elt == 0)
Richard Kenner committed
5600
	      {
5601 5602 5603 5604 5605 5606
		/* Don't put a hard register source into the table if this is
		   the last insn of a libcall.  In this case, we only need
		   to put src_eqv_elt in src_elt.  */
		if (GET_CODE (src) != REG
		    || REGNO (src) >= FIRST_PSEUDO_REGISTER
		    || ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5607
		  {
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
		    register struct table_elt *elt;

		    /* Note that these insert_regs calls cannot remove
		       any of the src_elt's, because they would have failed to
		       match if not still valid.  */
		    if (insert_regs (src, classp, 0))
		      {
			rehash_using_reg (src);
			sets[i].src_hash = HASH (src, mode);
		      }
		    elt = insert (src, classp, sets[i].src_hash, mode);
		    elt->in_memory = sets[i].src_in_memory;
		    sets[i].src_elt = classp = elt;
5621
		  }
5622 5623
		else
		  sets[i].src_elt = classp;
Richard Kenner committed
5624 5625 5626 5627 5628
	      }
	    if (sets[i].src_const && sets[i].src_const_elt == 0
		&& src != sets[i].src_const
		&& ! rtx_equal_p (sets[i].src_const, src))
	      sets[i].src_elt = insert (sets[i].src_const, classp,
Richard Kenner committed
5629
					sets[i].src_const_hash, mode);
Richard Kenner committed
5630 5631 5632 5633 5634 5635 5636 5637
	  }
      }
    else if (sets[i].src_elt == 0)
      /* If we did not insert the source into the hash table (e.g., it was
	 volatile), note the equivalence class for the REG_EQUAL value, if any,
	 so that the destination goes into that class.  */
      sets[i].src_elt = src_eqv_elt;

5638
  invalidate_from_clobbers (x);
5639 5640 5641 5642

  /* Some registers are invalidated by subroutine calls.  Memory is 
     invalidated by non-constant calls.  */

Richard Kenner committed
5643 5644
  if (GET_CODE (insn) == CALL_INSN)
    {
5645
      if (! CONST_CALL_P (insn))
5646
	invalidate_memory ();
Richard Kenner committed
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
      invalidate_for_call ();
    }

  /* Now invalidate everything set by this instruction.
     If a SUBREG or other funny destination is being set,
     sets[i].rtl is still nonzero, so here we invalidate the reg
     a part of which is being set.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
5658 5659 5660
	/* We can't use the inner dest, because the mode associated with
	   a ZERO_EXTRACT is significant.  */
	register rtx dest = SET_DEST (sets[i].rtl);
Richard Kenner committed
5661 5662 5663 5664 5665 5666

	/* Needed for registers to remove the register from its
	   previous quantity's chain.
	   Needed for memory if this is a nonvarying address, unless
	   we have just done an invalidate_memory that covers even those.  */
	if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
5667
	    || GET_CODE (dest) == MEM)
5668
	  invalidate (dest, VOIDmode);
5669 5670
	else if (GET_CODE (dest) == STRICT_LOW_PART
		 || GET_CODE (dest) == ZERO_EXTRACT)
5671
	  invalidate (XEXP (dest, 0), GET_MODE (dest));
Richard Kenner committed
5672 5673
      }

5674 5675 5676 5677 5678 5679
  /* A volatile ASM invalidates everything.  */
  if (GET_CODE (insn) == INSN
      && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
      && MEM_VOLATILE_P (PATTERN (insn)))
    flush_hash_table ();

Richard Kenner committed
5680 5681 5682 5683 5684 5685 5686 5687 5688
  /* Make sure registers mentioned in destinations
     are safe for use in an expression to be inserted.
     This removes from the hash table
     any invalid entry that refers to one of these registers.

     We don't care about the return value from mention_regs because
     we are going to hash the SET_DEST values unconditionally.  */

  for (i = 0; i < n_sets; i++)
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
    {
      if (sets[i].rtl)
	{
	  rtx x = SET_DEST (sets[i].rtl);

	  if (GET_CODE (x) != REG)
	    mention_regs (x);
	  else
	    {
	      /* We used to rely on all references to a register becoming
		 inaccessible when a register changes to a new quantity,
		 since that changes the hash code.  However, that is not
5701
		 safe, since after HASH_SIZE new quantities we get a
5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
		 hash 'collision' of a register with its own invalid
		 entries.  And since SUBREGs have been changed not to
		 change their hash code with the hash code of the register,
		 it wouldn't work any longer at all.  So we have to check
		 for any invalid references lying around now.
		 This code is similar to the REG case in mention_regs,
		 but it knows that reg_tick has been incremented, and
		 it leaves reg_in_table as -1 .  */
	      register int regno = REGNO (x);
	      register int endregno
		= regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
			   : HARD_REGNO_NREGS (regno, GET_MODE (x)));
	      int i;

	      for (i = regno; i < endregno; i++)
		{
5718
		  if (REG_IN_TABLE (i) >= 0)
5719 5720
		    {
		      remove_invalid_refs (i);
5721
		      REG_IN_TABLE (i) = -1;
5722 5723 5724 5725 5726
		    }
		}
	    }
	}
    }
Richard Kenner committed
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754

  /* We may have just removed some of the src_elt's from the hash table.
     So replace each one with the current head of the same class.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
	if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
	  /* If elt was removed, find current head of same class,
	     or 0 if nothing remains of that class.  */
	  {
	    register struct table_elt *elt = sets[i].src_elt;

	    while (elt && elt->prev_same_value)
	      elt = elt->prev_same_value;

	    while (elt && elt->first_same_value == 0)
	      elt = elt->next_same_value;
	    sets[i].src_elt = elt ? elt->first_same_value : 0;
	  }
      }

  /* Now insert the destinations into their equivalence classes.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
	register rtx dest = SET_DEST (sets[i].rtl);
5755
	rtx inner_dest = sets[i].inner_dest;
Richard Kenner committed
5756 5757 5758 5759 5760 5761 5762
	register struct table_elt *elt;

	/* Don't record value if we are not supposed to risk allocating
	   floating-point values in registers that might be wider than
	   memory.  */
	if ((flag_float_store
	     && GET_CODE (dest) == MEM
5763
	     && FLOAT_MODE_P (GET_MODE (dest)))
5764 5765 5766 5767
	    /* Don't record BLKmode values, because we don't know the
	       size of it, and can't be sure that other BLKmode values
	       have the same or smaller size.  */
	    || GET_MODE (dest) == BLKmode
Richard Kenner committed
5768 5769 5770 5771
	    /* Don't record values of destinations set inside a libcall block
	       since we might delete the libcall.  Things should have been set
	       up so we won't want to reuse such a value, but we play it safe
	       here.  */
5772
	    || libcall_insn
Richard Kenner committed
5773 5774
	    /* If we didn't put a REG_EQUAL value or a source into the hash
	       table, there is no point is recording DEST.  */
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
	    || sets[i].src_elt == 0
	    /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
	       or SIGN_EXTEND, don't record DEST since it can cause
	       some tracking to be wrong.

	       ??? Think about this more later.  */
	    || (GET_CODE (dest) == SUBREG
		&& (GET_MODE_SIZE (GET_MODE (dest))
		    > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
		&& (GET_CODE (sets[i].src) == SIGN_EXTEND
		    || GET_CODE (sets[i].src) == ZERO_EXTEND)))
Richard Kenner committed
5786 5787 5788 5789 5790 5791 5792 5793
	  continue;

	/* STRICT_LOW_PART isn't part of the value BEING set,
	   and neither is the SUBREG inside it.
	   Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT.  */
	if (GET_CODE (dest) == STRICT_LOW_PART)
	  dest = SUBREG_REG (XEXP (dest, 0));

5794
	if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
Richard Kenner committed
5795 5796
	  /* Registers must also be inserted into chains for quantities.  */
	  if (insert_regs (dest, sets[i].src_elt, 1))
5797 5798 5799 5800 5801 5802
	    {
	      /* If `insert_regs' changes something, the hash code must be
		 recalculated.  */
	      rehash_using_reg (dest);
	      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
	    }
Richard Kenner committed
5803

5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
	if (GET_CODE (inner_dest) == MEM
	    && GET_CODE (XEXP (inner_dest, 0)) == ADDRESSOF)
	  /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
	     that (MEM (ADDRESSOF (X))) is equivalent to Y. 
	     Consider the case in which the address of the MEM is
	     passed to a function, which alters the MEM.  Then, if we
	     later use Y instead of the MEM we'll miss the update.  */
	  elt = insert (dest, 0, sets[i].dest_hash, GET_MODE (dest));
	else
	  elt = insert (dest, sets[i].src_elt,
			sets[i].dest_hash, GET_MODE (dest));

5816
	elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
5817 5818 5819
			  && (! RTX_UNCHANGING_P (sets[i].inner_dest)
			      || FIXED_BASE_PLUS_P (XEXP (sets[i].inner_dest,
							  0))));
5820

5821 5822 5823 5824
	/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
	   narrower than M2, and both M1 and M2 are the same number of words,
	   we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
	   make that equivalence as well.
Richard Kenner committed
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836

	   However, BAR may have equivalences for which gen_lowpart_if_possible
	   will produce a simpler value than gen_lowpart_if_possible applied to
	   BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
	   BAR's equivalences.  If we don't get a simplified form, make 
	   the SUBREG.  It will not be used in an equivalence, but will
	   cause two similar assignments to be detected.

	   Note the loop below will find SUBREG_REG (DEST) since we have
	   already entered SRC and DEST of the SET in the table.  */

	if (GET_CODE (dest) == SUBREG
5837 5838 5839
	    && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
		 / UNITS_PER_WORD)
		== (GET_MODE_SIZE (GET_MODE (dest)) - 1)/ UNITS_PER_WORD)
Richard Kenner committed
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850
	    && (GET_MODE_SIZE (GET_MODE (dest))
		>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
	    && sets[i].src_elt != 0)
	  {
	    enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
	    struct table_elt *elt, *classp = 0;

	    for (elt = sets[i].src_elt->first_same_value; elt;
		 elt = elt->next_same_value)
	      {
		rtx new_src = 0;
Richard Kenner committed
5851
		unsigned src_hash;
Richard Kenner committed
5852 5853 5854 5855 5856 5857 5858 5859 5860
		struct table_elt *src_elt;

		/* Ignore invalid entries.  */
		if (GET_CODE (elt->exp) != REG
		    && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
		  continue;

		new_src = gen_lowpart_if_possible (new_mode, elt->exp);
		if (new_src == 0)
5861
		  new_src = gen_rtx_SUBREG (new_mode, elt->exp, 0);
Richard Kenner committed
5862 5863 5864 5865 5866 5867 5868 5869 5870

		src_hash = HASH (new_src, new_mode);
		src_elt = lookup (new_src, src_hash, new_mode);

		/* Put the new source in the hash table is if isn't
		   already.  */
		if (src_elt == 0)
		  {
		    if (insert_regs (new_src, classp, 0))
5871 5872 5873 5874
		      {
			rehash_using_reg (new_src);
			src_hash = HASH (new_src, new_mode);
		      }
Richard Kenner committed
5875 5876 5877 5878 5879 5880 5881 5882 5883
		    src_elt = insert (new_src, classp, src_hash, new_mode);
		    src_elt->in_memory = elt->in_memory;
		  }
		else if (classp && classp != src_elt->first_same_value)
		  /* Show that two things that we've seen before are 
		     actually the same.  */
		  merge_equiv_classes (src_elt, classp);

		classp = src_elt->first_same_value;
5884 5885 5886 5887 5888
		/* Ignore invalid entries.  */
		while (classp
		       && GET_CODE (classp->exp) != REG
		       && ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
		  classp = classp->next_same_value;
Richard Kenner committed
5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
	      }
	  }
      }

  /* Special handling for (set REG0 REG1)
     where REG0 is the "cheapest", cheaper than REG1.
     After cse, REG1 will probably not be used in the sequel, 
     so (if easily done) change this insn to (set REG1 REG0) and
     replace REG1 with REG0 in the previous insn that computed their value.
     Then REG1 will become a dead store and won't cloud the situation
     for later optimizations.

     Do not make this change if REG1 is a hard register, because it will
     then be used in the sequel and we may be changing a two-operand insn
     into a three-operand insn.

5905 5906 5907 5908 5909
     Also do not do this if we are operating on a copy of INSN.

     Also don't do this if INSN ends a libcall; this would cause an unrelated
     register to be set in the middle of a libcall, and we then get bad code
     if the libcall is deleted.  */
Richard Kenner committed
5910 5911 5912 5913 5914

  if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
      && NEXT_INSN (PREV_INSN (insn)) == insn
      && GET_CODE (SET_SRC (sets[0].rtl)) == REG
      && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5915
      && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
Richard Kenner committed
5916
    {
5917 5918
      int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
      struct qty_table_elem *src_ent = &qty_table[src_q];
Richard Kenner committed
5919

5920 5921
      if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
	  && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
Richard Kenner committed
5922
	{
5923 5924 5925
	  rtx prev = PREV_INSN (insn);
	  while (prev && GET_CODE (prev) == NOTE)
	    prev = PREV_INSN (prev);
Richard Kenner committed
5926

5927 5928 5929 5930 5931
	  if (prev && GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SET
	      && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl))
	    {
	      rtx dest = SET_DEST (sets[0].rtl);
	      rtx note = find_reg_note (prev, REG_EQUIV, NULL_RTX);
Richard Kenner committed
5932

5933 5934 5935 5936 5937
	      validate_change (prev, & SET_DEST (PATTERN (prev)), dest, 1);
	      validate_change (insn, & SET_DEST (sets[0].rtl),
			       SET_SRC (sets[0].rtl), 1);
	      validate_change (insn, & SET_SRC (sets[0].rtl), dest, 1);
	      apply_change_group ();
Richard Kenner committed
5938

5939 5940 5941
	      /* If REG1 was equivalent to a constant, REG0 is not.  */
	      if (note)
		PUT_REG_NOTE_KIND (note, REG_EQUAL);
Richard Kenner committed
5942

5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
	      /* If there was a REG_WAS_0 note on PREV, remove it.  Move
		 any REG_WAS_0 note on INSN to PREV.  */
	      note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
	      if (note)
		remove_note (prev, note);

	      note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
	      if (note)
		{
		  remove_note (insn, note);
		  XEXP (note, 1) = REG_NOTES (prev);
		  REG_NOTES (prev) = note;
		}
5956

5957 5958 5959 5960 5961 5962
	      /* If INSN has a REG_EQUAL note, and this note mentions REG0,
		 then we must delete it, because the value in REG0 has changed.  */
	      note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
	      if (note && reg_mentioned_p (dest, XEXP (note, 0)))
		remove_note (insn, note);
	    }
Richard Kenner committed
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
	}
    }

  /* If this is a conditional jump insn, record any known equivalences due to
     the condition being tested.  */

  last_jump_equiv_class = 0;
  if (GET_CODE (insn) == JUMP_INSN
      && n_sets == 1 && GET_CODE (x) == SET
      && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
    record_jump_equiv (insn, 0);

#ifdef HAVE_cc0
  /* If the previous insn set CC0 and this insn no longer references CC0,
     delete the previous insn.  Here we use the fact that nothing expects CC0
     to be valid over an insn, which is true until the final pass.  */
  if (prev_insn && GET_CODE (prev_insn) == INSN
      && (tem = single_set (prev_insn)) != 0
      && SET_DEST (tem) == cc0_rtx
      && ! reg_mentioned_p (cc0_rtx, x))
    {
      PUT_CODE (prev_insn, NOTE);
      NOTE_LINE_NUMBER (prev_insn) = NOTE_INSN_DELETED;
      NOTE_SOURCE_FILE (prev_insn) = 0;
    }

  prev_insn_cc0 = this_insn_cc0;
  prev_insn_cc0_mode = this_insn_cc0_mode;
#endif

  prev_insn = insn;
}

5996
/* Remove from the hash table all expressions that reference memory.  */
Richard Kenner committed
5997

Richard Kenner committed
5998
static void
5999
invalidate_memory ()
Richard Kenner committed
6000
{
6001 6002
  register int i;
  register struct table_elt *p, *next;
Richard Kenner committed
6003

6004
  for (i = 0; i < HASH_SIZE; i++)
6005 6006 6007 6008 6009 6010 6011 6012
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (p->in_memory)
	  remove_from_table (p, i);
      }
}

Richard Kenner committed
6013 6014 6015
/* If ADDR is an address that implicitly affects the stack pointer, return
   1 and update the register tables to show the effect.  Else, return 0.  */

6016
static int
Richard Kenner committed
6017
addr_affects_sp_p (addr)
6018 6019 6020 6021 6022 6023
     register rtx addr;
{
  if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
       || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
      && GET_CODE (XEXP (addr, 0)) == REG
      && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
Richard Kenner committed
6024
    {
6025 6026
      if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
	REG_TICK (STACK_POINTER_REGNUM)++;
6027 6028 6029 6030

      /* This should be *very* rare.  */
      if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
	invalidate (stack_pointer_rtx, VOIDmode);
Richard Kenner committed
6031

6032
      return 1;
Richard Kenner committed
6033
    }
Richard Kenner committed
6034

6035
  return 0;
Richard Kenner committed
6036 6037 6038 6039 6040 6041 6042 6043 6044 6045
}

/* Perform invalidation on the basis of everything about an insn
   except for invalidating the actual places that are SET in it.
   This includes the places CLOBBERed, and anything that might
   alias with something that is SET or CLOBBERed.

   X is the pattern of the insn.  */

static void
6046
invalidate_from_clobbers (x)
Richard Kenner committed
6047 6048 6049 6050 6051
     rtx x;
{
  if (GET_CODE (x) == CLOBBER)
    {
      rtx ref = XEXP (x, 0);
6052 6053 6054 6055 6056 6057 6058 6059 6060
      if (ref)
	{
	  if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
	      || GET_CODE (ref) == MEM)
	    invalidate (ref, VOIDmode);
	  else if (GET_CODE (ref) == STRICT_LOW_PART
		   || GET_CODE (ref) == ZERO_EXTRACT)
	    invalidate (XEXP (ref, 0), GET_MODE (ref));
	}
Richard Kenner committed
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
    }
  else if (GET_CODE (x) == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  register rtx y = XVECEXP (x, 0, i);
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx ref = XEXP (y, 0);
6071 6072 6073 6074 6075 6076
	      if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
		  || GET_CODE (ref) == MEM)
		invalidate (ref, VOIDmode);
	      else if (GET_CODE (ref) == STRICT_LOW_PART
		       || GET_CODE (ref) == ZERO_EXTRACT)
		invalidate (XEXP (ref, 0), GET_MODE (ref));
Richard Kenner committed
6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096
	    }
	}
    }
}

/* Process X, part of the REG_NOTES of an insn.  Look at any REG_EQUAL notes
   and replace any registers in them with either an equivalent constant
   or the canonical form of the register.  If we are inside an address,
   only do this if the address remains valid.

   OBJECT is 0 except when within a MEM in which case it is the MEM.

   Return the replacement for X.  */

static rtx
cse_process_notes (x, object)
     rtx x;
     rtx object;
{
  enum rtx_code code = GET_CODE (x);
6097
  const char *fmt = GET_RTX_FORMAT (code);
Richard Kenner committed
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
  int i;

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
    case PC:
    case CC0:
    case LO_SUM:
      return x;

    case MEM:
      XEXP (x, 0) = cse_process_notes (XEXP (x, 0), x);
      return x;

    case EXPR_LIST:
    case INSN_LIST:
      if (REG_NOTE_KIND (x) == REG_EQUAL)
6119
	XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
6120
      if (XEXP (x, 1))
6121
	XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
Richard Kenner committed
6122 6123
      return x;

6124 6125
    case SIGN_EXTEND:
    case ZERO_EXTEND:
6126
    case SUBREG:
6127 6128 6129 6130 6131 6132 6133 6134 6135
      {
	rtx new = cse_process_notes (XEXP (x, 0), object);
	/* We don't substitute VOIDmode constants into these rtx,
	   since they would impede folding.  */
	if (GET_MODE (new) != VOIDmode)
	  validate_change (object, &XEXP (x, 0), new, 0);
	return x;
      }

Richard Kenner committed
6136
    case REG:
6137
      i = REG_QTY (REGNO (x));
Richard Kenner committed
6138 6139

      /* Return a constant or a constant register.  */
6140
      if (REGNO_QTY_VALID_P (REGNO (x)))
Richard Kenner committed
6141
	{
6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
	  struct qty_table_elem *ent = &qty_table[i];

	  if (ent->const_rtx != NULL_RTX
	      && (CONSTANT_P (ent->const_rtx)
		  || GET_CODE (ent->const_rtx) == REG))
	    {
	      rtx new = gen_lowpart_if_possible (GET_MODE (x), ent->const_rtx);
	      if (new)
		return new;
	    }
Richard Kenner committed
6152 6153 6154
	}

      /* Otherwise, canonicalize this register.  */
6155
      return canon_reg (x, NULL_RTX);
6156 6157 6158
      
    default:
      break;
Richard Kenner committed
6159 6160 6161 6162 6163
    }

  for (i = 0; i < GET_RTX_LENGTH (code); i++)
    if (fmt[i] == 'e')
      validate_change (object, &XEXP (x, i),
6164
		       cse_process_notes (XEXP (x, i), object), 0);
Richard Kenner committed
6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204

  return x;
}

/* Find common subexpressions between the end test of a loop and the beginning
   of the loop.  LOOP_START is the CODE_LABEL at the start of a loop.

   Often we have a loop where an expression in the exit test is used
   in the body of the loop.  For example "while (*p) *q++ = *p++;".
   Because of the way we duplicate the loop exit test in front of the loop,
   however, we don't detect that common subexpression.  This will be caught
   when global cse is implemented, but this is a quite common case.

   This function handles the most common cases of these common expressions.
   It is called after we have processed the basic block ending with the
   NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
   jumps to a label used only once.  */

static void
cse_around_loop (loop_start)
     rtx loop_start;
{
  rtx insn;
  int i;
  struct table_elt *p;

  /* If the jump at the end of the loop doesn't go to the start, we don't
     do anything.  */
  for (insn = PREV_INSN (loop_start);
       insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
       insn = PREV_INSN (insn))
    ;

  if (insn == 0
      || GET_CODE (insn) != NOTE
      || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
    return;

  /* If the last insn of the loop (the end test) was an NE comparison,
     we will interpret it as an EQ comparison, since we fell through
6205
     the loop.  Any equivalences resulting from that comparison are
Richard Kenner committed
6206 6207 6208 6209
     therefore not valid and must be invalidated.  */
  if (last_jump_equiv_class)
    for (p = last_jump_equiv_class->first_same_value; p;
	 p = p->next_same_value)
Kaveh R. Ghazi committed
6210 6211 6212 6213 6214 6215 6216 6217 6218
      {
        if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
	    || (GET_CODE (p->exp) == SUBREG
	        && GET_CODE (SUBREG_REG (p->exp)) == REG))
	  invalidate (p->exp, VOIDmode);
        else if (GET_CODE (p->exp) == STRICT_LOW_PART
	         || GET_CODE (p->exp) == ZERO_EXTRACT)
	  invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
      }
Richard Kenner committed
6219 6220 6221 6222 6223 6224

  /* Process insns starting after LOOP_START until we hit a CALL_INSN or
     a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).

     The only thing we do with SET_DEST is invalidate entries, so we
     can safely process each SET in order.  It is slightly less efficient
6225 6226 6227 6228 6229 6230
     to do so, but we only want to handle the most common cases.

     The gen_move_insn call in cse_set_around_loop may create new pseudos.
     These pseudos won't have valid entries in any of the tables indexed
     by register number, such as reg_qty.  We avoid out-of-range array
     accesses by not processing any instructions created after cse started.  */
Richard Kenner committed
6231 6232 6233

  for (insn = NEXT_INSN (loop_start);
       GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
6234
       && INSN_UID (insn) < max_insn_uid
Richard Kenner committed
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
       && ! (GET_CODE (insn) == NOTE
	     && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
       insn = NEXT_INSN (insn))
    {
      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	  && (GET_CODE (PATTERN (insn)) == SET
	      || GET_CODE (PATTERN (insn)) == CLOBBER))
	cse_set_around_loop (PATTERN (insn), insn, loop_start);
      else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	       && GET_CODE (PATTERN (insn)) == PARALLEL)
	for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	  if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
	      || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
	    cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
				 loop_start);
    }
}

6253 6254 6255 6256
/* Process one SET of an insn that was skipped.  We ignore CLOBBERs
   since they are done elsewhere.  This function is called via note_stores.  */

static void
6257
invalidate_skipped_set (dest, set, data)
6258 6259
     rtx set;
     rtx dest;
6260
     void *data ATTRIBUTE_UNUSED;
6261
{
6262 6263 6264
  enum rtx_code code = GET_CODE (dest);

  if (code == MEM
Richard Kenner committed
6265
      && ! addr_affects_sp_p (dest)	/* If this is not a stack push ... */
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
      /* There are times when an address can appear varying and be a PLUS
	 during this scan when it would be a fixed address were we to know
	 the proper equivalences.  So invalidate all memory if there is
	 a BLKmode or nonscalar memory reference or a reference to a
	 variable address.  */
      && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
	  || cse_rtx_varies_p (XEXP (dest, 0))))
    {
      invalidate_memory ();
      return;
    }
6277

6278 6279 6280 6281 6282 6283 6284
  if (GET_CODE (set) == CLOBBER
#ifdef HAVE_cc0
      || dest == cc0_rtx
#endif
      || dest == pc_rtx)
    return;

6285
  if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6286
    invalidate (XEXP (dest, 0), GET_MODE (dest));
6287 6288
  else if (code == REG || code == SUBREG || code == MEM)
    invalidate (dest, VOIDmode);
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
}

/* Invalidate all insns from START up to the end of the function or the
   next label.  This called when we wish to CSE around a block that is
   conditionally executed.  */

static void
invalidate_skipped_block (start)
     rtx start;
{
  rtx insn;

  for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
       insn = NEXT_INSN (insn))
    {
      if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
	continue;

      if (GET_CODE (insn) == CALL_INSN)
	{
6309 6310
	  if (! CONST_CALL_P (insn))
	    invalidate_memory ();
6311 6312 6313
	  invalidate_for_call ();
	}

6314
      invalidate_from_clobbers (PATTERN (insn));
6315
      note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6316 6317 6318
    }
}

6319 6320 6321
/* If modifying X will modify the value in *DATA (which is really an
   `rtx *'), indicate that fact by setting the pointed to value to
   NULL_RTX.  */
Richard Kenner committed
6322 6323

static void
6324
cse_check_loop_start (x, set, data)
Richard Kenner committed
6325
     rtx x;
Kaveh R. Ghazi committed
6326
     rtx set ATTRIBUTE_UNUSED;
6327
     void *data;
Richard Kenner committed
6328
{
6329 6330 6331
  rtx *cse_check_loop_start_value = (rtx *) data;

  if (*cse_check_loop_start_value == NULL_RTX
Richard Kenner committed
6332 6333 6334
      || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
    return;

6335 6336 6337
  if ((GET_CODE (x) == MEM && GET_CODE (*cse_check_loop_start_value) == MEM)
      || reg_overlap_mentioned_p (x, *cse_check_loop_start_value))
    *cse_check_loop_start_value = NULL_RTX;
Richard Kenner committed
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
}

/* X is a SET or CLOBBER contained in INSN that was found near the start of
   a loop that starts with the label at LOOP_START.

   If X is a SET, we see if its SET_SRC is currently in our hash table.
   If so, we see if it has a value equal to some register used only in the
   loop exit code (as marked by jump.c).

   If those two conditions are true, we search backwards from the start of
   the loop to see if that same value was loaded into a register that still
   retains its value at the start of the loop.

   If so, we insert an insn after the load to copy the destination of that
   load into the equivalent register and (try to) replace our SET_SRC with that
   register.

   In any event, we invalidate whatever this SET or CLOBBER modifies.  */

static void
cse_set_around_loop (x, insn, loop_start)
     rtx x;
     rtx insn;
     rtx loop_start;
{
  struct table_elt *src_elt;

  /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
     are setting PC or CC0 or whose SET_SRC is already a register.  */
  if (GET_CODE (x) == SET
      && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
      && GET_CODE (SET_SRC (x)) != REG)
    {
      src_elt = lookup (SET_SRC (x),
			HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
			GET_MODE (SET_DEST (x)));

      if (src_elt)
	for (src_elt = src_elt->first_same_value; src_elt;
	     src_elt = src_elt->next_same_value)
	  if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
	      && COST (src_elt->exp) < COST (SET_SRC (x)))
	    {
	      rtx p, set;

	      /* Look for an insn in front of LOOP_START that sets
		 something in the desired mode to SET_SRC (x) before we hit
		 a label or CALL_INSN.  */

	      for (p = prev_nonnote_insn (loop_start);
		   p && GET_CODE (p) != CALL_INSN
		   && GET_CODE (p) != CODE_LABEL;
		   p = prev_nonnote_insn  (p))
		if ((set = single_set (p)) != 0
		    && GET_CODE (SET_DEST (set)) == REG
		    && GET_MODE (SET_DEST (set)) == src_elt->mode
		    && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
		  {
		    /* We now have to ensure that nothing between P
		       and LOOP_START modified anything referenced in
		       SET_SRC (x).  We know that nothing within the loop
		       can modify it, or we would have invalidated it in
		       the hash table.  */
		    rtx q;
6402
		    rtx cse_check_loop_start_value = SET_SRC (x);
Richard Kenner committed
6403 6404
		    for (q = p; q != loop_start; q = NEXT_INSN (q))
		      if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
6405 6406 6407
			note_stores (PATTERN (q),
				     cse_check_loop_start,
				     &cse_check_loop_start_value);
Richard Kenner committed
6408 6409 6410 6411 6412 6413 6414

		    /* If nothing was changed and we can replace our
		       SET_SRC, add an insn after P to copy its destination
		       to what we will be replacing SET_SRC with.  */
		    if (cse_check_loop_start_value
			&& validate_change (insn, &SET_SRC (x),
					    src_elt->exp, 0))
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
		      {
			/* If this creates new pseudos, this is unsafe,
			   because the regno of new pseudo is unsuitable
			   to index into reg_qty when cse_insn processes
			   the new insn.  Therefore, if a new pseudo was
			   created, discard this optimization.  */
			int nregs = max_reg_num ();
			rtx move
			  = gen_move_insn (src_elt->exp, SET_DEST (set));
			if (nregs != max_reg_num ())
			  {
			    if (! validate_change (insn, &SET_SRC (x),
						   SET_SRC (set), 0))
			      abort ();
			  }
			else
			  emit_insn_after (move, p);
		      }
Richard Kenner committed
6433 6434 6435 6436 6437
		    break;
		  }
	    }
    }

Richard Kenner committed
6438 6439
  /* Deal with the destination of X affecting the stack pointer.  */
  addr_affects_sp_p (SET_DEST (x));
Richard Kenner committed
6440

Richard Kenner committed
6441 6442
  /* See comment on similar code in cse_insn for explanation of these
     tests.  */
Richard Kenner committed
6443
  if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
6444
      || GET_CODE (SET_DEST (x)) == MEM)
6445
    invalidate (SET_DEST (x), VOIDmode);
6446 6447
  else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
	   || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
6448
    invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
Richard Kenner committed
6449 6450 6451 6452 6453 6454 6455 6456 6457
}

/* Find the end of INSN's basic block and return its range,
   the total number of SETs in all the insns of the block, the last insn of the
   block, and the branch path.

   The branch path indicates which branches should be followed.  If a non-zero
   path size is specified, the block should be rescanned and a different set
   of branches will be taken.  The branch path is only used if
6458
   FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
Richard Kenner committed
6459 6460 6461 6462 6463 6464 6465

   DATA is a pointer to a struct cse_basic_block_data, defined below, that is
   used to describe the block.  It is filled in with the information about
   the current block.  The incoming structure's branch path, if any, is used
   to construct the output branch path.  */

void
6466
cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
Richard Kenner committed
6467 6468 6469 6470
     rtx insn;
     struct cse_basic_block_data *data;
     int follow_jumps;
     int after_loop;
6471
     int skip_blocks;
Richard Kenner committed
6472 6473 6474 6475
{
  rtx p = insn, q;
  int nsets = 0;
  int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6476
  rtx next = GET_RTX_CLASS (GET_CODE (insn)) == 'i' ? insn : next_real_insn (insn);
Richard Kenner committed
6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
  int path_size = data->path_size;
  int path_entry = 0;
  int i;

  /* Update the previous branch path, if any.  If the last branch was
     previously TAKEN, mark it NOT_TAKEN.  If it was previously NOT_TAKEN,
     shorten the path by one and look at the previous branch.  We know that
     at least one branch must have been taken if PATH_SIZE is non-zero.  */
  while (path_size > 0)
    {
6487
      if (data->path[path_size - 1].status != NOT_TAKEN)
Richard Kenner committed
6488 6489 6490 6491 6492 6493 6494 6495
	{
	  data->path[path_size - 1].status = NOT_TAKEN;
	  break;
	}
      else
	path_size--;
    }

6496 6497 6498 6499 6500 6501 6502 6503 6504
  /* If the first instruction is marked with QImode, that means we've
     already processed this block.  Our caller will look at DATA->LAST
     to figure out where to go next.  We want to return the next block
     in the instruction stream, not some branched-to block somewhere
     else.  We accomplish this by pretending our called forbid us to
     follow jumps, or skip blocks.  */
  if (GET_MODE (insn) == QImode)
    follow_jumps = skip_blocks = 0;

Richard Kenner committed
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
  /* Scan to end of this basic block.  */
  while (p && GET_CODE (p) != CODE_LABEL)
    {
      /* Don't cse out the end of a loop.  This makes a difference
	 only for the unusual loops that always execute at least once;
	 all other loops have labels there so we will stop in any case.
	 Cse'ing out the end of the loop is dangerous because it
	 might cause an invariant expression inside the loop
	 to be reused after the end of the loop.  This would make it
	 hard to move the expression out of the loop in loop.c,
	 especially if it is one of several equivalent expressions
	 and loop.c would like to eliminate it.

	 If we are running after loop.c has finished, we can ignore
	 the NOTE_INSN_LOOP_END.  */

      if (! after_loop && GET_CODE (p) == NOTE
	  && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
	break;

      /* Don't cse over a call to setjmp; on some machines (eg vax)
	 the regs restored by the longjmp come from
	 a later time than the setjmp.  */
      if (GET_CODE (p) == NOTE
	  && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
	break;

      /* A PARALLEL can have lots of SETs in it,
	 especially if it is really an ASM_OPERANDS.  */
      if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
	  && GET_CODE (PATTERN (p)) == PARALLEL)
	nsets += XVECLEN (PATTERN (p), 0);
      else if (GET_CODE (p) != NOTE)
	nsets += 1;
	
6540 6541 6542 6543
      /* Ignore insns made by CSE; they cannot affect the boundaries of
	 the basic block.  */

      if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6544
	high_cuid = INSN_CUID (p);
6545 6546
      if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
	low_cuid = INSN_CUID (p);
Richard Kenner committed
6547 6548 6549 6550 6551

      /* See if this insn is in our branch path.  If it is and we are to
	 take it, do so.  */
      if (path_entry < path_size && data->path[path_entry].branch == p)
	{
6552
	  if (data->path[path_entry].status != NOT_TAKEN)
Richard Kenner committed
6553 6554 6555 6556 6557 6558 6559 6560 6561
	    p = JUMP_LABEL (p);
	  
	  /* Point to next entry in path, if any.  */
	  path_entry++;
	}

      /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
	 was specified, we haven't reached our maximum path length, there are
	 insns following the target of the jump, this is the only use of the
6562 6563 6564 6565 6566 6567 6568 6569
	 jump label, and the target label is preceded by a BARRIER.

	 Alternatively, we can follow the jump if it branches around a
	 block of code and there are no other branches into the block.
	 In this case invalidate_skipped_block will be called to invalidate any
	 registers set in the block when following the jump.  */

      else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
Richard Kenner committed
6570 6571 6572
	       && GET_CODE (p) == JUMP_INSN
      	       && GET_CODE (PATTERN (p)) == SET
	       && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6573
	       && JUMP_LABEL (p) != 0
Richard Kenner committed
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
	       && LABEL_NUSES (JUMP_LABEL (p)) == 1
	       && NEXT_INSN (JUMP_LABEL (p)) != 0)
	{
	  for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
	    if ((GET_CODE (q) != NOTE
	         || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
	         || NOTE_LINE_NUMBER (q) == NOTE_INSN_SETJMP)
	        && (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
	      break;

	  /* If we ran into a BARRIER, this code is an extension of the
	     basic block when the branch is taken.  */
6586
	  if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
Richard Kenner committed
6587 6588 6589
	    {
	      /* Don't allow ourself to keep walking around an
		 always-executed loop.  */
6590 6591 6592 6593 6594
	      if (next_real_insn (q) == next)
		{
		  p = NEXT_INSN (p);
		  continue;
		}
Richard Kenner committed
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616

	      /* Similarly, don't put a branch in our path more than once.  */
	      for (i = 0; i < path_entry; i++)
		if (data->path[i].branch == p)
		  break;

	      if (i != path_entry)
		break;

	      data->path[path_entry].branch = p;
	      data->path[path_entry++].status = TAKEN;

	      /* This branch now ends our path.  It was possible that we
		 didn't see this branch the last time around (when the
		 insn in front of the target was a JUMP_INSN that was
		 turned into a no-op).  */
	      path_size = path_entry;

	      p = JUMP_LABEL (p);
	      /* Mark block so we won't scan it again later.  */
	      PUT_MODE (NEXT_INSN (p), QImode);
	    }
6617 6618 6619 6620 6621
	  /* Detect a branch around a block of code.  */
	  else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
	    {
	      register rtx tmp;

6622 6623 6624 6625 6626
	      if (next_real_insn (q) == next)
		{
		  p = NEXT_INSN (p);
		  continue;
		}
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652

	      for (i = 0; i < path_entry; i++)
		if (data->path[i].branch == p)
		  break;

	      if (i != path_entry)
		break;

	      /* This is no_labels_between_p (p, q) with an added check for
		 reaching the end of a function (in case Q precedes P).  */
	      for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
		if (GET_CODE (tmp) == CODE_LABEL)
		  break;
	      
	      if (tmp == q)
		{
		  data->path[path_entry].branch = p;
		  data->path[path_entry++].status = AROUND;

		  path_size = path_entry;

		  p = JUMP_LABEL (p);
		  /* Mark block so we won't scan it again later.  */
		  PUT_MODE (NEXT_INSN (p), QImode);
		}
	    }
Richard Kenner committed
6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
	}
      p = NEXT_INSN (p);
    }

  data->low_cuid = low_cuid;
  data->high_cuid = high_cuid;
  data->nsets = nsets;
  data->last = p;

  /* If all jumps in the path are not taken, set our path length to zero
     so a rescan won't be done.  */
  for (i = path_size - 1; i >= 0; i--)
6665
    if (data->path[i].status != NOT_TAKEN)
Richard Kenner committed
6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698
      break;

  if (i == -1)
    data->path_size = 0;
  else
    data->path_size = path_size;

  /* End the current branch path.  */
  data->path[path_size].branch = 0;
}

/* Perform cse on the instructions of a function.
   F is the first instruction.
   NREGS is one plus the highest pseudo-reg number used in the instruction.

   AFTER_LOOP is 1 if this is the cse call done after loop optimization
   (only if -frerun-cse-after-loop).

   Returns 1 if jump_optimize should be redone due to simplifications
   in conditional jump instructions.  */

int
cse_main (f, nregs, after_loop, file)
     rtx f;
     int nregs;
     int after_loop;
     FILE *file;
{
  struct cse_basic_block_data val;
  register rtx insn = f;
  register int i;

  cse_jumps_altered = 0;
6699
  recorded_label_ref = 0;
Richard Kenner committed
6700 6701 6702 6703
  constant_pool_entries_cost = 0;
  val.path_size = 0;

  init_recog ();
6704
  init_alias_analysis ();
Richard Kenner committed
6705 6706 6707

  max_reg = nregs;

6708 6709
  max_insn_uid = get_max_uid ();

6710
  reg_eqv_table = (struct reg_eqv_elem *)
6711
    xmalloc (nregs * sizeof (struct reg_eqv_elem));
Richard Kenner committed
6712

6713 6714 6715 6716
#ifdef LOAD_EXTEND_OP

  /* Allocate scratch rtl here.  cse_insn will fill in the memory reference
     and change the code and mode as appropriate.  */
6717
  memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
6718 6719
#endif

Richard Kenner committed
6720 6721
  /* Discard all the free elements of the previous function
     since they are allocated in the temporarily obstack.  */
6722
  bzero ((char *) table, sizeof table);
Richard Kenner committed
6723 6724 6725 6726 6727
  free_element_chain = 0;
  n_elements_made = 0;

  /* Find the largest uid.  */

6728
  max_uid = get_max_uid ();
6729
  uid_cuid = (int *) xcalloc (max_uid + 1, sizeof (int));
Richard Kenner committed
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764

  /* Compute the mapping from uids to cuids.
     CUIDs are numbers assigned to insns, like uids,
     except that cuids increase monotonically through the code.
     Don't assign cuids to line-number NOTEs, so that the distance in cuids
     between two insns is not affected by -g.  */

  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) != NOTE
	  || NOTE_LINE_NUMBER (insn) < 0)
	INSN_CUID (insn) = ++i;
      else
	/* Give a line number note the same cuid as preceding insn.  */
	INSN_CUID (insn) = i;
    }

  /* Initialize which registers are clobbered by calls.  */

  CLEAR_HARD_REG_SET (regs_invalidated_by_call);

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if ((call_used_regs[i]
	 /* Used to check !fixed_regs[i] here, but that isn't safe;
	    fixed regs are still call-clobbered, and sched can get
	    confused if they can "live across calls".

	    The frame pointer is always preserved across calls.  The arg
	    pointer is if it is fixed.  The stack pointer usually is, unless
	    RETURN_POPS_ARGS, in which case an explicit CLOBBER
	    will be present.  If we are generating PIC code, the PIC offset
	    table register is preserved across calls.  */

	 && i != STACK_POINTER_REGNUM
	 && i != FRAME_POINTER_REGNUM
6765 6766 6767
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	 && i != HARD_FRAME_POINTER_REGNUM
#endif
Richard Kenner committed
6768 6769 6770
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
	 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
#endif
6771
#if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
Richard Kenner committed
6772 6773 6774 6775 6776 6777
	 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
#endif
	 )
	|| global_regs[i])
      SET_HARD_REG_BIT (regs_invalidated_by_call, i);

6778 6779 6780
  if (ggc_p)
    ggc_push_context ();

Richard Kenner committed
6781 6782 6783 6784 6785 6786
  /* Loop over basic blocks.
     Compute the maximum number of qty's needed for each basic block
     (which is 2 for each SET).  */
  insn = f;
  while (insn)
    {
6787 6788
      cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
			      flag_cse_skip_blocks);
Richard Kenner committed
6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803

      /* If this basic block was already processed or has no sets, skip it.  */
      if (val.nsets == 0 || GET_MODE (insn) == QImode)
	{
	  PUT_MODE (insn, VOIDmode);
	  insn = (val.last ? NEXT_INSN (val.last) : 0);
	  val.path_size = 0;
	  continue;
	}

      cse_basic_block_start = val.low_cuid;
      cse_basic_block_end = val.high_cuid;
      max_qty = val.nsets * 2;
      
      if (file)
6804
	fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
Richard Kenner committed
6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
		 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
		 val.nsets);

      /* Make MAX_QTY bigger to give us room to optimize
	 past the end of this basic block, if that should prove useful.  */
      if (max_qty < 500)
	max_qty = 500;

      max_qty += max_reg;

      /* If this basic block is being extended by following certain jumps,
         (see `cse_end_of_basic_block'), we reprocess the code from the start.
         Otherwise, we start after this basic block.  */
      if (val.path_size > 0)
        cse_basic_block (insn, val.last, val.path, 0);
      else
	{
	  int old_cse_jumps_altered = cse_jumps_altered;
	  rtx temp;

	  /* When cse changes a conditional jump to an unconditional
	     jump, we want to reprocess the block, since it will give
	     us a new branch path to investigate.  */
	  cse_jumps_altered = 0;
	  temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
6830 6831
	  if (cse_jumps_altered == 0
	      || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
Richard Kenner committed
6832 6833 6834 6835 6836
	    insn = temp;

	  cse_jumps_altered |= old_cse_jumps_altered;
	}

6837 6838 6839
      if (ggc_p)
	ggc_collect ();

Richard Kenner committed
6840 6841 6842 6843 6844
#ifdef USE_C_ALLOCA
      alloca (0);
#endif
    }

6845 6846 6847
  if (ggc_p)
    ggc_pop_context ();

Richard Kenner committed
6848 6849 6850
  if (max_elements_made < n_elements_made)
    max_elements_made = n_elements_made;

6851 6852
  /* Clean up.  */
  end_alias_analysis ();
6853
  free (uid_cuid);
6854
  free (reg_eqv_table);
6855

6856
  return cse_jumps_altered || recorded_label_ref;
Richard Kenner committed
6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
}

/* Process a single basic block.  FROM and TO and the limits of the basic
   block.  NEXT_BRANCH points to the branch path when following jumps or
   a null path when not following jumps.

   AROUND_LOOP is non-zero if we are to try to cse around to the start of a
   loop.  This is true when we are being called for the last time on a
   block and this CSE pass is before loop.c.  */

static rtx
cse_basic_block (from, to, next_branch, around_loop)
     register rtx from, to;
     struct branch_path *next_branch;
     int around_loop;
{
  register rtx insn;
  int to_usage = 0;
6875
  rtx libcall_insn = NULL_RTX;
6876
  int num_insns = 0;
Richard Kenner committed
6877

6878 6879 6880
  /* This array is undefined before max_reg, so only allocate
     the space actually needed and adjust the start.  */

6881 6882 6883
  qty_table
    = (struct qty_table_elem *) xmalloc ((max_qty - max_reg)
					  * sizeof (struct qty_table_elem));
6884
  qty_table -= max_reg;
Richard Kenner committed
6885 6886 6887 6888 6889 6890 6891 6892 6893

  new_basic_block ();

  /* TO might be a label.  If so, protect it from being deleted.  */
  if (to != 0 && GET_CODE (to) == CODE_LABEL)
    ++LABEL_NUSES (to);

  for (insn = from; insn != to; insn = NEXT_INSN (insn))
    {
6894
      register enum rtx_code code = GET_CODE (insn);
6895

6896 6897 6898 6899 6900 6901
      /* If we have processed 1,000 insns, flush the hash table to
	 avoid extreme quadratic behavior.  We must not include NOTEs
	 in the count since there may be more or them when generating
	 debugging information.  If we clear the table at different
	 times, code generated with -g -O might be different than code
	 generated with -O but not -g.
6902 6903 6904

	 ??? This is a real kludge and needs to be done some other way.
	 Perhaps for 2.9.  */
6905
      if (code != NOTE && num_insns++ > 1000)
6906
	{
6907
	  flush_hash_table ();
6908 6909
	  num_insns = 0;
	}
Richard Kenner committed
6910 6911 6912 6913 6914

      /* See if this is a branch that is part of the path.  If so, and it is
	 to be taken, do so.  */
      if (next_branch->branch == insn)
	{
6915 6916
	  enum taken status = next_branch++->status;
	  if (status != NOT_TAKEN)
Richard Kenner committed
6917
	    {
6918 6919 6920 6921 6922
	      if (status == TAKEN)
		record_jump_equiv (insn, 1);
	      else
		invalidate_skipped_block (NEXT_INSN (insn));

Richard Kenner committed
6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
	      /* Set the last insn as the jump insn; it doesn't affect cc0.
		 Then follow this branch.  */
#ifdef HAVE_cc0
	      prev_insn_cc0 = 0;
#endif
	      prev_insn = insn;
	      insn = JUMP_LABEL (insn);
	      continue;
	    }
	}
        
      if (GET_MODE (insn) == QImode)
	PUT_MODE (insn, VOIDmode);

      if (GET_RTX_CLASS (code) == 'i')
	{
6939 6940
	  rtx p;

Richard Kenner committed
6941 6942 6943 6944
	  /* Process notes first so we have all notes in canonical forms when
	     looking for duplicate operations.  */

	  if (REG_NOTES (insn))
6945
	    REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
Richard Kenner committed
6946 6947 6948 6949

	  /* Track when we are inside in LIBCALL block.  Inside such a block,
	     we do not want to record destinations.  The last insn of a
	     LIBCALL block is not considered to be part of the block, since
6950
	     its destination is the result of the block and hence should be
Richard Kenner committed
6951 6952
	     recorded.  */

6953
	  if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6954
	    libcall_insn = XEXP (p, 0);
6955
	  else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6956
	    libcall_insn = NULL_RTX;
Richard Kenner committed
6957

6958
	  cse_insn (insn, libcall_insn);
Richard Kenner committed
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968
	}

      /* If INSN is now an unconditional jump, skip to the end of our
	 basic block by pretending that we just did the last insn in the
	 basic block.  If we are jumping to the end of our block, show
	 that we can have one usage of TO.  */

      if (simplejump_p (insn))
	{
	  if (to == 0)
6969 6970 6971 6972
	    {
	      free (qty_table + max_reg);
	      return 0;
	    }
Richard Kenner committed
6973 6974 6975 6976

	  if (JUMP_LABEL (insn) == to)
	    to_usage = 1;

6977 6978 6979 6980 6981 6982 6983 6984
	  /* Maybe TO was deleted because the jump is unconditional.
	     If so, there is nothing left in this basic block.  */
	  /* ??? Perhaps it would be smarter to set TO
	     to whatever follows this insn, 
	     and pretend the basic block had always ended here.  */
	  if (INSN_DELETED_P (to))
	    break;

Richard Kenner committed
6985 6986 6987 6988 6989
	  insn = PREV_INSN (to);
	}

      /* See if it is ok to keep on going past the label
	 which used to end our basic block.  Remember that we incremented
6990
	 the count of that label, so we decrement it here.  If we made
Richard Kenner committed
6991 6992 6993 6994 6995 6996 6997
	 a jump unconditional, TO_USAGE will be one; in that case, we don't
	 want to count the use in that jump.  */

      if (to != 0 && NEXT_INSN (insn) == to
	  && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
	{
	  struct cse_basic_block_data val;
6998
	  rtx prev;
Richard Kenner committed
6999 7000 7001

	  insn = NEXT_INSN (to);

7002 7003
	  /* If TO was the last insn in the function, we are done.  */
	  if (insn == 0)
7004 7005 7006 7007
	    {
	      free (qty_table + max_reg);
	      return 0;
	    }
Richard Kenner committed
7008

7009 7010 7011 7012
	  /* If TO was preceded by a BARRIER we are done with this block
	     because it has no continuation.  */
	  prev = prev_nonnote_insn (to);
	  if (prev && GET_CODE (prev) == BARRIER)
7013 7014 7015 7016
	    {
	      free (qty_table + max_reg);
	      return insn;
	    }
7017 7018 7019

	  /* Find the end of the following block.  Note that we won't be
	     following branches in this case.  */
Richard Kenner committed
7020 7021
	  to_usage = 0;
	  val.path_size = 0;
7022
	  cse_end_of_basic_block (insn, &val, 0, 0, 0);
Richard Kenner committed
7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051

	  /* If the tables we allocated have enough space left
	     to handle all the SETs in the next basic block,
	     continue through it.  Otherwise, return,
	     and that block will be scanned individually.  */
	  if (val.nsets * 2 + next_qty > max_qty)
	    break;

	  cse_basic_block_start = val.low_cuid;
	  cse_basic_block_end = val.high_cuid;
	  to = val.last;

	  /* Prevent TO from being deleted if it is a label.  */
	  if (to != 0 && GET_CODE (to) == CODE_LABEL)
	    ++LABEL_NUSES (to);

	  /* Back up so we process the first insn in the extension.  */
	  insn = PREV_INSN (insn);
	}
    }

  if (next_qty > max_qty)
    abort ();

  /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
     the previous insn is the only insn that branches to the head of a loop,
     we can cse into the loop.  Don't do this if we changed the jump
     structure of a loop unless we aren't going to be following jumps.  */

7052 7053
  if ((cse_jumps_altered == 0
       || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
Richard Kenner committed
7054 7055 7056 7057 7058 7059 7060
      && around_loop && to != 0
      && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
      && GET_CODE (PREV_INSN (to)) == JUMP_INSN
      && JUMP_LABEL (PREV_INSN (to)) != 0
      && LABEL_NUSES (JUMP_LABEL (PREV_INSN (to))) == 1)
    cse_around_loop (JUMP_LABEL (PREV_INSN (to)));

7061
  free (qty_table + max_reg);
7062

Richard Kenner committed
7063 7064 7065 7066 7067
  return to ? NEXT_INSN (to) : 0;
}

/* Count the number of times registers are used (not set) in X.
   COUNTS is an array in which we accumulate the count, INCR is how much
7068 7069 7070 7071 7072
   we count each register usage.  

   Don't count a usage of DEST, which is the SET_DEST of a SET which 
   contains X in its SET_SRC.  This is because such a SET does not
   modify the liveness of DEST.  */
Richard Kenner committed
7073 7074

static void
7075
count_reg_usage (x, counts, dest, incr)
Richard Kenner committed
7076 7077
     rtx x;
     int *counts;
7078
     rtx dest;
Richard Kenner committed
7079 7080
     int incr;
{
7081
  enum rtx_code code;
7082
  const char *fmt;
Richard Kenner committed
7083 7084
  int i, j;

7085 7086 7087 7088
  if (x == 0)
    return;

  switch (code = GET_CODE (x))
Richard Kenner committed
7089 7090
    {
    case REG:
7091 7092
      if (x != dest)
	counts[REGNO (x)] += incr;
Richard Kenner committed
7093 7094 7095 7096 7097 7098 7099 7100 7101
      return;

    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
7102 7103 7104 7105 7106 7107 7108
      return;

    case CLOBBER:                                                        
      /* If we are clobbering a MEM, mark any registers inside the address
         as being used.  */
      if (GET_CODE (XEXP (x, 0)) == MEM)
	count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
Richard Kenner committed
7109 7110 7111 7112 7113
      return;

    case SET:
      /* Unless we are setting a REG, count everything in SET_DEST.  */
      if (GET_CODE (SET_DEST (x)) != REG)
7114
	count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
7115 7116 7117 7118 7119 7120 7121 7122 7123 7124

      /* If SRC has side-effects, then we can't delete this insn, so the
	 usage of SET_DEST inside SRC counts.

	 ??? Strictly-speaking, we might be preserving this insn
	 because some other SET has side-effects, but that's hard
	 to do and can't happen now.  */
      count_reg_usage (SET_SRC (x), counts,
		       side_effects_p (SET_SRC (x)) ? NULL_RTX : SET_DEST (x),
		       incr);
Richard Kenner committed
7125 7126
      return;

7127 7128 7129 7130
    case CALL_INSN:
      count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);

      /* ... falls through ...  */
Richard Kenner committed
7131 7132
    case INSN:
    case JUMP_INSN:
7133
      count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);
Richard Kenner committed
7134 7135 7136 7137

      /* Things used in a REG_EQUAL note aren't dead since loop may try to
	 use them.  */

7138
      count_reg_usage (REG_NOTES (x), counts, NULL_RTX, incr);
Richard Kenner committed
7139 7140 7141 7142
      return;

    case EXPR_LIST:
    case INSN_LIST:
7143
      if (REG_NOTE_KIND (x) == REG_EQUAL
7144
	  || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE))
7145
	count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
7146
      count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
Richard Kenner committed
7147
      return;
7148 7149 7150
      
    default:
      break;
Richard Kenner committed
7151 7152 7153 7154 7155 7156
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
7157
	count_reg_usage (XEXP (x, i), counts, dest, incr);
Richard Kenner committed
7158 7159
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7160
	  count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
Richard Kenner committed
7161 7162 7163 7164 7165 7166
    }
}

/* Scan all the insns and delete any that are dead; i.e., they store a register
   that is never used or they copy a register to itself.

7167 7168 7169 7170
   This is used to remove insns made obviously dead by cse, loop or other
   optimizations.  It improves the heuristics in loop since it won't try to
   move dead invariants out of loops or make givs for dead quantities.  The
   remaining passes of the compilation are also sped up.  */
Richard Kenner committed
7171 7172

void
7173
delete_trivially_dead_insns (insns, nreg)
Richard Kenner committed
7174 7175 7176
     rtx insns;
     int nreg;
{
7177
  int *counts;
7178
  rtx insn, prev;
Kaveh R. Ghazi committed
7179
#ifdef HAVE_cc0
7180
  rtx tem;
Kaveh R. Ghazi committed
7181
#endif
Richard Kenner committed
7182
  int i;
7183
  int in_libcall = 0, dead_libcall = 0;
Richard Kenner committed
7184 7185

  /* First count the number of times each register is used.  */
7186
  counts = (int *) xcalloc (nreg, sizeof (int));
Richard Kenner committed
7187
  for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
7188
    count_reg_usage (insn, counts, NULL_RTX, 1);
Richard Kenner committed
7189 7190 7191

  /* Go from the last insn to the first and delete insns that only set unused
     registers or copy a register to itself.  As we delete an insn, remove
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
     usage counts for registers it uses. 

     The first jump optimization pass may leave a real insn as the last
     insn in the function.   We must not skip that insn or we may end
     up deleting code that is not really dead.   */
  insn = get_last_insn ();
  if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
    insn = prev_real_insn (insn);

  for ( ; insn; insn = prev)
Richard Kenner committed
7202 7203
    {
      int live_insn = 0;
7204
      rtx note;
Richard Kenner committed
7205

7206 7207
      prev = prev_real_insn (insn);

7208 7209 7210
      /* Don't delete any insns that are part of a libcall block unless
	 we can delete the whole libcall block.

7211 7212
	 Flow or loop might get confused if we did that.  Remember
	 that we are scanning backwards.  */
7213
      if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7214 7215 7216 7217
	{
	  in_libcall = 1;
	  live_insn = 1;
	  dead_libcall = 0;
7218

7219 7220 7221 7222 7223 7224 7225 7226 7227
	  /* See if there's a REG_EQUAL note on this insn and try to
	     replace the source with the REG_EQUAL expression.
	
	     We assume that insns with REG_RETVALs can only be reg->reg
	     copies at this point.  */
	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
	  if (note)
	    {
	      rtx set = single_set (insn);
7228 7229 7230 7231 7232 7233
	      rtx new = simplify_rtx (XEXP (note, 0));

	      if (!new)
		new = XEXP (note, 0);

	      if (set && validate_change (insn, &SET_SRC (set), new, 0))
7234 7235 7236 7237 7238 7239 7240 7241 7242
		{
		  remove_note (insn,
			       find_reg_note (insn, REG_RETVAL, NULL_RTX));
		  dead_libcall = 1;
		}
	    }
	}
      else if (in_libcall)
	live_insn = ! dead_libcall;
7243
      else if (GET_CODE (PATTERN (insn)) == SET)
Richard Kenner committed
7244
	{
7245 7246 7247 7248
	  if ((GET_CODE (SET_DEST (PATTERN (insn))) == REG
	       || GET_CODE (SET_DEST (PATTERN (insn))) == SUBREG)
	      && rtx_equal_p (SET_DEST (PATTERN (insn)),
			      SET_SRC (PATTERN (insn))))
Richard Kenner committed
7249 7250
	    ;

7251 7252 7253 7254 7255 7256 7257 7258
#ifdef HAVE_cc0
	  else if (GET_CODE (SET_DEST (PATTERN (insn))) == CC0
		   && ! side_effects_p (SET_SRC (PATTERN (insn)))
		   && ((tem = next_nonnote_insn (insn)) == 0
		       || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
		       || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
	    ;
#endif
Richard Kenner committed
7259 7260 7261
	  else if (GET_CODE (SET_DEST (PATTERN (insn))) != REG
		   || REGNO (SET_DEST (PATTERN (insn))) < FIRST_PSEUDO_REGISTER
		   || counts[REGNO (SET_DEST (PATTERN (insn)))] != 0
7262 7263 7264 7265 7266 7267 7268
		   || side_effects_p (SET_SRC (PATTERN (insn)))
		   /* An ADDRESSOF expression can turn into a use of the
		      internal arg pointer, so always consider the
		      internal arg pointer live.  If it is truly dead,
		      flow will delete the initializing insn.  */
		   || (SET_DEST (PATTERN (insn))
		       == current_function_internal_arg_pointer))
Richard Kenner committed
7269 7270 7271 7272 7273 7274 7275 7276 7277
	    live_insn = 1;
	}
      else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	  {
	    rtx elt = XVECEXP (PATTERN (insn), 0, i);

	    if (GET_CODE (elt) == SET)
	      {
7278 7279 7280
		if ((GET_CODE (SET_DEST (elt)) == REG
		     || GET_CODE (SET_DEST (elt)) == SUBREG)
		    && rtx_equal_p (SET_DEST (elt), SET_SRC (elt)))
Richard Kenner committed
7281 7282
		  ;

7283 7284 7285 7286 7287 7288 7289 7290
#ifdef HAVE_cc0
		else if (GET_CODE (SET_DEST (elt)) == CC0
			 && ! side_effects_p (SET_SRC (elt))
			 && ((tem = next_nonnote_insn (insn)) == 0
			     || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
			     || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
		  ;
#endif
Richard Kenner committed
7291 7292 7293
		else if (GET_CODE (SET_DEST (elt)) != REG
			 || REGNO (SET_DEST (elt)) < FIRST_PSEUDO_REGISTER
			 || counts[REGNO (SET_DEST (elt))] != 0
7294 7295 7296 7297 7298 7299 7300
			 || side_effects_p (SET_SRC (elt))
			 /* An ADDRESSOF expression can turn into a use of the
			    internal arg pointer, so always consider the
			    internal arg pointer live.  If it is truly dead,
			    flow will delete the initializing insn.  */
			 || (SET_DEST (elt)
			     == current_function_internal_arg_pointer))
Richard Kenner committed
7301 7302 7303 7304 7305 7306 7307 7308 7309
		  live_insn = 1;
	      }
	    else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
	      live_insn = 1;
	  }
      else
	live_insn = 1;

      /* If this is a dead insn, delete it and show registers in it aren't
7310
	 being used.  */
Richard Kenner committed
7311

7312
      if (! live_insn)
Richard Kenner committed
7313
	{
7314
	  count_reg_usage (insn, counts, NULL_RTX, -1);
7315
	  delete_insn (insn);
Richard Kenner committed
7316
	}
7317

7318
      if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7319 7320 7321 7322
	{
	  in_libcall = 0;
	  dead_libcall = 0;
	}
Richard Kenner committed
7323
    }
7324 7325 7326

  /* Clean up.  */
  free (counts);
Richard Kenner committed
7327
}