dfp-bit.c 19.1 KB
Newer Older
1
/* This is a software decimal floating point library.
2
   Copyright (C) 2005-2019 Free Software Foundation, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

/* This implements IEEE 754 decimal floating point arithmetic, but
   does not provide a mechanism for setting the rounding mode, or for
   generating or handling exceptions.  Conversions between decimal
   floating point types and other types depend on C library functions.

   Contributed by Ben Elliston  <bje@au.ibm.com>.  */

#include <stdio.h>
#include <stdlib.h>
/* FIXME: compile with -std=gnu99 to get these from stdlib.h */
extern float strtof (const char *, char **);
extern long double strtold (const char *, char **);
#include <string.h>
#include <limits.h>

#include "dfp-bit.h"

/* Forward declarations.  */
#if WIDTH == 32 || WIDTH_TO == 32
void __host_to_ieee_32 (_Decimal32 in, decimal32 *out);
void __ieee_to_host_32 (decimal32 in, _Decimal32 *out);
#endif
#if WIDTH == 64 || WIDTH_TO == 64
void __host_to_ieee_64 (_Decimal64 in, decimal64 *out);
void __ieee_to_host_64 (decimal64 in, _Decimal64 *out);
#endif
#if WIDTH == 128 || WIDTH_TO == 128
void __host_to_ieee_128 (_Decimal128 in, decimal128 *out);
void __ieee_to_host_128 (decimal128 in, _Decimal128 *out);
#endif

/* A pointer to a binary decFloat operation.  */
typedef decFloat* (*dfp_binary_func)
     (decFloat *, const decFloat *, const decFloat *, decContext *);

/* Binary operations.  */

/* Use a decFloat (decDouble or decQuad) function to perform a DFP
   binary operation.  */
static inline decFloat
dfp_binary_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
{
  decFloat result;
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);

  /* Perform the operation.  */
  op (&result, &arg_a, &arg_b, &context);

  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    {
      /* decNumber exception flags we care about here.  */
      int ieee_flags;
      int dec_flags = DEC_IEEE_854_Division_by_zero | DEC_IEEE_854_Inexact
		      | DEC_IEEE_854_Invalid_operation | DEC_IEEE_854_Overflow
		      | DEC_IEEE_854_Underflow;
      dec_flags &= context.status;
      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
      if (ieee_flags != 0)
        DFP_HANDLE_EXCEPTIONS (ieee_flags);
    }

  return result;
}

#if WIDTH == 32
/* The decNumber package doesn't provide arithmetic for decSingle (32 bits);
   convert to decDouble, use the operation for that, and convert back.  */
static inline _Decimal32
d32_binary_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
{
  union { _Decimal32 c; decSingle f; } a32, b32, res32;
  decDouble a, b, res;
  decContext context;

  /* Widen the operands and perform the operation.  */
  a32.c = arg_a;
  b32.c = arg_b;
  decSingleToWider (&a32.f, &a);
  decSingleToWider (&b32.f, &b);
  res = dfp_binary_op (op, a, b);

  /* Narrow the result, which might result in an underflow or overflow.  */
  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  decSingleFromWider (&res32.f, &res, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    {
      /* decNumber exception flags we care about here.  */
      int ieee_flags;
      int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Overflow
		      | DEC_IEEE_854_Underflow;
      dec_flags &= context.status;
      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
      if (ieee_flags != 0)
        DFP_HANDLE_EXCEPTIONS (ieee_flags);
    }

  return res32.c;
}
#else
/* decFloat operations are supported for decDouble (64 bits) and
   decQuad (128 bits).  The bit patterns for the types are the same.  */
static inline DFP_C_TYPE
dnn_binary_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  union { DFP_C_TYPE c; decFloat f; } a, b, result;

  a.c = arg_a;
  b.c = arg_b;
  result.f = dfp_binary_op (op, a.f, b.f);
  return result.c;
}
#endif

/* Comparison operations.  */

/* Use a decFloat (decDouble or decQuad) function to perform a DFP
   comparison.  */
static inline CMPtype
dfp_compare_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
{
  decContext context;
  decFloat res;
  int result;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);

  /* Perform the comparison.  */
  op (&res, &arg_a, &arg_b, &context);

  if (DEC_FLOAT_IS_SIGNED (&res))
    result = -1;
  else if (DEC_FLOAT_IS_ZERO (&res))
    result = 0;
  else if (DEC_FLOAT_IS_NAN (&res))
    result = -2;
  else
    result = 1;

  return (CMPtype) result;
}

#if WIDTH == 32
/* The decNumber package doesn't provide comparisons for decSingle (32 bits);
   convert to decDouble, use the operation for that, and convert back.  */
static inline CMPtype
d32_compare_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
{
  union { _Decimal32 c; decSingle f; } a32, b32;
  decDouble a, b;

  a32.c = arg_a;
  b32.c = arg_b;
  decSingleToWider (&a32.f, &a);
  decSingleToWider (&b32.f, &b);
  return dfp_compare_op (op, a, b);  
}
#else
/* decFloat comparisons are supported for decDouble (64 bits) and
   decQuad (128 bits).  The bit patterns for the types are the same.  */
static inline CMPtype
dnn_compare_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  union { DFP_C_TYPE c; decFloat f; } a, b;

  a.c = arg_a;
  b.c = arg_b;
  return dfp_compare_op (op, a.f, b.f);  
}
#endif

#if defined(L_conv_sd)
void
__host_to_ieee_32 (_Decimal32 in, decimal32 *out)
{
  memcpy (out, &in, 4);
}

void
__ieee_to_host_32 (decimal32 in, _Decimal32 *out)
{
  memcpy (out, &in, 4);
}
#endif /* L_conv_sd */

#if defined(L_conv_dd)
void
__host_to_ieee_64 (_Decimal64 in, decimal64 *out)
{
  memcpy (out, &in, 8);
}

void
__ieee_to_host_64 (decimal64 in, _Decimal64 *out)
{
  memcpy (out, &in, 8);
}
#endif /* L_conv_dd */

#if defined(L_conv_td)
void
__host_to_ieee_128 (_Decimal128 in, decimal128 *out)
{
  memcpy (out, &in, 16);
}

void
__ieee_to_host_128 (decimal128 in, _Decimal128 *out)
{
  memcpy (out, &in, 16);
}
#endif /* L_conv_td */

#if defined(L_addsub_sd) || defined(L_addsub_dd) || defined(L_addsub_td)
DFP_C_TYPE
DFP_ADD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  return DFP_BINARY_OP (DEC_FLOAT_ADD, arg_a, arg_b);
}

DFP_C_TYPE
DFP_SUB (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  return DFP_BINARY_OP (DEC_FLOAT_SUBTRACT, arg_a, arg_b);
}
#endif /* L_addsub */

#if defined(L_mul_sd) || defined(L_mul_dd) || defined(L_mul_td)
DFP_C_TYPE
DFP_MULTIPLY (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  return DFP_BINARY_OP (DEC_FLOAT_MULTIPLY, arg_a, arg_b);
}
#endif /* L_mul */

#if defined(L_div_sd) || defined(L_div_dd) || defined(L_div_td)
DFP_C_TYPE
DFP_DIVIDE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  return DFP_BINARY_OP (DEC_FLOAT_DIVIDE, arg_a, arg_b);
}
#endif /* L_div */

#if defined (L_eq_sd) || defined (L_eq_dd) || defined (L_eq_td)
CMPtype
DFP_EQ (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  CMPtype stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For EQ return zero for true, nonzero for false.  */
  return stat != 0;
}
#endif /* L_eq */

#if defined (L_ne_sd) || defined (L_ne_dd) || defined (L_ne_td)
CMPtype
DFP_NE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For NE return zero for true, nonzero for false.  */
  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
    return 1;
  return stat != 0;
}
#endif /* L_ne */

#if defined (L_lt_sd) || defined (L_lt_dd) || defined (L_lt_td)
CMPtype
DFP_LT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For LT return -1 (<0) for true, 1 for false.  */
  return (stat == -1) ? -1 : 1;
}
#endif /* L_lt */

#if defined (L_gt_sd) || defined (L_gt_dd) || defined (L_gt_td)
CMPtype
DFP_GT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For GT return 1 (>0) for true, -1 for false.  */
  return (stat == 1) ? 1 : -1;
}
#endif

#if defined (L_le_sd) || defined (L_le_dd) || defined (L_le_td)
CMPtype
DFP_LE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For LE return 0 (<= 0) for true, 1 for false.  */
  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
    return 1;
  return stat == 1;
}
#endif /* L_le */

#if defined (L_ge_sd) || defined (L_ge_dd) || defined (L_ge_td)
CMPtype
DFP_GE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For GE return 1 (>=0) for true, -1 for false.  */
  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
    return -1;
  return (stat != -1) ? 1 : -1;
}
#endif /* L_ge */

#define BUFMAX 128

/* Check for floating point exceptions that are relevant for conversions
   between decimal float values and handle them.  */
static inline void
dfp_conversion_exceptions (const int status)
{
  /* decNumber exception flags we care about here.  */
  int ieee_flags;
  int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
		  | DEC_IEEE_854_Overflow;
  dec_flags &= status;
  ieee_flags = DFP_IEEE_FLAGS (dec_flags);
  if (ieee_flags != 0)
    DFP_HANDLE_EXCEPTIONS (ieee_flags);
}

#if defined (L_sd_to_dd)
/* Use decNumber to convert directly from _Decimal32 to _Decimal64.  */
_Decimal64
DFP_TO_DFP (_Decimal32 f_from)
{
  union { _Decimal32 c; decSingle f; } from;
  union { _Decimal64 c; decDouble f; } to;

  from.c = f_from;
  to.f = *decSingleToWider (&from.f, &to.f);
  return to.c;
}
#endif

#if defined (L_sd_to_td)
/* Use decNumber to convert directly from _Decimal32 to _Decimal128.  */
_Decimal128
DFP_TO_DFP (_Decimal32 f_from)
{
  union { _Decimal32 c; decSingle f; } from;
  union { _Decimal128 c; decQuad f; } to;
  decDouble temp;

  from.c = f_from;
  temp = *decSingleToWider (&from.f, &temp);
  to.f = *decDoubleToWider (&temp, &to.f);
  return to.c;
}
#endif

#if defined (L_dd_to_td)
/* Use decNumber to convert directly from _Decimal64 to _Decimal128.  */
_Decimal128
DFP_TO_DFP (_Decimal64 f_from)
{
  union { _Decimal64 c; decDouble f; } from;
  union { _Decimal128 c; decQuad f; } to;

  from.c = f_from;
  to.f = *decDoubleToWider (&from.f, &to.f);
  return to.c;
}
#endif

#if defined (L_dd_to_sd)
/* Use decNumber to convert directly from _Decimal64 to _Decimal32.  */
_Decimal32
DFP_TO_DFP (_Decimal64 f_from)
{
  union { _Decimal32 c; decSingle f; } to;
  union { _Decimal64 c; decDouble f; } from;
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  from.c = f_from;
  to.f = *decSingleFromWider (&to.f, &from.f, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
  return to.c;
}
#endif

#if defined (L_td_to_sd)
/* Use decNumber to convert directly from _Decimal128 to _Decimal32.  */
_Decimal32
DFP_TO_DFP (_Decimal128 f_from)
{
  union { _Decimal32 c; decSingle f; } to;
  union { _Decimal128 c; decQuad f; } from;
  decDouble temp;
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  from.c = f_from;
  temp = *decDoubleFromWider (&temp, &from.f, &context);
  to.f = *decSingleFromWider (&to.f, &temp, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
  return to.c;
}
#endif

#if defined (L_td_to_dd)
/* Use decNumber to convert directly from _Decimal128 to _Decimal64.  */
_Decimal64
DFP_TO_DFP (_Decimal128 f_from)
{
  union { _Decimal64 c; decDouble f; } to;
  union { _Decimal128 c; decQuad f; } from;
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  from.c = f_from;
  to.f = *decDoubleFromWider (&to.f, &from.f, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
  return to.c;
}
#endif

#if defined (L_dd_to_si) || defined (L_td_to_si) \
  || defined (L_dd_to_usi) || defined (L_td_to_usi)
/* Use decNumber to convert directly from decimal float to integer types.  */
INT_TYPE
DFP_TO_INT (DFP_C_TYPE x)
{
  union { DFP_C_TYPE c; decFloat f; } u;
  decContext context;
  INT_TYPE i;

  decContextDefault (&context, DEC_INIT_DECIMAL128);
  context.round = DEC_ROUND_DOWN;
  u.c = x;
  i = DEC_FLOAT_TO_INT (&u.f, &context, context.round);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
  return i;
}
#endif

#if defined (L_sd_to_si) || (L_sd_to_usi)
/* Use decNumber to convert directly from decimal float to integer types.  */
INT_TYPE
DFP_TO_INT (_Decimal32 x)
{
  union { _Decimal32 c; decSingle f; } u32;
  decDouble f64;
  decContext context;
  INT_TYPE i;

  decContextDefault (&context, DEC_INIT_DECIMAL128);
  context.round = DEC_ROUND_DOWN;
  u32.c = x;
  f64 = *decSingleToWider (&u32.f, &f64);
  i = DEC_FLOAT_TO_INT (&f64, &context, context.round);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
  return i;
}
#endif

#if defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \
  || defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
/* decNumber doesn't provide support for conversions to 64-bit integer
   types, so do it the hard way.  */
INT_TYPE
DFP_TO_INT (DFP_C_TYPE x)
{
  /* decNumber's decimal* types have the same format as C's _Decimal*
     types, but they have different calling conventions.  */

  /* TODO: Decimal float to integer conversions should raise FE_INVALID
     if the result value does not fit into the result type.  */

  IEEE_TYPE s;
  char buf[BUFMAX];
  char *pos;
  decNumber qval, n1, n2;
  decContext context;

  /* Use a large context to avoid losing precision.  */
  decContextDefault (&context, DEC_INIT_DECIMAL128);
  /* Need non-default rounding mode here.  */
  context.round = DEC_ROUND_DOWN;

  HOST_TO_IEEE (x, &s);
  TO_INTERNAL (&s, &n1);
  /* Rescale if the exponent is less than zero.  */
  decNumberToIntegralValue (&n2, &n1, &context);
  /* Get a value to use for the quantize call.  */
  decNumberFromString (&qval, "1.", &context);
  /* Force the exponent to zero.  */
  decNumberQuantize (&n1, &n2, &qval, &context);
  /* Get a string, which at this point will not include an exponent.  */
  decNumberToString (&n1, buf);
  /* Ignore the fractional part.  */
  pos = strchr (buf, '.');
  if (pos)
    *pos = 0;
  /* Use a C library function to convert to the integral type.  */
  return STR_TO_INT (buf, NULL, 10);
}
#endif

#if defined (L_si_to_dd) || defined (L_si_to_td) \
  || defined (L_usi_to_dd) || defined (L_usi_to_td)
/* Use decNumber to convert directly from integer to decimal float types.  */
DFP_C_TYPE
INT_TO_DFP (INT_TYPE i)
{
  union { DFP_C_TYPE c; decFloat f; } u;

  u.f = *DEC_FLOAT_FROM_INT (&u.f, i);
  return u.c;
}
#endif

#if defined (L_si_to_sd) || defined (L_usi_to_sd)
_Decimal32
/* Use decNumber to convert directly from integer to decimal float types.  */
INT_TO_DFP (INT_TYPE i)
{
  union { _Decimal32 c; decSingle f; } u32;
  decDouble f64;
  decContext context;

  decContextDefault (&context, DEC_INIT_DECIMAL128);
  f64 = *DEC_FLOAT_FROM_INT (&f64, i);
  u32.f = *decSingleFromWider (&u32.f, &f64, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
  return u32.c;
}
#endif

#if defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td) \
  || defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td)
/* decNumber doesn't provide support for conversions from 64-bit integer
   types, so do it the hard way.  */
DFP_C_TYPE
INT_TO_DFP (INT_TYPE i)
{
  DFP_C_TYPE f;
  IEEE_TYPE s;
  char buf[BUFMAX];
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);

  /* Use a C library function to get a floating point string.  */
  sprintf (buf, INT_FMT ".", CAST_FOR_FMT(i));
  /* Convert from the floating point string to a decimal* type.  */
  FROM_STRING (&s, buf, &context);
  IEEE_TO_HOST (s, &f);

  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);

  return f;
}
#endif

#if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \
 || defined (L_sd_to_df) || defined (L_dd_to_df) || defined (L_td_to_df) \
 || ((defined (L_sd_to_xf) || defined (L_dd_to_xf) || defined (L_td_to_xf)) \
     && LONG_DOUBLE_HAS_XF_MODE) \
 || ((defined (L_sd_to_tf) || defined (L_dd_to_tf) || defined (L_td_to_tf)) \
     && LONG_DOUBLE_HAS_TF_MODE)
BFP_TYPE
DFP_TO_BFP (DFP_C_TYPE f)
{
  IEEE_TYPE s;
  char buf[BUFMAX];

  HOST_TO_IEEE (f, &s);
  /* Write the value to a string.  */
  TO_STRING (&s, buf);
  /* Read it as the binary floating point type and return that.  */
  return STR_TO_BFP (buf, NULL);
}
#endif
                                                                                
#if defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td) \
 || defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td) \
 || ((defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)) \
     && LONG_DOUBLE_HAS_XF_MODE) \
 || ((defined (L_tf_to_sd) || defined (L_tf_to_dd) || defined (L_tf_to_td)) \
     && LONG_DOUBLE_HAS_TF_MODE)
DFP_C_TYPE
BFP_TO_DFP (BFP_TYPE x)
{
  DFP_C_TYPE f;
  IEEE_TYPE s;
  char buf[BUFMAX];
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);

  /* Use a C library function to write the floating point value to a string.  */
  sprintf (buf, BFP_FMT, (BFP_VIA_TYPE) x);

  /* Convert from the floating point string to a decimal* type.  */
  FROM_STRING (&s, buf, &context);
  IEEE_TO_HOST (s, &f);

  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    {
      /* decNumber exception flags we care about here.  */
      int ieee_flags;
      int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
		      | DEC_IEEE_854_Overflow | DEC_IEEE_854_Underflow;
      dec_flags &= context.status;
      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
      if (ieee_flags != 0)
        DFP_HANDLE_EXCEPTIONS (ieee_flags);
    }

  return f;
}
#endif

#if defined (L_unord_sd) || defined (L_unord_dd) || defined (L_unord_td)
CMPtype
DFP_UNORD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  decNumber arg1, arg2;
  IEEE_TYPE a, b;

  HOST_TO_IEEE (arg_a, &a);
  HOST_TO_IEEE (arg_b, &b);
  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&b, &arg2);
  return (decNumberIsNaN (&arg1) || decNumberIsNaN (&arg2));
}
#endif /* L_unord_sd || L_unord_dd || L_unord_td */