cfg.c 32.2 KB
Newer Older
1 2
/* Control flow graph manipulation code for GNU compiler.
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4
   Free Software Foundation, Inc.
5 6 7 8 9

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11 12 13 14 15 16 17 18
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
21

22
/* This file contains low level functions to manipulate the CFG and
23
   analyze it.  All other modules should not transform the data structure
24 25 26
   directly and use abstraction instead.  The file is supposed to be
   ordered bottom-up and should not contain any code dependent on a
   particular intermediate language (RTL or trees).
27 28 29 30

   Available functionality:
     - Initialization/deallocation
	 init_flow, clear_edges
31 32
     - Low level basic block manipulation
	 alloc_block, expunge_block
33
     - Edge manipulation
34
	 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 36
	 - Low level edge redirection (without updating instruction chain)
	     redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37
     - Dumping and debugging
38 39 40
	 dump_flow_info, debug_flow_info, dump_edge_info
     - Allocation of AUX fields for basic blocks
	 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41
     - clear_bb_flags
42 43 44 45
     - Consistency checking
	 verify_flow_info
     - Dumping and debugging
	 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
46 47 48 49
 */

#include "config.h"
#include "system.h"
50 51
#include "coretypes.h"
#include "tm.h"
52 53 54 55 56 57 58 59 60
#include "tree.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "function.h"
#include "except.h"
#include "toplev.h"
61
#include "tm_p.h"
62
#include "obstack.h"
63
#include "timevar.h"
64
#include "tree-pass.h"
65
#include "ggc.h"
66 67
#include "hashtab.h"
#include "alloc-pool.h"
68
#include "df.h"
69
#include "cfgloop.h"
70
#include "tree-flow.h"
71 72 73

/* The obstack on which the flow graph components are allocated.  */

74
struct bitmap_obstack reg_obstack;
75

76 77
void debug_flow_info (void);
static void free_edge (edge);
78

79 80
#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))

81
/* Called once at initialization time.  */
82 83

void
Diego Novillo committed
84
init_flow (struct function *the_fun)
85
{
Diego Novillo committed
86 87 88 89 90 91 92 93 94 95 96 97 98
  if (!the_fun->cfg)
    the_fun->cfg = GGC_CNEW (struct control_flow_graph);
  n_edges_for_function (the_fun) = 0;
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)
    = GGC_CNEW (struct basic_block_def);
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = ENTRY_BLOCK;
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)
    = GGC_CNEW (struct basic_block_def);
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = EXIT_BLOCK;
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->next_bb 
    = EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun);
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->prev_bb 
    = ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun);
99 100
}

101 102 103 104
/* Helper function for remove_edge and clear_edges.  Frees edge structure
   without actually unlinking it from the pred/succ lists.  */

static void
105
free_edge (edge e ATTRIBUTE_UNUSED)
106 107
{
  n_edges--;
108
  ggc_free (e);
109 110
}

111 112 113
/* Free the memory associated with the edge structures.  */

void
114
clear_edges (void)
115
{
116
  basic_block bb;
117
  edge e;
118
  edge_iterator ei;
119

120
  FOR_EACH_BB (bb)
121
    {
122 123 124 125
      FOR_EACH_EDGE (e, ei, bb->succs)
	free_edge (e);
      VEC_truncate (edge, bb->succs, 0);
      VEC_truncate (edge, bb->preds, 0);
126
    }
127

128 129 130 131
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
    free_edge (e);
  VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
  VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
132

133
  gcc_assert (!n_edges);
134 135
}

136
/* Allocate memory for basic_block.  */
137

138
basic_block
139
alloc_block (void)
140 141
{
  basic_block bb;
142
  bb = GGC_CNEW (struct basic_block_def);
143
  return bb;
144 145
}

146 147
/* Link block B to chain after AFTER.  */
void
148
link_block (basic_block b, basic_block after)
149 150 151 152 153 154
{
  b->next_bb = after->next_bb;
  b->prev_bb = after;
  after->next_bb = b;
  b->next_bb->prev_bb = b;
}
155

156 157
/* Unlink block B from chain.  */
void
158
unlink_block (basic_block b)
159 160 161
{
  b->next_bb->prev_bb = b->prev_bb;
  b->prev_bb->next_bb = b->next_bb;
162 163
  b->prev_bb = NULL;
  b->next_bb = NULL;
164
}
165

166 167
/* Sequentially order blocks and compact the arrays.  */
void
168
compact_blocks (void)
169 170
{
  int i;
171

172 173
  SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
  SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
174 175 176 177
  
  if (df)
    df_compact_blocks ();
  else 
178
    {
179 180 181 182 183 184 185 186 187 188
      basic_block bb;
      
      i = NUM_FIXED_BLOCKS;
      FOR_EACH_BB (bb)
	{
	  SET_BASIC_BLOCK (i, bb);
	  bb->index = i;
	  i++;
	}
      gcc_assert (i == n_basic_blocks);
189

190 191 192
      for (; i < last_basic_block; i++)
	SET_BASIC_BLOCK (i, NULL);
    }
193 194 195 196
  last_basic_block = n_basic_blocks;
}

/* Remove block B from the basic block array.  */
197

198
void
199
expunge_block (basic_block b)
200
{
201
  unlink_block (b);
202
  SET_BASIC_BLOCK (b->index, NULL);
203
  n_basic_blocks--;
204 205 206 207 208
  /* We should be able to ggc_free here, but we are not.
     The dead SSA_NAMES are left pointing to dead statements that are pointing
     to dead basic blocks making garbage collector to die.
     We should be able to release all dead SSA_NAMES and at the same time we should
     clear out BB pointer of dead statements consistently.  */
209
}
210

211 212 213 214 215
/* Connect E to E->src.  */

static inline void
connect_src (edge e)
{
216
  VEC_safe_push (edge, gc, e->src->succs, e);
217
  df_mark_solutions_dirty ();
218 219 220 221 222 223 224 225
}

/* Connect E to E->dest.  */

static inline void
connect_dest (edge e)
{
  basic_block dest = e->dest;
226
  VEC_safe_push (edge, gc, dest->preds, e);
227
  e->dest_idx = EDGE_COUNT (dest->preds) - 1;
228
  df_mark_solutions_dirty ();
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
}

/* Disconnect edge E from E->src.  */

static inline void
disconnect_src (edge e)
{
  basic_block src = e->src;
  edge_iterator ei;
  edge tmp;

  for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
    {
      if (tmp == e)
	{
	  VEC_unordered_remove (edge, src->succs, ei.index);
	  return;
	}
      else
	ei_next (&ei);
    }

251
  df_mark_solutions_dirty ();
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
  gcc_unreachable ();
}

/* Disconnect edge E from E->dest.  */

static inline void
disconnect_dest (edge e)
{
  basic_block dest = e->dest;
  unsigned int dest_idx = e->dest_idx;

  VEC_unordered_remove (edge, dest->preds, dest_idx);

  /* If we removed an edge in the middle of the edge vector, we need
     to update dest_idx of the edge that moved into the "hole".  */
  if (dest_idx < EDGE_COUNT (dest->preds))
    EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
269
  df_mark_solutions_dirty ();
270 271
}

272 273 274 275 276
/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
   created edge.  Use this only if you are sure that this edge can't
   possibly already exist.  */

edge
277
unchecked_make_edge (basic_block src, basic_block dst, int flags)
278 279
{
  edge e;
280
  e = GGC_CNEW (struct edge_def);
281 282 283 284 285
  n_edges++;

  e->src = src;
  e->dest = dst;
  e->flags = flags;
286 287 288

  connect_src (e);
  connect_dest (e);
289

290
  execute_on_growing_pred (e);
291 292 293
  return e;
}

294
/* Create an edge connecting SRC and DST with FLAGS optionally using
295
   edge cache CACHE.  Return the new edge, NULL if already exist.  */
296

297
edge
298
cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
299
{
300 301 302 303
  if (edge_cache == NULL
      || src == ENTRY_BLOCK_PTR
      || dst == EXIT_BLOCK_PTR)
    return make_edge (src, dst, flags);
304

305
  /* Does the requested edge already exist?  */
306
  if (! TEST_BIT (edge_cache, dst->index))
307
    {
308 309
      /* The edge does not exist.  Create one and update the
	 cache.  */
310
      SET_BIT (edge_cache, dst->index);
311
      return unchecked_make_edge (src, dst, flags);
312
    }
313

314 315 316 317 318 319 320
  /* At this point, we know that the requested edge exists.  Adjust
     flags if necessary.  */
  if (flags)
    {
      edge e = find_edge (src, dst);
      e->flags |= flags;
    }
321

322
  return NULL;
323 324 325 326 327 328
}

/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
   created edge or NULL if already exist.  */

edge
329
make_edge (basic_block src, basic_block dest, int flags)
330
{
331 332 333 334 335 336 337 338 339 340
  edge e = find_edge (src, dest);

  /* Make sure we don't add duplicate edges.  */
  if (e)
    {
      e->flags |= flags;
      return NULL;
    }

  return unchecked_make_edge (src, dest, flags);
341 342
}

343
/* Create an edge connecting SRC to DEST and set probability by knowing
344 345 346
   that it is the single edge leaving SRC.  */

edge
347
make_single_succ_edge (basic_block src, basic_block dest, int flags)
348 349 350 351 352 353
{
  edge e = make_edge (src, dest, flags);

  e->probability = REG_BR_PROB_BASE;
  e->count = src->count;
  return e;
354 355 356 357 358
}

/* This function will remove an edge from the flow graph.  */

void
359
remove_edge_raw (edge e)
360
{
361
  remove_predictions_associated_with_edge (e);
362 363
  execute_on_shrinking_pred (e);

364 365
  disconnect_src (e);
  disconnect_dest (e);
366

367 368 369
  /* This is probably not needed, but it doesn't hurt.  */
  redirect_edge_var_map_clear (e);

370
  free_edge (e);
371 372 373 374 375
}

/* Redirect an edge's successor from one block to another.  */

void
376
redirect_edge_succ (edge e, basic_block new_succ)
377
{
378 379
  execute_on_shrinking_pred (e);

380
  disconnect_dest (e);
381

382
  e->dest = new_succ;
383 384

  /* Reconnect the edge to the new successor block.  */
385 386
  connect_dest (e);

387
  execute_on_growing_pred (e);
388 389
}

390
/* Like previous but avoid possible duplicate edge.  */
391 392

edge
393
redirect_edge_succ_nodup (edge e, basic_block new_succ)
394 395
{
  edge s;
396

397 398
  s = find_edge (e->src, new_succ);
  if (s && s != e)
399 400 401
    {
      s->flags |= e->flags;
      s->probability += e->probability;
402 403
      if (s->probability > REG_BR_PROB_BASE)
	s->probability = REG_BR_PROB_BASE;
404 405
      s->count += e->count;
      remove_edge (e);
406
      redirect_edge_var_map_dup (s, e);
407 408 409 410
      e = s;
    }
  else
    redirect_edge_succ (e, new_succ);
411

412 413 414 415 416 417
  return e;
}

/* Redirect an edge's predecessor from one block to another.  */

void
418
redirect_edge_pred (edge e, basic_block new_pred)
419
{
420
  disconnect_src (e);
421

422
  e->src = new_pred;
423 424

  /* Reconnect the edge to the new predecessor block.  */
425
  connect_src (e);
426
}
427

428 429
/* Clear all basic block flags, with the exception of partitioning and
   setjmp_target.  */
430
void
431
clear_bb_flags (void)
432
{
433 434 435
  basic_block bb;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
436 437
    bb->flags = (BB_PARTITION (bb)  
		 | (bb->flags & (BB_DISABLE_SCHEDULE + BB_RTL + BB_NON_LOCAL_GOTO_TARGET)));
438
}
439

440 441 442 443 444 445 446 447 448 449 450
/* Check the consistency of profile information.  We can't do that
   in verify_flow_info, as the counts may get invalid for incompletely
   solved graphs, later eliminating of conditionals or roundoff errors.
   It is still practical to have them reported for debugging of simple
   testcases.  */
void
check_bb_profile (basic_block bb, FILE * file)
{
  edge e;
  int sum = 0;
  gcov_type lsum;
451
  edge_iterator ei;
452 453 454 455 456 457

  if (profile_status == PROFILE_ABSENT)
    return;

  if (bb != EXIT_BLOCK_PTR)
    {
458
      FOR_EACH_EDGE (e, ei, bb->succs)
459
	sum += e->probability;
460
      if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
461 462 463
	fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
		 sum * 100.0 / REG_BR_PROB_BASE);
      lsum = 0;
464
      FOR_EACH_EDGE (e, ei, bb->succs)
465
	lsum += e->count;
466 467
      if (EDGE_COUNT (bb->succs)
	  && (lsum - bb->count > 100 || lsum - bb->count < -100))
468 469 470 471 472 473
	fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
		 (int) lsum, (int) bb->count);
    }
  if (bb != ENTRY_BLOCK_PTR)
    {
      sum = 0;
474
      FOR_EACH_EDGE (e, ei, bb->preds)
475 476 477
	sum += EDGE_FREQUENCY (e);
      if (abs (sum - bb->frequency) > 100)
	fprintf (file,
478
		 "Invalid sum of incoming frequencies %i, should be %i\n",
479 480
		 sum, bb->frequency);
      lsum = 0;
481
      FOR_EACH_EDGE (e, ei, bb->preds)
482 483
	lsum += e->count;
      if (lsum - bb->count > 100 || lsum - bb->count < -100)
484
	fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
485 486 487 488
		 (int) lsum, (int) bb->count);
    }
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/* Write information about registers and basic blocks into FILE.
   This is part of making a debugging dump.  */

void
dump_regset (regset r, FILE *outf)
{
  unsigned i;
  reg_set_iterator rsi;

  if (r == NULL)
    {
      fputs (" (nil)", outf);
      return;
    }

  EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
    {
      fprintf (outf, " %d", i);
      if (i < FIRST_PSEUDO_REGISTER)
	fprintf (outf, " [%s]",
		 reg_names[i]);
    }
}

/* Print a human-readable representation of R on the standard error
   stream.  This function is designed to be used from within the
   debugger.  */

void
debug_regset (regset r)
{
  dump_regset (r, stderr);
  putc ('\n', stderr);
}

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
/* Emit basic block information for BB.  HEADER is true if the user wants
   the generic information and the predecessors, FOOTER is true if they want
   the successors.  FLAGS is the dump flags of interest; TDF_DETAILS emit
   global register liveness information.  PREFIX is put in front of every
   line.  The output is emitted to FILE.  */
void
dump_bb_info (basic_block bb, bool header, bool footer, int flags,
	      const char *prefix, FILE *file)
{
  edge e;
  edge_iterator ei;

  if (header)
    {
      fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
      if (bb->prev_bb)
        fprintf (file, ", prev %d", bb->prev_bb->index);
      if (bb->next_bb)
        fprintf (file, ", next %d", bb->next_bb->index);
      fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
      fprintf (file, ", freq %i", bb->frequency);
546 547 548
      /* Both maybe_hot_bb_p & probably_never_executed_bb_p functions
	 crash without cfun. */ 
      if (cfun && maybe_hot_bb_p (bb))
549
	fprintf (file, ", maybe hot");
550
      if (cfun && probably_never_executed_bb_p (bb))
551 552 553 554 555 556
	fprintf (file, ", probably never executed");
      fprintf (file, ".\n");

      fprintf (file, "%sPredecessors: ", prefix);
      FOR_EACH_EDGE (e, ei, bb->preds)
	dump_edge_info (file, e, 0);
557 558 559 560 561 562 563 564

      if ((flags & TDF_DETAILS)
	  && (bb->flags & BB_RTL)
	  && df)
	{
	  fprintf (file, "\n");
	  df_dump_top (bb, file);
	}
565 566 567 568 569 570 571 572
   }

  if (footer)
    {
      fprintf (file, "\n%sSuccessors: ", prefix);
      FOR_EACH_EDGE (e, ei, bb->succs)
	dump_edge_info (file, e, 1);

573 574 575
      if ((flags & TDF_DETAILS)
	  && (bb->flags & BB_RTL)
	  && df)
576
	{
577 578
	  fprintf (file, "\n");
	  df_dump_bottom (bb, file);
579 580 581 582 583 584
	}
   }

  putc ('\n', file);
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
/* Dump the register info to FILE.  */

void 
dump_reg_info (FILE *file)
{
  unsigned int i, max = max_reg_num ();
  if (reload_completed)
    return;

  if (reg_info_p_size < max)
    max = reg_info_p_size;

  fprintf (file, "%d registers.\n", max);
  for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
    {
600
      enum reg_class rclass, altclass;
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
      
      if (regstat_n_sets_and_refs)
	fprintf (file, "\nRegister %d used %d times across %d insns",
		 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
      else if (df)
	fprintf (file, "\nRegister %d used %d times across %d insns",
		 i, DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i), REG_LIVE_LENGTH (i));
      
      if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS)
	fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
      if (regstat_n_sets_and_refs)
	fprintf (file, "; set %d time%s", REG_N_SETS (i),
		 (REG_N_SETS (i) == 1) ? "" : "s");
      else if (df)
	fprintf (file, "; set %d time%s", DF_REG_DEF_COUNT (i),
		 (DF_REG_DEF_COUNT (i) == 1) ? "" : "s");
      if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
	fprintf (file, "; user var");
      if (REG_N_DEATHS (i) != 1)
	fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
      if (REG_N_CALLS_CROSSED (i) == 1)
	fprintf (file, "; crosses 1 call");
      else if (REG_N_CALLS_CROSSED (i))
	fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
625 626
      if (REG_FREQ_CALLS_CROSSED (i))
	fprintf (file, "; crosses call with %d frequency", REG_FREQ_CALLS_CROSSED (i));
627 628 629 630
      if (regno_reg_rtx[i] != NULL
	  && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
	fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
      
631
      rclass = reg_preferred_class (i);
632
      altclass = reg_alternate_class (i);
633
      if (rclass != GENERAL_REGS || altclass != ALL_REGS)
634
	{
635 636
	  if (altclass == ALL_REGS || rclass == ALL_REGS)
	    fprintf (file, "; pref %s", reg_class_names[(int) rclass]);
637
	  else if (altclass == NO_REGS)
638
	    fprintf (file, "; %s or none", reg_class_names[(int) rclass]);
639 640
	  else
	    fprintf (file, "; pref %s, else %s",
641
		     reg_class_names[(int) rclass],
642 643 644 645 646 647 648 649 650 651
		     reg_class_names[(int) altclass]);
	}
      
      if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
	fprintf (file, "; pointer");
      fprintf (file, ".\n");
    }
}


652
void
653
dump_flow_info (FILE *file, int flags)
654
{
655
  basic_block bb;
656

657
  /* There are no pseudo registers after reload.  Don't dump them.  */
658 659
  if (reg_info_p_size && (flags & TDF_DETAILS) != 0)
    dump_reg_info (file);
660

661
  fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
662
  FOR_ALL_BB (bb)
663
    {
664
      dump_bb_info (bb, true, true, flags, "", file);
665
      check_bb_profile (bb, file);
666 667
    }

668
  putc ('\n', file);
669 670
}

671
void
672
debug_flow_info (void)
673
{
674
  dump_flow_info (stderr, TDF_DETAILS);
675
}
676 677

void
678
dump_edge_info (FILE *file, edge e, int do_succ)
679
{
680
  basic_block side = (do_succ ? e->dest : e->src);
Basile Starynkevitch committed
681
  /* both ENTRY_BLOCK_PTR & EXIT_BLOCK_PTR depend upon cfun. */
682
  if (cfun && side == ENTRY_BLOCK_PTR)
683
    fputs (" ENTRY", file);
684
  else if (cfun && side == EXIT_BLOCK_PTR)
685 686
    fputs (" EXIT", file);
  else
687
    fprintf (file, " %d", side->index);
688 689 690

  if (e->probability)
    fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
691

692
  if (e->count)
693
    {
694
      fprintf (file, " count:");
695
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
696 697
    }

698
  if (e->flags)
699
    {
700 701
      static const char * const bitnames[] = {
	"fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
702 703
	"can_fallthru", "irreducible", "sibcall", "loop_exit",
	"true", "false", "exec"
704
      };
705 706
      int comma = 0;
      int i, flags = e->flags;
707

708
      fputs (" (", file);
709 710 711 712 713 714 715 716 717 718 719 720 721
      for (i = 0; flags; i++)
	if (flags & (1 << i))
	  {
	    flags &= ~(1 << i);

	    if (comma)
	      fputc (',', file);
	    if (i < (int) ARRAY_SIZE (bitnames))
	      fputs (bitnames[i], file);
	    else
	      fprintf (file, "%d", i);
	    comma = 1;
	  }
722

723 724 725 726
      fputc (')', file);
    }
}

727
/* Simple routines to easily allocate AUX fields of basic blocks.  */
728

729 730 731 732
static struct obstack block_aux_obstack;
static void *first_block_aux_obj = 0;
static struct obstack edge_aux_obstack;
static void *first_edge_aux_obj = 0;
733

734
/* Allocate a memory block of SIZE as BB->aux.  The obstack must
735
   be first initialized by alloc_aux_for_blocks.  */
736

737
inline void
738
alloc_aux_for_block (basic_block bb, int size)
739
{
740
  /* Verify that aux field is clear.  */
741
  gcc_assert (!bb->aux && first_block_aux_obj);
742 743
  bb->aux = obstack_alloc (&block_aux_obstack, size);
  memset (bb->aux, 0, size);
744 745
}

746 747
/* Initialize the block_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_block for each basic block.  */
748 749

void
750
alloc_aux_for_blocks (int size)
751
{
752
  static int initialized;
753

754
  if (!initialized)
755
    {
756 757
      gcc_obstack_init (&block_aux_obstack);
      initialized = 1;
758
    }
759 760 761
  else
    /* Check whether AUX data are still allocated.  */
    gcc_assert (!first_block_aux_obj);
Mike Stump committed
762

763
  first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
764
  if (size)
765
    {
766
      basic_block bb;
767

768 769
      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
	alloc_aux_for_block (bb, size);
770 771
    }
}
772

773
/* Clear AUX pointers of all blocks.  */
774 775

void
776
clear_aux_for_blocks (void)
777
{
778
  basic_block bb;
779

780 781
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    bb->aux = NULL;
782 783 784 785 786 787
}

/* Free data allocated in block_aux_obstack and clear AUX pointers
   of all blocks.  */

void
788
free_aux_for_blocks (void)
789
{
790
  gcc_assert (first_block_aux_obj);
791
  obstack_free (&block_aux_obstack, first_block_aux_obj);
792
  first_block_aux_obj = NULL;
793 794

  clear_aux_for_blocks ();
795
}
796

797
/* Allocate a memory edge of SIZE as BB->aux.  The obstack must
798
   be first initialized by alloc_aux_for_edges.  */
799

800
inline void
801
alloc_aux_for_edge (edge e, int size)
802 803
{
  /* Verify that aux field is clear.  */
804
  gcc_assert (!e->aux && first_edge_aux_obj);
805 806 807
  e->aux = obstack_alloc (&edge_aux_obstack, size);
  memset (e->aux, 0, size);
}
808

809 810
/* Initialize the edge_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_edge for each basic edge.  */
811

812
void
813
alloc_aux_for_edges (int size)
814 815
{
  static int initialized;
816

817 818 819 820
  if (!initialized)
    {
      gcc_obstack_init (&edge_aux_obstack);
      initialized = 1;
821
    }
822 823 824
  else
    /* Check whether AUX data are still allocated.  */
    gcc_assert (!first_edge_aux_obj);
825

826
  first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
827
  if (size)
828
    {
829 830 831
      basic_block bb;

      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
832
	{
833
	  edge e;
834
	  edge_iterator ei;
835

836
	  FOR_EACH_EDGE (e, ei, bb->succs)
837
	    alloc_aux_for_edge (e, size);
838 839 840 841
	}
    }
}

842
/* Clear AUX pointers of all edges.  */
843 844

void
845
clear_aux_for_edges (void)
846
{
847 848
  basic_block bb;
  edge e;
849

850
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
851
    {
852 853
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->succs)
854
	e->aux = NULL;
855
    }
856 857 858 859 860 861
}

/* Free data allocated in edge_aux_obstack and clear AUX pointers
   of all edges.  */

void
862
free_aux_for_edges (void)
863
{
864
  gcc_assert (first_edge_aux_obj);
865
  obstack_free (&edge_aux_obstack, first_edge_aux_obj);
866
  first_edge_aux_obj = NULL;
867 868

  clear_aux_for_edges ();
869
}
870

871
void
872
debug_bb (basic_block bb)
873
{
874
  dump_bb (bb, stderr, 0);
875 876 877
}

basic_block
878
debug_bb_n (int n)
879 880
{
  basic_block bb = BASIC_BLOCK (n);
881
  dump_bb (bb, stderr, 0);
882
  return bb;
883
}
884 885 886 887 888 889 890

/* Dumps cfg related information about basic block BB to FILE.  */

static void
dump_cfg_bb_info (FILE *file, basic_block bb)
{
  unsigned i;
891
  edge_iterator ei;
892 893 894
  bool first = true;
  static const char * const bb_bitnames[] =
    {
895 896 897
      "new", "reachable", "irreducible_loop", "superblock",
      "nosched", "hot", "cold", "dup", "xlabel", "rtl",
      "fwdr", "nothrd"
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
    };
  const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
  edge e;

  fprintf (file, "Basic block %d", bb->index);
  for (i = 0; i < n_bitnames; i++)
    if (bb->flags & (1 << i))
      {
	if (first)
	  fprintf (file, " (");
	else
	  fprintf (file, ", ");
	first = false;
	fprintf (file, bb_bitnames[i]);
      }
  if (!first)
    fprintf (file, ")");
  fprintf (file, "\n");

  fprintf (file, "Predecessors: ");
918
  FOR_EACH_EDGE (e, ei, bb->preds)
919 920 921
    dump_edge_info (file, e, 0);

  fprintf (file, "\nSuccessors: ");
922
  FOR_EACH_EDGE (e, ei, bb->succs)
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
    dump_edge_info (file, e, 1);
  fprintf (file, "\n\n");
}

/* Dumps a brief description of cfg to FILE.  */

void
brief_dump_cfg (FILE *file)
{
  basic_block bb;

  FOR_EACH_BB (bb)
    {
      dump_cfg_bb_info (file, bb);
    }
}
939 940 941

/* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
   leave the block by TAKEN_EDGE.  Update profile of BB such that edge E can be
Mike Stump committed
942
   redirected to destination of TAKEN_EDGE.
943 944 945

   This function may leave the profile inconsistent in the case TAKEN_EDGE
   frequency or count is believed to be lower than FREQUENCY or COUNT
946
   respectively.  */
947 948 949 950 951 952
void
update_bb_profile_for_threading (basic_block bb, int edge_frequency,
				 gcov_type count, edge taken_edge)
{
  edge c;
  int prob;
953
  edge_iterator ei;
954 955 956

  bb->count -= count;
  if (bb->count < 0)
957 958 959 960 961 962
    {
      if (dump_file)
	fprintf (dump_file, "bb %i count became negative after threading",
		 bb->index);
      bb->count = 0;
    }
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991

  /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
     Watch for overflows.  */
  if (bb->frequency)
    prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
  else
    prob = 0;
  if (prob > taken_edge->probability)
    {
      if (dump_file)
	fprintf (dump_file, "Jump threading proved probability of edge "
		 "%i->%i too small (it is %i, should be %i).\n",
		 taken_edge->src->index, taken_edge->dest->index,
		 taken_edge->probability, prob);
      prob = taken_edge->probability;
    }

  /* Now rescale the probabilities.  */
  taken_edge->probability -= prob;
  prob = REG_BR_PROB_BASE - prob;
  bb->frequency -= edge_frequency;
  if (bb->frequency < 0)
    bb->frequency = 0;
  if (prob <= 0)
    {
      if (dump_file)
	fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
		 "frequency of block should end up being 0, it is %i\n",
		 bb->index, bb->frequency);
992 993 994 995
      EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
      ei = ei_start (bb->succs);
      ei_next (&ei);
      for (; (c = ei_safe_edge (ei)); ei_next (&ei))
996 997
	c->probability = 0;
    }
998 999
  else if (prob != REG_BR_PROB_BASE)
    {
1000
      int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
1001 1002

      FOR_EACH_EDGE (c, ei, bb->succs)
1003
	{
1004 1005
	  /* Protect from overflow due to additional scaling.  */
	  if (c->probability > prob)
1006
	    c->probability = REG_BR_PROB_BASE;
1007 1008 1009 1010 1011 1012
	  else
	    {
	      c->probability = RDIV (c->probability * scale, 65536);
	      if (c->probability > REG_BR_PROB_BASE)
		c->probability = REG_BR_PROB_BASE;
	    }
1013
	}
1014
    }
1015

1016
  gcc_assert (bb == taken_edge->src);
1017 1018
  taken_edge->count -= count;
  if (taken_edge->count < 0)
1019 1020 1021 1022 1023 1024
    {
      if (dump_file)
	fprintf (dump_file, "edge %i->%i count became negative after threading",
		 taken_edge->src->index, taken_edge->dest->index);
      taken_edge->count = 0;
    }
1025
}
1026 1027 1028 1029 1030 1031 1032 1033

/* Multiply all frequencies of basic blocks in array BBS of length NBBS
   by NUM/DEN, in int arithmetic.  May lose some accuracy.  */
void
scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
{
  int i;
  edge e;
1034 1035
  if (num < 0)
    num = 0;
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

  /* Scale NUM and DEN to avoid overflows.  Frequencies are in order of
     10^4, if we make DEN <= 10^3, we can afford to upscale by 100
     and still safely fit in int during calculations.  */
  if (den > 1000)
    {
      if (num > 1000000)
	return;

      num = RDIV (1000 * num, den);
      den = 1000;
    }
  if (num > 100 * den)
1049
    return;
1050

1051 1052 1053
  for (i = 0; i < nbbs; i++)
    {
      edge_iterator ei;
1054
      bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1055 1056 1057
      /* Make sure the frequencies do not grow over BB_FREQ_MAX.  */
      if (bbs[i]->frequency > BB_FREQ_MAX)
	bbs[i]->frequency = BB_FREQ_MAX;
1058 1059
      bbs[i]->count = RDIV (bbs[i]->count * num, den);
      FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1060
	e->count = RDIV (e->count * num, den);
1061 1062 1063
    }
}

1064 1065 1066 1067
/* numbers smaller than this value are safe to multiply without getting
   64bit overflow.  */
#define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))

1068 1069 1070 1071
/* Multiply all frequencies of basic blocks in array BBS of length NBBS
   by NUM/DEN, in gcov_type arithmetic.  More accurate than previous
   function but considerably slower.  */
void
Mike Stump committed
1072 1073
scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
				 gcov_type den)
1074 1075 1076
{
  int i;
  edge e;
1077
  gcov_type fraction = RDIV (num * 65536, den);
1078

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
  gcc_assert (fraction >= 0);

  if (num < MAX_SAFE_MULTIPLIER)
    for (i = 0; i < nbbs; i++)
      {
	edge_iterator ei;
	bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
	if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
	  bbs[i]->count = RDIV (bbs[i]->count * num, den);
	else
	  bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
	FOR_EACH_EDGE (e, ei, bbs[i]->succs)
	  if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
	    e->count = RDIV (e->count * num, den);
	  else
	    e->count = RDIV (e->count * fraction, 65536);
      }
   else
    for (i = 0; i < nbbs; i++)
      {
	edge_iterator ei;
	if (sizeof (gcov_type) > sizeof (int))
	  bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
	else
	  bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
	bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
	FOR_EACH_EDGE (e, ei, bbs[i]->succs)
	  e->count = RDIV (e->count * fraction, 65536);
      }
1108
}
1109

1110 1111
/* Data structures used to maintain mapping between basic blocks and
   copies.  */
1112 1113
static htab_t bb_original;
static htab_t bb_copy;
1114 1115 1116

/* And between loops and copies.  */
static htab_t loop_copy;
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
static alloc_pool original_copy_bb_pool;

struct htab_bb_copy_original_entry
{
  /* Block we are attaching info to.  */
  int index1;
  /* Index of original or copy (depending on the hashtable) */
  int index2;
};

static hashval_t
bb_copy_original_hash (const void *p)
{
1130 1131
  const struct htab_bb_copy_original_entry *data
    = ((const struct htab_bb_copy_original_entry *)p);
1132 1133 1134 1135 1136 1137

  return data->index1;
}
static int
bb_copy_original_eq (const void *p, const void *q)
{
1138 1139 1140 1141
  const struct htab_bb_copy_original_entry *data
    = ((const struct htab_bb_copy_original_entry *)p);
  const struct htab_bb_copy_original_entry *data2
    = ((const struct htab_bb_copy_original_entry *)q);
1142 1143 1144 1145

  return data->index1 == data2->index1;
}

1146 1147
/* Initialize the data structures to maintain mapping between blocks
   and its copies.  */
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
void
initialize_original_copy_tables (void)
{
  gcc_assert (!original_copy_bb_pool);
  original_copy_bb_pool
    = create_alloc_pool ("original_copy",
			 sizeof (struct htab_bb_copy_original_entry), 10);
  bb_original = htab_create (10, bb_copy_original_hash,
			     bb_copy_original_eq, NULL);
  bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1158
  loop_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1159 1160
}

1161 1162
/* Free the data structures to maintain mapping between blocks and
   its copies.  */
1163 1164 1165 1166 1167 1168
void
free_original_copy_tables (void)
{
  gcc_assert (original_copy_bb_pool);
  htab_delete (bb_copy);
  htab_delete (bb_original);
1169
  htab_delete (loop_copy);
1170 1171 1172
  free_alloc_pool (original_copy_bb_pool);
  bb_copy = NULL;
  bb_original = NULL;
1173
  loop_copy = NULL;
1174 1175 1176
  original_copy_bb_pool = NULL;
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/* Removes the value associated with OBJ from table TAB.  */

static void
copy_original_table_clear (htab_t tab, unsigned obj)
{
  void **slot;
  struct htab_bb_copy_original_entry key, *elt;

  if (!original_copy_bb_pool)
    return;

  key.index1 = obj;
  slot = htab_find_slot (tab, &key, NO_INSERT);
  if (!slot)
    return;

1193
  elt = (struct htab_bb_copy_original_entry *) *slot;
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
  htab_clear_slot (tab, slot);
  pool_free (original_copy_bb_pool, elt);
}

/* Sets the value associated with OBJ in table TAB to VAL.
   Do nothing when data structures are not initialized.  */

static void
copy_original_table_set (htab_t tab, unsigned obj, unsigned val)
{
  struct htab_bb_copy_original_entry **slot;
  struct htab_bb_copy_original_entry key;

  if (!original_copy_bb_pool)
    return;

  key.index1 = obj;
  slot = (struct htab_bb_copy_original_entry **)
		htab_find_slot (tab, &key, INSERT);
  if (!*slot)
    {
1215 1216
      *slot = (struct htab_bb_copy_original_entry *)
		pool_alloc (original_copy_bb_pool);
1217 1218 1219 1220 1221
      (*slot)->index1 = obj;
    }
  (*slot)->index2 = val;
}

1222 1223
/* Set original for basic block.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */
1224 1225 1226
void
set_bb_original (basic_block bb, basic_block original)
{
1227
  copy_original_table_set (bb_original, bb->index, original->index);
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
}

/* Get the original basic block.  */
basic_block
get_bb_original (basic_block bb)
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;

  gcc_assert (original_copy_bb_pool);

  key.index1 = bb->index;
  entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
  if (entry)
    return BASIC_BLOCK (entry->index2);
  else
    return NULL;
}

1247 1248
/* Set copy for basic block.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */
1249 1250 1251
void
set_bb_copy (basic_block bb, basic_block copy)
{
1252
  copy_original_table_set (bb_copy, bb->index, copy->index);
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
}

/* Get the copy of basic block.  */
basic_block
get_bb_copy (basic_block bb)
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;

  gcc_assert (original_copy_bb_pool);

  key.index1 = bb->index;
  entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
  if (entry)
    return BASIC_BLOCK (entry->index2);
  else
    return NULL;
}
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

/* Set copy for LOOP to COPY.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */

void
set_loop_copy (struct loop *loop, struct loop *copy)
{
  if (!copy)
    copy_original_table_clear (loop_copy, loop->num);
  else
    copy_original_table_set (loop_copy, loop->num, copy->num);
}

/* Get the copy of LOOP.  */

struct loop *
get_loop_copy (struct loop *loop)
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;

  gcc_assert (original_copy_bb_pool);

  key.index1 = loop->num;
  entry = (struct htab_bb_copy_original_entry *) htab_find (loop_copy, &key);
  if (entry)
    return get_loop (entry->index2);
  else
    return NULL;
}