tree-tailcall.c 31.3 KB
Newer Older
1
/* Tail call optimization on trees.
2
   Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 4 5 6 7

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
8
the Free Software Foundation; either version 3, or (at your option)
9 10 11 12 13 14 15 16
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
17 18
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
19 20 21 22 23 24

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
25
#include "stor-layout.h"
26 27 28
#include "tm_p.h"
#include "basic-block.h"
#include "function.h"
29 30 31 32
#include "tree-ssa-alias.h"
#include "internal-fn.h"
#include "gimple-expr.h"
#include "is-a.h"
33
#include "gimple.h"
34
#include "gimple-iterator.h"
35
#include "gimplify-me.h"
36 37 38
#include "gimple-ssa.h"
#include "tree-cfg.h"
#include "tree-phinodes.h"
39
#include "stringpool.h"
40 41
#include "tree-ssanames.h"
#include "tree-into-ssa.h"
42
#include "expr.h"
43
#include "tree-dfa.h"
44
#include "gimple-pretty-print.h"
45 46 47 48
#include "except.h"
#include "tree-pass.h"
#include "flags.h"
#include "langhooks.h"
49
#include "dbgcnt.h"
50
#include "target.h"
51
#include "cfgloop.h"
52
#include "common/common-target.h"
53
#include "ipa-utils.h"
54 55

/* The file implements the tail recursion elimination.  It is also used to
56
   analyze the tail calls in general, passing the results to the rtl level
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
   where they are used for sibcall optimization.

   In addition to the standard tail recursion elimination, we handle the most
   trivial cases of making the call tail recursive by creating accumulators.
   For example the following function

   int sum (int n)
   {
     if (n > 0)
       return n + sum (n - 1);
     else
       return 0;
   }

   is transformed into

   int sum (int n)
   {
     int acc = 0;

     while (n > 0)
       acc += n--;

     return acc;
   }

H.J. Lu committed
83
   To do this, we maintain two accumulators (a_acc and m_acc) that indicate
84 85 86 87 88 89 90
   when we reach the return x statement, we should return a_acc + x * m_acc
   instead.  They are initially initialized to 0 and 1, respectively,
   so the semantics of the function is obviously preserved.  If we are
   guaranteed that the value of the accumulator never change, we
   omit the accumulator.

   There are three cases how the function may exit.  The first one is
91
   handled in adjust_return_value, the other two in adjust_accumulator_values
92 93 94 95 96
   (the second case is actually a special case of the third one and we
   present it separately just for clarity):

   1) Just return x, where x is not in any of the remaining special shapes.
      We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
H.J. Lu committed
97

98
   2) return f (...), where f is the current function, is rewritten in a
99
      classical tail-recursion elimination way, into assignment of arguments
100 101
      and jump to the start of the function.  Values of the accumulators
      are unchanged.
H.J. Lu committed
102

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
   3) return a + m * f(...), where a and m do not depend on call to f.
      To preserve the semantics described before we want this to be rewritten
      in such a way that we finally return

      a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).

      I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
      eliminate the tail call to f.  Special cases when the value is just
      added or just multiplied are obtained by setting a = 0 or m = 1.

   TODO -- it is possible to do similar tricks for other operations.  */

/* A structure that describes the tailcall.  */

struct tailcall
{
  /* The iterator pointing to the call statement.  */
120
  gimple_stmt_iterator call_gsi;
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

  /* True if it is a call to the current function.  */
  bool tail_recursion;

  /* The return value of the caller is mult * f + add, where f is the return
     value of the call.  */
  tree mult, add;

  /* Next tailcall in the chain.  */
  struct tailcall *next;
};

/* The variables holding the value of multiplicative and additive
   accumulator.  */
static tree m_acc, a_acc;

static bool suitable_for_tail_opt_p (void);
static bool optimize_tail_call (struct tailcall *, bool);
static void eliminate_tail_call (struct tailcall *);
static void find_tail_calls (basic_block, struct tailcall **);

/* Returns false when the function is not suitable for tail call optimization
   from some reason (e.g. if it takes variable number of arguments).  */

static bool
suitable_for_tail_opt_p (void)
{
148
  if (cfun->stdarg)
149 150 151 152 153 154 155 156 157 158 159 160
    return false;

  return true;
}
/* Returns false when the function is not suitable for tail call optimization
   from some reason (e.g. if it takes variable number of arguments).
   This test must pass in addition to suitable_for_tail_opt_p in order to make
   tail call discovery happen.  */

static bool
suitable_for_tail_call_opt_p (void)
{
161 162
  tree param;

163 164
  /* alloca (until we have stack slot life analysis) inhibits
     sibling call optimizations, but not tail recursion.  */
165
  if (cfun->calls_alloca)
166 167 168 169 170
    return false;

  /* If we are using sjlj exceptions, we may need to add a call to
     _Unwind_SjLj_Unregister at exit of the function.  Which means
     that we cannot do any sibcall transformations.  */
171
  if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ
172
      && current_function_has_exception_handlers ())
173 174 175 176 177
    return false;

  /* Any function that calls setjmp might have longjmp called from
     any called function.  ??? We really should represent this
     properly in the CFG so that this needn't be special cased.  */
178
  if (cfun->calls_setjmp)
179 180
    return false;

181 182 183 184
  /* ??? It is OK if the argument of a function is taken in some cases,
     but not in all cases.  See PR15387 and PR19616.  Revisit for 4.1.  */
  for (param = DECL_ARGUMENTS (current_function_decl);
       param;
185
       param = DECL_CHAIN (param))
186 187 188
    if (TREE_ADDRESSABLE (param))
      return false;

189 190 191 192
  return true;
}

/* Checks whether the expression EXPR in stmt AT is independent of the
193 194
   statement pointed to by GSI (in a sense that we already know EXPR's value
   at GSI).  We use the fact that we are only called from the chain of
195
   basic blocks that have only single successor.  Returns the expression
196
   containing the value of EXPR at GSI.  */
197 198

static tree
199
independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
200 201 202
{
  basic_block bb, call_bb, at_bb;
  edge e;
203
  edge_iterator ei;
204 205 206 207 208 209 210 211

  if (is_gimple_min_invariant (expr))
    return expr;

  if (TREE_CODE (expr) != SSA_NAME)
    return NULL_TREE;

  /* Mark the blocks in the chain leading to the end.  */
212 213
  at_bb = gimple_bb (at);
  call_bb = gimple_bb (gsi_stmt (gsi));
214
  for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
215 216 217 218
    bb->aux = &bb->aux;
  bb->aux = &bb->aux;

  while (1)
H.J. Lu committed
219
    {
220
      at = SSA_NAME_DEF_STMT (expr);
221
      bb = gimple_bb (at);
222

223
      /* The default definition or defined before the chain.  */
224 225 226 227 228
      if (!bb || !bb->aux)
	break;

      if (bb == call_bb)
	{
229 230
	  for (; !gsi_end_p (gsi); gsi_next (&gsi))
	    if (gsi_stmt (gsi) == at)
231 232
	      break;

233
	  if (!gsi_end_p (gsi))
234 235 236 237
	    expr = NULL_TREE;
	  break;
	}

238
      if (gimple_code (at) != GIMPLE_PHI)
239 240 241 242 243
	{
	  expr = NULL_TREE;
	  break;
	}

244
      FOR_EACH_EDGE (e, ei, bb->preds)
245 246
	if (e->src->aux)
	  break;
247
      gcc_assert (e);
248

249
      expr = PHI_ARG_DEF_FROM_EDGE (at, e);
250 251 252 253 254
      if (TREE_CODE (expr) != SSA_NAME)
	{
	  /* The value is a constant.  */
	  break;
	}
255 256 257
    }

  /* Unmark the blocks.  */
258
  for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
259 260 261 262 263 264
    bb->aux = NULL;
  bb->aux = NULL;

  return expr;
}

265 266 267
/* Simulates the effect of an assignment STMT on the return value of the tail
   recursive CALL passed in ASS_VAR.  M and A are the multiplicative and the
   additive factor for the real return value.  */
268 269

static bool
270
process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
271 272
		    tree *a, tree *ass_var)
{
273
  tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE;
274 275 276 277
  tree dest = gimple_assign_lhs (stmt);
  enum tree_code code = gimple_assign_rhs_code (stmt);
  enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
  tree src_var = gimple_assign_rhs1 (stmt);
H.J. Lu committed
278

279 280 281 282
  /* See if this is a simple copy operation of an SSA name to the function
     result.  In that case we may have a simple tail call.  Ignore type
     conversions that can never produce extra code between the function
     call and the function return.  */
283 284
  if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
      && (TREE_CODE (src_var) == SSA_NAME))
285
    {
286 287
      /* Reject a tailcall if the type conversion might need
	 additional code.  */
288
      if (gimple_assign_cast_p (stmt)
289 290 291
	  && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
	return false;

292
      if (src_var != *ass_var)
293 294 295 296 297 298
	return false;

      *ass_var = dest;
      return true;
    }

299 300 301 302 303 304 305 306 307 308 309 310 311 312
  switch (rhs_class)
    {
    case GIMPLE_BINARY_RHS:
      op1 = gimple_assign_rhs2 (stmt);

      /* Fall through.  */

    case GIMPLE_UNARY_RHS:
      op0 = gimple_assign_rhs1 (stmt);
      break;

    default:
      return false;
    }
313

314 315 316
  /* Accumulator optimizations will reverse the order of operations.
     We can only do that for floating-point types if we're assuming
     that addition and multiplication are associative.  */
317
  if (!flag_associative_math)
318 319 320
    if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
      return false;

321 322 323
  if (rhs_class == GIMPLE_UNARY_RHS)
    ;
  else if (op0 == *ass_var
324
	   && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
325 326 327 328 329 330 331
    ;
  else if (op1 == *ass_var
	   && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
    ;
  else
    return false;

332
  switch (code)
333 334 335 336 337 338
    {
    case PLUS_EXPR:
      *a = non_ass_var;
      *ass_var = dest;
      return true;

339 340 341 342 343 344 345
    case POINTER_PLUS_EXPR:
      if (op0 != *ass_var)
	return false;
      *a = non_ass_var;
      *ass_var = dest;
      return true;

346 347 348 349 350
    case MULT_EXPR:
      *m = non_ass_var;
      *ass_var = dest;
      return true;

351
    case NEGATE_EXPR:
352
      *m = build_minus_one_cst (TREE_TYPE (op0));
353 354 355 356 357 358 359 360
      *ass_var = dest;
      return true;

    case MINUS_EXPR:
      if (*ass_var == op0)
        *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
      else
        {
361
	  *m = build_minus_one_cst (TREE_TYPE (non_ass_var));
362 363 364 365 366 367 368
          *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
        }

      *ass_var = dest;
      return true;

      /* TODO -- Handle POINTER_PLUS_EXPR.  */
369 370 371 372 373 374 375 376 377 378 379 380

    default:
      return false;
    }
}

/* Propagate VAR through phis on edge E.  */

static tree
propagate_through_phis (tree var, edge e)
{
  basic_block dest = e->dest;
381
  gimple_stmt_iterator gsi;
H.J. Lu committed
382

383 384 385 386 387 388
  for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple phi = gsi_stmt (gsi);
      if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
        return PHI_RESULT (phi);
    }
389 390 391 392 393 394 395 396 397
  return var;
}

/* Finds tailcalls falling into basic block BB. The list of found tailcalls is
   added to the start of RET.  */

static void
find_tail_calls (basic_block bb, struct tailcall **ret)
{
398 399 400
  tree ass_var = NULL_TREE, ret_var, func, param;
  gimple stmt, call = NULL;
  gimple_stmt_iterator gsi, agsi;
401 402 403 404 405
  bool tail_recursion;
  struct tailcall *nw;
  edge e;
  tree m, a;
  basic_block abb;
406
  size_t idx;
407
  tree var;
408

409
  if (!single_succ_p (bb))
410 411
    return;

412
  for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
413
    {
414
      stmt = gsi_stmt (gsi);
415

416
      /* Ignore labels, returns, clobbers and debug stmts.  */
417 418
      if (gimple_code (stmt) == GIMPLE_LABEL
	  || gimple_code (stmt) == GIMPLE_RETURN
419
	  || gimple_clobber_p (stmt)
420
	  || is_gimple_debug (stmt))
421 422 423
	continue;

      /* Check for a call.  */
424
      if (is_gimple_call (stmt))
425 426
	{
	  call = stmt;
427 428
	  ass_var = gimple_call_lhs (stmt);
	  break;
429 430
	}

431 432 433
      /* If the statement references memory or volatile operands, fail.  */
      if (gimple_references_memory_p (stmt)
	  || gimple_has_volatile_ops (stmt))
434 435 436
	return;
    }

437
  if (gsi_end_p (gsi))
438
    {
439
      edge_iterator ei;
440
      /* Recurse to the predecessors.  */
441
      FOR_EACH_EDGE (e, ei, bb->preds)
442 443 444 445 446
	find_tail_calls (e->src, ret);

      return;
    }

H.J. Lu committed
447
  /* If the LHS of our call is not just a simple register, we can't
448 449 450 451 452 453 454 455 456 457 458 459 460
     transform this into a tail or sibling call.  This situation happens,
     in (e.g.) "*p = foo()" where foo returns a struct.  In this case
     we won't have a temporary here, but we need to carry out the side
     effect anyway, so tailcall is impossible.

     ??? In some situations (when the struct is returned in memory via
     invisible argument) we could deal with this, e.g. by passing 'p'
     itself as that argument to foo, but it's too early to do this here,
     and expand_call() will not handle it anyway.  If it ever can, then
     we need to revisit this here, to allow that situation.  */
  if (ass_var && !is_gimple_reg (ass_var))
    return;

461 462
  /* We found the call, check whether it is suitable.  */
  tail_recursion = false;
463
  func = gimple_call_fndecl (call);
464 465 466
  if (func
      && !DECL_BUILT_IN (func)
      && recursive_call_p (current_function_decl, func))
467
    {
468
      tree arg;
469

470 471
      for (param = DECL_ARGUMENTS (func), idx = 0;
	   param && idx < gimple_call_num_args (call);
472
	   param = DECL_CHAIN (param), idx ++)
473
	{
474
	  arg = gimple_call_arg (call, idx);
475 476 477
	  if (param != arg)
	    {
	      /* Make sure there are no problems with copying.  The parameter
478 479 480
	         have a copyable type and the two arguments must have reasonably
	         equivalent types.  The latter requirement could be relaxed if
	         we emitted a suitable type conversion statement.  */
481
	      if (!is_gimple_reg_type (TREE_TYPE (param))
482
		  || !useless_type_conversion_p (TREE_TYPE (param),
483
					         TREE_TYPE (arg)))
484 485 486 487 488 489 490
		break;

	      /* The parameter should be a real operand, so that phi node
		 created for it at the start of the function has the meaning
		 of copying the value.  This test implies is_gimple_reg_type
		 from the previous condition, however this one could be
		 relaxed by being more careful with copying the new value
491
		 of the parameter (emitting appropriate GIMPLE_ASSIGN and
492 493 494 495
		 updating the virtual operands).  */
	      if (!is_gimple_reg (param))
		break;
	    }
496
	}
497
      if (idx == gimple_call_num_args (call) && !param)
498
	tail_recursion = true;
499
    }
500

501 502
  /* Make sure the tail invocation of this function does not refer
     to local variables.  */
503
  FOR_EACH_LOCAL_DECL (cfun, idx, var)
504
    {
505 506
      if (TREE_CODE (var) != PARM_DECL
	  && auto_var_in_fn_p (var, cfun->decl)
507 508
	  && (ref_maybe_used_by_stmt_p (call, var)
	      || call_may_clobber_ref_p (call, var)))
509
	return;
510 511 512 513 514 515 516 517 518 519
    }

  /* Now check the statements after the call.  None of them has virtual
     operands, so they may only depend on the call through its return
     value.  The return value should also be dependent on each of them,
     since we are running after dce.  */
  m = NULL_TREE;
  a = NULL_TREE;

  abb = bb;
520
  agsi = gsi;
521 522
  while (1)
    {
523 524
      tree tmp_a = NULL_TREE;
      tree tmp_m = NULL_TREE;
525
      gsi_next (&agsi);
526

527
      while (gsi_end_p (agsi))
528
	{
529 530
	  ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
	  abb = single_succ (abb);
531
	  agsi = gsi_start_bb (abb);
532 533
	}

534
      stmt = gsi_stmt (agsi);
535

536
      if (gimple_code (stmt) == GIMPLE_LABEL)
537 538
	continue;

539
      if (gimple_code (stmt) == GIMPLE_RETURN)
540 541
	break;

542 543 544
      if (gimple_clobber_p (stmt))
	continue;

545 546 547
      if (is_gimple_debug (stmt))
	continue;

548
      if (gimple_code (stmt) != GIMPLE_ASSIGN)
549 550
	return;

551
      /* This is a gimple assign. */
552
      if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var))
553
	return;
554 555 556

      if (tmp_a)
	{
557
	  tree type = TREE_TYPE (tmp_a);
558
	  if (a)
559
	    a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a);
560 561 562 563 564
	  else
	    a = tmp_a;
	}
      if (tmp_m)
	{
565
	  tree type = TREE_TYPE (tmp_m);
566
	  if (m)
567
	    m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m);
568 569 570 571
	  else
	    m = tmp_m;

	  if (a)
572
	    a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m);
573
	}
574 575
    }

576
  /* See if this is a tail call we can handle.  */
577
  ret_var = gimple_return_retval (stmt);
578 579 580 581 582 583 584

  /* We may proceed if there either is no return value, or the return value
     is identical to the call's return.  */
  if (ret_var
      && (ret_var != ass_var))
    return;

585 586 587 588 589
  /* If this is not a tail recursive call, we cannot handle addends or
     multiplicands.  */
  if (!tail_recursion && (m || a))
    return;

590 591 592 593
  /* For pointers only allow additions.  */
  if (m && POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
    return;

594
  nw = XNEW (struct tailcall);
595

596
  nw->call_gsi = gsi;
597 598 599 600 601 602 603 604 605 606

  nw->tail_recursion = tail_recursion;

  nw->mult = m;
  nw->add = a;

  nw->next = *ret;
  *ret = nw;
}

607
/* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E.  */
608 609

static void
610 611 612 613 614 615 616 617 618
add_successor_phi_arg (edge e, tree var, tree phi_arg)
{
  gimple_stmt_iterator gsi;

  for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
    if (PHI_RESULT (gsi_stmt (gsi)) == var)
      break;

  gcc_assert (!gsi_end_p (gsi));
619
  add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION);
620 621 622
}

/* Creates a GIMPLE statement which computes the operation specified by
623 624
   CODE, ACC and OP1 to a new variable with name LABEL and inserts the
   statement in the position specified by GSI.  Returns the
625 626 627
   tree node of the statement's result.  */

static tree
H.J. Lu committed
628
adjust_return_value_with_ops (enum tree_code code, const char *label,
629
			      tree acc, tree op1, gimple_stmt_iterator gsi)
630
{
631

632
  tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
633
  tree result = make_temp_ssa_name (ret_type, NULL, label);
634
  gimple stmt;
635

636 637 638 639 640 641 642
  if (POINTER_TYPE_P (ret_type))
    {
      gcc_assert (code == PLUS_EXPR && TREE_TYPE (acc) == sizetype);
      code = POINTER_PLUS_EXPR;
    }
  if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))
      && code != POINTER_PLUS_EXPR)
643
    stmt = gimple_build_assign_with_ops (code, result, acc, op1);
644 645
  else
    {
646 647 648 649 650 651 652
      tree tem;
      if (code == POINTER_PLUS_EXPR)
	tem = fold_build2 (code, TREE_TYPE (op1), op1, acc);
      else
	tem = fold_build2 (code, TREE_TYPE (op1),
			   fold_convert (TREE_TYPE (op1), acc), op1);
      tree rhs = fold_convert (ret_type, tem);
653
      rhs = force_gimple_operand_gsi (&gsi, rhs,
654
				      false, NULL, true, GSI_SAME_STMT);
655
      stmt = gimple_build_assign (result, rhs);
656 657 658
    }

  gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
659 660 661
  return result;
}

H.J. Lu committed
662
/* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
663 664 665 666 667 668 669 670
   the computation specified by CODE and OP1 and insert the statement
   at the position specified by GSI as a new statement.  Returns new SSA name
   of updated accumulator.  */

static tree
update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
			     gimple_stmt_iterator gsi)
{
671
  gimple stmt;
672
  tree var = copy_ssa_name (acc, NULL);
673
  if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
674
    stmt = gimple_build_assign_with_ops (code, var, acc, op1);
675 676 677 678 679 680 681 682 683
  else
    {
      tree rhs = fold_convert (TREE_TYPE (acc),
			       fold_build2 (code,
					    TREE_TYPE (op1),
					    fold_convert (TREE_TYPE (op1), acc),
					    op1));
      rhs = force_gimple_operand_gsi (&gsi, rhs,
				      false, NULL, false, GSI_CONTINUE_LINKING);
684
      stmt = gimple_build_assign (var, rhs);
685
    }
686 687 688 689 690 691 692 693 694 695
  gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
  return var;
}

/* Adjust the accumulator values according to A and M after GSI, and update
   the phi nodes on edge BACK.  */

static void
adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
{
696 697 698 699 700 701
  tree var, a_acc_arg, m_acc_arg;

  if (m)
    m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
  if (a)
    a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
702

703 704
  a_acc_arg = a_acc;
  m_acc_arg = m_acc;
705 706 707 708 709 710 711
  if (a)
    {
      if (m_acc)
	{
	  if (integer_onep (a))
	    var = m_acc;
	  else
712
	    var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
713
						a, gsi);
714 715 716 717
	}
      else
	var = a;

718
      a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
719 720 721
    }

  if (m)
722
    m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
723 724

  if (a_acc)
725
    add_successor_phi_arg (back, a_acc, a_acc_arg);
726 727

  if (m_acc)
728
    add_successor_phi_arg (back, m_acc, m_acc_arg);
729 730
}

731
/* Adjust value of the return at the end of BB according to M and A
732 733 734 735 736
   accumulators.  */

static void
adjust_return_value (basic_block bb, tree m, tree a)
{
737 738 739
  tree retval;
  gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
  gimple_stmt_iterator gsi = gsi_last_bb (bb);
740

741
  gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
742

743 744
  retval = gimple_return_retval (ret_stmt);
  if (!retval || retval == error_mark_node)
745 746 747
    return;

  if (m)
748
    retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
749
					   gsi);
750
  if (a)
751
    retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
752
					   gsi);
753
  gimple_return_set_retval (ret_stmt, retval);
754
  update_stmt (ret_stmt);
755 756
}

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
/* Subtract COUNT and FREQUENCY from the basic block and it's
   outgoing edge.  */
static void
decrease_profile (basic_block bb, gcov_type count, int frequency)
{
  edge e;
  bb->count -= count;
  if (bb->count < 0)
    bb->count = 0;
  bb->frequency -= frequency;
  if (bb->frequency < 0)
    bb->frequency = 0;
  if (!single_succ_p (bb))
    {
      gcc_assert (!EDGE_COUNT (bb->succs));
      return;
    }
  e = single_succ_edge (bb);
  e->count -= count;
  if (e->count < 0)
    e->count = 0;
}

780 781 782 783 784 785 786 787
/* Returns true if argument PARAM of the tail recursive call needs to be copied
   when the call is eliminated.  */

static bool
arg_needs_copy_p (tree param)
{
  tree def;

788
  if (!is_gimple_reg (param))
789
    return false;
H.J. Lu committed
790

791
  /* Parameters that are only defined but never used need not be copied.  */
792
  def = ssa_default_def (cfun, param);
793 794 795 796 797 798
  if (!def)
    return false;

  return true;
}

799 800 801 802 803 804
/* Eliminates tail call described by T.  TMP_VARS is a list of
   temporary variables used to copy the function arguments.  */

static void
eliminate_tail_call (struct tailcall *t)
{
805 806
  tree param, rslt;
  gimple stmt, call;
807
  tree arg;
808
  size_t idx;
809 810
  basic_block bb, first;
  edge e;
811 812 813
  gimple phi;
  gimple_stmt_iterator gsi;
  gimple orig_stmt;
814

815 816
  stmt = orig_stmt = gsi_stmt (t->call_gsi);
  bb = gsi_bb (t->call_gsi);
817 818 819 820 821

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
	       bb->index);
822
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
823 824 825
      fprintf (dump_file, "\n");
    }

826
  gcc_assert (is_gimple_call (stmt));
827

828
  first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
829

830
  /* Remove the code after call_gsi that will become unreachable.  The
831 832
     possibly unreachable code in other blocks is removed later in
     cfg cleanup.  */
833 834 835
  gsi = t->call_gsi;
  gsi_next (&gsi);
  while (!gsi_end_p (gsi))
836
    {
837
      gimple t = gsi_stmt (gsi);
838 839
      /* Do not remove the return statement, so that redirect_edge_and_branch
	 sees how the block ends.  */
840
      if (gimple_code (t) == GIMPLE_RETURN)
841 842
	break;

843
      gsi_remove (&gsi, true);
844
      release_defs (t);
845 846
    }

847
  /* Number of executions of function has reduced by the tailcall.  */
848
  e = single_succ_edge (gsi_bb (t->call_gsi));
849 850 851 852
  decrease_profile (EXIT_BLOCK_PTR_FOR_FN (cfun), e->count, EDGE_FREQUENCY (e));
  decrease_profile (ENTRY_BLOCK_PTR_FOR_FN (cfun), e->count,
		    EDGE_FREQUENCY (e));
  if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
853 854
    decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));

855
  /* Replace the call by a jump to the start of function.  */
856 857
  e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
				first);
858
  gcc_assert (e);
859
  PENDING_STMT (e) = NULL;
860

861 862
  /* Add phi node entries for arguments.  The ordering of the phi nodes should
     be the same as the ordering of the arguments.  */
863
  for (param = DECL_ARGUMENTS (current_function_decl),
864
	 idx = 0, gsi = gsi_start_phis (first);
865
       param;
866
       param = DECL_CHAIN (param), idx++)
867
    {
868
      if (!arg_needs_copy_p (param))
869
	continue;
870 871 872

      arg = gimple_call_arg (stmt, idx);
      phi = gsi_stmt (gsi);
873
      gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
874

875
      add_phi_arg (phi, arg, e, gimple_location (stmt));
876
      gsi_next (&gsi);
877 878 879
    }

  /* Update the values of accumulators.  */
880
  adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
881

882 883 884
  call = gsi_stmt (t->call_gsi);
  rslt = gimple_call_lhs (call);
  if (rslt != NULL_TREE)
885 886 887
    {
      /* Result of the call will no longer be defined.  So adjust the
	 SSA_NAME_DEF_STMT accordingly.  */
888
      SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
889 890
    }

891
  gsi_remove (&t->call_gsi, true);
892
  release_defs (call);
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
}

/* Optimizes the tailcall described by T.  If OPT_TAILCALLS is true, also
   mark the tailcalls for the sibcall optimization.  */

static bool
optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
{
  if (t->tail_recursion)
    {
      eliminate_tail_call (t);
      return true;
    }

  if (opt_tailcalls)
    {
909
      gimple stmt = gsi_stmt (t->call_gsi);
910

911
      gimple_call_set_tail (stmt, true);
912 913 914
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
	  fprintf (dump_file, "Found tail call ");
915 916
	  print_gimple_stmt (dump_file, stmt, 0, dump_flags);
	  fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
917 918 919 920 921 922
	}
    }

  return false;
}

923 924 925 926 927 928 929 930 931 932
/* Creates a tail-call accumulator of the same type as the return type of the
   current function.  LABEL is the name used to creating the temporary
   variable for the accumulator.  The accumulator will be inserted in the
   phis of a basic block BB with single predecessor with an initial value
   INIT converted to the current function return type.  */

static tree
create_tailcall_accumulator (const char *label, basic_block bb, tree init)
{
  tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
933 934 935
  if (POINTER_TYPE_P (ret_type))
    ret_type = sizetype;

936
  tree tmp = make_temp_ssa_name (ret_type, NULL, label);
937 938 939 940
  gimple phi;

  phi = create_phi_node (tmp, bb);
  /* RET_TYPE can be a float when -ffast-maths is enabled.  */
941
  add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
942
	       UNKNOWN_LOCATION);
943 944
  return PHI_RESULT (phi);
}
H.J. Lu committed
945

946 947 948
/* Optimizes tail calls in the function, turning the tail recursion
   into iteration.  */

949
static unsigned int
950 951 952 953 954 955
tree_optimize_tail_calls_1 (bool opt_tailcalls)
{
  edge e;
  bool phis_constructed = false;
  struct tailcall *tailcalls = NULL, *act, *next;
  bool changed = false;
956
  basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
957 958
  tree param;
  gimple stmt;
959
  edge_iterator ei;
960 961

  if (!suitable_for_tail_opt_p ())
962
    return 0;
963 964 965
  if (opt_tailcalls)
    opt_tailcalls = suitable_for_tail_call_opt_p ();

966
  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
967 968 969 970 971 972
    {
      /* Only traverse the normal exits, i.e. those that end with return
	 statement.  */
      stmt = last_stmt (e->src);

      if (stmt
973
	  && gimple_code (stmt) == GIMPLE_RETURN)
974 975 976 977 978 979 980 981 982 983 984 985
	find_tail_calls (e->src, &tailcalls);
    }

  /* Construct the phi nodes and accumulators if necessary.  */
  a_acc = m_acc = NULL_TREE;
  for (act = tailcalls; act; act = act->next)
    {
      if (!act->tail_recursion)
	continue;

      if (!phis_constructed)
	{
986 987 988 989
	  /* Ensure that there is only one predecessor of the block
	     or if there are existing degenerate PHI nodes.  */
	  if (!single_pred_p (first)
	      || !gimple_seq_empty_p (phi_nodes (first)))
990 991
	    first =
	      split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
992 993 994 995

	  /* Copy the args if needed.  */
	  for (param = DECL_ARGUMENTS (current_function_decl);
	       param;
996
	       param = DECL_CHAIN (param))
997 998
	    if (arg_needs_copy_p (param))
	      {
999
		tree name = ssa_default_def (cfun, param);
1000
		tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
1001
		gimple phi;
1002

1003
		set_ssa_default_def (cfun, param, new_name);
1004
		phi = create_phi_node (name, first);
H.J. Lu committed
1005
		add_phi_arg (phi, new_name, single_pred_edge (first),
1006
			     EXPR_LOCATION (param));
1007
	      }
1008 1009 1010 1011
	  phis_constructed = true;
	}

      if (act->add && !a_acc)
1012 1013
	a_acc = create_tailcall_accumulator ("add_acc", first,
					     integer_zero_node);
1014 1015

      if (act->mult && !m_acc)
1016 1017
	m_acc = create_tailcall_accumulator ("mult_acc", first,
					     integer_one_node);
1018 1019
    }

1020 1021 1022 1023 1024 1025 1026 1027
  if (a_acc || m_acc)
    {
      /* When the tail call elimination using accumulators is performed,
	 statements adding the accumulated value are inserted at all exits.
	 This turns all other tail calls to non-tail ones.  */
      opt_tailcalls = false;
    }

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
  for (; tailcalls; tailcalls = next)
    {
      next = tailcalls->next;
      changed |= optimize_tail_call (tailcalls, opt_tailcalls);
      free (tailcalls);
    }

  if (a_acc || m_acc)
    {
      /* Modify the remaining return statements.  */
1038
      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1039 1040 1041 1042
	{
	  stmt = last_stmt (e->src);

	  if (stmt
1043
	      && gimple_code (stmt) == GIMPLE_RETURN)
1044 1045 1046 1047 1048
	    adjust_return_value (e->src, m_acc, a_acc);
	}
    }

  if (changed)
1049 1050 1051 1052 1053 1054
    {
      /* We may have created new loops.  Make them magically appear.  */
      if (current_loops)
	loops_state_set (LOOPS_NEED_FIXUP);
      free_dominance_info (CDI_DOMINATORS);
    }
1055

1056 1057 1058
  /* Add phi nodes for the virtual operands defined in the function to the
     header of the loop created by tail recursion elimination.  Do so
     by triggering the SSA renamer.  */
1059
  if (phis_constructed)
1060
    mark_virtual_operands_for_renaming (cfun);
1061

1062 1063 1064
  if (changed)
    return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
  return 0;
1065 1066
}

1067
static unsigned int
1068 1069
execute_tail_recursion (void)
{
1070
  return tree_optimize_tail_calls_1 (false);
1071 1072 1073 1074 1075
}

static bool
gate_tail_calls (void)
{
1076
  return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1077 1078
}

1079
static unsigned int
1080 1081
execute_tail_calls (void)
{
1082
  return tree_optimize_tail_calls_1 (true);
1083 1084
}

1085 1086 1087
namespace {

const pass_data pass_data_tail_recursion =
1088
{
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
  GIMPLE_PASS, /* type */
  "tailr", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  true, /* has_gate */
  true, /* has_execute */
  TV_NONE, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_verify_ssa, /* todo_flags_finish */
1100 1101
};

1102 1103 1104
class pass_tail_recursion : public gimple_opt_pass
{
public:
1105 1106
  pass_tail_recursion (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_tail_recursion, ctxt)
1107 1108 1109
  {}

  /* opt_pass methods: */
1110
  opt_pass * clone () { return new pass_tail_recursion (m_ctxt); }
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
  bool gate () { return gate_tail_calls (); }
  unsigned int execute () { return execute_tail_recursion (); }

}; // class pass_tail_recursion

} // anon namespace

gimple_opt_pass *
make_pass_tail_recursion (gcc::context *ctxt)
{
  return new pass_tail_recursion (ctxt);
}

namespace {

const pass_data pass_data_tail_calls =
1127
{
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
  GIMPLE_PASS, /* type */
  "tailc", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  true, /* has_gate */
  true, /* has_execute */
  TV_NONE, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_verify_ssa, /* todo_flags_finish */
1139
};
1140 1141 1142 1143

class pass_tail_calls : public gimple_opt_pass
{
public:
1144 1145
  pass_tail_calls (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_tail_calls, ctxt)
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
  {}

  /* opt_pass methods: */
  bool gate () { return gate_tail_calls (); }
  unsigned int execute () { return execute_tail_calls (); }

}; // class pass_tail_calls

} // anon namespace

gimple_opt_pass *
make_pass_tail_calls (gcc::context *ctxt)
{
  return new pass_tail_calls (ctxt);
}