cse.c 236 KB
Newer Older
Richard Kenner committed
1
/* Common subexpression elimination for GNU compiler.
Jeff Law committed
2
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3
   1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
Richard Kenner committed
4

5
This file is part of GCC.
Richard Kenner committed
6

7 8 9 10
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
Richard Kenner committed
11

12 13 14 15
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Kenner committed
16 17

You should have received a copy of the GNU General Public License
18 19 20
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */
Richard Kenner committed
21 22

#include "config.h"
23 24
/* stdio.h must precede rtl.h for FFS.  */
#include "system.h"
25 26
#include "coretypes.h"
#include "tm.h"
27

Richard Kenner committed
28
#include "rtl.h"
29
#include "tm_p.h"
Richard Kenner committed
30 31
#include "regs.h"
#include "hard-reg-set.h"
32
#include "basic-block.h"
Richard Kenner committed
33 34 35 36
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
37
#include "function.h"
Jeff Law committed
38
#include "expr.h"
Kaveh R. Ghazi committed
39 40
#include "toplev.h"
#include "output.h"
41
#include "ggc.h"
42
#include "timevar.h"
43
#include "except.h"
44
#include "target.h"
Richard Kenner committed
45 46 47 48 49 50 51

/* The basic idea of common subexpression elimination is to go
   through the code, keeping a record of expressions that would
   have the same value at the current scan point, and replacing
   expressions encountered with the cheapest equivalent expression.

   It is too complicated to keep track of the different possibilities
Jeffrey A Law committed
52 53 54 55 56 57 58 59
   when control paths merge in this code; so, at each label, we forget all
   that is known and start fresh.  This can be described as processing each
   extended basic block separately.  We have a separate pass to perform
   global CSE.

   Note CSE can turn a conditional or computed jump into a nop or
   an unconditional jump.  When this occurs we arrange to run the jump
   optimizer after CSE to delete the unreachable code.
Richard Kenner committed
60 61

   We use two data structures to record the equivalent expressions:
62 63
   a hash table for most expressions, and a vector of "quantity
   numbers" to record equivalent (pseudo) registers.
Richard Kenner committed
64 65 66 67 68 69 70 71 72 73 74

   The use of the special data structure for registers is desirable
   because it is faster.  It is possible because registers references
   contain a fairly small number, the register number, taken from
   a contiguously allocated series, and two register references are
   identical if they have the same number.  General expressions
   do not have any such thing, so the only way to retrieve the
   information recorded on an expression other than a register
   is to keep it in a hash table.

Registers and "quantity numbers":
75

Richard Kenner committed
76 77 78 79 80 81 82 83 84 85 86 87
   At the start of each basic block, all of the (hardware and pseudo)
   registers used in the function are given distinct quantity
   numbers to indicate their contents.  During scan, when the code
   copies one register into another, we copy the quantity number.
   When a register is loaded in any other way, we allocate a new
   quantity number to describe the value generated by this operation.
   `reg_qty' records what quantity a register is currently thought
   of as containing.

   All real quantity numbers are greater than or equal to `max_reg'.
   If register N has not been assigned a quantity, reg_qty[N] will equal N.

88 89
   Quantity numbers below `max_reg' do not exist and none of the `qty_table'
   entries should be referenced with an index below `max_reg'.
Richard Kenner committed
90 91

   We also maintain a bidirectional chain of registers for each
92 93
   quantity number.  The `qty_table` members `first_reg' and `last_reg',
   and `reg_eqv_table' members `next' and `prev' hold these chains.
Richard Kenner committed
94 95 96 97 98 99

   The first register in a chain is the one whose lifespan is least local.
   Among equals, it is the one that was seen first.
   We replace any equivalent register with that one.

   If two registers have the same quantity number, it must be true that
100
   REG expressions with qty_table `mode' must be in the hash table for both
Richard Kenner committed
101 102 103 104 105 106
   registers and must be in the same class.

   The converse is not true.  Since hard registers may be referenced in
   any mode, two REG expressions might be equivalent in the hash table
   but not have the same quantity number if the quantity number of one
   of the registers is not the same mode as those expressions.
107

Richard Kenner committed
108 109 110
Constants and quantity numbers

   When a quantity has a known constant value, that value is stored
111
   in the appropriate qty_table `const_rtx'.  This is in addition to
Richard Kenner committed
112 113
   putting the constant in the hash table as is usual for non-regs.

114
   Whether a reg or a constant is preferred is determined by the configuration
Richard Kenner committed
115 116 117 118
   macro CONST_COSTS and will often depend on the constant value.  In any
   event, expressions containing constants can be simplified, by fold_rtx.

   When a quantity has a known nearly constant value (such as an address
119 120
   of a stack slot), that value is stored in the appropriate qty_table
   `const_rtx'.
Richard Kenner committed
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

   Integer constants don't have a machine mode.  However, cse
   determines the intended machine mode from the destination
   of the instruction that moves the constant.  The machine mode
   is recorded in the hash table along with the actual RTL
   constant expression so that different modes are kept separate.

Other expressions:

   To record known equivalences among expressions in general
   we use a hash table called `table'.  It has a fixed number of buckets
   that contain chains of `struct table_elt' elements for expressions.
   These chains connect the elements whose expressions have the same
   hash codes.

   Other chains through the same elements connect the elements which
   currently have equivalent values.

   Register references in an expression are canonicalized before hashing
140
   the expression.  This is done using `reg_qty' and qty_table `first_reg'.
Richard Kenner committed
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
   The hash code of a register reference is computed using the quantity
   number, not the register number.

   When the value of an expression changes, it is necessary to remove from the
   hash table not just that expression but all expressions whose values
   could be different as a result.

     1. If the value changing is in memory, except in special cases
     ANYTHING referring to memory could be changed.  That is because
     nobody knows where a pointer does not point.
     The function `invalidate_memory' removes what is necessary.

     The special cases are when the address is constant or is
     a constant plus a fixed register such as the frame pointer
     or a static chain pointer.  When such addresses are stored in,
     we can tell exactly which other such addresses must be invalidated
     due to overlap.  `invalidate' does this.
     All expressions that refer to non-constant
     memory addresses are also invalidated.  `invalidate_memory' does this.

     2. If the value changing is a register, all expressions
     containing references to that register, and only those,
     must be removed.

   Because searching the entire hash table for expressions that contain
   a register is very slow, we try to figure out when it isn't necessary.
   Precisely, this is necessary only when expressions have been
   entered in the hash table using this register, and then the value has
   changed, and then another expression wants to be added to refer to
   the register's new value.  This sequence of circumstances is rare
   within any one basic block.

   The vectors `reg_tick' and `reg_in_table' are used to detect this case.
   reg_tick[i] is incremented whenever a value is stored in register i.
   reg_in_table[i] holds -1 if no references to register i have been
   entered in the table; otherwise, it contains the value reg_tick[i] had
   when the references were entered.  If we want to enter a reference
   and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
   Until we want to enter a new entry, the mere fact that the two vectors
   don't match makes the entries be ignored if anyone tries to match them.

   Registers themselves are entered in the hash table as well as in
   the equivalent-register chains.  However, the vectors `reg_tick'
   and `reg_in_table' do not apply to expressions which are simple
   register references.  These expressions are removed from the table
   immediately when they become invalid, and this can be done even if
   we do not immediately search for all the expressions that refer to
   the register.

   A CLOBBER rtx in an instruction invalidates its operand for further
   reuse.  A CLOBBER or SET rtx whose operand is a MEM:BLK
   invalidates everything that resides in memory.

Related expressions:

   Constant expressions that differ only by an additive integer
   are called related.  When a constant expression is put in
   the table, the related expression with no constant term
   is also entered.  These are made to point at each other
   so that it is possible to find out if there exists any
   register equivalent to an expression related to a given expression.  */
202

Richard Kenner committed
203 204 205 206
/* One plus largest register number used in this function.  */

static int max_reg;

207 208 209 210 211
/* One plus largest instruction UID used in this function at time of
   cse_main call.  */

static int max_insn_uid;

212 213
/* Length of qty_table vector.  We know in advance we will not need
   a quantity number this big.  */
Richard Kenner committed
214 215 216 217 218 219 220 221

static int max_qty;

/* Next quantity number to be allocated.
   This is 1 + the largest number needed so far.  */

static int next_qty;

222
/* Per-qty information tracking.
Richard Kenner committed
223

224 225
   `first_reg' and `last_reg' track the head and tail of the
   chain of registers which currently contain this quantity.
Richard Kenner committed
226

227
   `mode' contains the machine mode of this quantity.
Richard Kenner committed
228

229 230 231 232 233
   `const_rtx' holds the rtx of the constant value of this
   quantity, if known.  A summations of the frame/arg pointer
   and a constant can also be entered here.  When this holds
   a known value, `const_insn' is the insn which stored the
   constant value.
Richard Kenner committed
234

235 236 237 238 239 240 241 242 243 244 245
   `comparison_{code,const,qty}' are used to track when a
   comparison between a quantity and some constant or register has
   been passed.  In such a case, we know the results of the comparison
   in case we see it again.  These members record a comparison that
   is known to be true.  `comparison_code' holds the rtx code of such
   a comparison, else it is set to UNKNOWN and the other two
   comparison members are undefined.  `comparison_const' holds
   the constant being compared against, or zero if the comparison
   is not against a constant.  `comparison_qty' holds the quantity
   being compared against when the result is known.  If the comparison
   is not with a register, `comparison_qty' is -1.  */
Richard Kenner committed
246

247 248 249 250 251 252
struct qty_table_elem
{
  rtx const_rtx;
  rtx const_insn;
  rtx comparison_const;
  int comparison_qty;
253
  unsigned int first_reg, last_reg;
254 255 256 257
  /* The sizes of these fields should match the sizes of the
     code and mode fields of struct rtx_def (see rtl.h).  */
  ENUM_BITFIELD(rtx_code) comparison_code : 16;
  ENUM_BITFIELD(machine_mode) mode : 8;
258
};
Richard Kenner committed
259

260 261
/* The table of all qtys, indexed by qty number.  */
static struct qty_table_elem *qty_table;
Richard Kenner committed
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

#ifdef HAVE_cc0
/* For machines that have a CC0, we do not record its value in the hash
   table since its use is guaranteed to be the insn immediately following
   its definition and any other insn is presumed to invalidate it.

   Instead, we store below the value last assigned to CC0.  If it should
   happen to be a constant, it is stored in preference to the actual
   assigned value.  In case it is a constant, we store the mode in which
   the constant should be interpreted.  */

static rtx prev_insn_cc0;
static enum machine_mode prev_insn_cc0_mode;

/* Previous actual insn.  0 if at first insn of basic block.  */

static rtx prev_insn;
279
#endif
Richard Kenner committed
280 281 282 283 284

/* Insn being scanned.  */

static rtx this_insn;

285 286
/* Index by register number, gives the number of the next (or
   previous) register in the chain of registers sharing the same
Richard Kenner committed
287 288 289 290
   value.

   Or -1 if this register is at the end of the chain.

291 292 293 294 295 296 297
   If reg_qty[N] == N, reg_eqv_table[N].next is undefined.  */

/* Per-register equivalence chain.  */
struct reg_eqv_elem
{
  int next, prev;
};
Richard Kenner committed
298

299 300
/* The table of all register equivalence chains.  */
static struct reg_eqv_elem *reg_eqv_table;
Richard Kenner committed
301

Richard Kenner committed
302 303
struct cse_reg_info
{
304 305
  /* Next in hash chain.  */
  struct cse_reg_info *hash_next;
306 307

  /* The next cse_reg_info structure in the free or used list.  */
Richard Kenner committed
308
  struct cse_reg_info *next;
309

310
  /* Search key */
311
  unsigned int regno;
312 313 314 315 316 317 318 319

  /* The quantity number of the register's current contents.  */
  int reg_qty;

  /* The number of times the register has been altered in the current
     basic block.  */
  int reg_tick;

320 321 322 323 324
  /* The REG_TICK value at which rtx's containing this register are
     valid in the hash table.  If this does not equal the current
     reg_tick value, such expressions existing in the hash table are
     invalid.  */
  int reg_in_table;
325 326 327

  /* The SUBREG that was set when REG_TICK was last incremented.  Set
     to -1 if the last store was to the whole register, not a subreg.  */
328
  unsigned int subreg_ticked;
329
};
Richard Kenner committed
330

331 332
/* A free list of cse_reg_info entries.  */
static struct cse_reg_info *cse_reg_info_free_list;
Richard Kenner committed
333

334 335 336 337
/* A used list of cse_reg_info entries.  */
static struct cse_reg_info *cse_reg_info_used_list;
static struct cse_reg_info *cse_reg_info_used_list_end;

338
/* A mapping from registers to cse_reg_info data structures.  */
339 340 341 342 343 344 345
#define REGHASH_SHIFT	7
#define REGHASH_SIZE	(1 << REGHASH_SHIFT)
#define REGHASH_MASK	(REGHASH_SIZE - 1)
static struct cse_reg_info *reg_hash[REGHASH_SIZE];

#define REGHASH_FN(REGNO)	\
	(((REGNO) ^ ((REGNO) >> REGHASH_SHIFT)) & REGHASH_MASK)
Richard Kenner committed
346

347 348
/* The last lookup we did into the cse_reg_info_tree.  This allows us
   to cache repeated lookups.  */
349
static unsigned int cached_regno;
350
static struct cse_reg_info *cached_cse_reg_info;
Richard Kenner committed
351

352
/* A HARD_REG_SET containing all the hard registers for which there is
Richard Kenner committed
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
   currently a REG expression in the hash table.  Note the difference
   from the above variables, which indicate if the REG is mentioned in some
   expression in the table.  */

static HARD_REG_SET hard_regs_in_table;

/* CUID of insn that starts the basic block currently being cse-processed.  */

static int cse_basic_block_start;

/* CUID of insn that ends the basic block currently being cse-processed.  */

static int cse_basic_block_end;

/* Vector mapping INSN_UIDs to cuids.
368
   The cuids are like uids but increase monotonically always.
Richard Kenner committed
369 370
   We use them to see whether a reg is used outside a given basic block.  */

371
static int *uid_cuid;
Richard Kenner committed
372

373 374 375
/* Highest UID in UID_CUID.  */
static int max_uid;

Richard Kenner committed
376 377 378 379
/* Get the cuid of an insn.  */

#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])

380 381 382 383 384
/* Nonzero if this pass has made changes, and therefore it's
   worthwhile to run the garbage collector.  */

static int cse_altered;

Richard Kenner committed
385 386 387 388 389
/* Nonzero if cse has altered conditional jump insns
   in such a way that jump optimization should be redone.  */

static int cse_jumps_altered;

390 391
/* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
   REG_LABEL, we have to rerun jump after CSE to put in the note.  */
392 393
static int recorded_label_ref;

Richard Kenner committed
394 395 396 397 398 399
/* canon_hash stores 1 in do_not_record
   if it notices a reference to CC0, PC, or some other volatile
   subexpression.  */

static int do_not_record;

400 401 402 403 404 405
#ifdef LOAD_EXTEND_OP

/* Scratch rtl used when looking for load-extended copy of a MEM.  */
static rtx memory_extend_rtx;
#endif

Richard Kenner committed
406 407 408 409 410 411 412 413 414
/* canon_hash stores 1 in hash_arg_in_memory
   if it notices a reference to memory within the expression being hashed.  */

static int hash_arg_in_memory;

/* The hash table contains buckets which are chains of `struct table_elt's,
   each recording one expression's information.
   That expression is in the `exp' field.

415 416 417
   The canon_exp field contains a canonical (from the point of view of
   alias analysis) version of the `exp' field.

Richard Kenner committed
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
   Those elements with the same hash code are chained in both directions
   through the `next_same_hash' and `prev_same_hash' fields.

   Each set of expressions with equivalent values
   are on a two-way chain through the `next_same_value'
   and `prev_same_value' fields, and all point with
   the `first_same_value' field at the first element in
   that chain.  The chain is in order of increasing cost.
   Each element's cost value is in its `cost' field.

   The `in_memory' field is nonzero for elements that
   involve any reference to memory.  These elements are removed
   whenever a write is done to an unidentified location in memory.
   To be safe, we assume that a memory address is unidentified unless
   the address is either a symbol constant or a constant plus
   the frame pointer or argument pointer.

   The `related_value' field is used to connect related expressions
   (that differ by adding an integer).
   The related expressions are chained in a circular fashion.
   `related_value' is zero for expressions for which this
   chain is not useful.

   The `cost' field stores the cost of this element's expression.
442 443
   The `regcost' field stores the value returned by approx_reg_cost for
   this element's expression.
Richard Kenner committed
444 445 446 447 448 449 450 451 452 453 454 455 456 457

   The `is_const' flag is set if the element is a constant (including
   a fixed address).

   The `flag' field is used as a temporary during some search routines.

   The `mode' field is usually the same as GET_MODE (`exp'), but
   if `exp' is a CONST_INT and has no machine mode then the `mode'
   field is the mode it was being used as.  Each constant is
   recorded separately for each mode it is used with.  */

struct table_elt
{
  rtx exp;
458
  rtx canon_exp;
Richard Kenner committed
459 460 461 462 463 464 465
  struct table_elt *next_same_hash;
  struct table_elt *prev_same_hash;
  struct table_elt *next_same_value;
  struct table_elt *prev_same_value;
  struct table_elt *first_same_value;
  struct table_elt *related_value;
  int cost;
466
  int regcost;
467 468 469
  /* The size of this field should match the size
     of the mode field of struct rtx_def (see rtl.h).  */
  ENUM_BITFIELD(machine_mode) mode : 8;
Richard Kenner committed
470 471 472 473 474 475 476 477
  char in_memory;
  char is_const;
  char flag;
};

/* We don't want a lot of buckets, because we rarely have very many
   things stored in the hash table, and a lot of buckets slows
   down a lot of loops that happen frequently.  */
478 479 480
#define HASH_SHIFT	5
#define HASH_SIZE	(1 << HASH_SHIFT)
#define HASH_MASK	(HASH_SIZE - 1)
Richard Kenner committed
481 482 483 484 485

/* Compute hash code of X in mode M.  Special-case case where X is a pseudo
   register (hard registers may require `do_not_record' to be set).  */

#define HASH(X, M)	\
486 487 488
 ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
  ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
  : canon_hash (X, M)) & HASH_MASK)
Richard Kenner committed
489

490 491
/* Determine whether register number N is considered a fixed register for the
   purpose of approximating register costs.
Richard Kenner committed
492 493
   It is desirable to replace other regs with fixed regs, to reduce need for
   non-fixed hard regs.
Bernd Schmidt committed
494
   A reg wins if it is either the frame pointer or designated as fixed.  */
Richard Kenner committed
495
#define FIXED_REGNO_P(N)  \
496
  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
497
   || fixed_regs[N] || global_regs[N])
Richard Kenner committed
498 499

/* Compute cost of X, as stored in the `cost' field of a table_elt.  Fixed
500 501 502 503
   hard registers and pointers into the frame are the cheapest with a cost
   of 0.  Next come pseudos with a cost of one and other hard registers with
   a cost of 2.  Aside from these special cases, call `rtx_cost'.  */

504
#define CHEAP_REGNO(N) \
505 506 507 508
  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM 	\
   || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM	     	\
   || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) 	\
   || ((N) < FIRST_PSEUDO_REGISTER					\
509
       && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
Richard Kenner committed
510

511 512
#define COST(X) (GET_CODE (X) == REG ? 0 : notreg_cost (X, SET))
#define COST_IN(X,OUTER) (GET_CODE (X) == REG ? 0 : notreg_cost (X, OUTER))
Richard Kenner committed
513

514 515 516 517 518 519 520 521 522
/* Get the info associated with register N.  */

#define GET_CSE_REG_INFO(N) 			\
  (((N) == cached_regno && cached_cse_reg_info)	\
   ? cached_cse_reg_info : get_cse_reg_info ((N)))

/* Get the number of times this register has been updated in this
   basic block.  */

523
#define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)
524 525 526 527 528

/* Get the point at which REG was recorded in the table.  */

#define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)

529 530 531 532 533
/* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
   SUBREG).  */

#define SUBREG_TICKED(N) ((GET_CSE_REG_INFO (N))->subreg_ticked)

534 535 536 537
/* Get the quantity number for REG.  */

#define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)

Richard Kenner committed
538
/* Determine if the quantity number for register X represents a valid index
539
   into the qty_table.  */
Richard Kenner committed
540

541
#define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (int) (N))
Richard Kenner committed
542

543
static struct table_elt *table[HASH_SIZE];
Richard Kenner committed
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558

/* Chain of `struct table_elt's made so far for this function
   but currently removed from the table.  */

static struct table_elt *free_element_chain;

/* Number of `struct table_elt' structures made so far for this function.  */

static int n_elements_made;

/* Maximum value `n_elements_made' has had so far in this compilation
   for functions previously processed.  */

static int max_elements_made;

559
/* Surviving equivalence class when two equivalence classes are merged
Richard Kenner committed
560 561 562 563 564 565 566 567 568 569 570 571
   by recording the effects of a jump in the last insn.  Zero if the
   last insn was not a conditional jump.  */

static struct table_elt *last_jump_equiv_class;

/* Set to the cost of a constant pool reference if one was found for a
   symbolic constant.  If this was found, it means we should try to
   convert constants into constant pool entries if they don't fit in
   the insn.  */

static int constant_pool_entries_cost;

572 573 574 575 576 577
/* Define maximum length of a branch path.  */

#define PATHLENGTH	10

/* This data describes a block that will be processed by cse_basic_block.  */

Richard Kenner committed
578 579
struct cse_basic_block_data
{
580 581 582 583 584 585 586 587 588 589 590
  /* Lowest CUID value of insns in block.  */
  int low_cuid;
  /* Highest CUID value of insns in block.  */
  int high_cuid;
  /* Total number of SETs in block.  */
  int nsets;
  /* Last insn in the block.  */
  rtx last;
  /* Size of current branch path, if any.  */
  int path_size;
  /* Current branch path, indicating which branches will be taken.  */
Richard Kenner committed
591 592 593 594 595 596
  struct branch_path
    {
      /* The branch insn.  */
      rtx branch;
      /* Whether it should be taken or not.  AROUND is the same as taken
	 except that it is used when the destination label is not preceded
597
       by a BARRIER.  */
Richard Kenner committed
598 599
      enum taken {TAKEN, NOT_TAKEN, AROUND} status;
    } path[PATHLENGTH];
600 601
};

602
static bool fixed_base_plus_p	PARAMS ((rtx x));
603
static int notreg_cost		PARAMS ((rtx, enum rtx_code));
604 605 606
static int approx_reg_cost_1	PARAMS ((rtx *, void *));
static int approx_reg_cost	PARAMS ((rtx));
static int preferrable		PARAMS ((int, int, int, int));
607
static void new_basic_block	PARAMS ((void));
608 609 610
static void make_new_qty	PARAMS ((unsigned int, enum machine_mode));
static void make_regs_eqv	PARAMS ((unsigned int, unsigned int));
static void delete_reg_equiv	PARAMS ((unsigned int));
611 612 613 614 615 616 617 618 619 620 621
static int mention_regs		PARAMS ((rtx));
static int insert_regs		PARAMS ((rtx, struct table_elt *, int));
static void remove_from_table	PARAMS ((struct table_elt *, unsigned));
static struct table_elt *lookup	PARAMS ((rtx, unsigned, enum machine_mode)),
       *lookup_for_remove PARAMS ((rtx, unsigned, enum machine_mode));
static rtx lookup_as_function	PARAMS ((rtx, enum rtx_code));
static struct table_elt *insert PARAMS ((rtx, struct table_elt *, unsigned,
					 enum machine_mode));
static void merge_equiv_classes PARAMS ((struct table_elt *,
					 struct table_elt *));
static void invalidate		PARAMS ((rtx, enum machine_mode));
622
static int cse_rtx_varies_p	PARAMS ((rtx, int));
623 624 625
static void remove_invalid_refs	PARAMS ((unsigned int));
static void remove_invalid_subreg_refs	PARAMS ((unsigned int, unsigned int,
						 enum machine_mode));
626 627 628 629 630
static void rehash_using_reg	PARAMS ((rtx));
static void invalidate_memory	PARAMS ((void));
static void invalidate_for_call	PARAMS ((void));
static rtx use_related_value	PARAMS ((rtx, struct table_elt *));
static unsigned canon_hash	PARAMS ((rtx, enum machine_mode));
631
static unsigned canon_hash_string PARAMS ((const char *));
632 633 634
static unsigned safe_hash	PARAMS ((rtx, enum machine_mode));
static int exp_equiv_p		PARAMS ((rtx, rtx, int, int));
static rtx canon_reg		PARAMS ((rtx, rtx));
635
static void find_best_addr	PARAMS ((rtx, rtx *, enum machine_mode));
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
static enum rtx_code find_comparison_args PARAMS ((enum rtx_code, rtx *, rtx *,
						   enum machine_mode *,
						   enum machine_mode *));
static rtx fold_rtx		PARAMS ((rtx, rtx));
static rtx equiv_constant	PARAMS ((rtx));
static void record_jump_equiv	PARAMS ((rtx, int));
static void record_jump_cond	PARAMS ((enum rtx_code, enum machine_mode,
					 rtx, rtx, int));
static void cse_insn		PARAMS ((rtx, rtx));
static int addr_affects_sp_p	PARAMS ((rtx));
static void invalidate_from_clobbers PARAMS ((rtx));
static rtx cse_process_notes	PARAMS ((rtx, rtx));
static void cse_around_loop	PARAMS ((rtx));
static void invalidate_skipped_set PARAMS ((rtx, rtx, void *));
static void invalidate_skipped_block PARAMS ((rtx));
static void cse_check_loop_start PARAMS ((rtx, rtx, void *));
static void cse_set_around_loop	PARAMS ((rtx, rtx, rtx));
static rtx cse_basic_block	PARAMS ((rtx, rtx, struct branch_path *, int));
static void count_reg_usage	PARAMS ((rtx, int *, rtx, int));
655
static int check_for_label_ref	PARAMS ((rtx *, void *));
656
extern void dump_class          PARAMS ((struct table_elt*));
657
static struct cse_reg_info * get_cse_reg_info PARAMS ((unsigned int));
658
static int check_dependence	PARAMS ((rtx *, void *));
659 660

static void flush_hash_table	PARAMS ((void));
661
static bool insn_live_p		PARAMS ((rtx, int *));
662
static bool set_live_p		PARAMS ((rtx, rtx, int *));
663
static bool dead_libcall_p	PARAMS ((rtx, int *));
Richard Kenner committed
664

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
/* Nonzero if X has the form (PLUS frame-pointer integer).  We check for
   virtual regs here because the simplify_*_operation routines are called
   by integrate.c, which is called before virtual register instantiation.  */

static bool
fixed_base_plus_p (x)
     rtx x;
{
  switch (GET_CODE (x))
    {
    case REG:
      if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
	return true;
      if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
	return true;
      if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
	  && REGNO (x) <= LAST_VIRTUAL_REGISTER)
	return true;
      return false;

    case PLUS:
      if (GET_CODE (XEXP (x, 1)) != CONST_INT)
	return false;
      return fixed_base_plus_p (XEXP (x, 0));

    case ADDRESSOF:
      return true;

    default:
      return false;
    }
}

698 699
/* Dump the expressions in the equivalence class indicated by CLASSP.
   This function is used only for debugging.  */
700
void
701 702 703 704 705 706 707 708
dump_class (classp)
     struct table_elt *classp;
{
  struct table_elt *elt;

  fprintf (stderr, "Equivalence chain for ");
  print_rtl (stderr, classp->exp);
  fprintf (stderr, ": \n");
709

710 711 712 713 714 715 716
  for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
    {
      print_rtl (stderr, elt->exp);
      fprintf (stderr, "\n");
    }
}

717
/* Subroutine of approx_reg_cost; called through for_each_rtx.  */
718

719 720 721 722 723 724
static int
approx_reg_cost_1 (xp, data)
     rtx *xp;
     void *data;
{
  rtx x = *xp;
725
  int *cost_p = data;
726 727

  if (x && GET_CODE (x) == REG)
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
    {
      unsigned int regno = REGNO (x);

      if (! CHEAP_REGNO (regno))
	{
	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      if (SMALL_REGISTER_CLASSES)
		return 1;
	      *cost_p += 2;
	    }
	  else
	    *cost_p += 1;
	}
    }

744 745 746 747 748
  return 0;
}

/* Return an estimate of the cost of the registers used in an rtx.
   This is mostly the number of different REG expressions in the rtx;
749
   however for some exceptions like fixed registers we use a cost of
750
   0.  If any other hard register reference occurs, return MAX_COST.  */
751 752 753 754 755 756

static int
approx_reg_cost (x)
     rtx x;
{
  int cost = 0;
757

758 759
  if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
    return MAX_COST;
760

761
  return cost;
762 763 764 765 766 767 768 769 770 771
}

/* Return a negative value if an rtx A, whose costs are given by COST_A
   and REGCOST_A, is more desirable than an rtx B.
   Return a positive value if A is less desirable, or 0 if the two are
   equally good.  */
static int
preferrable (cost_a, regcost_a, cost_b, regcost_b)
     int cost_a, regcost_a, cost_b, regcost_b;
{
Kazu Hirata committed
772
  /* First, get rid of cases involving expressions that are entirely
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
     unwanted.  */
  if (cost_a != cost_b)
    {
      if (cost_a == MAX_COST)
	return 1;
      if (cost_b == MAX_COST)
	return -1;
    }

  /* Avoid extending lifetimes of hardregs.  */
  if (regcost_a != regcost_b)
    {
      if (regcost_a == MAX_COST)
	return 1;
      if (regcost_b == MAX_COST)
	return -1;
    }

  /* Normal operation costs take precedence.  */
792 793
  if (cost_a != cost_b)
    return cost_a - cost_b;
794
  /* Only if these are identical consider effects on register pressure.  */
795 796 797 798 799
  if (regcost_a != regcost_b)
    return regcost_a - regcost_b;
  return 0;
}

800 801 802 803
/* Internal function, to compute cost when X is not a register; called
   from COST macro to keep it simple.  */

static int
804
notreg_cost (x, outer)
805
     rtx x;
806
     enum rtx_code outer;
807 808 809 810 811 812 813 814 815 816
{
  return ((GET_CODE (x) == SUBREG
	   && GET_CODE (SUBREG_REG (x)) == REG
	   && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
	   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
	   && (GET_MODE_SIZE (GET_MODE (x))
	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
	   && subreg_lowpart_p (x)
	   && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
				     GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
817
	  ? 0
818
	  : rtx_cost (x, outer) * 2);
819 820
}

821 822 823 824 825
/* Return an estimate of the cost of computing rtx X.
   One use is in cse, to decide which expression to keep in the hash table.
   Another is in rtl generation, to pick the cheapest way to multiply.
   Other uses like the latter are expected in the future.  */

Richard Kenner committed
826
int
827
rtx_cost (x, outer_code)
Richard Kenner committed
828
     rtx x;
Kaveh R. Ghazi committed
829
     enum rtx_code outer_code ATTRIBUTE_UNUSED;
Richard Kenner committed
830
{
831 832 833 834
  int i, j;
  enum rtx_code code;
  const char *fmt;
  int total;
Richard Kenner committed
835 836 837 838 839

  if (x == 0)
    return 0;

  /* Compute the default costs of certain things.
840
     Note that targetm.rtx_costs can override the defaults.  */
Richard Kenner committed
841 842 843 844 845

  code = GET_CODE (x);
  switch (code)
    {
    case MULT:
846
      total = COSTS_N_INSNS (5);
Richard Kenner committed
847 848 849 850 851 852 853 854 855 856 857 858
      break;
    case DIV:
    case UDIV:
    case MOD:
    case UMOD:
      total = COSTS_N_INSNS (7);
      break;
    case USE:
      /* Used in loop.c and combine.c as a marker.  */
      total = 0;
      break;
    default:
859
      total = COSTS_N_INSNS (1);
Richard Kenner committed
860 861 862 863 864
    }

  switch (code)
    {
    case REG:
865
      return 0;
866

Richard Kenner committed
867
    case SUBREG:
868 869 870 871 872
      /* If we can't tie these modes, make this expensive.  The larger
	 the mode, the more expensive it is.  */
      if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
	return COSTS_N_INSNS (2
			      + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
873 874
      break;

875
    default:
876 877
      if ((*targetm.rtx_costs) (x, code, outer_code, &total))
	return total;
878
      break;
Richard Kenner committed
879 880 881 882 883 884 885 886
    }

  /* Sum the costs of the sub-rtx's, plus cost of this operation,
     which is already in total.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
887
      total += rtx_cost (XEXP (x, i), code);
Richard Kenner committed
888 889
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
890
	total += rtx_cost (XVECEXP (x, i, j), code);
Richard Kenner committed
891 892 893 894

  return total;
}

895
/* Return cost of address expression X.
896
   Expect that X is properly formed address reference.  */
897

898 899 900 901 902
int
address_cost (x, mode)
     rtx x;
     enum machine_mode mode;
{
903
  /* The address_cost target hook does not deal with ADDRESSOF nodes.  But,
904 905 906 907 908 909 910 911
     during CSE, such nodes are present.  Using an ADDRESSOF node which
     refers to the address of a REG is a good thing because we can then
     turn (MEM (ADDRESSSOF (REG))) into just plain REG.  */

  if (GET_CODE (x) == ADDRESSOF && REG_P (XEXP ((x), 0)))
    return -1;

  /* We may be asked for cost of various unusual addresses, such as operands
912
     of push instruction.  It is not worthwhile to complicate writing
913
     of the target hook by such cases.  */
914 915 916

  if (!memory_address_p (mode, x))
    return 1000;
917 918

  return (*targetm.address_cost) (x);
919
}
920

921 922 923 924 925 926 927 928
/* If the target doesn't override, compute the cost as with arithmetic.  */

int
default_address_cost (x)
     rtx x;
{
  return rtx_cost (x, MEM);
}
929

930 931
static struct cse_reg_info *
get_cse_reg_info (regno)
932
     unsigned int regno;
933
{
934 935 936
  struct cse_reg_info **hash_head = &reg_hash[REGHASH_FN (regno)];
  struct cse_reg_info *p;

937
  for (p = *hash_head; p != NULL; p = p->hash_next)
938 939 940 941
    if (p->regno == regno)
      break;

  if (p == NULL)
942 943
    {
      /* Get a new cse_reg_info structure.  */
944
      if (cse_reg_info_free_list)
945
	{
946 947
	  p = cse_reg_info_free_list;
	  cse_reg_info_free_list = p->next;
948 949
	}
      else
950 951 952 953 954
	p = (struct cse_reg_info *) xmalloc (sizeof (struct cse_reg_info));

      /* Insert into hash table.  */
      p->hash_next = *hash_head;
      *hash_head = p;
955 956

      /* Initialize it.  */
957 958
      p->reg_tick = 1;
      p->reg_in_table = -1;
959
      p->subreg_ticked = -1;
960 961 962 963
      p->reg_qty = regno;
      p->regno = regno;
      p->next = cse_reg_info_used_list;
      cse_reg_info_used_list = p;
964
      if (!cse_reg_info_used_list_end)
965
	cse_reg_info_used_list_end = p;
966 967 968 969 970
    }

  /* Cache this lookup; we tend to be looking up information about the
     same register several times in a row.  */
  cached_regno = regno;
971
  cached_cse_reg_info = p;
972

973
  return p;
974 975
}

Richard Kenner committed
976 977 978 979 980 981
/* Clear the hash table and initialize each register with its own quantity,
   for a new basic block.  */

static void
new_basic_block ()
{
982
  int i;
Richard Kenner committed
983 984 985

  next_qty = max_reg;

986 987
  /* Clear out hash table state for this pass.  */

988
  memset ((char *) reg_hash, 0, sizeof reg_hash);
989 990

  if (cse_reg_info_used_list)
991
    {
992 993 994
      cse_reg_info_used_list_end->next = cse_reg_info_free_list;
      cse_reg_info_free_list = cse_reg_info_used_list;
      cse_reg_info_used_list = cse_reg_info_used_list_end = 0;
995
    }
996
  cached_cse_reg_info = 0;
Richard Kenner committed
997 998 999 1000 1001 1002

  CLEAR_HARD_REG_SET (hard_regs_in_table);

  /* The per-quantity values used to be initialized here, but it is
     much faster to initialize each as it is made in `make_new_qty'.  */

1003
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1004
    {
1005 1006 1007 1008
      struct table_elt *first;

      first = table[i];
      if (first != NULL)
Richard Kenner committed
1009
	{
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	  struct table_elt *last = first;

	  table[i] = NULL;

	  while (last->next_same_hash != NULL)
	    last = last->next_same_hash;

	  /* Now relink this hash entire chain into
	     the free element list.  */

	  last->next_same_hash = free_element_chain;
	  free_element_chain = first;
Richard Kenner committed
1022 1023 1024 1025
	}
    }

#ifdef HAVE_cc0
1026
  prev_insn = 0;
Richard Kenner committed
1027 1028 1029 1030
  prev_insn_cc0 = 0;
#endif
}

1031 1032
/* Say that register REG contains a quantity in mode MODE not in any
   register before and initialize that quantity.  */
Richard Kenner committed
1033 1034

static void
1035
make_new_qty (reg, mode)
1036 1037
     unsigned int reg;
     enum machine_mode mode;
Richard Kenner committed
1038
{
1039 1040 1041
  int q;
  struct qty_table_elem *ent;
  struct reg_eqv_elem *eqv;
Richard Kenner committed
1042 1043 1044 1045

  if (next_qty >= max_qty)
    abort ();

1046
  q = REG_QTY (reg) = next_qty++;
1047 1048 1049 1050 1051 1052 1053 1054 1055
  ent = &qty_table[q];
  ent->first_reg = reg;
  ent->last_reg = reg;
  ent->mode = mode;
  ent->const_rtx = ent->const_insn = NULL_RTX;
  ent->comparison_code = UNKNOWN;

  eqv = &reg_eqv_table[reg];
  eqv->next = eqv->prev = -1;
Richard Kenner committed
1056 1057 1058 1059 1060 1061 1062
}

/* Make reg NEW equivalent to reg OLD.
   OLD is not changing; NEW is.  */

static void
make_regs_eqv (new, old)
1063
     unsigned int new, old;
Richard Kenner committed
1064
{
1065 1066 1067
  unsigned int lastr, firstr;
  int q = REG_QTY (old);
  struct qty_table_elem *ent;
1068 1069

  ent = &qty_table[q];
Richard Kenner committed
1070 1071 1072 1073 1074

  /* Nothing should become eqv until it has a "non-invalid" qty number.  */
  if (! REGNO_QTY_VALID_P (old))
    abort ();

1075
  REG_QTY (new) = q;
1076 1077
  firstr = ent->first_reg;
  lastr = ent->last_reg;
Richard Kenner committed
1078 1079 1080 1081 1082 1083 1084 1085

  /* Prefer fixed hard registers to anything.  Prefer pseudo regs to other
     hard regs.  Among pseudos, if NEW will live longer than any other reg
     of the same qty, and that is beyond the current basic block,
     make it the new canonical replacement for this qty.  */
  if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
      /* Certain fixed registers might be of the class NO_REGS.  This means
	 that not only can they not be allocated by the compiler, but
1086
	 they cannot be used in substitutions or canonicalizations
Richard Kenner committed
1087 1088 1089 1090 1091
	 either.  */
      && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
      && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
	  || (new >= FIRST_PSEUDO_REGISTER
	      && (firstr < FIRST_PSEUDO_REGISTER
1092 1093
		  || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
		       || (uid_cuid[REGNO_FIRST_UID (new)]
Richard Kenner committed
1094
			   < cse_basic_block_start))
1095 1096
		      && (uid_cuid[REGNO_LAST_UID (new)]
			  > uid_cuid[REGNO_LAST_UID (firstr)]))))))
Richard Kenner committed
1097
    {
1098 1099 1100 1101
      reg_eqv_table[firstr].prev = new;
      reg_eqv_table[new].next = firstr;
      reg_eqv_table[new].prev = -1;
      ent->first_reg = new;
Richard Kenner committed
1102 1103 1104 1105 1106 1107 1108
    }
  else
    {
      /* If NEW is a hard reg (known to be non-fixed), insert at end.
	 Otherwise, insert before any non-fixed hard regs that are at the
	 end.  Registers of class NO_REGS cannot be used as an
	 equivalent for anything.  */
1109
      while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
Richard Kenner committed
1110 1111
	     && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
	     && new >= FIRST_PSEUDO_REGISTER)
1112 1113 1114 1115
	lastr = reg_eqv_table[lastr].prev;
      reg_eqv_table[new].next = reg_eqv_table[lastr].next;
      if (reg_eqv_table[lastr].next >= 0)
	reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
Richard Kenner committed
1116
      else
1117 1118 1119
	qty_table[q].last_reg = new;
      reg_eqv_table[lastr].next = new;
      reg_eqv_table[new].prev = lastr;
Richard Kenner committed
1120 1121 1122 1123 1124 1125 1126
    }
}

/* Remove REG from its equivalence class.  */

static void
delete_reg_equiv (reg)
1127
     unsigned int reg;
Richard Kenner committed
1128
{
1129 1130 1131
  struct qty_table_elem *ent;
  int q = REG_QTY (reg);
  int p, n;
Richard Kenner committed
1132

1133
  /* If invalid, do nothing.  */
1134
  if (q == (int) reg)
Richard Kenner committed
1135 1136
    return;

1137 1138 1139 1140
  ent = &qty_table[q];

  p = reg_eqv_table[reg].prev;
  n = reg_eqv_table[reg].next;
1141

Richard Kenner committed
1142
  if (n != -1)
1143
    reg_eqv_table[n].prev = p;
Richard Kenner committed
1144
  else
1145
    ent->last_reg = p;
Richard Kenner committed
1146
  if (p != -1)
1147
    reg_eqv_table[p].next = n;
Richard Kenner committed
1148
  else
1149
    ent->first_reg = n;
Richard Kenner committed
1150

1151
  REG_QTY (reg) = reg;
Richard Kenner committed
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
}

/* Remove any invalid expressions from the hash table
   that refer to any of the registers contained in expression X.

   Make sure that newly inserted references to those registers
   as subexpressions will be considered valid.

   mention_regs is not called when a register itself
   is being stored in the table.

   Return 1 if we have done something that may have changed the hash code
   of X.  */

static int
mention_regs (x)
     rtx x;
{
1170 1171 1172 1173
  enum rtx_code code;
  int i, j;
  const char *fmt;
  int changed = 0;
Richard Kenner committed
1174 1175

  if (x == 0)
1176
    return 0;
Richard Kenner committed
1177 1178 1179 1180

  code = GET_CODE (x);
  if (code == REG)
    {
1181 1182
      unsigned int regno = REGNO (x);
      unsigned int endregno
Richard Kenner committed
1183 1184
	= regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
		   : HARD_REGNO_NREGS (regno, GET_MODE (x)));
1185
      unsigned int i;
Richard Kenner committed
1186 1187 1188

      for (i = regno; i < endregno; i++)
	{
1189
	  if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
Richard Kenner committed
1190 1191
	    remove_invalid_refs (i);

1192
	  REG_IN_TABLE (i) = REG_TICK (i);
1193
	  SUBREG_TICKED (i) = -1;
Richard Kenner committed
1194 1195 1196 1197 1198
	}

      return 0;
    }

1199 1200 1201 1202 1203 1204
  /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
     pseudo if they don't use overlapping words.  We handle only pseudos
     here for simplicity.  */
  if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
      && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
    {
1205
      unsigned int i = REGNO (SUBREG_REG (x));
1206

1207
      if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1208
	{
1209 1210 1211 1212 1213 1214
	  /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
	     the last store to this register really stored into this
	     subreg, then remove the memory of this subreg.
	     Otherwise, remove any memory of the entire register and
	     all its subregs from the table.  */
	  if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1215
	      || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1216 1217
	    remove_invalid_refs (i);
	  else
1218
	    remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1219 1220
	}

1221
      REG_IN_TABLE (i) = REG_TICK (i);
1222
      SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1223 1224 1225
      return 0;
    }

Richard Kenner committed
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
  /* If X is a comparison or a COMPARE and either operand is a register
     that does not have a quantity, give it one.  This is so that a later
     call to record_jump_equiv won't cause X to be assigned a different
     hash code and not found in the table after that call.

     It is not necessary to do this here, since rehash_using_reg can
     fix up the table later, but doing this here eliminates the need to
     call that expensive function in the most common case where the only
     use of the register is in the comparison.  */

  if (code == COMPARE || GET_RTX_CLASS (code) == '<')
    {
      if (GET_CODE (XEXP (x, 0)) == REG
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1240
	if (insert_regs (XEXP (x, 0), NULL, 0))
Richard Kenner committed
1241 1242 1243 1244 1245 1246 1247
	  {
	    rehash_using_reg (XEXP (x, 0));
	    changed = 1;
	  }

      if (GET_CODE (XEXP (x, 1)) == REG
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1248
	if (insert_regs (XEXP (x, 1), NULL, 0))
Richard Kenner committed
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	  {
	    rehash_using_reg (XEXP (x, 1));
	    changed = 1;
	  }
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      changed |= mention_regs (XEXP (x, i));
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	changed |= mention_regs (XVECEXP (x, i, j));

  return changed;
}

/* Update the register quantities for inserting X into the hash table
   with a value equivalent to CLASSP.
   (If the class does not contain a REG, it is irrelevant.)
   If MODIFIED is nonzero, X is a destination; it is being modified.
   Note that delete_reg_equiv should be called on a register
   before insert_regs is done on that register with MODIFIED != 0.

   Nonzero value means that elements of reg_qty have changed
   so X's hash code may be different.  */

static int
insert_regs (x, classp, modified)
     rtx x;
     struct table_elt *classp;
     int modified;
{
  if (GET_CODE (x) == REG)
    {
1284 1285
      unsigned int regno = REGNO (x);
      int qty_valid;
Richard Kenner committed
1286

1287 1288 1289
      /* If REGNO is in the equivalence table already but is of the
	 wrong mode for that equivalence, don't do anything here.  */

1290 1291 1292 1293
      qty_valid = REGNO_QTY_VALID_P (regno);
      if (qty_valid)
	{
	  struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1294

1295 1296 1297 1298 1299
	  if (ent->mode != GET_MODE (x))
	    return 0;
	}

      if (modified || ! qty_valid)
Richard Kenner committed
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	{
	  if (classp)
	    for (classp = classp->first_same_value;
		 classp != 0;
		 classp = classp->next_same_value)
	      if (GET_CODE (classp->exp) == REG
		  && GET_MODE (classp->exp) == GET_MODE (x))
		{
		  make_regs_eqv (regno, REGNO (classp->exp));
		  return 1;
		}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	  /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
	     than REG_IN_TABLE to find out if there was only a single preceding
	     invalidation - for the SUBREG - or another one, which would be
	     for the full register.  However, if we find here that REG_TICK
	     indicates that the register is invalid, it means that it has
	     been invalidated in a separate operation.  The SUBREG might be used
	     now (then this is a recursive call), or we might use the full REG
	     now and a SUBREG of it later.  So bump up REG_TICK so that
	     mention_regs will do the right thing.  */
	  if (! modified
	      && REG_IN_TABLE (regno) >= 0
	      && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
	    REG_TICK (regno)++;
1325
	  make_new_qty (regno, GET_MODE (x));
Richard Kenner committed
1326 1327
	  return 1;
	}
1328 1329

      return 0;
Richard Kenner committed
1330
    }
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340

  /* If X is a SUBREG, we will likely be inserting the inner register in the
     table.  If that register doesn't have an assigned quantity number at
     this point but does later, the insertion that we will be doing now will
     not be accessible because its hash code will have changed.  So assign
     a quantity number now.  */

  else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
	   && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
    {
1341
      insert_regs (SUBREG_REG (x), NULL, 0);
1342
      mention_regs (x);
1343 1344
      return 1;
    }
Richard Kenner committed
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
  else
    return mention_regs (x);
}

/* Look in or update the hash table.  */

/* Remove table element ELT from use in the table.
   HASH is its hash code, made using the HASH macro.
   It's an argument because often that is known in advance
   and we save much time not recomputing it.  */

static void
remove_from_table (elt, hash)
1358
     struct table_elt *elt;
Richard Kenner committed
1359
     unsigned hash;
Richard Kenner committed
1360 1361 1362 1363 1364 1365 1366 1367
{
  if (elt == 0)
    return;

  /* Mark this element as removed.  See cse_insn.  */
  elt->first_same_value = 0;

  /* Remove the table element from its equivalence class.  */
1368

Richard Kenner committed
1369
  {
1370 1371
    struct table_elt *prev = elt->prev_same_value;
    struct table_elt *next = elt->next_same_value;
Richard Kenner committed
1372

1373 1374
    if (next)
      next->prev_same_value = prev;
Richard Kenner committed
1375 1376 1377 1378 1379

    if (prev)
      prev->next_same_value = next;
    else
      {
1380
	struct table_elt *newfirst = next;
Richard Kenner committed
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	while (next)
	  {
	    next->first_same_value = newfirst;
	    next = next->next_same_value;
	  }
      }
  }

  /* Remove the table element from its hash bucket.  */

  {
1392 1393
    struct table_elt *prev = elt->prev_same_hash;
    struct table_elt *next = elt->next_same_hash;
Richard Kenner committed
1394

1395 1396
    if (next)
      next->prev_same_hash = prev;
Richard Kenner committed
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

    if (prev)
      prev->next_same_hash = next;
    else if (table[hash] == elt)
      table[hash] = next;
    else
      {
	/* This entry is not in the proper hash bucket.  This can happen
	   when two classes were merged by `merge_equiv_classes'.  Search
	   for the hash bucket that it heads.  This happens only very
	   rarely, so the cost is acceptable.  */
1408
	for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
1409 1410 1411 1412 1413 1414 1415 1416 1417
	  if (table[hash] == elt)
	    table[hash] = next;
      }
  }

  /* Remove the table element from its related-value circular chain.  */

  if (elt->related_value != 0 && elt->related_value != elt)
    {
1418
      struct table_elt *p = elt->related_value;
1419

Richard Kenner committed
1420 1421 1422 1423 1424 1425 1426
      while (p->related_value != elt)
	p = p->related_value;
      p->related_value = elt->related_value;
      if (p->related_value == p)
	p->related_value = 0;
    }

1427 1428 1429
  /* Now add it to the free element chain.  */
  elt->next_same_hash = free_element_chain;
  free_element_chain = elt;
Richard Kenner committed
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
}

/* Look up X in the hash table and return its table element,
   or 0 if X is not in the table.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   Here we are satisfied to find an expression whose tree structure
   looks like X.  */

static struct table_elt *
lookup (x, hash, mode)
     rtx x;
Richard Kenner committed
1444
     unsigned hash;
Richard Kenner committed
1445 1446
     enum machine_mode mode;
{
1447
  struct table_elt *p;
Richard Kenner committed
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

  for (p = table[hash]; p; p = p->next_same_hash)
    if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
			    || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
      return p;

  return 0;
}

/* Like `lookup' but don't care whether the table element uses invalid regs.
   Also ignore discrepancies in the machine mode of a register.  */

static struct table_elt *
lookup_for_remove (x, hash, mode)
     rtx x;
Richard Kenner committed
1463
     unsigned hash;
Richard Kenner committed
1464 1465
     enum machine_mode mode;
{
1466
  struct table_elt *p;
Richard Kenner committed
1467 1468 1469

  if (GET_CODE (x) == REG)
    {
1470 1471
      unsigned int regno = REGNO (x);

Richard Kenner committed
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
      /* Don't check the machine mode when comparing registers;
	 invalidating (REG:SI 0) also invalidates (REG:DF 0).  */
      for (p = table[hash]; p; p = p->next_same_hash)
	if (GET_CODE (p->exp) == REG
	    && REGNO (p->exp) == regno)
	  return p;
    }
  else
    {
      for (p = table[hash]; p; p = p->next_same_hash)
	if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
	  return p;
    }

  return 0;
}

/* Look for an expression equivalent to X and with code CODE.
   If one is found, return that expression.  */

static rtx
lookup_as_function (x, code)
     rtx x;
     enum rtx_code code;
{
1497
  struct table_elt *p
1498 1499
    = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, GET_MODE (x));

1500 1501 1502 1503 1504 1505 1506 1507
  /* If we are looking for a CONST_INT, the mode doesn't really matter, as
     long as we are narrowing.  So if we looked in vain for a mode narrower
     than word_mode before, look for word_mode now.  */
  if (p == 0 && code == CONST_INT
      && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
    {
      x = copy_rtx (x);
      PUT_MODE (x, word_mode);
1508
      p = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, word_mode);
1509 1510
    }

Richard Kenner committed
1511 1512 1513 1514
  if (p == 0)
    return 0;

  for (p = p->first_same_value; p; p = p->next_same_value)
1515 1516 1517 1518
    if (GET_CODE (p->exp) == code
	/* Make sure this is a valid entry in the table.  */
	&& exp_equiv_p (p->exp, p->exp, 1, 0))
      return p->exp;
1519

Richard Kenner committed
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
  return 0;
}

/* Insert X in the hash table, assuming HASH is its hash code
   and CLASSP is an element of the class it should go in
   (or 0 if a new class should be made).
   It is inserted at the proper position to keep the class in
   the order cheapest first.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   For elements of equal cheapness, the most recent one
   goes in front, except that the first element in the list
   remains first unless a cheaper element is added.  The order of
   pseudo-registers does not matter, as canon_reg will be called to
1536
   find the cheapest when a register is retrieved from the table.
Richard Kenner committed
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

   The in_memory field in the hash table element is set to 0.
   The caller must set it nonzero if appropriate.

   You should call insert_regs (X, CLASSP, MODIFY) before calling here,
   and if insert_regs returns a nonzero value
   you must then recompute its hash code before calling here.

   If necessary, update table showing constant values of quantities.  */

1547 1548
#define CHEAPER(X, Y) \
 (preferrable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
Richard Kenner committed
1549 1550 1551

static struct table_elt *
insert (x, classp, hash, mode)
1552 1553
     rtx x;
     struct table_elt *classp;
Richard Kenner committed
1554
     unsigned hash;
Richard Kenner committed
1555 1556
     enum machine_mode mode;
{
1557
  struct table_elt *elt;
Richard Kenner committed
1558 1559 1560 1561 1562 1563 1564 1565 1566

  /* If X is a register and we haven't made a quantity for it,
     something is wrong.  */
  if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
    abort ();

  /* If X is a hard register, show it is being put in the table.  */
  if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
    {
1567 1568 1569
      unsigned int regno = REGNO (x);
      unsigned int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
      unsigned int i;
Richard Kenner committed
1570 1571

      for (i = regno; i < endregno; i++)
1572
	SET_HARD_REG_BIT (hard_regs_in_table, i);
Richard Kenner committed
1573 1574 1575 1576
    }

  /* Put an element for X into the right hash bucket.  */

1577 1578
  elt = free_element_chain;
  if (elt)
1579
    free_element_chain = elt->next_same_hash;
1580 1581 1582
  else
    {
      n_elements_made++;
Mark Mitchell committed
1583
      elt = (struct table_elt *) xmalloc (sizeof (struct table_elt));
1584 1585
    }

Richard Kenner committed
1586
  elt->exp = x;
1587
  elt->canon_exp = NULL_RTX;
Richard Kenner committed
1588
  elt->cost = COST (x);
1589
  elt->regcost = approx_reg_cost (x);
Richard Kenner committed
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
  elt->next_same_value = 0;
  elt->prev_same_value = 0;
  elt->next_same_hash = table[hash];
  elt->prev_same_hash = 0;
  elt->related_value = 0;
  elt->in_memory = 0;
  elt->mode = mode;
  elt->is_const = (CONSTANT_P (x)
		   /* GNU C++ takes advantage of this for `this'
		      (and other const values).  */
1600 1601
		   || (GET_CODE (x) == REG
		       && RTX_UNCHANGING_P (x)
Richard Kenner committed
1602
		       && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1603
		   || fixed_base_plus_p (x));
Richard Kenner committed
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

  if (table[hash])
    table[hash]->prev_same_hash = elt;
  table[hash] = elt;

  /* Put it into the proper value-class.  */
  if (classp)
    {
      classp = classp->first_same_value;
      if (CHEAPER (elt, classp))
	/* Insert at the head of the class */
	{
1616
	  struct table_elt *p;
Richard Kenner committed
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	  elt->next_same_value = classp;
	  classp->prev_same_value = elt;
	  elt->first_same_value = elt;

	  for (p = classp; p; p = p->next_same_value)
	    p->first_same_value = elt;
	}
      else
	{
	  /* Insert not at head of the class.  */
	  /* Put it after the last element cheaper than X.  */
1628
	  struct table_elt *p, *next;
1629

Richard Kenner committed
1630 1631
	  for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
	       p = next);
1632

Richard Kenner committed
1633 1634 1635 1636
	  /* Put it after P and before NEXT.  */
	  elt->next_same_value = next;
	  if (next)
	    next->prev_same_value = elt;
1637

Richard Kenner committed
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	  elt->prev_same_value = p;
	  p->next_same_value = elt;
	  elt->first_same_value = classp;
	}
    }
  else
    elt->first_same_value = elt;

  /* If this is a constant being set equivalent to a register or a register
     being set equivalent to a constant, note the constant equivalence.

     If this is a constant, it cannot be equivalent to a different constant,
     and a constant is the only thing that can be cheaper than a register.  So
     we know the register is the head of the class (before the constant was
     inserted).

     If this is a register that is not already known equivalent to a
     constant, we must check the entire class.

     If this is a register that is already known equivalent to an insn,
1658
     update the qtys `const_insn' to show that `this_insn' is the latest
Richard Kenner committed
1659 1660
     insn making that quantity equivalent to the constant.  */

1661 1662
  if (elt->is_const && classp && GET_CODE (classp->exp) == REG
      && GET_CODE (x) != REG)
Richard Kenner committed
1663
    {
1664 1665 1666 1667 1668
      int exp_q = REG_QTY (REGNO (classp->exp));
      struct qty_table_elem *exp_ent = &qty_table[exp_q];

      exp_ent->const_rtx = gen_lowpart_if_possible (exp_ent->mode, x);
      exp_ent->const_insn = this_insn;
Richard Kenner committed
1669 1670
    }

1671 1672 1673
  else if (GET_CODE (x) == REG
	   && classp
	   && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1674
	   && ! elt->is_const)
Richard Kenner committed
1675
    {
1676
      struct table_elt *p;
Richard Kenner committed
1677 1678 1679

      for (p = classp; p != 0; p = p->next_same_value)
	{
1680
	  if (p->is_const && GET_CODE (p->exp) != REG)
Richard Kenner committed
1681
	    {
1682 1683 1684
	      int x_q = REG_QTY (REGNO (x));
	      struct qty_table_elem *x_ent = &qty_table[x_q];

1685 1686
	      x_ent->const_rtx
		= gen_lowpart_if_possible (GET_MODE (x), p->exp);
1687
	      x_ent->const_insn = this_insn;
Richard Kenner committed
1688 1689 1690 1691 1692
	      break;
	    }
	}
    }

1693 1694 1695 1696
  else if (GET_CODE (x) == REG
	   && qty_table[REG_QTY (REGNO (x))].const_rtx
	   && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
    qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
Richard Kenner committed
1697 1698 1699 1700 1701 1702 1703

  /* If this is a constant with symbolic value,
     and it has a term with an explicit integer value,
     link it up with related expressions.  */
  if (GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
Richard Kenner committed
1704
      unsigned subhash;
Richard Kenner committed
1705 1706 1707 1708 1709
      struct table_elt *subelt, *subelt_prev;

      if (subexp != 0)
	{
	  /* Get the integer-free subexpression in the hash table.  */
1710
	  subhash = safe_hash (subexp, mode) & HASH_MASK;
Richard Kenner committed
1711 1712
	  subelt = lookup (subexp, subhash, mode);
	  if (subelt == 0)
1713
	    subelt = insert (subexp, NULL, subhash, mode);
Richard Kenner committed
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	  /* Initialize SUBELT's circular chain if it has none.  */
	  if (subelt->related_value == 0)
	    subelt->related_value = subelt;
	  /* Find the element in the circular chain that precedes SUBELT.  */
	  subelt_prev = subelt;
	  while (subelt_prev->related_value != subelt)
	    subelt_prev = subelt_prev->related_value;
	  /* Put new ELT into SUBELT's circular chain just before SUBELT.
	     This way the element that follows SUBELT is the oldest one.  */
	  elt->related_value = subelt_prev->related_value;
	  subelt_prev->related_value = elt;
	}
    }

  return elt;
}

/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
   CLASS2 into CLASS1.  This is done when we have reached an insn which makes
   the two classes equivalent.

   CLASS1 will be the surviving class; CLASS2 should not be used after this
   call.

   Any invalid entries in CLASS2 will not be copied.  */

static void
merge_equiv_classes (class1, class2)
     struct table_elt *class1, *class2;
{
  struct table_elt *elt, *next, *new;

  /* Ensure we start with the head of the classes.  */
  class1 = class1->first_same_value;
  class2 = class2->first_same_value;

  /* If they were already equal, forget it.  */
  if (class1 == class2)
    return;

  for (elt = class2; elt; elt = next)
    {
1756
      unsigned int hash;
Richard Kenner committed
1757 1758 1759 1760 1761 1762 1763
      rtx exp = elt->exp;
      enum machine_mode mode = elt->mode;

      next = elt->next_same_value;

      /* Remove old entry, make a new one in CLASS1's class.
	 Don't do this for invalid entries as we cannot find their
Mike Stump committed
1764
	 hash code (it also isn't necessary).  */
Richard Kenner committed
1765 1766 1767 1768
      if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
	{
	  hash_arg_in_memory = 0;
	  hash = HASH (exp, mode);
1769

Richard Kenner committed
1770 1771
	  if (GET_CODE (exp) == REG)
	    delete_reg_equiv (REGNO (exp));
1772

Richard Kenner committed
1773 1774 1775
	  remove_from_table (elt, hash);

	  if (insert_regs (exp, class1, 0))
1776 1777 1778 1779
	    {
	      rehash_using_reg (exp);
	      hash = HASH (exp, mode);
	    }
Richard Kenner committed
1780 1781 1782 1783 1784 1785
	  new = insert (exp, class1, hash, mode);
	  new->in_memory = hash_arg_in_memory;
	}
    }
}

1786 1787 1788 1789 1790 1791 1792 1793
/* Flush the entire hash table.  */

static void
flush_hash_table ()
{
  int i;
  struct table_elt *p;

1794
  for (i = 0; i < HASH_SIZE; i++)
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
    for (p = table[i]; p; p = table[i])
      {
	/* Note that invalidate can remove elements
	   after P in the current hash chain.  */
	if (GET_CODE (p->exp) == REG)
	  invalidate (p->exp, p->mode);
	else
	  remove_from_table (p, i);
      }
}
Richard Kenner committed
1805

1806 1807 1808 1809 1810 1811
/* Function called for each rtx to check whether true dependence exist.  */
struct check_dependence_data
{
  enum machine_mode mode;
  rtx exp;
};
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
static int
check_dependence (x, data)
     rtx *x;
     void *data;
{
  struct check_dependence_data *d = (struct check_dependence_data *) data;
  if (*x && GET_CODE (*x) == MEM)
    return true_dependence (d->exp, d->mode, *x, cse_rtx_varies_p);
  else
    return 0;
}

Richard Kenner committed
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
/* Remove from the hash table, or mark as invalid, all expressions whose
   values could be altered by storing in X.  X is a register, a subreg, or
   a memory reference with nonvarying address (because, when a memory
   reference with a varying address is stored in, all memory references are
   removed by invalidate_memory so specific invalidation is superfluous).
   FULL_MODE, if not VOIDmode, indicates that this much should be
   invalidated instead of just the amount indicated by the mode of X.  This
   is only used for bitfield stores into memory.

   A nonvarying address may be just a register or just a symbol reference,
   or it may be either of those plus a numeric offset.  */
Richard Kenner committed
1836 1837

static void
1838
invalidate (x, full_mode)
Richard Kenner committed
1839
     rtx x;
1840
     enum machine_mode full_mode;
Richard Kenner committed
1841
{
1842 1843
  int i;
  struct table_elt *p;
Richard Kenner committed
1844

Richard Kenner committed
1845
  switch (GET_CODE (x))
Richard Kenner committed
1846
    {
Richard Kenner committed
1847 1848 1849 1850 1851 1852
    case REG:
      {
	/* If X is a register, dependencies on its contents are recorded
	   through the qty number mechanism.  Just change the qty number of
	   the register, mark it as invalid for expressions that refer to it,
	   and remove it itself.  */
1853 1854
	unsigned int regno = REGNO (x);
	unsigned int hash = HASH (x, GET_MODE (x));
Richard Kenner committed
1855

Richard Kenner committed
1856 1857 1858
	/* Remove REGNO from any quantity list it might be on and indicate
	   that its value might have changed.  If it is a pseudo, remove its
	   entry from the hash table.
Richard Kenner committed
1859

Richard Kenner committed
1860 1861 1862 1863
	   For a hard register, we do the first two actions above for any
	   additional hard registers corresponding to X.  Then, if any of these
	   registers are in the table, we must remove any REG entries that
	   overlap these registers.  */
Richard Kenner committed
1864

Richard Kenner committed
1865 1866
	delete_reg_equiv (regno);
	REG_TICK (regno)++;
1867
	SUBREG_TICKED (regno) = -1;
1868

Richard Kenner committed
1869 1870 1871 1872 1873
	if (regno >= FIRST_PSEUDO_REGISTER)
	  {
	    /* Because a register can be referenced in more than one mode,
	       we might have to remove more than one table entry.  */
	    struct table_elt *elt;
1874

Richard Kenner committed
1875 1876 1877 1878 1879 1880 1881
	    while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
	      remove_from_table (elt, hash);
	  }
	else
	  {
	    HOST_WIDE_INT in_table
	      = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1882 1883 1884
	    unsigned int endregno
	      = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
	    unsigned int tregno, tendregno, rn;
1885
	    struct table_elt *p, *next;
Richard Kenner committed
1886

Richard Kenner committed
1887
	    CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
Richard Kenner committed
1888

1889
	    for (rn = regno + 1; rn < endregno; rn++)
Richard Kenner committed
1890
	      {
1891 1892 1893 1894
		in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
		CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
		delete_reg_equiv (rn);
		REG_TICK (rn)++;
1895
		SUBREG_TICKED (rn) = -1;
Richard Kenner committed
1896
	      }
Richard Kenner committed
1897

Richard Kenner committed
1898
	    if (in_table)
1899
	      for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
1900 1901 1902
		for (p = table[hash]; p; p = next)
		  {
		    next = p->next_same_hash;
Richard Kenner committed
1903

1904 1905 1906 1907
		    if (GET_CODE (p->exp) != REG
			|| REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
		      continue;

Richard Kenner committed
1908 1909 1910 1911 1912 1913 1914 1915
		    tregno = REGNO (p->exp);
		    tendregno
		      = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
		    if (tendregno > regno && tregno < endregno)
		      remove_from_table (p, hash);
		  }
	  }
      }
Richard Kenner committed
1916 1917
      return;

Richard Kenner committed
1918
    case SUBREG:
1919
      invalidate (SUBREG_REG (x), VOIDmode);
Richard Kenner committed
1920
      return;
1921

Richard Kenner committed
1922
    case PARALLEL:
1923
      for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1924 1925 1926
	invalidate (XVECEXP (x, 0, i), VOIDmode);
      return;

Richard Kenner committed
1927 1928 1929
    case EXPR_LIST:
      /* This is part of a disjoint return value; extract the location in
	 question ignoring the offset.  */
1930 1931
      invalidate (XEXP (x, 0), VOIDmode);
      return;
Richard Kenner committed
1932

Richard Kenner committed
1933
    case MEM:
1934 1935 1936 1937
      /* Calculate the canonical version of X here so that
	 true_dependence doesn't generate new RTL for X on each call.  */
      x = canon_rtx (x);

Richard Kenner committed
1938 1939 1940 1941
      /* Remove all hash table elements that refer to overlapping pieces of
	 memory.  */
      if (full_mode == VOIDmode)
	full_mode = GET_MODE (x);
1942

1943
      for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1944
	{
1945
	  struct table_elt *next;
Richard Kenner committed
1946 1947 1948 1949

	  for (p = table[i]; p; p = next)
	    {
	      next = p->next_same_hash;
1950 1951
	      if (p->in_memory)
		{
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
		  struct check_dependence_data d;

		  /* Just canonicalize the expression once;
		     otherwise each time we call invalidate
		     true_dependence will canonicalize the
		     expression again.  */
		  if (!p->canon_exp)
		    p->canon_exp = canon_rtx (p->exp);
		  d.exp = x;
		  d.mode = full_mode;
		  if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1963 1964
		    remove_from_table (p, i);
		}
Richard Kenner committed
1965
	    }
Richard Kenner committed
1966
	}
Richard Kenner committed
1967 1968 1969 1970
      return;

    default:
      abort ();
Richard Kenner committed
1971 1972
    }
}
Richard Kenner committed
1973

Richard Kenner committed
1974 1975 1976 1977 1978 1979 1980
/* Remove all expressions that refer to register REGNO,
   since they are already invalid, and we are about to
   mark that register valid again and don't want the old
   expressions to reappear as valid.  */

static void
remove_invalid_refs (regno)
1981
     unsigned int regno;
Richard Kenner committed
1982
{
1983 1984
  unsigned int i;
  struct table_elt *p, *next;
Richard Kenner committed
1985

1986
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1987 1988 1989 1990
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (GET_CODE (p->exp) != REG
Kazu Hirata committed
1991
	    && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
Richard Kenner committed
1992 1993 1994
	  remove_from_table (p, i);
      }
}
1995

1996 1997
/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
   and mode MODE.  */
1998
static void
1999
remove_invalid_subreg_refs (regno, offset, mode)
2000
     unsigned int regno;
2001
     unsigned int offset;
2002 2003
     enum machine_mode mode;
{
2004 2005
  unsigned int i;
  struct table_elt *p, *next;
2006
  unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2007

2008
  for (i = 0; i < HASH_SIZE; i++)
2009 2010
    for (p = table[i]; p; p = next)
      {
2011
	rtx exp = p->exp;
2012
	next = p->next_same_hash;
2013

2014
	if (GET_CODE (exp) != REG
2015 2016 2017
	    && (GET_CODE (exp) != SUBREG
		|| GET_CODE (SUBREG_REG (exp)) != REG
		|| REGNO (SUBREG_REG (exp)) != regno
2018 2019 2020
		|| (((SUBREG_BYTE (exp)
		      + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
		    && SUBREG_BYTE (exp) <= end))
Kazu Hirata committed
2021
	    && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2022 2023 2024
	  remove_from_table (p, i);
      }
}
Richard Kenner committed
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

/* Recompute the hash codes of any valid entries in the hash table that
   reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.

   This is called when we make a jump equivalence.  */

static void
rehash_using_reg (x)
     rtx x;
{
Kaveh R. Ghazi committed
2035
  unsigned int i;
Richard Kenner committed
2036
  struct table_elt *p, *next;
Richard Kenner committed
2037
  unsigned hash;
Richard Kenner committed
2038 2039 2040 2041 2042 2043 2044 2045

  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  /* If X is not a register or if the register is known not to be in any
     valid entries in the table, we have no work to do.  */

  if (GET_CODE (x) != REG
2046 2047
      || REG_IN_TABLE (REGNO (x)) < 0
      || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
Richard Kenner committed
2048 2049 2050 2051 2052 2053
    return;

  /* Scan all hash chains looking for valid entries that mention X.
     If we find one and it is in the wrong hash chain, move it.  We can skip
     objects that are registers, since they are handled specially.  */

2054
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
2055 2056 2057 2058
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
2059
	    && exp_equiv_p (p->exp, p->exp, 1, 0)
2060
	    && i != (hash = safe_hash (p->exp, p->mode) & HASH_MASK))
Richard Kenner committed
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	  {
	    if (p->next_same_hash)
	      p->next_same_hash->prev_same_hash = p->prev_same_hash;

	    if (p->prev_same_hash)
	      p->prev_same_hash->next_same_hash = p->next_same_hash;
	    else
	      table[i] = p->next_same_hash;

	    p->next_same_hash = table[hash];
	    p->prev_same_hash = 0;
	    if (table[hash])
	      table[hash]->prev_same_hash = p;
	    table[hash] = p;
	  }
      }
}

/* Remove from the hash table any expression that is a call-clobbered
   register.  Also update their TICK values.  */

static void
invalidate_for_call ()
{
2085 2086
  unsigned int regno, endregno;
  unsigned int i;
Richard Kenner committed
2087
  unsigned hash;
Richard Kenner committed
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
  struct table_elt *p, *next;
  int in_table = 0;

  /* Go through all the hard registers.  For each that is clobbered in
     a CALL_INSN, remove the register from quantity chains and update
     reg_tick if defined.  Also see if any of these registers is currently
     in the table.  */

  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
      {
	delete_reg_equiv (regno);
2100
	if (REG_TICK (regno) >= 0)
2101 2102 2103 2104
	  {
	    REG_TICK (regno)++;
	    SUBREG_TICKED (regno) = -1;
	  }
Richard Kenner committed
2105

2106
	in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
Richard Kenner committed
2107 2108 2109 2110 2111 2112 2113
      }

  /* In the case where we have no call-clobbered hard registers in the
     table, we are done.  Otherwise, scan the table and remove any
     entry that overlaps a call-clobbered register.  */

  if (in_table)
2114
    for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
      for (p = table[hash]; p; p = next)
	{
	  next = p->next_same_hash;

	  if (GET_CODE (p->exp) != REG
	      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
	    continue;

	  regno = REGNO (p->exp);
	  endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));

	  for (i = regno; i < endregno; i++)
	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
	      {
		remove_from_table (p, hash);
		break;
	      }
	}
}

/* Given an expression X of type CONST,
   and ELT which is its table entry (or 0 if it
   is not in the hash table),
   return an alternate expression for X as a register plus integer.
   If none can be found, return 0.  */

static rtx
use_related_value (x, elt)
     rtx x;
     struct table_elt *elt;
{
2146 2147
  struct table_elt *relt = 0;
  struct table_elt *p, *q;
2148
  HOST_WIDE_INT offset;
Richard Kenner committed
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

  /* First, is there anything related known?
     If we have a table element, we can tell from that.
     Otherwise, must look it up.  */

  if (elt != 0 && elt->related_value != 0)
    relt = elt;
  else if (elt == 0 && GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
      if (subexp != 0)
	relt = lookup (subexp,
2161
		       safe_hash (subexp, GET_MODE (subexp)) & HASH_MASK,
Richard Kenner committed
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
		       GET_MODE (subexp));
    }

  if (relt == 0)
    return 0;

  /* Search all related table entries for one that has an
     equivalent register.  */

  p = relt;
  while (1)
    {
      /* This loop is strange in that it is executed in two different cases.
	 The first is when X is already in the table.  Then it is searching
	 the RELATED_VALUE list of X's class (RELT).  The second case is when
	 X is not in the table.  Then RELT points to a class for the related
	 value.

	 Ensure that, whatever case we are in, that we ignore classes that have
	 the same value as X.  */

      if (rtx_equal_p (x, p->exp))
	q = 0;
      else
	for (q = p->first_same_value; q; q = q->next_same_value)
	  if (GET_CODE (q->exp) == REG)
	    break;

      if (q)
	break;

      p = p->related_value;

      /* We went all the way around, so there is nothing to be found.
	 Alternatively, perhaps RELT was in the table for some other reason
	 and it has no related values recorded.  */
      if (p == relt || p == 0)
	break;
    }

  if (q == 0)
    return 0;

  offset = (get_integer_term (x) - get_integer_term (p->exp));
  /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity.  */
  return plus_constant (q->exp, offset);
}

2210 2211 2212 2213 2214 2215
/* Hash a string.  Just add its bytes up.  */
static inline unsigned
canon_hash_string (ps)
     const char *ps;
{
  unsigned hash = 0;
Kazu Hirata committed
2216 2217
  const unsigned char *p = (const unsigned char *) ps;

2218 2219 2220 2221 2222 2223 2224
  if (p)
    while (*p)
      hash += *p++;

  return hash;
}

Richard Kenner committed
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
/* Hash an rtx.  We are careful to make sure the value is never negative.
   Equivalent registers hash identically.
   MODE is used in hashing for CONST_INTs only;
   otherwise the mode of X is used.

   Store 1 in do_not_record if any subexpression is volatile.

   Store 1 in hash_arg_in_memory if X contains a MEM rtx
   which does not have the RTX_UNCHANGING_P bit set.

   Note that cse_insn knows that the hash code of a MEM expression
   is just (int) MEM plus the hash code of the address.  */

Richard Kenner committed
2238
static unsigned
Richard Kenner committed
2239 2240 2241 2242
canon_hash (x, mode)
     rtx x;
     enum machine_mode mode;
{
2243 2244 2245 2246
  int i, j;
  unsigned hash = 0;
  enum rtx_code code;
  const char *fmt;
Richard Kenner committed
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

  /* repeat is used to turn tail-recursion into iteration.  */
 repeat:
  if (x == 0)
    return hash;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      {
2258
	unsigned int regno = REGNO (x);
2259
	bool record;
Richard Kenner committed
2260 2261 2262

	/* On some machines, we can't record any non-fixed hard register,
	   because extending its life will cause reload problems.  We
2263
	   consider ap, fp, sp, gp to be fixed for this purpose.
2264 2265 2266 2267 2268

	   We also consider CCmode registers to be fixed for this purpose;
	   failure to do so leads to failure to simplify 0<100 type of
	   conditionals.

Kazu Hirata committed
2269
	   On all machines, we can't record any global registers.
2270 2271
	   Nor should we record any register that is in a small
	   class, as defined by CLASS_LIKELY_SPILLED_P.  */
Richard Kenner committed
2272

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	if (regno >= FIRST_PSEUDO_REGISTER)
	  record = true;
	else if (x == frame_pointer_rtx
		 || x == hard_frame_pointer_rtx
		 || x == arg_pointer_rtx
		 || x == stack_pointer_rtx
		 || x == pic_offset_table_rtx)
	  record = true;
	else if (global_regs[regno])
	  record = false;
	else if (fixed_regs[regno])
	  record = true;
	else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
	  record = true;
	else if (SMALL_REGISTER_CLASSES)
	  record = false;
	else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
	  record = false;
	else
	  record = true;
	    
	if (!record)
Richard Kenner committed
2295 2296 2297 2298
	  {
	    do_not_record = 1;
	    return 0;
	  }
2299

2300
	hash += ((unsigned) REG << 7) + (unsigned) REG_QTY (regno);
Richard Kenner committed
2301
	return hash;
Richard Kenner committed
2302 2303
      }

2304 2305 2306 2307 2308 2309 2310 2311
    /* We handle SUBREG of a REG specially because the underlying
       reg changes its hash value with every value change; we don't
       want to have to forget unrelated subregs when one subreg changes.  */
    case SUBREG:
      {
	if (GET_CODE (SUBREG_REG (x)) == REG)
	  {
	    hash += (((unsigned) SUBREG << 7)
2312 2313
		     + REGNO (SUBREG_REG (x))
		     + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2314 2315 2316 2317 2318
	    return hash;
	  }
	break;
      }

Richard Kenner committed
2319
    case CONST_INT:
Richard Kenner committed
2320 2321 2322 2323 2324
      {
	unsigned HOST_WIDE_INT tem = INTVAL (x);
	hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
	return hash;
      }
Richard Kenner committed
2325 2326 2327 2328

    case CONST_DOUBLE:
      /* This is like the general case, except that it only counts
	 the integers representing the constant.  */
Richard Kenner committed
2329
      hash += (unsigned) code + (unsigned) GET_MODE (x);
2330
      if (GET_MODE (x) != VOIDmode)
2331
	hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2332 2333 2334
      else
	hash += ((unsigned) CONST_DOUBLE_LOW (x)
		 + (unsigned) CONST_DOUBLE_HIGH (x));
Richard Kenner committed
2335 2336
      return hash;

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
    case CONST_VECTOR:
      {
	int units;
	rtx elt;

	units = CONST_VECTOR_NUNITS (x);

	for (i = 0; i < units; ++i)
	  {
	    elt = CONST_VECTOR_ELT (x, i);
	    hash += canon_hash (elt, GET_MODE (elt));
	  }

	return hash;
      }

Richard Kenner committed
2353 2354
      /* Assume there is only one rtx object for any given label.  */
    case LABEL_REF:
Kazu Hirata committed
2355
      hash += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
Richard Kenner committed
2356
      return hash;
Richard Kenner committed
2357 2358

    case SYMBOL_REF:
Kazu Hirata committed
2359
      hash += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
Richard Kenner committed
2360
      return hash;
Richard Kenner committed
2361 2362

    case MEM:
Richard Kenner committed
2363 2364 2365
      /* We don't record if marked volatile or if BLKmode since we don't
	 know the size of the move.  */
      if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
Richard Kenner committed
2366 2367 2368 2369
	{
	  do_not_record = 1;
	  return 0;
	}
2370 2371 2372
      if (! RTX_UNCHANGING_P (x) || fixed_base_plus_p (XEXP (x, 0)))
	hash_arg_in_memory = 1;

Richard Kenner committed
2373 2374
      /* Now that we have already found this special case,
	 might as well speed it up as much as possible.  */
Richard Kenner committed
2375
      hash += (unsigned) MEM;
Richard Kenner committed
2376 2377 2378
      x = XEXP (x, 0);
      goto repeat;

2379 2380 2381 2382 2383 2384 2385 2386
    case USE:
      /* A USE that mentions non-volatile memory needs special
	 handling since the MEM may be BLKmode which normally
	 prevents an entry from being made.  Pure calls are
	 marked by a USE which mentions BLKmode memory.  */
      if (GET_CODE (XEXP (x, 0)) == MEM
	  && ! MEM_VOLATILE_P (XEXP (x, 0)))
	{
Kazu Hirata committed
2387
	  hash += (unsigned) USE;
2388 2389
	  x = XEXP (x, 0);

2390
	  if (! RTX_UNCHANGING_P (x) || fixed_base_plus_p (XEXP (x, 0)))
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	    hash_arg_in_memory = 1;

	  /* Now that we have already found this special case,
	     might as well speed it up as much as possible.  */
	  hash += (unsigned) MEM;
	  x = XEXP (x, 0);
	  goto repeat;
	}
      break;

Richard Kenner committed
2401 2402 2403 2404
    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
2405 2406
    case PRE_MODIFY:
    case POST_MODIFY:
Richard Kenner committed
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
    case PC:
    case CC0:
    case CALL:
    case UNSPEC_VOLATILE:
      do_not_record = 1;
      return 0;

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	{
	  do_not_record = 1;
	  return 0;
	}
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
      else
	{
	  /* We don't want to take the filename and line into account.  */
	  hash += (unsigned) code + (unsigned) GET_MODE (x)
	    + canon_hash_string (ASM_OPERANDS_TEMPLATE (x))
	    + canon_hash_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
	    + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);

	  if (ASM_OPERANDS_INPUT_LENGTH (x))
	    {
	      for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
		{
		  hash += (canon_hash (ASM_OPERANDS_INPUT (x, i),
				       GET_MODE (ASM_OPERANDS_INPUT (x, i)))
			   + canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT
						(x, i)));
		}

	      hash += canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
	      x = ASM_OPERANDS_INPUT (x, 0);
	      mode = GET_MODE (x);
	      goto repeat;
	    }

	  return hash;
	}
2446
      break;
2447

2448 2449
    default:
      break;
Richard Kenner committed
2450 2451 2452
    }

  i = GET_RTX_LENGTH (code) - 1;
Richard Kenner committed
2453
  hash += (unsigned) code + (unsigned) GET_MODE (x);
Richard Kenner committed
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
  fmt = GET_RTX_FORMAT (code);
  for (; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  rtx tem = XEXP (x, i);

	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function  is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = tem;
	      goto repeat;
	    }
	  hash += canon_hash (tem, 0);
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  hash += canon_hash (XVECEXP (x, i, j), 0);
      else if (fmt[i] == 's')
2475
	hash += canon_hash_string (XSTR (x, i));
Richard Kenner committed
2476 2477
      else if (fmt[i] == 'i')
	{
2478
	  unsigned tem = XINT (x, i);
Richard Kenner committed
2479
	  hash += tem;
Richard Kenner committed
2480
	}
2481
      else if (fmt[i] == '0' || fmt[i] == 't')
Kazu Hirata committed
2482 2483
	/* Unused.  */
	;
Richard Kenner committed
2484 2485 2486 2487 2488 2489 2490 2491
      else
	abort ();
    }
  return hash;
}

/* Like canon_hash but with no side effects.  */

Richard Kenner committed
2492
static unsigned
Richard Kenner committed
2493 2494 2495 2496 2497 2498
safe_hash (x, mode)
     rtx x;
     enum machine_mode mode;
{
  int save_do_not_record = do_not_record;
  int save_hash_arg_in_memory = hash_arg_in_memory;
Richard Kenner committed
2499
  unsigned hash = canon_hash (x, mode);
Richard Kenner committed
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
  hash_arg_in_memory = save_hash_arg_in_memory;
  do_not_record = save_do_not_record;
  return hash;
}

/* Return 1 iff X and Y would canonicalize into the same thing,
   without actually constructing the canonicalization of either one.
   If VALIDATE is nonzero,
   we assume X is an expression being processed from the rtl
   and Y was found in the hash table.  We check register refs
   in Y for being marked as valid.

   If EQUAL_VALUES is nonzero, we allow a register to match a constant value
   that is known to be in the register.  Ordinarily, we don't allow them
   to match, because letting them match would cause unpredictable results
   in all the places that search a hash table chain for an equivalent
   for a given value.  A possible equivalent that has different structure
   has its hash code computed from different data.  Whether the hash code
Jeff Law committed
2518
   is the same as that of the given value is pure luck.  */
Richard Kenner committed
2519 2520 2521 2522 2523 2524 2525

static int
exp_equiv_p (x, y, validate, equal_values)
     rtx x, y;
     int validate;
     int equal_values;
{
2526 2527 2528
  int i, j;
  enum rtx_code code;
  const char *fmt;
Richard Kenner committed
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

  /* Note: it is incorrect to assume an expression is equivalent to itself
     if VALIDATE is nonzero.  */
  if (x == y && !validate)
    return 1;
  if (x == 0 || y == 0)
    return x == y;

  code = GET_CODE (x);
  if (code != GET_CODE (y))
    {
      if (!equal_values)
	return 0;

      /* If X is a constant and Y is a register or vice versa, they may be
	 equivalent.  We only have to validate if Y is a register.  */
      if (CONSTANT_P (x) && GET_CODE (y) == REG
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
	  && REGNO_QTY_VALID_P (REGNO (y)))
	{
	  int y_q = REG_QTY (REGNO (y));
	  struct qty_table_elem *y_ent = &qty_table[y_q];

	  if (GET_MODE (y) == y_ent->mode
	      && rtx_equal_p (x, y_ent->const_rtx)
	      && (! validate || REG_IN_TABLE (REGNO (y)) == REG_TICK (REGNO (y))))
	    return 1;
	}
Richard Kenner committed
2556 2557

      if (CONSTANT_P (y) && code == REG
2558 2559 2560 2561 2562 2563 2564 2565 2566
	  && REGNO_QTY_VALID_P (REGNO (x)))
	{
	  int x_q = REG_QTY (REGNO (x));
	  struct qty_table_elem *x_ent = &qty_table[x_q];

	  if (GET_MODE (x) == x_ent->mode
	      && rtx_equal_p (y, x_ent->const_rtx))
	    return 1;
	}
Richard Kenner committed
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

      return 0;
    }

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
  if (GET_MODE (x) != GET_MODE (y))
    return 0;

  switch (code)
    {
    case PC:
    case CC0:
    case CONST_INT:
2580
      return x == y;
Richard Kenner committed
2581 2582 2583 2584

    case LABEL_REF:
      return XEXP (x, 0) == XEXP (y, 0);

2585 2586 2587
    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);

Richard Kenner committed
2588 2589
    case REG:
      {
2590 2591
	unsigned int regno = REGNO (y);
	unsigned int endregno
Richard Kenner committed
2592 2593
	  = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
		     : HARD_REGNO_NREGS (regno, GET_MODE (y)));
2594
	unsigned int i;
Richard Kenner committed
2595 2596 2597 2598 2599

	/* If the quantities are not the same, the expressions are not
	   equivalent.  If there are and we are not to validate, they
	   are equivalent.  Otherwise, ensure all regs are up-to-date.  */

2600
	if (REG_QTY (REGNO (x)) != REG_QTY (regno))
Richard Kenner committed
2601 2602 2603 2604 2605 2606
	  return 0;

	if (! validate)
	  return 1;

	for (i = regno; i < endregno; i++)
2607
	  if (REG_IN_TABLE (i) != REG_TICK (i))
Richard Kenner committed
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	    return 0;

	return 1;
      }

    /*  For commutative operations, check both orders.  */
    case PLUS:
    case MULT:
    case AND:
    case IOR:
    case XOR:
    case NE:
    case EQ:
      return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
	       && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
			       validate, equal_values))
	      || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
			       validate, equal_values)
		  && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
				  validate, equal_values)));
2628

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
    case ASM_OPERANDS:
      /* We don't use the generic code below because we want to
	 disregard filename and line numbers.  */

      /* A volatile asm isn't equivalent to any other.  */
      if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
	return 0;

      if (GET_MODE (x) != GET_MODE (y)
	  || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
	  || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
		     ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
	  || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
	  || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
	return 0;

      if (ASM_OPERANDS_INPUT_LENGTH (x))
	{
	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
	    if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
			       ASM_OPERANDS_INPUT (y, i),
			       validate, equal_values)
		|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
			   ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
	      return 0;
	}

      return 1;

2658 2659
    default:
      break;
Richard Kenner committed
2660 2661 2662 2663 2664 2665 2666 2667
    }

  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
2668
      switch (fmt[i])
Richard Kenner committed
2669
	{
2670
	case 'e':
Richard Kenner committed
2671 2672
	  if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
	    return 0;
2673 2674 2675
	  break;

	case 'E':
Richard Kenner committed
2676 2677 2678 2679 2680 2681
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
			       validate, equal_values))
	      return 0;
2682 2683 2684
	  break;

	case 's':
Richard Kenner committed
2685 2686
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
2687 2688 2689
	  break;

	case 'i':
Richard Kenner committed
2690 2691
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
2692 2693 2694 2695 2696
	  break;

	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
2697
	  break;
2698 2699

	case '0':
2700
	case 't':
2701 2702 2703 2704
	  break;

	default:
	  abort ();
Richard Kenner committed
2705
	}
2706
    }
2707

Richard Kenner committed
2708 2709 2710
  return 1;
}

2711 2712 2713
/* Return 1 if X has a value that can vary even between two
   executions of the program.  0 means X can be compared reliably
   against certain constants or near-constants.  */
Richard Kenner committed
2714 2715

static int
2716
cse_rtx_varies_p (x, from_alias)
2717
     rtx x;
2718
     int from_alias;
Richard Kenner committed
2719 2720 2721 2722 2723
{
  /* We need not check for X and the equivalence class being of the same
     mode because if X is equivalent to a constant in some mode, it
     doesn't vary in any mode.  */

2724
  if (GET_CODE (x) == REG
2725 2726 2727 2728 2729 2730 2731 2732 2733
      && REGNO_QTY_VALID_P (REGNO (x)))
    {
      int x_q = REG_QTY (REGNO (x));
      struct qty_table_elem *x_ent = &qty_table[x_q];

      if (GET_MODE (x) == x_ent->mode
	  && x_ent->const_rtx != NULL_RTX)
	return 0;
    }
Richard Kenner committed
2734

2735 2736 2737
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 1)) == CONST_INT
      && GET_CODE (XEXP (x, 0)) == REG
2738 2739 2740 2741 2742 2743 2744 2745 2746
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
    {
      int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
      struct qty_table_elem *x0_ent = &qty_table[x0_q];

      if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
	  && x0_ent->const_rtx != NULL_RTX)
	return 0;
    }
Richard Kenner committed
2747

2748 2749 2750 2751 2752
  /* This can happen as the result of virtual register instantiation, if
     the initial constant is too large to be a valid address.  This gives
     us a three instruction sequence, load large offset into a register,
     load fp minus a constant into a register, then a MEM which is the
     sum of the two `constant' registers.  */
2753 2754 2755 2756
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == REG
      && GET_CODE (XEXP (x, 1)) == REG
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
    {
      int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
      int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
      struct qty_table_elem *x0_ent = &qty_table[x0_q];
      struct qty_table_elem *x1_ent = &qty_table[x1_q];

      if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
	  && x0_ent->const_rtx != NULL_RTX
	  && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
	  && x1_ent->const_rtx != NULL_RTX)
	return 0;
    }
2770

2771
  return rtx_varies_p (x, from_alias);
Richard Kenner committed
2772 2773 2774 2775 2776 2777
}

/* Canonicalize an expression:
   replace each register reference inside it
   with the "oldest" equivalent register.

2778
   If INSN is nonzero and we are replacing a pseudo with a hard register
2779
   or vice versa, validate_change is used to ensure that INSN remains valid
2780
   after we make our substitution.  The calls are made with IN_GROUP nonzero
2781 2782 2783
   so apply_change_group must be called upon the outermost return from this
   function (unless INSN is zero).  The result of apply_change_group can
   generally be discarded since the changes we are making are optional.  */
Richard Kenner committed
2784 2785 2786 2787 2788 2789

static rtx
canon_reg (x, insn)
     rtx x;
     rtx insn;
{
2790 2791 2792
  int i;
  enum rtx_code code;
  const char *fmt;
Richard Kenner committed
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804

  if (x == 0)
    return x;

  code = GET_CODE (x);
  switch (code)
    {
    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
2805
    case CONST_VECTOR:
Richard Kenner committed
2806 2807 2808 2809 2810 2811 2812 2813
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return x;

    case REG:
      {
2814 2815 2816
	int first;
	int q;
	struct qty_table_elem *ent;
Richard Kenner committed
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826

	/* Never replace a hard reg, because hard regs can appear
	   in more than one machine mode, and we must preserve the mode
	   of each occurrence.  Also, some hard regs appear in
	   MEMs that are shared and mustn't be altered.  Don't try to
	   replace any reg that maps to a reg of class NO_REGS.  */
	if (REGNO (x) < FIRST_PSEUDO_REGISTER
	    || ! REGNO_QTY_VALID_P (REGNO (x)))
	  return x;

2827
	q = REG_QTY (REGNO (x));
2828 2829
	ent = &qty_table[q];
	first = ent->first_reg;
Richard Kenner committed
2830 2831
	return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
		: REGNO_REG_CLASS (first) == NO_REGS ? x
2832
		: gen_rtx_REG (ent->mode, first));
Richard Kenner committed
2833
      }
2834

2835 2836
    default:
      break;
Richard Kenner committed
2837 2838 2839 2840 2841
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
2842
      int j;
Richard Kenner committed
2843 2844 2845 2846

      if (fmt[i] == 'e')
	{
	  rtx new = canon_reg (XEXP (x, i), insn);
2847
	  int insn_code;
Richard Kenner committed
2848 2849

	  /* If replacing pseudo with hard reg or vice versa, ensure the
2850
	     insn remains valid.  Likewise if the insn has MATCH_DUPs.  */
2851 2852
	  if (insn != 0 && new != 0
	      && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
2853 2854
	      && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
		   != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
2855
		  || (insn_code = recog_memoized (insn)) < 0
2856
		  || insn_data[insn_code].n_dups > 0))
2857
	    validate_change (insn, &XEXP (x, i), new, 1);
Richard Kenner committed
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	  else
	    XEXP (x, i) = new;
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
    }

  return x;
}

Richard Kenner committed
2869
/* LOC is a location within INSN that is an operand address (the contents of
Richard Kenner committed
2870 2871 2872 2873 2874 2875 2876
   a MEM).  Find the best equivalent address to use that is valid for this
   insn.

   On most CISC machines, complicated address modes are costly, and rtx_cost
   is a good approximation for that cost.  However, most RISC machines have
   only a few (usually only one) memory reference formats.  If an address is
   valid at all, it is often just as cheap as any other address.  Hence, for
2877 2878 2879 2880 2881 2882
   RISC machines, we use `address_cost' to compare the costs of various
   addresses.  For two addresses of equal cost, choose the one with the
   highest `rtx_cost' value as that has the potential of eliminating the
   most insns.  For equal costs, we choose the first in the equivalence
   class.  Note that we ignore the fact that pseudo registers are cheaper than
   hard registers here because we would also prefer the pseudo registers.  */
Richard Kenner committed
2883

2884
static void
2885
find_best_addr (insn, loc, mode)
Richard Kenner committed
2886 2887
     rtx insn;
     rtx *loc;
2888
     enum machine_mode mode;
Richard Kenner committed
2889
{
2890
  struct table_elt *elt;
Richard Kenner committed
2891
  rtx addr = *loc;
2892
  struct table_elt *p;
Richard Kenner committed
2893 2894 2895 2896 2897
  int found_better = 1;
  int save_do_not_record = do_not_record;
  int save_hash_arg_in_memory = hash_arg_in_memory;
  int addr_volatile;
  int regno;
Richard Kenner committed
2898
  unsigned hash;
Richard Kenner committed
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

  /* Do not try to replace constant addresses or addresses of local and
     argument slots.  These MEM expressions are made only once and inserted
     in many instructions, as well as being used to control symbol table
     output.  It is not safe to clobber them.

     There are some uncommon cases where the address is already in a register
     for some reason, but we cannot take advantage of that because we have
     no easy way to unshare the MEM.  In addition, looking up all stack
     addresses is costly.  */
  if ((GET_CODE (addr) == PLUS
       && GET_CODE (XEXP (addr, 0)) == REG
       && GET_CODE (XEXP (addr, 1)) == CONST_INT
       && (regno = REGNO (XEXP (addr, 0)),
2913 2914
	   regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
	   || regno == ARG_POINTER_REGNUM))
Richard Kenner committed
2915
      || (GET_CODE (addr) == REG
2916 2917 2918
	  && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
	      || regno == HARD_FRAME_POINTER_REGNUM
	      || regno == ARG_POINTER_REGNUM))
2919
      || GET_CODE (addr) == ADDRESSOF
Richard Kenner committed
2920 2921 2922 2923 2924 2925 2926
      || CONSTANT_ADDRESS_P (addr))
    return;

  /* If this address is not simply a register, try to fold it.  This will
     sometimes simplify the expression.  Many simplifications
     will not be valid, but some, usually applying the associative rule, will
     be valid and produce better code.  */
2927 2928 2929
  if (GET_CODE (addr) != REG)
    {
      rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);
2930 2931 2932 2933 2934 2935 2936 2937 2938
      int addr_folded_cost = address_cost (folded, mode);
      int addr_cost = address_cost (addr, mode);

      if ((addr_folded_cost < addr_cost
	   || (addr_folded_cost == addr_cost
	       /* ??? The rtx_cost comparison is left over from an older
		  version of this code.  It is probably no longer helpful.  */
	       && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
		   || approx_reg_cost (folded) < approx_reg_cost (addr))))
2939 2940 2941
	  && validate_change (insn, loc, folded, 0))
	addr = folded;
    }
2942

2943 2944 2945
  /* If this address is not in the hash table, we can't look for equivalences
     of the whole address.  Also, ignore if volatile.  */

Richard Kenner committed
2946
  do_not_record = 0;
Richard Kenner committed
2947
  hash = HASH (addr, Pmode);
Richard Kenner committed
2948 2949 2950 2951 2952 2953 2954
  addr_volatile = do_not_record;
  do_not_record = save_do_not_record;
  hash_arg_in_memory = save_hash_arg_in_memory;

  if (addr_volatile)
    return;

Richard Kenner committed
2955
  elt = lookup (addr, hash, Pmode);
Richard Kenner committed
2956

2957 2958 2959 2960 2961 2962
  if (elt)
    {
      /* We need to find the best (under the criteria documented above) entry
	 in the class that is valid.  We use the `flag' field to indicate
	 choices that were invalid and iterate until we can't find a better
	 one that hasn't already been tried.  */
Richard Kenner committed
2963

2964 2965
      for (p = elt->first_same_value; p; p = p->next_same_value)
	p->flag = 0;
Richard Kenner committed
2966

2967 2968
      while (found_better)
	{
2969
	  int best_addr_cost = address_cost (*loc, mode);
2970
	  int best_rtx_cost = (elt->cost + 1) >> 1;
2971
	  int exp_cost;
2972
	  struct table_elt *best_elt = elt;
2973 2974 2975

	  found_better = 0;
	  for (p = elt->first_same_value; p; p = p->next_same_value)
2976
	    if (! p->flag)
2977
	      {
2978 2979
		if ((GET_CODE (p->exp) == REG
		     || exp_equiv_p (p->exp, p->exp, 1, 0))
2980 2981
		    && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
			|| (exp_cost == best_addr_cost
2982
			    && ((p->cost + 1) >> 1) > best_rtx_cost)))
2983 2984
		  {
		    found_better = 1;
2985
		    best_addr_cost = exp_cost;
2986 2987 2988
		    best_rtx_cost = (p->cost + 1) >> 1;
		    best_elt = p;
		  }
2989
	      }
Richard Kenner committed
2990

2991 2992 2993
	  if (found_better)
	    {
	      if (validate_change (insn, loc,
2994 2995
				   canon_reg (copy_rtx (best_elt->exp),
					      NULL_RTX), 0))
2996 2997 2998 2999 3000 3001
		return;
	      else
		best_elt->flag = 1;
	    }
	}
    }
Richard Kenner committed
3002

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
  /* If the address is a binary operation with the first operand a register
     and the second a constant, do the same as above, but looking for
     equivalences of the register.  Then try to simplify before checking for
     the best address to use.  This catches a few cases:  First is when we
     have REG+const and the register is another REG+const.  We can often merge
     the constants and eliminate one insn and one register.  It may also be
     that a machine has a cheap REG+REG+const.  Finally, this improves the
     code on the Alpha for unaligned byte stores.  */

  if (flag_expensive_optimizations
      && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
	  || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
      && GET_CODE (XEXP (*loc, 0)) == REG
      && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
Richard Kenner committed
3017
    {
3018 3019 3020
      rtx c = XEXP (*loc, 1);

      do_not_record = 0;
Richard Kenner committed
3021
      hash = HASH (XEXP (*loc, 0), Pmode);
3022 3023 3024
      do_not_record = save_do_not_record;
      hash_arg_in_memory = save_hash_arg_in_memory;

Richard Kenner committed
3025
      elt = lookup (XEXP (*loc, 0), hash, Pmode);
3026 3027 3028 3029 3030 3031 3032
      if (elt == 0)
	return;

      /* We need to find the best (under the criteria documented above) entry
	 in the class that is valid.  We use the `flag' field to indicate
	 choices that were invalid and iterate until we can't find a better
	 one that hasn't already been tried.  */
Richard Kenner committed
3033 3034

      for (p = elt->first_same_value; p; p = p->next_same_value)
3035
	p->flag = 0;
Richard Kenner committed
3036

3037
      while (found_better)
Richard Kenner committed
3038
	{
3039
	  int best_addr_cost = address_cost (*loc, mode);
3040
	  int best_rtx_cost = (COST (*loc) + 1) >> 1;
3041
	  struct table_elt *best_elt = elt;
3042
	  rtx best_rtx = *loc;
3043 3044 3045 3046 3047
	  int count;

	  /* This is at worst case an O(n^2) algorithm, so limit our search
	     to the first 32 elements on the list.  This avoids trouble
	     compiling code with very long basic blocks that can easily
3048 3049
	     call simplify_gen_binary so many times that we run out of
	     memory.  */
3050

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
	  found_better = 0;
	  for (p = elt->first_same_value, count = 0;
	       p && count < 32;
	       p = p->next_same_value, count++)
	    if (! p->flag
		&& (GET_CODE (p->exp) == REG
		    || exp_equiv_p (p->exp, p->exp, 1, 0)))
	      {
		rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
					       p->exp, c);
3061 3062
		int new_cost;
		new_cost = address_cost (new, mode);
3063

3064 3065 3066
		if (new_cost < best_addr_cost
		    || (new_cost == best_addr_cost
			&& (COST (new) + 1) >> 1 > best_rtx_cost))
3067 3068
		  {
		    found_better = 1;
3069
		    best_addr_cost = new_cost;
3070 3071 3072 3073 3074
		    best_rtx_cost = (COST (new) + 1) >> 1;
		    best_elt = p;
		    best_rtx = new;
		  }
	      }
3075

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	  if (found_better)
	    {
	      if (validate_change (insn, loc,
				   canon_reg (copy_rtx (best_rtx),
					      NULL_RTX), 0))
		return;
	      else
		best_elt->flag = 1;
	    }
	}
    }
3087 3088
}

3089 3090 3091
/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
   operation (EQ, NE, GT, etc.), follow it back through the hash table and
   what values are being compared.
3092

3093 3094 3095 3096
   *PARG1 and *PARG2 are updated to contain the rtx representing the values
   actually being compared.  For example, if *PARG1 was (cc0) and *PARG2
   was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
   compared to produce cc0.
3097

3098 3099
   The return value is the comparison operator and is either the code of
   A or the code corresponding to the inverse of the comparison.  */
Richard Kenner committed
3100

3101 3102
static enum rtx_code
find_comparison_args (code, parg1, parg2, pmode1, pmode2)
Richard Kenner committed
3103
     enum rtx_code code;
3104 3105
     rtx *parg1, *parg2;
     enum machine_mode *pmode1, *pmode2;
Richard Kenner committed
3106
{
3107
  rtx arg1, arg2;
3108

3109
  arg1 = *parg1, arg2 = *parg2;
Richard Kenner committed
3110

3111
  /* If ARG2 is const0_rtx, see what ARG1 is equivalent to.  */
Richard Kenner committed
3112

3113
  while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3114
    {
3115
      /* Set nonzero when we find something of interest.  */
3116 3117 3118
      rtx x = 0;
      int reverse_code = 0;
      struct table_elt *p = 0;
3119

3120 3121 3122 3123
      /* If arg1 is a COMPARE, extract the comparison arguments from it.
	 On machines with CC0, this is the only case that can occur, since
	 fold_rtx will return the COMPARE or item being compared with zero
	 when given CC0.  */
3124

3125 3126
      if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
	x = arg1;
3127

3128 3129
      /* If ARG1 is a comparison operator and CODE is testing for
	 STORE_FLAG_VALUE, get the inner arguments.  */
3130

3131
      else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
Richard Kenner committed
3132
	{
3133 3134 3135 3136
#ifdef FLOAT_STORE_FLAG_VALUE
	  REAL_VALUE_TYPE fsfv;
#endif

3137 3138 3139 3140 3141
	  if (code == NE
	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		  && code == LT && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3142 3143
		  && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
		      REAL_VALUE_NEGATIVE (fsfv)))
Richard Kenner committed
3144
#endif
3145
	      )
3146 3147 3148 3149 3150 3151
	    x = arg1;
	  else if (code == EQ
		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		       && code == GE && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3152 3153
		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
			   REAL_VALUE_NEGATIVE (fsfv)))
3154 3155 3156
#endif
		   )
	    x = arg1, reverse_code = 1;
Richard Kenner committed
3157 3158
	}

3159
      /* ??? We could also check for
Richard Kenner committed
3160

3161
	 (ne (and (eq (...) (const_int 1))) (const_int 0))
Richard Kenner committed
3162

3163
	 and related forms, but let's wait until we see them occurring.  */
Richard Kenner committed
3164

3165 3166 3167
      if (x == 0)
	/* Look up ARG1 in the hash table and see if it has an equivalence
	   that lets us see what is being compared.  */
3168
	p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) & HASH_MASK,
3169
		    GET_MODE (arg1));
3170
      if (p)
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	{
	  p = p->first_same_value;

	  /* If what we compare is already known to be constant, that is as
	     good as it gets.
	     We need to break the loop in this case, because otherwise we
	     can have an infinite loop when looking at a reg that is known
	     to be a constant which is the same as a comparison of a reg
	     against zero which appears later in the insn stream, which in
	     turn is constant and the same as the comparison of the first reg
	     against zero...  */
	  if (p->is_const)
	    break;
	}
Richard Kenner committed
3185

3186
      for (; p; p = p->next_same_value)
Richard Kenner committed
3187
	{
3188
	  enum machine_mode inner_mode = GET_MODE (p->exp);
3189 3190 3191
#ifdef FLOAT_STORE_FLAG_VALUE
	  REAL_VALUE_TYPE fsfv;
#endif
Richard Kenner committed
3192

3193 3194 3195
	  /* If the entry isn't valid, skip it.  */
	  if (! exp_equiv_p (p->exp, p->exp, 1, 0))
	    continue;
3196

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
	  if (GET_CODE (p->exp) == COMPARE
	      /* Another possibility is that this machine has a compare insn
		 that includes the comparison code.  In that case, ARG1 would
		 be equivalent to a comparison operation that would set ARG1 to
		 either STORE_FLAG_VALUE or zero.  If this is an NE operation,
		 ORIG_CODE is the actual comparison being done; if it is an EQ,
		 we must reverse ORIG_CODE.  On machine with a negative value
		 for STORE_FLAG_VALUE, also look at LT and GE operations.  */
	      || ((code == NE
		   || (code == LT
		       && GET_MODE_CLASS (inner_mode) == MODE_INT
		       && (GET_MODE_BITSIZE (inner_mode)
			   <= HOST_BITS_PER_WIDE_INT)
		       && (STORE_FLAG_VALUE
			   & ((HOST_WIDE_INT) 1
			      << (GET_MODE_BITSIZE (inner_mode) - 1))))
3213
#ifdef FLOAT_STORE_FLAG_VALUE
3214 3215
		   || (code == LT
		       && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3216 3217
		       && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
			   REAL_VALUE_NEGATIVE (fsfv)))
3218
#endif
3219 3220
		   )
		  && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
Richard Kenner committed
3221
	    {
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	      x = p->exp;
	      break;
	    }
	  else if ((code == EQ
		    || (code == GE
			&& GET_MODE_CLASS (inner_mode) == MODE_INT
			&& (GET_MODE_BITSIZE (inner_mode)
			    <= HOST_BITS_PER_WIDE_INT)
			&& (STORE_FLAG_VALUE
			    & ((HOST_WIDE_INT) 1
			       << (GET_MODE_BITSIZE (inner_mode) - 1))))
#ifdef FLOAT_STORE_FLAG_VALUE
		    || (code == GE
			&& GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3236 3237
			&& (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
			    REAL_VALUE_NEGATIVE (fsfv)))
3238 3239 3240 3241 3242 3243 3244
#endif
		    )
		   && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
	    {
	      reverse_code = 1;
	      x = p->exp;
	      break;
Richard Kenner committed
3245 3246
	    }

3247 3248 3249 3250
	  /* If this non-trapping address, e.g. fp + constant, the
	     equivalent is a better operand since it may let us predict
	     the value of the comparison.  */
	  else if (!rtx_addr_can_trap_p (p->exp))
3251 3252 3253 3254
	    {
	      arg1 = p->exp;
	      continue;
	    }
Richard Kenner committed
3255 3256
	}

3257 3258 3259 3260
      /* If we didn't find a useful equivalence for ARG1, we are done.
	 Otherwise, set up for the next iteration.  */
      if (x == 0)
	break;
Richard Kenner committed
3261

3262 3263 3264
      /* If we need to reverse the comparison, make sure that that is
	 possible -- we can't necessarily infer the value of GE from LT
	 with floating-point operands.  */
3265
      if (reverse_code)
3266 3267 3268 3269
	{
	  enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
	  if (reversed == UNKNOWN)
	    break;
Kazu Hirata committed
3270 3271
	  else
	    code = reversed;
3272 3273 3274 3275
	}
      else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
	code = GET_CODE (x);
      arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
Richard Kenner committed
3276 3277
    }

3278 3279 3280 3281 3282 3283
  /* Return our results.  Return the modes from before fold_rtx
     because fold_rtx might produce const_int, and then it's too late.  */
  *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
  *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);

  return code;
Richard Kenner committed
3284 3285 3286 3287 3288 3289 3290 3291
}

/* If X is a nontrivial arithmetic operation on an argument
   for which a constant value can be determined, return
   the result of operating on that value, as a constant.
   Otherwise, return X, possibly with one or more operands
   modified by recursive calls to this function.

3292 3293 3294
   If X is a register whose contents are known, we do NOT
   return those contents here.  equiv_constant is called to
   perform that task.
Richard Kenner committed
3295 3296 3297 3298 3299 3300 3301

   INSN is the insn that we may be modifying.  If it is 0, make a copy
   of X before modifying it.  */

static rtx
fold_rtx (x, insn)
     rtx x;
3302
     rtx insn;
Richard Kenner committed
3303
{
3304 3305 3306 3307
  enum rtx_code code;
  enum machine_mode mode;
  const char *fmt;
  int i;
Richard Kenner committed
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
  rtx new = 0;
  int copied = 0;
  int must_swap = 0;

  /* Folded equivalents of first two operands of X.  */
  rtx folded_arg0;
  rtx folded_arg1;

  /* Constant equivalents of first three operands of X;
     0 when no such equivalent is known.  */
  rtx const_arg0;
  rtx const_arg1;
  rtx const_arg2;

  /* The mode of the first operand of X.  We need this for sign and zero
     extends.  */
  enum machine_mode mode_arg0;

  if (x == 0)
    return x;

  mode = GET_MODE (x);
  code = GET_CODE (x);
  switch (code)
    {
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
3336
    case CONST_VECTOR:
Richard Kenner committed
3337 3338 3339 3340 3341 3342 3343
    case SYMBOL_REF:
    case LABEL_REF:
    case REG:
      /* No use simplifying an EXPR_LIST
	 since they are used only for lists of args
	 in a function call's REG_EQUAL note.  */
    case EXPR_LIST:
Jeff Law committed
3344 3345 3346 3347
      /* Changing anything inside an ADDRESSOF is incorrect; we don't
	 want to (e.g.,) make (addressof (const_int 0)) just because
	 the location is known to be zero.  */
    case ADDRESSOF:
Richard Kenner committed
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
      return x;

#ifdef HAVE_cc0
    case CC0:
      return prev_insn_cc0;
#endif

    case PC:
      /* If the next insn is a CODE_LABEL followed by a jump table,
	 PC's value is a LABEL_REF pointing to that label.  That
3358
	 lets us fold switch statements on the VAX.  */
3359 3360
      {
	rtx next;
3361
	if (insn && tablejump_p (insn, &next, NULL))
3362 3363
	  return gen_rtx_LABEL_REF (Pmode, next);
      }
Richard Kenner committed
3364 3365 3366
      break;

    case SUBREG:
3367 3368 3369
      /* See if we previously assigned a constant value to this SUBREG.  */
      if ((new = lookup_as_function (x, CONST_INT)) != 0
	  || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
Richard Kenner committed
3370 3371
	return new;

3372 3373 3374 3375
      /* If this is a paradoxical SUBREG, we have no idea what value the
	 extra bits would have.  However, if the operand is equivalent
	 to a SUBREG whose operand is the same as our mode, and all the
	 modes are within a word, we can just use the inner operand
3376 3377 3378
	 because these SUBREGs just say how to treat the register.

	 Similarly if we find an integer constant.  */
3379

3380
      if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3381 3382 3383 3384 3385 3386 3387 3388
	{
	  enum machine_mode imode = GET_MODE (SUBREG_REG (x));
	  struct table_elt *elt;

	  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
	      && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
	      && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
				imode)) != 0)
Kazu Hirata committed
3389
	    for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3390 3391 3392 3393 3394
	      {
		if (CONSTANT_P (elt->exp)
		    && GET_MODE (elt->exp) == VOIDmode)
		  return elt->exp;

3395 3396
		if (GET_CODE (elt->exp) == SUBREG
		    && GET_MODE (SUBREG_REG (elt->exp)) == mode
3397
		    && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3398
		  return copy_rtx (SUBREG_REG (elt->exp));
3399
	      }
3400 3401 3402

	  return x;
	}
3403

Richard Kenner committed
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
      /* Fold SUBREG_REG.  If it changed, see if we can simplify the SUBREG.
	 We might be able to if the SUBREG is extracting a single word in an
	 integral mode or extracting the low part.  */

      folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
      const_arg0 = equiv_constant (folded_arg0);
      if (const_arg0)
	folded_arg0 = const_arg0;

      if (folded_arg0 != SUBREG_REG (x))
	{
3415 3416
	  new = simplify_subreg (mode, folded_arg0,
				 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
Richard Kenner committed
3417 3418 3419
	  if (new)
	    return new;
	}
3420 3421

      /* If this is a narrowing SUBREG and our operand is a REG, see if
3422
	 we can find an equivalence for REG that is an arithmetic operation
3423 3424 3425 3426 3427 3428
	 in a wider mode where both operands are paradoxical SUBREGs
	 from objects of our result mode.  In that case, we couldn't report
	 an equivalent value for that operation, since we don't know what the
	 extra bits will be.  But we can find an equivalence for this SUBREG
	 by folding that operation is the narrow mode.  This allows us to
	 fold arithmetic in narrow modes when the machine only supports
3429
	 word-sized arithmetic.
3430 3431 3432 3433 3434

	 Also look for a case where we have a SUBREG whose operand is the
	 same as our result.  If both modes are smaller than a word, we
	 are simply interpreting a register in different modes and we
	 can use the inner value.  */
3435 3436

      if (GET_CODE (folded_arg0) == REG
3437 3438
	  && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
	  && subreg_lowpart_p (x))
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	{
	  struct table_elt *elt;

	  /* We can use HASH here since we know that canon_hash won't be
	     called.  */
	  elt = lookup (folded_arg0,
			HASH (folded_arg0, GET_MODE (folded_arg0)),
			GET_MODE (folded_arg0));

	  if (elt)
	    elt = elt->first_same_value;

	  for (; elt; elt = elt->next_same_value)
	    {
3453 3454
	      enum rtx_code eltcode = GET_CODE (elt->exp);

3455 3456 3457 3458 3459
	      /* Just check for unary and binary operations.  */
	      if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
		  && GET_CODE (elt->exp) != SIGN_EXTEND
		  && GET_CODE (elt->exp) != ZERO_EXTEND
		  && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3460 3461 3462
		  && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
		  && (GET_MODE_CLASS (mode)
		      == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3463 3464 3465 3466
		{
		  rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));

		  if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3467
		    op0 = fold_rtx (op0, NULL_RTX);
3468 3469 3470 3471 3472 3473 3474 3475

		  op0 = equiv_constant (op0);
		  if (op0)
		    new = simplify_unary_operation (GET_CODE (elt->exp), mode,
						    op0, mode);
		}
	      else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
			|| GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
3476 3477 3478 3479
		       && eltcode != DIV && eltcode != MOD
		       && eltcode != UDIV && eltcode != UMOD
		       && eltcode != ASHIFTRT && eltcode != LSHIFTRT
		       && eltcode != ROTATE && eltcode != ROTATERT
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
		       && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
			    && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
				== mode))
			   || CONSTANT_P (XEXP (elt->exp, 0)))
		       && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
			    && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
				== mode))
			   || CONSTANT_P (XEXP (elt->exp, 1))))
		{
		  rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
		  rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));

		  if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3493
		    op0 = fold_rtx (op0, NULL_RTX);
3494 3495 3496 3497 3498

		  if (op0)
		    op0 = equiv_constant (op0);

		  if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
3499
		    op1 = fold_rtx (op1, NULL_RTX);
3500 3501 3502 3503

		  if (op1)
		    op1 = equiv_constant (op1);

3504
		  /* If we are looking for the low SImode part of
3505 3506 3507 3508
		     (ashift:DI c (const_int 32)), it doesn't work
		     to compute that in SImode, because a 32-bit shift
		     in SImode is unpredictable.  We know the value is 0.  */
		  if (op0 && op1
3509
		      && GET_CODE (elt->exp) == ASHIFT
3510 3511 3512 3513
		      && GET_CODE (op1) == CONST_INT
		      && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
		    {
		      if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3514

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
			/* If the count fits in the inner mode's width,
			   but exceeds the outer mode's width,
			   the value will get truncated to 0
			   by the subreg.  */
			new = const0_rtx;
		      else
			/* If the count exceeds even the inner mode's width,
			   don't fold this expression.  */
			new = 0;
		    }
		  else if (op0 && op1)
3526 3527 3528 3529
		    new = simplify_binary_operation (GET_CODE (elt->exp), mode,
						     op0, op1);
		}

3530 3531 3532 3533
	      else if (GET_CODE (elt->exp) == SUBREG
		       && GET_MODE (SUBREG_REG (elt->exp)) == mode
		       && (GET_MODE_SIZE (GET_MODE (folded_arg0))
			   <= UNITS_PER_WORD)
3534
		       && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3535 3536
		new = copy_rtx (SUBREG_REG (elt->exp));

3537 3538 3539 3540 3541
	      if (new)
		return new;
	    }
	}

Richard Kenner committed
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
      return x;

    case NOT:
    case NEG:
      /* If we have (NOT Y), see if Y is known to be (NOT Z).
	 If so, (NOT Y) simplifies to Z.  Similarly for NEG.  */
      new = lookup_as_function (XEXP (x, 0), code);
      if (new)
	return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
      break;
3552

Richard Kenner committed
3553 3554 3555 3556 3557
    case MEM:
      /* If we are not actually processing an insn, don't try to find the
	 best address.  Not only don't we care, but we could modify the
	 MEM in an invalid way since we have no insn to validate against.  */
      if (insn != 0)
3558
	find_best_addr (insn, &XEXP (x, 0), GET_MODE (x));
Richard Kenner committed
3559 3560 3561 3562

      {
	/* Even if we don't fold in the insn itself,
	   we can safely do so here, in hopes of getting a constant.  */
3563
	rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
3564
	rtx base = 0;
3565
	HOST_WIDE_INT offset = 0;
Richard Kenner committed
3566 3567

	if (GET_CODE (addr) == REG
3568 3569 3570 3571 3572 3573 3574 3575 3576
	    && REGNO_QTY_VALID_P (REGNO (addr)))
	  {
	    int addr_q = REG_QTY (REGNO (addr));
	    struct qty_table_elem *addr_ent = &qty_table[addr_q];

	    if (GET_MODE (addr) == addr_ent->mode
		&& addr_ent->const_rtx != NULL_RTX)
	      addr = addr_ent->const_rtx;
	  }
Richard Kenner committed
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589

	/* If address is constant, split it into a base and integer offset.  */
	if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
	  base = addr;
	else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
		 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
	  {
	    base = XEXP (XEXP (addr, 0), 0);
	    offset = INTVAL (XEXP (XEXP (addr, 0), 1));
	  }
	else if (GET_CODE (addr) == LO_SUM
		 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
	  base = XEXP (addr, 1);
3590
	else if (GET_CODE (addr) == ADDRESSOF)
Jeff Law committed
3591
	  return change_address (x, VOIDmode, addr);
Richard Kenner committed
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608

	/* If this is a constant pool reference, we can fold it into its
	   constant to allow better value tracking.  */
	if (base && GET_CODE (base) == SYMBOL_REF
	    && CONSTANT_POOL_ADDRESS_P (base))
	  {
	    rtx constant = get_pool_constant (base);
	    enum machine_mode const_mode = get_pool_mode (base);
	    rtx new;

	    if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
	      constant_pool_entries_cost = COST (constant);

	    /* If we are loading the full constant, we have an equivalence.  */
	    if (offset == 0 && mode == const_mode)
	      return constant;

Richard Kenner committed
3609
	    /* If this actually isn't a constant (weird!), we can't do
Richard Kenner committed
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
	       anything.  Otherwise, handle the two most common cases:
	       extracting a word from a multi-word constant, and extracting
	       the low-order bits.  Other cases don't seem common enough to
	       worry about.  */
	    if (! CONSTANT_P (constant))
	      return x;

	    if (GET_MODE_CLASS (mode) == MODE_INT
		&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
		&& offset % UNITS_PER_WORD == 0
		&& (new = operand_subword (constant,
					   offset / UNITS_PER_WORD,
					   0, const_mode)) != 0)
	      return new;

	    if (((BYTES_BIG_ENDIAN
		  && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
		 || (! BYTES_BIG_ENDIAN && offset == 0))
		&& (new = gen_lowpart_if_possible (mode, constant)) != 0)
	      return new;
	  }

	/* If this is a reference to a label at a known position in a jump
	   table, we also know its value.  */
	if (base && GET_CODE (base) == LABEL_REF)
	  {
	    rtx label = XEXP (base, 0);
	    rtx table_insn = NEXT_INSN (label);
3638

Richard Kenner committed
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
	    if (table_insn && GET_CODE (table_insn) == JUMP_INSN
		&& GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
	      {
		rtx table = PATTERN (table_insn);

		if (offset >= 0
		    && (offset / GET_MODE_SIZE (GET_MODE (table))
			< XVECLEN (table, 0)))
		  return XVECEXP (table, 0,
				  offset / GET_MODE_SIZE (GET_MODE (table)));
	      }
	    if (table_insn && GET_CODE (table_insn) == JUMP_INSN
		&& GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
	      {
		rtx table = PATTERN (table_insn);

		if (offset >= 0
		    && (offset / GET_MODE_SIZE (GET_MODE (table))
			< XVECLEN (table, 1)))
		  {
		    offset /= GET_MODE_SIZE (GET_MODE (table));
3660 3661
		    new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
					 XEXP (table, 0));
Richard Kenner committed
3662 3663

		    if (GET_MODE (table) != Pmode)
3664
		      new = gen_rtx_TRUNCATE (GET_MODE (table), new);
Richard Kenner committed
3665

3666
		    /* Indicate this is a constant.  This isn't a
3667 3668
		       valid form of CONST, but it will only be used
		       to fold the next insns and then discarded, so
3669 3670 3671 3672 3673
		       it should be safe.

		       Note this expression must be explicitly discarded,
		       by cse_insn, else it may end up in a REG_EQUAL note
		       and "escape" to cause problems elsewhere.  */
3674
		    return gen_rtx_CONST (GET_MODE (new), new);
Richard Kenner committed
3675 3676 3677 3678 3679 3680
		  }
	      }
	  }

	return x;
      }
3681

3682 3683 3684 3685 3686 3687 3688
#ifdef NO_FUNCTION_CSE
    case CALL:
      if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
	return x;
      break;
#endif

3689
    case ASM_OPERANDS:
3690 3691 3692
      for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
	validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
			 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3693
      break;
3694

3695 3696
    default:
      break;
Richard Kenner committed
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
    }

  const_arg0 = 0;
  const_arg1 = 0;
  const_arg2 = 0;
  mode_arg0 = VOIDmode;

  /* Try folding our operands.
     Then see which ones have constant values known.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	rtx arg = XEXP (x, i);
	rtx folded_arg = arg, const_arg = 0;
	enum machine_mode mode_arg = GET_MODE (arg);
	rtx cheap_arg, expensive_arg;
	rtx replacements[2];
	int j;
3717
	int old_cost = COST_IN (XEXP (x, i), code);
Richard Kenner committed
3718 3719 3720 3721 3722 3723 3724

	/* Most arguments are cheap, so handle them specially.  */
	switch (GET_CODE (arg))
	  {
	  case REG:
	    /* This is the same as calling equiv_constant; it is duplicated
	       here for speed.  */
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
	    if (REGNO_QTY_VALID_P (REGNO (arg)))
	      {
		int arg_q = REG_QTY (REGNO (arg));
		struct qty_table_elem *arg_ent = &qty_table[arg_q];

		if (arg_ent->const_rtx != NULL_RTX
		    && GET_CODE (arg_ent->const_rtx) != REG
		    && GET_CODE (arg_ent->const_rtx) != PLUS)
		  const_arg
		    = gen_lowpart_if_possible (GET_MODE (arg),
					       arg_ent->const_rtx);
	      }
Richard Kenner committed
3737 3738 3739 3740 3741 3742 3743
	    break;

	  case CONST:
	  case CONST_INT:
	  case SYMBOL_REF:
	  case LABEL_REF:
	  case CONST_DOUBLE:
3744
	  case CONST_VECTOR:
Richard Kenner committed
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	    const_arg = arg;
	    break;

#ifdef HAVE_cc0
	  case CC0:
	    folded_arg = prev_insn_cc0;
	    mode_arg = prev_insn_cc0_mode;
	    const_arg = equiv_constant (folded_arg);
	    break;
#endif

	  default:
	    folded_arg = fold_rtx (arg, insn);
	    const_arg = equiv_constant (folded_arg);
	  }

	/* For the first three operands, see if the operand
	   is constant or equivalent to a constant.  */
	switch (i)
	  {
	  case 0:
	    folded_arg0 = folded_arg;
	    const_arg0 = const_arg;
	    mode_arg0 = mode_arg;
	    break;
	  case 1:
	    folded_arg1 = folded_arg;
	    const_arg1 = const_arg;
	    break;
	  case 2:
	    const_arg2 = const_arg;
	    break;
	  }

	/* Pick the least expensive of the folded argument and an
	   equivalent constant argument.  */
	if (const_arg == 0 || const_arg == folded_arg
3782
	    || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
Richard Kenner committed
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
	  cheap_arg = folded_arg, expensive_arg = const_arg;
	else
	  cheap_arg = const_arg, expensive_arg = folded_arg;

	/* Try to replace the operand with the cheapest of the two
	   possibilities.  If it doesn't work and this is either of the first
	   two operands of a commutative operation, try swapping them.
	   If THAT fails, try the more expensive, provided it is cheaper
	   than what is already there.  */

	if (cheap_arg == XEXP (x, i))
	  continue;

	if (insn == 0 && ! copied)
	  {
	    x = copy_rtx (x);
	    copied = 1;
	  }

3802 3803 3804 3805
	/* Order the replacements from cheapest to most expensive.  */
	replacements[0] = cheap_arg;
	replacements[1] = expensive_arg;

Kazu Hirata committed
3806
	for (j = 0; j < 2 && replacements[j]; j++)
Richard Kenner committed
3807
	  {
3808 3809 3810 3811 3812 3813 3814 3815
	    int new_cost = COST_IN (replacements[j], code);

	    /* Stop if what existed before was cheaper.  Prefer constants
	       in the case of a tie.  */
	    if (new_cost > old_cost
		|| (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
	      break;

Richard Kenner committed
3816 3817 3818
	    if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
	      break;

3819 3820 3821
	    if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c'
		|| code == LTGT || code == UNEQ || code == ORDERED
		|| code == UNORDERED)
Richard Kenner committed
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
	      {
		validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
		validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);

		if (apply_change_group ())
		  {
		    /* Swap them back to be invalid so that this loop can
		       continue and flag them to be swapped back later.  */
		    rtx tem;

		    tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
				       XEXP (x, 1) = tem;
		    must_swap = 1;
		    break;
		  }
	      }
	  }
      }

3841 3842 3843 3844 3845
    else
      {
	if (fmt[i] == 'E')
	  /* Don't try to fold inside of a vector of expressions.
	     Doing nothing is harmless.  */
3846
	  {;}
3847
      }
Richard Kenner committed
3848 3849 3850 3851 3852

  /* If a commutative operation, place a constant integer as the second
     operand unless the first operand is also a constant integer.  Otherwise,
     place any constant second unless the first operand is also a constant.  */

3853 3854 3855
  if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c'
      || code == LTGT || code == UNEQ || code == ORDERED
      || code == UNORDERED)
Richard Kenner committed
3856 3857 3858 3859 3860 3861
    {
      if (must_swap || (const_arg0
	  		&& (const_arg1 == 0
	      		    || (GET_CODE (const_arg0) == CONST_INT
			        && GET_CODE (const_arg1) != CONST_INT))))
	{
3862
	  rtx tem = XEXP (x, 0);
Richard Kenner committed
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884

	  if (insn == 0 && ! copied)
	    {
	      x = copy_rtx (x);
	      copied = 1;
	    }

	  validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
	  validate_change (insn, &XEXP (x, 1), tem, 1);
	  if (apply_change_group ())
	    {
	      tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
	      tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
	    }
	}
    }

  /* If X is an arithmetic operation, see if we can simplify it.  */

  switch (GET_RTX_CLASS (code))
    {
    case '1':
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
      {
	int is_const = 0;

	/* We can't simplify extension ops unless we know the
	   original mode.  */
	if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
	    && mode_arg0 == VOIDmode)
	  break;

	/* If we had a CONST, strip it off and put it back later if we
	   fold.  */
	if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
	  is_const = 1, const_arg0 = XEXP (const_arg0, 0);

	new = simplify_unary_operation (code, mode,
					const_arg0 ? const_arg0 : folded_arg0,
					mode_arg0);
	if (new != 0 && is_const)
3903
	  new = gen_rtx_CONST (mode, new);
3904
      }
Richard Kenner committed
3905
      break;
3906

Richard Kenner committed
3907 3908 3909 3910 3911 3912 3913 3914 3915
    case '<':
      /* See what items are actually being compared and set FOLDED_ARG[01]
	 to those values and CODE to the actual comparison code.  If any are
	 constant, set CONST_ARG0 and CONST_ARG1 appropriately.  We needn't
	 do anything if both operands are already known to be constant.  */

      if (const_arg0 == 0 || const_arg1 == 0)
	{
	  struct table_elt *p0, *p1;
3916
	  rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3917
	  enum machine_mode mode_arg1;
3918 3919

#ifdef FLOAT_STORE_FLAG_VALUE
3920
	  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3921
	    {
3922
	      true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
Kazu Hirata committed
3923
			  (FLOAT_STORE_FLAG_VALUE (mode), mode));
3924
	      false_rtx = CONST0_RTX (mode);
3925 3926
	    }
#endif
Richard Kenner committed
3927

3928 3929
	  code = find_comparison_args (code, &folded_arg0, &folded_arg1,
				       &mode_arg0, &mode_arg1);
Richard Kenner committed
3930 3931 3932
	  const_arg0 = equiv_constant (folded_arg0);
	  const_arg1 = equiv_constant (folded_arg1);

3933 3934 3935
	  /* If the mode is VOIDmode or a MODE_CC mode, we don't know
	     what kinds of things are being compared, so we can't do
	     anything with this comparison.  */
Richard Kenner committed
3936 3937 3938 3939

	  if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
	    break;

Mike Stump committed
3940 3941 3942
	  /* If we do not now have two constants being compared, see
	     if we can nevertheless deduce some things about the
	     comparison.  */
Richard Kenner committed
3943 3944
	  if (const_arg0 == 0 || const_arg1 == 0)
	    {
3945 3946
	      /* Some addresses are known to be nonzero.  We don't know
		 their sign, but equality comparisons are known.  */
Richard Kenner committed
3947
	      if (const_arg1 == const0_rtx
3948
		  && nonzero_address_p (folded_arg0))
Richard Kenner committed
3949 3950
		{
		  if (code == EQ)
3951
		    return false_rtx;
Richard Kenner committed
3952
		  else if (code == NE)
3953
		    return true_rtx;
Richard Kenner committed
3954 3955
		}

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
	      /* See if the two operands are the same.  */

	      if (folded_arg0 == folded_arg1
		  || (GET_CODE (folded_arg0) == REG
		      && GET_CODE (folded_arg1) == REG
		      && (REG_QTY (REGNO (folded_arg0))
			  == REG_QTY (REGNO (folded_arg1))))
		  || ((p0 = lookup (folded_arg0,
				    (safe_hash (folded_arg0, mode_arg0)
				     & HASH_MASK), mode_arg0))
		      && (p1 = lookup (folded_arg1,
				       (safe_hash (folded_arg1, mode_arg0)
					& HASH_MASK), mode_arg0))
		      && p0->first_same_value == p1->first_same_value))
		{
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
		  /* Sadly two equal NaNs are not equivalent.  */
		  if (!HONOR_NANS (mode_arg0))
		    return ((code == EQ || code == LE || code == GE
			     || code == LEU || code == GEU || code == UNEQ
			     || code == UNLE || code == UNGE
			     || code == ORDERED)
			    ? true_rtx : false_rtx);
		  /* Take care for the FP compares we can resolve.  */
		  if (code == UNEQ || code == UNLE || code == UNGE)
		    return true_rtx;
		  if (code == LTGT || code == LT || code == GT)
		    return false_rtx;
3983
		}
Richard Kenner committed
3984 3985 3986 3987 3988 3989

	      /* If FOLDED_ARG0 is a register, see if the comparison we are
		 doing now is either the same as we did before or the reverse
		 (we only check the reverse if not floating-point).  */
	      else if (GET_CODE (folded_arg0) == REG)
		{
3990
		  int qty = REG_QTY (REGNO (folded_arg0));
Richard Kenner committed
3991

3992 3993 3994 3995 3996
		  if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
		    {
		      struct qty_table_elem *ent = &qty_table[qty];

		      if ((comparison_dominates_p (ent->comparison_code, code)
3997 3998 3999
			   || (! FLOAT_MODE_P (mode_arg0)
			       && comparison_dominates_p (ent->comparison_code,
						          reverse_condition (code))))
4000 4001 4002 4003 4004 4005 4006
			  && (rtx_equal_p (ent->comparison_const, folded_arg1)
			      || (const_arg1
				  && rtx_equal_p (ent->comparison_const,
						  const_arg1))
			      || (GET_CODE (folded_arg1) == REG
				  && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
			return (comparison_dominates_p (ent->comparison_code, code)
4007
				? true_rtx : false_rtx);
4008
		    }
Richard Kenner committed
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
		}
	    }
	}

      /* If we are comparing against zero, see if the first operand is
	 equivalent to an IOR with a constant.  If so, we may be able to
	 determine the result of this comparison.  */

      if (const_arg1 == const0_rtx)
	{
	  rtx y = lookup_as_function (folded_arg0, IOR);
	  rtx inner_const;

	  if (y != 0
	      && (inner_const = equiv_constant (XEXP (y, 1))) != 0
	      && GET_CODE (inner_const) == CONST_INT
	      && INTVAL (inner_const) != 0)
	    {
	      int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
4028 4029 4030
	      int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
			      && (INTVAL (inner_const)
				  & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4031
	      rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
4032 4033

#ifdef FLOAT_STORE_FLAG_VALUE
4034
	      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4035
		{
4036
		  true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
4037
			  (FLOAT_STORE_FLAG_VALUE (mode), mode));
4038
		  false_rtx = CONST0_RTX (mode);
4039 4040
		}
#endif
Richard Kenner committed
4041 4042 4043 4044

	      switch (code)
		{
		case EQ:
4045
		  return false_rtx;
Richard Kenner committed
4046
		case NE:
4047
		  return true_rtx;
Richard Kenner committed
4048 4049
		case LT:  case LE:
		  if (has_sign)
4050
		    return true_rtx;
Richard Kenner committed
4051 4052 4053
		  break;
		case GT:  case GE:
		  if (has_sign)
4054
		    return false_rtx;
Richard Kenner committed
4055
		  break;
4056 4057
		default:
		  break;
Richard Kenner committed
4058 4059 4060 4061
		}
	    }
	}

4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
      new = simplify_relational_operation (code,
					   (mode_arg0 != VOIDmode
					    ? mode_arg0
					    : (GET_MODE (const_arg0
							 ? const_arg0
							 : folded_arg0)
					       != VOIDmode)
					    ? GET_MODE (const_arg0
							? const_arg0
							: folded_arg0)
					    : GET_MODE (const_arg1
							? const_arg1
							: folded_arg1)),
Richard Kenner committed
4075 4076
					   const_arg0 ? const_arg0 : folded_arg0,
					   const_arg1 ? const_arg1 : folded_arg1);
4077 4078
#ifdef FLOAT_STORE_FLAG_VALUE
      if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
4079 4080 4081 4082 4083 4084 4085
	{
	  if (new == const0_rtx)
	    new = CONST0_RTX (mode);
	  else
	    new = (CONST_DOUBLE_FROM_REAL_VALUE
		   (FLOAT_STORE_FLAG_VALUE (mode), mode));
	}
4086
#endif
Richard Kenner committed
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
      break;

    case '2':
    case 'c':
      switch (code)
	{
	case PLUS:
	  /* If the second operand is a LABEL_REF, see if the first is a MINUS
	     with that LABEL_REF as its second operand.  If so, the result is
	     the first operand of that MINUS.  This handles switches with an
	     ADDR_DIFF_VEC table.  */
	  if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
	    {
4100 4101
	      rtx y
		= GET_CODE (folded_arg0) == MINUS ? folded_arg0
Kazu Hirata committed
4102
		: lookup_as_function (folded_arg0, MINUS);
Richard Kenner committed
4103 4104 4105 4106

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
		return XEXP (y, 0);
4107 4108

	      /* Now try for a CONST of a MINUS like the above.  */
4109 4110
	      if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
			: lookup_as_function (folded_arg0, CONST))) != 0
4111 4112
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
Kazu Hirata committed
4113
		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4114
		return XEXP (XEXP (y, 0), 0);
Richard Kenner committed
4115
	    }
Richard Kenner committed
4116

4117 4118 4119 4120 4121
	  /* Likewise if the operands are in the other order.  */
	  if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
	    {
	      rtx y
		= GET_CODE (folded_arg1) == MINUS ? folded_arg1
Kazu Hirata committed
4122
		: lookup_as_function (folded_arg1, MINUS);
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
		return XEXP (y, 0);

	      /* Now try for a CONST of a MINUS like the above.  */
	      if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
			: lookup_as_function (folded_arg1, CONST))) != 0
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
Kazu Hirata committed
4133
		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4134 4135 4136
		return XEXP (XEXP (y, 0), 0);
	    }

Richard Kenner committed
4137 4138 4139
	  /* If second operand is a register equivalent to a negative
	     CONST_INT, see if we can find a register equivalent to the
	     positive constant.  Make a MINUS if so.  Don't do this for
4140
	     a non-negative constant since we might then alternate between
4141
	     choosing positive and negative constants.  Having the positive
4142 4143 4144 4145 4146 4147 4148
	     constant previously-used is the more common case.  Be sure
	     the resulting constant is non-negative; if const_arg1 were
	     the smallest negative number this would overflow: depending
	     on the mode, this would either just be the same value (and
	     hence not save anything) or be incorrect.  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
	      && INTVAL (const_arg1) < 0
4149 4150
	      /* This used to test

Kazu Hirata committed
4151
	         -INTVAL (const_arg1) >= 0
4152 4153 4154 4155

		 But The Sun V5.0 compilers mis-compiled that test.  So
		 instead we test for the problematic value in a more direct
		 manner and hope the Sun compilers get it correct.  */
4156 4157
	      && INTVAL (const_arg1) !=
	        ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4158
	      && GET_CODE (folded_arg1) == REG)
Richard Kenner committed
4159
	    {
Kazu Hirata committed
4160
	      rtx new_const = GEN_INT (-INTVAL (const_arg1));
Richard Kenner committed
4161
	      struct table_elt *p
4162
		= lookup (new_const, safe_hash (new_const, mode) & HASH_MASK,
Richard Kenner committed
4163 4164 4165 4166 4167
			  mode);

	      if (p)
		for (p = p->first_same_value; p; p = p->next_same_value)
		  if (GET_CODE (p->exp) == REG)
4168 4169
		    return simplify_gen_binary (MINUS, mode, folded_arg0,
						canon_reg (p->exp, NULL_RTX));
Richard Kenner committed
4170
	    }
4171 4172 4173 4174 4175 4176 4177 4178 4179
	  goto from_plus;

	case MINUS:
	  /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
	     If so, produce (PLUS Z C2-C).  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      rtx y = lookup_as_function (XEXP (x, 0), PLUS);
	      if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4180 4181
		return fold_rtx (plus_constant (copy_rtx (y),
						-INTVAL (const_arg1)),
4182
				 NULL_RTX);
4183
	    }
Richard Kenner committed
4184

Kazu Hirata committed
4185
	  /* Fall through.  */
Richard Kenner committed
4186

4187
	from_plus:
Richard Kenner committed
4188 4189
	case SMIN:    case SMAX:      case UMIN:    case UMAX:
	case IOR:     case AND:       case XOR:
4190
	case MULT:
Richard Kenner committed
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
	case ASHIFT:  case LSHIFTRT:  case ASHIFTRT:
	  /* If we have (<op> <reg> <const_int>) for an associative OP and REG
	     is known to be of similar form, we may be able to replace the
	     operation with a combined operation.  This may eliminate the
	     intermediate operation if every use is simplified in this way.
	     Note that the similar optimization done by combine.c only works
	     if the intermediate operation's result has only one reference.  */

	  if (GET_CODE (folded_arg0) == REG
	      && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      int is_shift
		= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
	      rtx y = lookup_as_function (folded_arg0, code);
	      rtx inner_const;
	      enum rtx_code associate_code;
	      rtx new_const;

	      if (y == 0
		  || 0 == (inner_const
			   = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
		  || GET_CODE (inner_const) != CONST_INT
		  /* If we have compiled a statement like
		     "if (x == (x & mask1))", and now are looking at
		     "x & mask2", we will have a case where the first operand
		     of Y is the same as our first operand.  Unless we detect
		     this case, an infinite loop will result.  */
		  || XEXP (y, 0) == folded_arg0)
		break;

	      /* Don't associate these operations if they are a PLUS with the
		 same constant and it is a power of two.  These might be doable
		 with a pre- or post-increment.  Similarly for two subtracts of
		 identical powers of two with post decrement.  */

	      if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
4227 4228 4229 4230 4231 4232 4233 4234
		  && ((HAVE_PRE_INCREMENT
			  && exact_log2 (INTVAL (const_arg1)) >= 0)
		      || (HAVE_POST_INCREMENT
			  && exact_log2 (INTVAL (const_arg1)) >= 0)
		      || (HAVE_PRE_DECREMENT
			  && exact_log2 (- INTVAL (const_arg1)) >= 0)
		      || (HAVE_POST_DECREMENT
			  && exact_log2 (- INTVAL (const_arg1)) >= 0)))
Richard Kenner committed
4235 4236 4237
		break;

	      /* Compute the code used to compose the constants.  For example,
4238
		 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS.  */
Richard Kenner committed
4239

4240
	      associate_code = (is_shift || code == MINUS ? PLUS : code);
Richard Kenner committed
4241 4242 4243 4244 4245 4246 4247 4248

	      new_const = simplify_binary_operation (associate_code, mode,
						     const_arg1, inner_const);

	      if (new_const == 0)
		break;

	      /* If we are associating shift operations, don't let this
4249 4250 4251 4252
		 produce a shift of the size of the object or larger.
		 This could occur when we follow a sign-extend by a right
		 shift on a machine that does a sign-extend as a pair
		 of shifts.  */
Richard Kenner committed
4253 4254

	      if (is_shift && GET_CODE (new_const) == CONST_INT
4255 4256 4257 4258 4259 4260 4261 4262 4263
		  && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
		{
		  /* As an exception, we can turn an ASHIFTRT of this
		     form into a shift of the number of bits - 1.  */
		  if (code == ASHIFTRT)
		    new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
		  else
		    break;
		}
Richard Kenner committed
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273

	      y = copy_rtx (XEXP (y, 0));

	      /* If Y contains our first operand (the most common way this
		 can happen is if Y is a MEM), we would do into an infinite
		 loop if we tried to fold it.  So don't in that case.  */

	      if (! reg_mentioned_p (folded_arg0, y))
		y = fold_rtx (y, insn);

4274
	      return simplify_gen_binary (code, mode, y, new_const);
Richard Kenner committed
4275
	    }
4276 4277
	  break;

4278 4279 4280 4281 4282 4283 4284 4285
	case DIV:       case UDIV:
	  /* ??? The associative optimization performed immediately above is
	     also possible for DIV and UDIV using associate_code of MULT.
	     However, we would need extra code to verify that the
	     multiplication does not overflow, that is, there is no overflow
	     in the calculation of new_const.  */
	  break;

4286 4287
	default:
	  break;
Richard Kenner committed
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
	}

      new = simplify_binary_operation (code, mode,
				       const_arg0 ? const_arg0 : folded_arg0,
				       const_arg1 ? const_arg1 : folded_arg1);
      break;

    case 'o':
      /* (lo_sum (high X) X) is simply X.  */
      if (code == LO_SUM && const_arg0 != 0
	  && GET_CODE (const_arg0) == HIGH
	  && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
	return const_arg1;
      break;

    case '3':
    case 'b':
      new = simplify_ternary_operation (code, mode, mode_arg0,
					const_arg0 ? const_arg0 : folded_arg0,
					const_arg1 ? const_arg1 : folded_arg1,
					const_arg2 ? const_arg2 : XEXP (x, 2));
      break;
4310 4311

    case 'x':
4312
      /* Eliminate CONSTANT_P_RTX if its constant.  */
4313
      if (code == CONSTANT_P_RTX)
4314 4315 4316
	{
	  if (const_arg0)
	    return const1_rtx;
4317
	  if (optimize == 0 || !flag_gcse)
4318 4319
	    return const0_rtx;
	}
4320
      break;
Richard Kenner committed
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
    }

  return new ? new : x;
}

/* Return a constant value currently equivalent to X.
   Return 0 if we don't know one.  */

static rtx
equiv_constant (x)
     rtx x;
{
  if (GET_CODE (x) == REG
4334 4335 4336 4337 4338 4339 4340 4341
      && REGNO_QTY_VALID_P (REGNO (x)))
    {
      int x_q = REG_QTY (REGNO (x));
      struct qty_table_elem *x_ent = &qty_table[x_q];

      if (x_ent->const_rtx)
	x = gen_lowpart_if_possible (GET_MODE (x), x_ent->const_rtx);
    }
Richard Kenner committed
4342

4343
  if (x == 0 || CONSTANT_P (x))
Richard Kenner committed
4344 4345
    return x;

4346 4347 4348 4349 4350 4351 4352 4353 4354
  /* If X is a MEM, try to fold it outside the context of any insn to see if
     it might be equivalent to a constant.  That handles the case where it
     is a constant-pool reference.  Then try to look it up in the hash table
     in case it is something whose value we have seen before.  */

  if (GET_CODE (x) == MEM)
    {
      struct table_elt *elt;

4355
      x = fold_rtx (x, NULL_RTX);
4356 4357 4358
      if (CONSTANT_P (x))
	return x;

4359
      elt = lookup (x, safe_hash (x, GET_MODE (x)) & HASH_MASK, GET_MODE (x));
4360 4361 4362 4363 4364 4365 4366 4367
      if (elt == 0)
	return 0;

      for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
	if (elt->is_const && CONSTANT_P (elt->exp))
	  return elt->exp;
    }

Richard Kenner committed
4368 4369 4370 4371 4372 4373
  return 0;
}

/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
   number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
   least-significant part of X.
4374
   MODE specifies how big a part of X to return.
Richard Kenner committed
4375 4376 4377 4378 4379 4380 4381 4382

   If the requested operation cannot be done, 0 is returned.

   This is similar to gen_lowpart in emit-rtl.c.  */

rtx
gen_lowpart_if_possible (mode, x)
     enum machine_mode mode;
4383
     rtx x;
Richard Kenner committed
4384 4385 4386 4387 4388 4389 4390 4391
{
  rtx result = gen_lowpart_common (mode, x);

  if (result)
    return result;
  else if (GET_CODE (x) == MEM)
    {
      /* This is the only other case we handle.  */
4392
      int offset = 0;
Richard Kenner committed
4393 4394
      rtx new;

4395 4396 4397 4398
      if (WORDS_BIG_ENDIAN)
	offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
		  - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
      if (BYTES_BIG_ENDIAN)
Richard Kenner committed
4399 4400 4401 4402 4403 4404
	/* Adjust the address so that the address-after-the-data is
	   unchanged.  */
	offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
		   - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));

      new = adjust_address_nv (x, mode, offset);
Richard Kenner committed
4405 4406
      if (! memory_address_p (mode, XEXP (new, 0)))
	return 0;
Richard Kenner committed
4407

Richard Kenner committed
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
      return new;
    }
  else
    return 0;
}

/* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
   branch.  It will be zero if not.

   In certain cases, this can cause us to add an equivalence.  For example,
4418
   if we are following the taken case of
Richard Kenner committed
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
   	if (i == 2)
   we can add the fact that `i' and '2' are now equivalent.

   In any case, we can record that this comparison was passed.  If the same
   comparison is seen later, we will know its value.  */

static void
record_jump_equiv (insn, taken)
     rtx insn;
     int taken;
{
  int cond_known_true;
  rtx op0, op1;
4432
  rtx set;
4433
  enum machine_mode mode, mode0, mode1;
Richard Kenner committed
4434 4435 4436 4437
  int reversed_nonequality = 0;
  enum rtx_code code;

  /* Ensure this is the right kind of insn.  */
4438
  if (! any_condjump_p (insn))
Richard Kenner committed
4439
    return;
4440
  set = pc_set (insn);
Richard Kenner committed
4441 4442 4443

  /* See if this jump condition is known true or false.  */
  if (taken)
4444
    cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
Richard Kenner committed
4445
  else
4446
    cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
Richard Kenner committed
4447 4448 4449 4450

  /* Get the type of comparison being done and the operands being compared.
     If we had to reverse a non-equality condition, record that fact so we
     know that it isn't valid for floating-point.  */
4451 4452 4453
  code = GET_CODE (XEXP (SET_SRC (set), 0));
  op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
  op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
Richard Kenner committed
4454

4455
  code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
Richard Kenner committed
4456 4457
  if (! cond_known_true)
    {
4458
      code = reversed_comparison_code_parts (code, op0, op1, insn);
4459 4460 4461 4462

      /* Don't remember if we can't find the inverse.  */
      if (code == UNKNOWN)
	return;
Richard Kenner committed
4463 4464 4465
    }

  /* The mode is the mode of the non-constant.  */
4466 4467 4468
  mode = mode0;
  if (mode1 != VOIDmode)
    mode = mode1;
Richard Kenner committed
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484

  record_jump_cond (code, mode, op0, op1, reversed_nonequality);
}

/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
   REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
   Make any useful entries we can with that information.  Called from
   above function and called recursively.  */

static void
record_jump_cond (code, mode, op0, op1, reversed_nonequality)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
     int reversed_nonequality;
{
Richard Kenner committed
4485
  unsigned op0_hash, op1_hash;
Bernd Schmidt committed
4486
  int op0_in_memory, op1_in_memory;
Richard Kenner committed
4487 4488 4489 4490 4491
  struct table_elt *op0_elt, *op1_elt;

  /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
     we know that they are also equal in the smaller mode (this is also
     true for all smaller modes whether or not there is a SUBREG, but
4492
     is not worth testing for with no SUBREG).  */
Richard Kenner committed
4493

4494
  /* Note that GET_MODE (op0) may not equal MODE.  */
Richard Kenner committed
4495
  if (code == EQ && GET_CODE (op0) == SUBREG
4496 4497
      && (GET_MODE_SIZE (GET_MODE (op0))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
Richard Kenner committed
4498 4499 4500 4501 4502
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
      rtx tem = gen_lowpart_if_possible (inner_mode, op1);

      record_jump_cond (code, mode, SUBREG_REG (op0),
4503
			tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
Richard Kenner committed
4504 4505 4506 4507
			reversed_nonequality);
    }

  if (code == EQ && GET_CODE (op1) == SUBREG
4508 4509
      && (GET_MODE_SIZE (GET_MODE (op1))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
Richard Kenner committed
4510 4511 4512 4513 4514
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
      rtx tem = gen_lowpart_if_possible (inner_mode, op0);

      record_jump_cond (code, mode, SUBREG_REG (op1),
4515
			tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
Richard Kenner committed
4516 4517 4518
			reversed_nonequality);
    }

4519
  /* Similarly, if this is an NE comparison, and either is a SUBREG
Richard Kenner committed
4520 4521
     making a smaller mode, we know the whole thing is also NE.  */

4522 4523 4524 4525
  /* Note that GET_MODE (op0) may not equal MODE;
     if we test MODE instead, we can get an infinite recursion
     alternating between two modes each wider than MODE.  */

Richard Kenner committed
4526 4527
  if (code == NE && GET_CODE (op0) == SUBREG
      && subreg_lowpart_p (op0)
4528 4529
      && (GET_MODE_SIZE (GET_MODE (op0))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
Richard Kenner committed
4530 4531 4532 4533 4534
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
      rtx tem = gen_lowpart_if_possible (inner_mode, op1);

      record_jump_cond (code, mode, SUBREG_REG (op0),
4535
			tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
Richard Kenner committed
4536 4537 4538 4539 4540
			reversed_nonequality);
    }

  if (code == NE && GET_CODE (op1) == SUBREG
      && subreg_lowpart_p (op1)
4541 4542
      && (GET_MODE_SIZE (GET_MODE (op1))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
Richard Kenner committed
4543 4544 4545 4546 4547
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
      rtx tem = gen_lowpart_if_possible (inner_mode, op0);

      record_jump_cond (code, mode, SUBREG_REG (op1),
4548
			tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
Richard Kenner committed
4549 4550 4551 4552 4553 4554 4555
			reversed_nonequality);
    }

  /* Hash both operands.  */

  do_not_record = 0;
  hash_arg_in_memory = 0;
Richard Kenner committed
4556
  op0_hash = HASH (op0, mode);
Richard Kenner committed
4557 4558 4559 4560 4561 4562 4563
  op0_in_memory = hash_arg_in_memory;

  if (do_not_record)
    return;

  do_not_record = 0;
  hash_arg_in_memory = 0;
Richard Kenner committed
4564
  op1_hash = HASH (op1, mode);
Richard Kenner committed
4565
  op1_in_memory = hash_arg_in_memory;
4566

Richard Kenner committed
4567 4568 4569 4570
  if (do_not_record)
    return;

  /* Look up both operands.  */
Richard Kenner committed
4571 4572
  op0_elt = lookup (op0, op0_hash, mode);
  op1_elt = lookup (op1, op1_hash, mode);
Richard Kenner committed
4573

4574 4575 4576 4577 4578 4579 4580
  /* If both operands are already equivalent or if they are not in the
     table but are identical, do nothing.  */
  if ((op0_elt != 0 && op1_elt != 0
       && op0_elt->first_same_value == op1_elt->first_same_value)
      || op0 == op1 || rtx_equal_p (op0, op1))
    return;

Richard Kenner committed
4581
  /* If we aren't setting two things equal all we can do is save this
4582 4583 4584 4585 4586
     comparison.   Similarly if this is floating-point.  In the latter
     case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
     If we record the equality, we might inadvertently delete code
     whose intent was to change -0 to +0.  */

4587
  if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
Richard Kenner committed
4588
    {
4589 4590 4591
      struct qty_table_elem *ent;
      int qty;

Richard Kenner committed
4592 4593 4594 4595 4596 4597 4598
      /* If we reversed a floating-point comparison, if OP0 is not a
	 register, or if OP1 is neither a register or constant, we can't
	 do anything.  */

      if (GET_CODE (op1) != REG)
	op1 = equiv_constant (op1);

4599
      if ((reversed_nonequality && FLOAT_MODE_P (mode))
Richard Kenner committed
4600 4601 4602 4603 4604 4605 4606
	  || GET_CODE (op0) != REG || op1 == 0)
	return;

      /* Put OP0 in the hash table if it isn't already.  This gives it a
	 new quantity number.  */
      if (op0_elt == 0)
	{
4607
	  if (insert_regs (op0, NULL, 0))
Richard Kenner committed
4608 4609
	    {
	      rehash_using_reg (op0);
Richard Kenner committed
4610
	      op0_hash = HASH (op0, mode);
4611 4612 4613 4614 4615

	      /* If OP0 is contained in OP1, this changes its hash code
		 as well.  Faster to rehash than to check, except
		 for the simple case of a constant.  */
	      if (! CONSTANT_P (op1))
Richard Kenner committed
4616
		op1_hash = HASH (op1,mode);
Richard Kenner committed
4617 4618
	    }

4619
	  op0_elt = insert (op0, NULL, op0_hash, mode);
Richard Kenner committed
4620 4621 4622
	  op0_elt->in_memory = op0_in_memory;
	}

4623 4624 4625 4626
      qty = REG_QTY (REGNO (op0));
      ent = &qty_table[qty];

      ent->comparison_code = code;
Richard Kenner committed
4627 4628
      if (GET_CODE (op1) == REG)
	{
4629
	  /* Look it up again--in case op0 and op1 are the same.  */
Richard Kenner committed
4630
	  op1_elt = lookup (op1, op1_hash, mode);
4631

Richard Kenner committed
4632 4633 4634
	  /* Put OP1 in the hash table so it gets a new quantity number.  */
	  if (op1_elt == 0)
	    {
4635
	      if (insert_regs (op1, NULL, 0))
Richard Kenner committed
4636 4637
		{
		  rehash_using_reg (op1);
Richard Kenner committed
4638
		  op1_hash = HASH (op1, mode);
Richard Kenner committed
4639 4640
		}

4641
	      op1_elt = insert (op1, NULL, op1_hash, mode);
Richard Kenner committed
4642 4643 4644
	      op1_elt->in_memory = op1_in_memory;
	    }

4645 4646
	  ent->comparison_const = NULL_RTX;
	  ent->comparison_qty = REG_QTY (REGNO (op1));
Richard Kenner committed
4647 4648 4649
	}
      else
	{
4650 4651
	  ent->comparison_const = op1;
	  ent->comparison_qty = -1;
Richard Kenner committed
4652 4653 4654 4655 4656
	}

      return;
    }

4657 4658
  /* If either side is still missing an equivalence, make it now,
     then merge the equivalences.  */
Richard Kenner committed
4659 4660 4661

  if (op0_elt == 0)
    {
4662
      if (insert_regs (op0, NULL, 0))
Richard Kenner committed
4663 4664
	{
	  rehash_using_reg (op0);
Richard Kenner committed
4665
	  op0_hash = HASH (op0, mode);
Richard Kenner committed
4666 4667
	}

4668
      op0_elt = insert (op0, NULL, op0_hash, mode);
Richard Kenner committed
4669 4670 4671 4672 4673
      op0_elt->in_memory = op0_in_memory;
    }

  if (op1_elt == 0)
    {
4674
      if (insert_regs (op1, NULL, 0))
Richard Kenner committed
4675 4676
	{
	  rehash_using_reg (op1);
Richard Kenner committed
4677
	  op1_hash = HASH (op1, mode);
Richard Kenner committed
4678 4679
	}

4680
      op1_elt = insert (op1, NULL, op1_hash, mode);
Richard Kenner committed
4681 4682
      op1_elt->in_memory = op1_in_memory;
    }
4683 4684 4685

  merge_equiv_classes (op0_elt, op1_elt);
  last_jump_equiv_class = op0_elt;
Richard Kenner committed
4686 4687 4688 4689 4690 4691
}

/* CSE processing for one instruction.
   First simplify sources and addresses of all assignments
   in the instruction, using previously-computed equivalents values.
   Then install the new sources and destinations in the table
4692
   of available values.
Richard Kenner committed
4693

4694 4695
   If LIBCALL_INSN is nonzero, don't record any equivalence made in
   the insn.  It means that INSN is inside libcall block.  In this
Kazu Hirata committed
4696
   case LIBCALL_INSN is the corresponding insn with REG_LIBCALL.  */
Richard Kenner committed
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707

/* Data on one SET contained in the instruction.  */

struct set
{
  /* The SET rtx itself.  */
  rtx rtl;
  /* The SET_SRC of the rtx (the original value, if it is changing).  */
  rtx src;
  /* The hash-table element for the SET_SRC of the SET.  */
  struct table_elt *src_elt;
Richard Kenner committed
4708 4709 4710 4711
  /* Hash value for the SET_SRC.  */
  unsigned src_hash;
  /* Hash value for the SET_DEST.  */
  unsigned dest_hash;
Richard Kenner committed
4712 4713
  /* The SET_DEST, with SUBREG, etc., stripped.  */
  rtx inner_dest;
4714
  /* Nonzero if the SET_SRC is in memory.  */
Richard Kenner committed
4715 4716 4717 4718
  char src_in_memory;
  /* Nonzero if the SET_SRC contains something
     whose value cannot be predicted and understood.  */
  char src_volatile;
4719 4720 4721 4722
  /* Original machine mode, in case it becomes a CONST_INT.
     The size of this field should match the size of the mode
     field of struct rtx_def (see rtl.h).  */
  ENUM_BITFIELD(machine_mode) mode : 8;
Richard Kenner committed
4723 4724
  /* A constant equivalent for SET_SRC, if any.  */
  rtx src_const;
4725 4726
  /* Original SET_SRC value used for libcall notes.  */
  rtx orig_src;
Richard Kenner committed
4727 4728
  /* Hash value of constant equivalent for SET_SRC.  */
  unsigned src_const_hash;
Richard Kenner committed
4729 4730 4731 4732 4733
  /* Table entry for constant equivalent for SET_SRC, if any.  */
  struct table_elt *src_const_elt;
};

static void
4734
cse_insn (insn, libcall_insn)
Richard Kenner committed
4735
     rtx insn;
4736
     rtx libcall_insn;
Richard Kenner committed
4737
{
4738 4739
  rtx x = PATTERN (insn);
  int i;
4740
  rtx tem;
4741
  int n_sets = 0;
Richard Kenner committed
4742

4743
#ifdef HAVE_cc0
Richard Kenner committed
4744 4745
  /* Records what this insn does to set CC0.  */
  rtx this_insn_cc0 = 0;
4746
  enum machine_mode this_insn_cc0_mode = VOIDmode;
4747
#endif
Richard Kenner committed
4748 4749 4750

  rtx src_eqv = 0;
  struct table_elt *src_eqv_elt = 0;
Kaveh R. Ghazi committed
4751 4752 4753
  int src_eqv_volatile = 0;
  int src_eqv_in_memory = 0;
  unsigned src_eqv_hash = 0;
Richard Kenner committed
4754

4755
  struct set *sets = (struct set *) 0;
Richard Kenner committed
4756 4757 4758 4759 4760 4761 4762 4763

  this_insn = insn;

  /* Find all the SETs and CLOBBERs in this instruction.
     Record all the SETs in the array `set' and count them.
     Also determine whether there is a CLOBBER that invalidates
     all memory references, or all references at varying addresses.  */

4764 4765 4766
  if (GET_CODE (insn) == CALL_INSN)
    {
      for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4767 4768 4769 4770 4771
	{
	  if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
	    invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
	  XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
	}
4772 4773
    }

Richard Kenner committed
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
  if (GET_CODE (x) == SET)
    {
      sets = (struct set *) alloca (sizeof (struct set));
      sets[0].rtl = x;

      /* Ignore SETs that are unconditional jumps.
	 They never need cse processing, so this does not hurt.
	 The reason is not efficiency but rather
	 so that we can test at the end for instructions
	 that have been simplified to unconditional jumps
	 and not be misled by unchanged instructions
	 that were unconditional jumps to begin with.  */
      if (SET_DEST (x) == pc_rtx
	  && GET_CODE (SET_SRC (x)) == LABEL_REF)
	;

      /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
	 The hard function value register is used only once, to copy to
	 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
	 Ensure we invalidate the destination register.  On the 80386 no
4794
	 other code would invalidate it since it is a fixed_reg.
Mike Stump committed
4795
	 We need not check the return of apply_change_group; see canon_reg.  */
Richard Kenner committed
4796 4797 4798 4799

      else if (GET_CODE (SET_SRC (x)) == CALL)
	{
	  canon_reg (SET_SRC (x), insn);
4800
	  apply_change_group ();
Richard Kenner committed
4801
	  fold_rtx (SET_SRC (x), insn);
4802
	  invalidate (SET_DEST (x), VOIDmode);
Richard Kenner committed
4803 4804 4805 4806 4807 4808
	}
      else
	n_sets = 1;
    }
  else if (GET_CODE (x) == PARALLEL)
    {
4809
      int lim = XVECLEN (x, 0);
Richard Kenner committed
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820

      sets = (struct set *) alloca (lim * sizeof (struct set));

      /* Find all regs explicitly clobbered in this insn,
	 and ensure they are not replaced with any other regs
	 elsewhere in this insn.
	 When a reg that is clobbered is also used for input,
	 we should presume that that is for a reason,
	 and we should not substitute some other register
	 which is not supposed to be clobbered.
	 Therefore, this loop cannot be merged into the one below
4821
	 because a CALL may precede a CLOBBER and refer to the
Richard Kenner committed
4822 4823 4824 4825
	 value clobbered.  We must not let a canonicalization do
	 anything in that case.  */
      for (i = 0; i < lim; i++)
	{
4826
	  rtx y = XVECEXP (x, 0, i);
4827 4828 4829 4830 4831 4832
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx clobbered = XEXP (y, 0);

	      if (GET_CODE (clobbered) == REG
		  || GET_CODE (clobbered) == SUBREG)
4833
		invalidate (clobbered, VOIDmode);
4834 4835
	      else if (GET_CODE (clobbered) == STRICT_LOW_PART
		       || GET_CODE (clobbered) == ZERO_EXTRACT)
4836
		invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4837
	    }
Richard Kenner committed
4838
	}
4839

Richard Kenner committed
4840 4841
      for (i = 0; i < lim; i++)
	{
4842
	  rtx y = XVECEXP (x, 0, i);
Richard Kenner committed
4843 4844
	  if (GET_CODE (y) == SET)
	    {
4845 4846
	      /* As above, we ignore unconditional jumps and call-insns and
		 ignore the result of apply_change_group.  */
Richard Kenner committed
4847 4848 4849
	      if (GET_CODE (SET_SRC (y)) == CALL)
		{
		  canon_reg (SET_SRC (y), insn);
4850
		  apply_change_group ();
Richard Kenner committed
4851
		  fold_rtx (SET_SRC (y), insn);
4852
		  invalidate (SET_DEST (y), VOIDmode);
Richard Kenner committed
4853 4854 4855 4856 4857 4858 4859 4860 4861
		}
	      else if (SET_DEST (y) == pc_rtx
		       && GET_CODE (SET_SRC (y)) == LABEL_REF)
		;
	      else
		sets[n_sets++].rtl = y;
	    }
	  else if (GET_CODE (y) == CLOBBER)
	    {
4862
	      /* If we clobber memory, canon the address.
Richard Kenner committed
4863 4864 4865
		 This does nothing when a register is clobbered
		 because we have already invalidated the reg.  */
	      if (GET_CODE (XEXP (y, 0)) == MEM)
4866
		canon_reg (XEXP (y, 0), NULL_RTX);
Richard Kenner committed
4867 4868 4869 4870
	    }
	  else if (GET_CODE (y) == USE
		   && ! (GET_CODE (XEXP (y, 0)) == REG
			 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4871
	    canon_reg (y, NULL_RTX);
Richard Kenner committed
4872 4873
	  else if (GET_CODE (y) == CALL)
	    {
4874 4875
	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */
Richard Kenner committed
4876
	      canon_reg (y, insn);
4877
	      apply_change_group ();
Richard Kenner committed
4878 4879 4880 4881 4882 4883 4884
	      fold_rtx (y, insn);
	    }
	}
    }
  else if (GET_CODE (x) == CLOBBER)
    {
      if (GET_CODE (XEXP (x, 0)) == MEM)
4885
	canon_reg (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
4886 4887 4888 4889 4890 4891
    }

  /* Canonicalize a USE of a pseudo register or memory location.  */
  else if (GET_CODE (x) == USE
	   && ! (GET_CODE (XEXP (x, 0)) == REG
		 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4892
    canon_reg (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
4893 4894
  else if (GET_CODE (x) == CALL)
    {
4895
      /* The result of apply_change_group can be ignored; see canon_reg.  */
Richard Kenner committed
4896
      canon_reg (x, insn);
4897
      apply_change_group ();
Richard Kenner committed
4898 4899 4900
      fold_rtx (x, insn);
    }

4901 4902 4903
  /* Store the equivalent value in SRC_EQV, if different, or if the DEST
     is a STRICT_LOW_PART.  The latter condition is necessary because SRC_EQV
     is handled specially for this case, and if it isn't set, then there will
Richard Kenner committed
4904
     be no equivalence for the destination.  */
4905 4906
  if (n_sets == 1 && REG_NOTES (insn) != 0
      && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4907 4908
      && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
	  || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4909 4910 4911 4912
    {
      src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
      XEXP (tem, 0) = src_eqv;
    }
Richard Kenner committed
4913 4914 4915 4916 4917 4918 4919 4920 4921

  /* Canonicalize sources and addresses of destinations.
     We do this in a separate pass to avoid problems when a MATCH_DUP is
     present in the insn pattern.  In that case, we want to ensure that
     we don't break the duplicate nature of the pattern.  So we will replace
     both operands at the same time.  Otherwise, we would fail to find an
     equivalent substitution in the loop calling validate_change below.

     We used to suppress canonicalization of DEST if it appears in SRC,
4922
     but we don't do this any more.  */
Richard Kenner committed
4923 4924 4925 4926 4927 4928

  for (i = 0; i < n_sets; i++)
    {
      rtx dest = SET_DEST (sets[i].rtl);
      rtx src = SET_SRC (sets[i].rtl);
      rtx new = canon_reg (src, insn);
4929
      int insn_code;
Richard Kenner committed
4930

4931
      sets[i].orig_src = src;
4932 4933 4934
      if ((GET_CODE (new) == REG && GET_CODE (src) == REG
	   && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
	       != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4935
	  || (insn_code = recog_memoized (insn)) < 0
4936
	  || insn_data[insn_code].n_dups > 0)
4937
	validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
Richard Kenner committed
4938 4939 4940 4941 4942 4943
      else
	SET_SRC (sets[i].rtl) = new;

      if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
	{
	  validate_change (insn, &XEXP (dest, 1),
4944
			   canon_reg (XEXP (dest, 1), insn), 1);
Richard Kenner committed
4945
	  validate_change (insn, &XEXP (dest, 2),
4946
			   canon_reg (XEXP (dest, 2), insn), 1);
Richard Kenner committed
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
	}

      while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SIGN_EXTRACT)
	dest = XEXP (dest, 0);

      if (GET_CODE (dest) == MEM)
	canon_reg (dest, insn);
    }

4958 4959 4960 4961
  /* Now that we have done all the replacements, we can apply the change
     group and see if they all work.  Note that this will cause some
     canonicalizations that would have worked individually not to be applied
     because some other canonicalization didn't work, but this should not
4962
     occur often.
4963 4964

     The result of apply_change_group can be ignored; see canon_reg.  */
4965 4966 4967

  apply_change_group ();

Richard Kenner committed
4968 4969 4970 4971 4972 4973 4974 4975 4976
  /* Set sets[i].src_elt to the class each source belongs to.
     Detect assignments from or to volatile things
     and set set[i] to zero so they will be ignored
     in the rest of this function.

     Nothing in this loop changes the hash table or the register chains.  */

  for (i = 0; i < n_sets; i++)
    {
4977 4978 4979
      rtx src, dest;
      rtx src_folded;
      struct table_elt *elt = 0, *p;
Richard Kenner committed
4980 4981 4982 4983 4984
      enum machine_mode mode;
      rtx src_eqv_here;
      rtx src_const = 0;
      rtx src_related = 0;
      struct table_elt *src_const_elt = 0;
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
      int src_cost = MAX_COST;
      int src_eqv_cost = MAX_COST;
      int src_folded_cost = MAX_COST;
      int src_related_cost = MAX_COST;
      int src_elt_cost = MAX_COST;
      int src_regcost = MAX_COST;
      int src_eqv_regcost = MAX_COST;
      int src_folded_regcost = MAX_COST;
      int src_related_regcost = MAX_COST;
      int src_elt_regcost = MAX_COST;
4995
      /* Set nonzero if we need to call force_const_mem on with the
Richard Kenner committed
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
	 contents of src_folded before using it.  */
      int src_folded_force_flag = 0;

      dest = SET_DEST (sets[i].rtl);
      src = SET_SRC (sets[i].rtl);

      /* If SRC is a constant that has no machine mode,
	 hash it with the destination's machine mode.
	 This way we can keep different modes separate.  */

      mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
      sets[i].mode = mode;

      if (src_eqv)
	{
	  enum machine_mode eqvmode = mode;
	  if (GET_CODE (dest) == STRICT_LOW_PART)
	    eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  do_not_record = 0;
	  hash_arg_in_memory = 0;
Richard Kenner committed
5016
	  src_eqv_hash = HASH (src_eqv, eqvmode);
Richard Kenner committed
5017 5018 5019 5020

	  /* Find the equivalence class for the equivalent expression.  */

	  if (!do_not_record)
Richard Kenner committed
5021
	    src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
Richard Kenner committed
5022 5023 5024 5025 5026 5027 5028

	  src_eqv_volatile = do_not_record;
	  src_eqv_in_memory = hash_arg_in_memory;
	}

      /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
	 value of the INNER register, not the destination.  So it is not
Richard Kenner committed
5029
	 a valid substitution for the source.  But save it for later.  */
Richard Kenner committed
5030 5031 5032 5033 5034 5035 5036 5037 5038
      if (GET_CODE (dest) == STRICT_LOW_PART)
	src_eqv_here = 0;
      else
	src_eqv_here = src_eqv;

      /* Simplify and foldable subexpressions in SRC.  Then get the fully-
	 simplified result, which may not necessarily be valid.  */
      src_folded = fold_rtx (src, insn);

5039 5040 5041 5042 5043 5044 5045
#if 0
      /* ??? This caused bad code to be generated for the m68k port with -O2.
	 Suppose src is (CONST_INT -1), and that after truncation src_folded
	 is (CONST_INT 3).  Suppose src_folded is then used for src_const.
	 At the end we will add src and src_const to the same equivalence
	 class.  We now have 3 and -1 on the same equivalence class.  This
	 causes later instructions to be mis-optimized.  */
Richard Kenner committed
5046 5047 5048 5049 5050 5051 5052 5053 5054
      /* If storing a constant in a bitfield, pre-truncate the constant
	 so we will be able to record it later.  */
      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
	  || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (GET_CODE (src) == CONST_INT
	      && GET_CODE (width) == CONST_INT
5055 5056 5057 5058 5059
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
	    src_folded
	      = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
					  << INTVAL (width)) - 1));
Richard Kenner committed
5060
	}
5061
#endif
Richard Kenner committed
5062 5063 5064 5065 5066 5067 5068 5069

      /* Compute SRC's hash code, and also notice if it
	 should not be recorded at all.  In that case,
	 prevent any further processing of this assignment.  */
      do_not_record = 0;
      hash_arg_in_memory = 0;

      sets[i].src = src;
Richard Kenner committed
5070
      sets[i].src_hash = HASH (src, mode);
Richard Kenner committed
5071 5072 5073
      sets[i].src_volatile = do_not_record;
      sets[i].src_in_memory = hash_arg_in_memory;

5074
      /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
5075 5076 5077 5078 5079
	 a pseudo, do not record SRC.  Using SRC as a replacement for
	 anything else will be incorrect in that situation.  Note that
	 this usually occurs only for stack slots, in which case all the
	 RTL would be referring to SRC, so we don't lose any optimization
	 opportunities by not having SRC in the hash table.  */
5080 5081

      if (GET_CODE (src) == MEM
5082
	  && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
5083
	  && GET_CODE (dest) == REG
5084
	  && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5085 5086
	sets[i].src_volatile = 1;

5087 5088 5089 5090
#if 0
      /* It is no longer clear why we used to do this, but it doesn't
	 appear to still be needed.  So let's try without it since this
	 code hurts cse'ing widened ops.  */
Richard Kenner committed
5091 5092 5093 5094 5095 5096 5097 5098
      /* If source is a perverse subreg (such as QI treated as an SI),
	 treat it as volatile.  It may do the work of an SI in one context
	 where the extra bits are not being used, but cannot replace an SI
	 in general.  */
      if (GET_CODE (src) == SUBREG
	  && (GET_MODE_SIZE (GET_MODE (src))
	      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
	sets[i].src_volatile = 1;
5099
#endif
Richard Kenner committed
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117

      /* Locate all possible equivalent forms for SRC.  Try to replace
         SRC in the insn with each cheaper equivalent.

         We have the following types of equivalents: SRC itself, a folded
         version, a value given in a REG_EQUAL note, or a value related
	 to a constant.

         Each of these equivalents may be part of an additional class
         of equivalents (if more than one is in the table, they must be in
         the same class; we check for this).

	 If the source is volatile, we don't do any table lookups.

         We note any constant equivalent for possible later use in a
         REG_NOTE.  */

      if (!sets[i].src_volatile)
Richard Kenner committed
5118
	elt = lookup (src, sets[i].src_hash, mode);
Richard Kenner committed
5119 5120 5121 5122

      sets[i].src_elt = elt;

      if (elt && src_eqv_here && src_eqv_elt)
5123 5124
	{
	  if (elt->first_same_value != src_eqv_elt->first_same_value)
Richard Kenner committed
5125 5126 5127 5128
	    {
	      /* The REG_EQUAL is indicating that two formerly distinct
		 classes are now equivalent.  So merge them.  */
	      merge_equiv_classes (elt, src_eqv_elt);
Richard Kenner committed
5129 5130
	      src_eqv_hash = HASH (src_eqv, elt->mode);
	      src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
Richard Kenner committed
5131 5132
	    }

5133 5134
	  src_eqv_here = 0;
	}
Richard Kenner committed
5135 5136

      else if (src_eqv_elt)
5137
	elt = src_eqv_elt;
Richard Kenner committed
5138 5139 5140 5141

      /* Try to find a constant somewhere and record it in `src_const'.
	 Record its table element, if any, in `src_const_elt'.  Look in
	 any known equivalences first.  (If the constant is not in the
Richard Kenner committed
5142
	 table, also set `sets[i].src_const_hash').  */
Richard Kenner committed
5143
      if (elt)
5144
	for (p = elt->first_same_value; p; p = p->next_same_value)
Richard Kenner committed
5145 5146 5147 5148 5149 5150 5151 5152 5153
	  if (p->is_const)
	    {
	      src_const = p->exp;
	      src_const_elt = elt;
	      break;
	    }

      if (src_const == 0
	  && (CONSTANT_P (src_folded)
5154
	      /* Consider (minus (label_ref L1) (label_ref L2)) as
Richard Kenner committed
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
		 "constant" here so we will record it. This allows us
		 to fold switch statements when an ADDR_DIFF_VEC is used.  */
	      || (GET_CODE (src_folded) == MINUS
		  && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
		  && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
	src_const = src_folded, src_const_elt = elt;
      else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
	src_const = src_eqv_here, src_const_elt = src_eqv_elt;

      /* If we don't know if the constant is in the table, get its
	 hash code and look it up.  */
      if (src_const && src_const_elt == 0)
	{
Richard Kenner committed
5168 5169
	  sets[i].src_const_hash = HASH (src_const, mode);
	  src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
Richard Kenner committed
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
	}

      sets[i].src_const = src_const;
      sets[i].src_const_elt = src_const_elt;

      /* If the constant and our source are both in the table, mark them as
	 equivalent.  Otherwise, if a constant is in the table but the source
	 isn't, set ELT to it.  */
      if (src_const_elt && elt
	  && src_const_elt->first_same_value != elt->first_same_value)
	merge_equiv_classes (elt, src_const_elt);
      else if (src_const_elt && elt == 0)
	elt = src_const_elt;

      /* See if there is a register linearly related to a constant
         equivalent of SRC.  */
      if (src_const
	  && (GET_CODE (src_const) == CONST
	      || (src_const_elt && src_const_elt->related_value != 0)))
5189 5190 5191 5192
	{
	  src_related = use_related_value (src_const, src_const_elt);
	  if (src_related)
	    {
Richard Kenner committed
5193
	      struct table_elt *src_related_elt
5194
		= lookup (src_related, HASH (src_related, mode), mode);
Richard Kenner committed
5195
	      if (src_related_elt && elt)
5196
		{
Richard Kenner committed
5197 5198
		  if (elt->first_same_value
		      != src_related_elt->first_same_value)
5199
		    /* This can occur when we previously saw a CONST
Richard Kenner committed
5200 5201 5202 5203
		       involving a SYMBOL_REF and then see the SYMBOL_REF
		       twice.  Merge the involved classes.  */
		    merge_equiv_classes (elt, src_related_elt);

5204
		  src_related = 0;
Richard Kenner committed
5205
		  src_related_elt = 0;
5206 5207 5208
		}
	      else if (src_related_elt && elt == 0)
		elt = src_related_elt;
Richard Kenner committed
5209
	    }
5210
	}
Richard Kenner committed
5211

5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
      /* See if we have a CONST_INT that is already in a register in a
	 wider mode.  */

      if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
	  && GET_MODE_CLASS (mode) == MODE_INT
	  && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
	{
	  enum machine_mode wider_mode;

	  for (wider_mode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
	       && src_related == 0;
	       wider_mode = GET_MODE_WIDER_MODE (wider_mode))
	    {
	      struct table_elt *const_elt
		= lookup (src_const, HASH (src_const, wider_mode), wider_mode);

	      if (const_elt == 0)
		continue;

	      for (const_elt = const_elt->first_same_value;
		   const_elt; const_elt = const_elt->next_same_value)
		if (GET_CODE (const_elt->exp) == REG)
		  {
		    src_related = gen_lowpart_if_possible (mode,
							   const_elt->exp);
		    break;
		  }
	    }
	}

5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
      /* Another possibility is that we have an AND with a constant in
	 a mode narrower than a word.  If so, it might have been generated
	 as part of an "if" which would narrow the AND.  If we already
	 have done the AND in a wider mode, we can use a SUBREG of that
	 value.  */

      if (flag_expensive_optimizations && ! src_related
	  && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
	  && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	{
	  enum machine_mode tmode;
5254
	  rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284

	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
	      rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
	      struct table_elt *larger_elt;

	      if (inner)
		{
		  PUT_MODE (new_and, tmode);
		  XEXP (new_and, 0) = inner;
		  larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
		  if (larger_elt == 0)
		    continue;

		  for (larger_elt = larger_elt->first_same_value;
		       larger_elt; larger_elt = larger_elt->next_same_value)
		    if (GET_CODE (larger_elt->exp) == REG)
		      {
			src_related
			  = gen_lowpart_if_possible (mode, larger_elt->exp);
			break;
		      }

		  if (src_related)
		    break;
		}
	    }
	}
5285 5286 5287 5288 5289 5290

#ifdef LOAD_EXTEND_OP
      /* See if a MEM has already been loaded with a widening operation;
	 if it has, we can use a subreg of that.  Many CISC machines
	 also have such operations, but this is only likely to be
	 beneficial these machines.  */
5291

Kazu Hirata committed
5292
      if (flag_expensive_optimizations && src_related == 0
5293 5294 5295 5296 5297 5298
	  && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	  && GET_MODE_CLASS (mode) == MODE_INT
	  && GET_CODE (src) == MEM && ! do_not_record
	  && LOAD_EXTEND_OP (mode) != NIL)
	{
	  enum machine_mode tmode;
5299

5300 5301 5302 5303
	  /* Set what we are trying to extend and the operation it might
	     have been extended with.  */
	  PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
	  XEXP (memory_extend_rtx, 0) = src;
5304

5305 5306 5307 5308 5309
	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
	      struct table_elt *larger_elt;
5310

5311
	      PUT_MODE (memory_extend_rtx, tmode);
5312
	      larger_elt = lookup (memory_extend_rtx,
5313 5314 5315
				   HASH (memory_extend_rtx, tmode), tmode);
	      if (larger_elt == 0)
		continue;
5316

5317 5318 5319 5320
	      for (larger_elt = larger_elt->first_same_value;
		   larger_elt; larger_elt = larger_elt->next_same_value)
		if (GET_CODE (larger_elt->exp) == REG)
		  {
5321
		    src_related = gen_lowpart_if_possible (mode,
5322 5323 5324
							   larger_elt->exp);
		    break;
		  }
5325

5326 5327 5328 5329 5330
	      if (src_related)
		break;
	    }
	}
#endif /* LOAD_EXTEND_OP */
5331

Richard Kenner committed
5332
      if (src == src_folded)
5333
	src_folded = 0;
Richard Kenner committed
5334

5335
      /* At this point, ELT, if nonzero, points to a class of expressions
Richard Kenner committed
5336
         equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5337
	 and SRC_RELATED, if nonzero, each contain additional equivalent
Richard Kenner committed
5338 5339 5340 5341 5342 5343 5344 5345
	 expressions.  Prune these latter expressions by deleting expressions
	 already in the equivalence class.

	 Check for an equivalent identical to the destination.  If found,
	 this is the preferred equivalent since it will likely lead to
	 elimination of the insn.  Indicate this by placing it in
	 `src_related'.  */

5346 5347
      if (elt)
	elt = elt->first_same_value;
Richard Kenner committed
5348
      for (p = elt; p; p = p->next_same_value)
5349
	{
Richard Kenner committed
5350 5351 5352 5353 5354 5355 5356 5357
	  enum rtx_code code = GET_CODE (p->exp);

	  /* If the expression is not valid, ignore it.  Then we do not
	     have to check for validity below.  In most cases, we can use
	     `rtx_equal_p', since canonicalization has already been done.  */
	  if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
	    continue;

5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
	  /* Also skip paradoxical subregs, unless that's what we're
	     looking for.  */
	  if (code == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (p->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (p->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
	    continue;

5370
	  if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
Richard Kenner committed
5371
	    src = 0;
5372
	  else if (src_folded && GET_CODE (src_folded) == code
Richard Kenner committed
5373 5374
		   && rtx_equal_p (src_folded, p->exp))
	    src_folded = 0;
5375
	  else if (src_eqv_here && GET_CODE (src_eqv_here) == code
Richard Kenner committed
5376 5377
		   && rtx_equal_p (src_eqv_here, p->exp))
	    src_eqv_here = 0;
5378
	  else if (src_related && GET_CODE (src_related) == code
Richard Kenner committed
5379 5380 5381 5382 5383 5384 5385 5386
		   && rtx_equal_p (src_related, p->exp))
	    src_related = 0;

	  /* This is the same as the destination of the insns, we want
	     to prefer it.  Copy it to src_related.  The code below will
	     then give it a negative cost.  */
	  if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
	    src_related = dest;
5387
	}
Richard Kenner committed
5388 5389 5390 5391 5392

      /* Find the cheapest valid equivalent, trying all the available
         possibilities.  Prefer items not in the hash table to ones
         that are when they are equal cost.  Note that we can never
         worsen an insn as the current contents will also succeed.
5393
	 If we find an equivalent identical to the destination, use it as best,
Mike Stump committed
5394
	 since this insn will probably be eliminated in that case.  */
Richard Kenner committed
5395 5396 5397
      if (src)
	{
	  if (rtx_equal_p (src, dest))
5398
	    src_cost = src_regcost = -1;
Richard Kenner committed
5399
	  else
5400 5401 5402 5403
	    {
	      src_cost = COST (src);
	      src_regcost = approx_reg_cost (src);
	    }
Richard Kenner committed
5404 5405 5406 5407 5408
	}

      if (src_eqv_here)
	{
	  if (rtx_equal_p (src_eqv_here, dest))
5409
	    src_eqv_cost = src_eqv_regcost = -1;
Richard Kenner committed
5410
	  else
5411 5412 5413 5414
	    {
	      src_eqv_cost = COST (src_eqv_here);
	      src_eqv_regcost = approx_reg_cost (src_eqv_here);
	    }
Richard Kenner committed
5415 5416 5417 5418 5419
	}

      if (src_folded)
	{
	  if (rtx_equal_p (src_folded, dest))
5420
	    src_folded_cost = src_folded_regcost = -1;
Richard Kenner committed
5421
	  else
5422 5423 5424 5425
	    {
	      src_folded_cost = COST (src_folded);
	      src_folded_regcost = approx_reg_cost (src_folded);
	    }
Richard Kenner committed
5426 5427 5428 5429 5430
	}

      if (src_related)
	{
	  if (rtx_equal_p (src_related, dest))
5431
	    src_related_cost = src_related_regcost = -1;
Richard Kenner committed
5432
	  else
5433 5434 5435 5436
	    {
	      src_related_cost = COST (src_related);
	      src_related_regcost = approx_reg_cost (src_related);
	    }
Richard Kenner committed
5437 5438 5439 5440 5441
	}

      /* If this was an indirect jump insn, a known label will really be
	 cheaper even though it looks more expensive.  */
      if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5442
	src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5443

Richard Kenner committed
5444 5445 5446
      /* Terminate loop when replacement made.  This must terminate since
         the current contents will be tested and will always be valid.  */
      while (1)
5447 5448
	{
	  rtx trial;
Richard Kenner committed
5449

5450 5451 5452 5453
	  /* Skip invalid entries.  */
	  while (elt && GET_CODE (elt->exp) != REG
		 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
	    elt = elt->next_same_value;
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472

	  /* A paradoxical subreg would be bad here: it'll be the right
	     size, but later may be adjusted so that the upper bits aren't
	     what we want.  So reject it.  */
	  if (elt != 0
	      && GET_CODE (elt->exp) == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (elt->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
	      /* It is okay, though, if the rtx we're trying to match
		 will ignore any of the bits we can't predict.  */
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (elt->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
	    {
	      elt = elt->next_same_value;
	      continue;
	    }
5473

Kazu Hirata committed
5474
	  if (elt)
5475 5476 5477 5478
	    {
	      src_elt_cost = elt->cost;
	      src_elt_regcost = elt->regcost;
	    }
Richard Kenner committed
5479

Kazu Hirata committed
5480
	  /* Find cheapest and skip it for the next time.   For items
Richard Kenner committed
5481 5482
	     of equal cost, use this order:
	     src_folded, src, src_eqv, src_related and hash table entry.  */
5483 5484 5485
	  if (src_folded
	      && preferrable (src_folded_cost, src_folded_regcost,
			      src_cost, src_regcost) <= 0
5486 5487 5488 5489 5490 5491
	      && preferrable (src_folded_cost, src_folded_regcost,
			      src_eqv_cost, src_eqv_regcost) <= 0
	      && preferrable (src_folded_cost, src_folded_regcost,
			      src_related_cost, src_related_regcost) <= 0
	      && preferrable (src_folded_cost, src_folded_regcost,
			      src_elt_cost, src_elt_regcost) <= 0)
Richard Kenner committed
5492
	    {
5493
	      trial = src_folded, src_folded_cost = MAX_COST;
Richard Kenner committed
5494 5495 5496
	      if (src_folded_force_flag)
		trial = force_const_mem (mode, trial);
	    }
5497 5498 5499
	  else if (src
		   && preferrable (src_cost, src_regcost,
				   src_eqv_cost, src_eqv_regcost) <= 0
5500 5501 5502 5503
		   && preferrable (src_cost, src_regcost,
				   src_related_cost, src_related_regcost) <= 0
		   && preferrable (src_cost, src_regcost,
				   src_elt_cost, src_elt_regcost) <= 0)
5504
	    trial = src, src_cost = MAX_COST;
5505 5506 5507
	  else if (src_eqv_here
		   && preferrable (src_eqv_cost, src_eqv_regcost,
				   src_related_cost, src_related_regcost) <= 0
5508 5509
		   && preferrable (src_eqv_cost, src_eqv_regcost,
				   src_elt_cost, src_elt_regcost) <= 0)
5510
	    trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5511 5512 5513
	  else if (src_related
		   && preferrable (src_related_cost, src_related_regcost,
				   src_elt_cost, src_elt_regcost) <= 0)
Kazu Hirata committed
5514
	    trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5515
	  else
Richard Kenner committed
5516
	    {
5517
	      trial = copy_rtx (elt->exp);
Richard Kenner committed
5518
	      elt = elt->next_same_value;
5519
	      src_elt_cost = MAX_COST;
Richard Kenner committed
5520 5521 5522 5523 5524 5525
	    }

	  /* We don't normally have an insn matching (set (pc) (pc)), so
	     check for this separately here.  We will delete such an
	     insn below.

5526 5527 5528 5529 5530
	     For other cases such as a table jump or conditional jump
	     where we know the ultimate target, go ahead and replace the
	     operand.  While that may not make a valid insn, we will
	     reemit the jump below (and also insert any necessary
	     barriers).  */
Richard Kenner committed
5531 5532 5533 5534 5535
	  if (n_sets == 1 && dest == pc_rtx
	      && (trial == pc_rtx
		  || (GET_CODE (trial) == LABEL_REF
		      && ! condjump_p (insn))))
	    {
5536
	      SET_SRC (sets[i].rtl) = trial;
5537
	      cse_jumps_altered = 1;
Richard Kenner committed
5538 5539
	      break;
	    }
5540

Richard Kenner committed
5541
	  /* Look for a substitution that makes a valid insn.  */
Kazu Hirata committed
5542
	  else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5543
	    {
5544 5545
	      rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);

5546 5547 5548
	      /* If we just made a substitution inside a libcall, then we
		 need to make the same substitution in any notes attached
		 to the RETVAL insn.  */
5549
	      if (libcall_insn
5550 5551
		  && (GET_CODE (sets[i].orig_src) == REG
		      || GET_CODE (sets[i].orig_src) == SUBREG
5552 5553
		      || GET_CODE (sets[i].orig_src) == MEM))
		replace_rtx (REG_NOTES (libcall_insn), sets[i].orig_src,
5554
			     copy_rtx (new));
5555

5556 5557 5558
	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */

5559
	      validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
5560
	      apply_change_group ();
5561 5562
	      break;
	    }
Richard Kenner committed
5563

5564
	  /* If we previously found constant pool entries for
Richard Kenner committed
5565 5566 5567 5568 5569 5570
	     constants and this is a constant, try making a
	     pool entry.  Put it in src_folded unless we already have done
	     this since that is where it likely came from.  */

	  else if (constant_pool_entries_cost
		   && CONSTANT_P (trial)
5571 5572 5573
		   /* Reject cases that will abort in decode_rtx_const.
		      On the alpha when simplifying a switch, we get
		      (const (truncate (minus (label_ref) (label_ref)))).  */
5574 5575
		   && ! (GET_CODE (trial) == CONST
			 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5576 5577 5578 5579 5580
		   /* Likewise on IA-64, except without the truncate.  */
		   && ! (GET_CODE (trial) == CONST
			 && GET_CODE (XEXP (trial, 0)) == MINUS
			 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
			 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
5581 5582 5583
		   && (src_folded == 0
		       || (GET_CODE (src_folded) != MEM
			   && ! src_folded_force_flag))
5584 5585
		   && GET_MODE_CLASS (mode) != MODE_CC
		   && mode != VOIDmode)
Richard Kenner committed
5586 5587 5588 5589 5590
	    {
	      src_folded_force_flag = 1;
	      src_folded = trial;
	      src_folded_cost = constant_pool_entries_cost;
	    }
5591
	}
Richard Kenner committed
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601

      src = SET_SRC (sets[i].rtl);

      /* In general, it is good to have a SET with SET_SRC == SET_DEST.
	 However, there is an important exception:  If both are registers
	 that are not the head of their equivalence class, replace SET_SRC
	 with the head of the class.  If we do not do this, we will have
	 both registers live over a portion of the basic block.  This way,
	 their lifetimes will likely abut instead of overlapping.  */
      if (GET_CODE (dest) == REG
5602
	  && REGNO_QTY_VALID_P (REGNO (dest)))
Richard Kenner committed
5603
	{
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
	  int dest_q = REG_QTY (REGNO (dest));
	  struct qty_table_elem *dest_ent = &qty_table[dest_q];

	  if (dest_ent->mode == GET_MODE (dest)
	      && dest_ent->first_reg != REGNO (dest)
	      && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
	      /* Don't do this if the original insn had a hard reg as
		 SET_SRC or SET_DEST.  */
	      && (GET_CODE (sets[i].src) != REG
		  || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
	      && (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
	    /* We can't call canon_reg here because it won't do anything if
	       SRC is a hard register.  */
5617
	    {
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
	      int src_q = REG_QTY (REGNO (src));
	      struct qty_table_elem *src_ent = &qty_table[src_q];
	      int first = src_ent->first_reg;
	      rtx new_src
		= (first >= FIRST_PSEUDO_REGISTER
		   ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));

	      /* We must use validate-change even for this, because this
		 might be a special no-op instruction, suitable only to
		 tag notes onto.  */
	      if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
		{
		  src = new_src;
		  /* If we had a constant that is cheaper than what we are now
		     setting SRC to, use that constant.  We ignored it when we
		     thought we could make this into a no-op.  */
		  if (src_const && COST (src_const) < COST (src)
5635 5636
		      && validate_change (insn, &SET_SRC (sets[i].rtl),
					  src_const, 0))
5637 5638
		    src = src_const;
		}
5639
	    }
Richard Kenner committed
5640 5641 5642 5643
	}

      /* If we made a change, recompute SRC values.  */
      if (src != sets[i].src)
5644
	{
5645
	  cse_altered = 1;
5646 5647
	  do_not_record = 0;
	  hash_arg_in_memory = 0;
Richard Kenner committed
5648
	  sets[i].src = src;
5649 5650 5651 5652 5653
	  sets[i].src_hash = HASH (src, mode);
	  sets[i].src_volatile = do_not_record;
	  sets[i].src_in_memory = hash_arg_in_memory;
	  sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
	}
Richard Kenner committed
5654 5655 5656 5657

      /* If this is a single SET, we are setting a register, and we have an
	 equivalent constant, we want to add a REG_NOTE.   We don't want
	 to write a REG_EQUAL note for a constant pseudo since verifying that
5658
	 that pseudo hasn't been eliminated is a pain.  Such a note also
5659
	 won't help anything.
5660 5661 5662 5663 5664

	 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
	 which can be created for a reference to a compile time computable
	 entry in a jump table.  */

Richard Kenner committed
5665
      if (n_sets == 1 && src_const && GET_CODE (dest) == REG
5666 5667 5668 5669 5670
	  && GET_CODE (src_const) != REG
	  && ! (GET_CODE (src_const) == CONST
		&& GET_CODE (XEXP (src_const, 0)) == MINUS
		&& GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
		&& GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
Richard Kenner committed
5671
	{
5672 5673 5674 5675 5676
	  /* We only want a REG_EQUAL note if src_const != src.  */
	  if (! rtx_equal_p (src, src_const))
	    {
	      /* Make sure that the rtx is not shared.  */
	      src_const = copy_rtx (src_const);
5677

5678 5679 5680 5681
	      /* Record the actual constant value in a REG_EQUAL note,
		 making a new one if one does not already exist.  */
	      set_unique_reg_note (insn, REG_EQUAL, src_const);
	    }
Richard Kenner committed
5682

Kazu Hirata committed
5683
	  /* If storing a constant value in a register that
Richard Kenner committed
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
	     previously held the constant value 0,
	     record this fact with a REG_WAS_0 note on this insn.

	     Note that the *register* is required to have previously held 0,
	     not just any register in the quantity and we must point to the
	     insn that set that register to zero.

	     Rather than track each register individually, we just see if
	     the last set for this quantity was for this register.  */

5694
	  if (REGNO_QTY_VALID_P (REGNO (dest)))
Richard Kenner committed
5695
	    {
5696 5697
	      int dest_q = REG_QTY (REGNO (dest));
	      struct qty_table_elem *dest_ent = &qty_table[dest_q];
Richard Kenner committed
5698

5699
	      if (dest_ent->const_rtx == const0_rtx)
Richard Kenner committed
5700
		{
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
		  /* See if we previously had a REG_WAS_0 note.  */
		  rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
		  rtx const_insn = dest_ent->const_insn;

		  if ((tem = single_set (const_insn)) != 0
		      && rtx_equal_p (SET_DEST (tem), dest))
		    {
		      if (note)
			XEXP (note, 0) = const_insn;
		      else
			REG_NOTES (insn)
			  = gen_rtx_INSN_LIST (REG_WAS_0, const_insn,
					       REG_NOTES (insn));
		    }
Richard Kenner committed
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
		}
	    }
	}

      /* Now deal with the destination.  */
      do_not_record = 0;

      /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
	 to the MEM or REG within it.  */
      while (GET_CODE (dest) == SIGN_EXTRACT
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SUBREG
	     || GET_CODE (dest) == STRICT_LOW_PART)
5728
	dest = XEXP (dest, 0);
Richard Kenner committed
5729 5730 5731 5732 5733

      sets[i].inner_dest = dest;

      if (GET_CODE (dest) == MEM)
	{
5734 5735 5736
#ifdef PUSH_ROUNDING
	  /* Stack pushes invalidate the stack pointer.  */
	  rtx addr = XEXP (dest, 0);
5737
	  if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
5738 5739 5740
	      && XEXP (addr, 0) == stack_pointer_rtx)
	    invalidate (stack_pointer_rtx, Pmode);
#endif
Richard Kenner committed
5741 5742 5743 5744 5745 5746 5747
	  dest = fold_rtx (dest, insn);
	}

      /* Compute the hash code of the destination now,
	 before the effects of this instruction are recorded,
	 since the register values used in the address computation
	 are those before this instruction.  */
Richard Kenner committed
5748
      sets[i].dest_hash = HASH (dest, mode);
Richard Kenner committed
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760

      /* Don't enter a bit-field in the hash table
	 because the value in it after the store
	 may not equal what was stored, due to truncation.  */

      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
	  || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (src_const != 0 && GET_CODE (src_const) == CONST_INT
	      && GET_CODE (width) == CONST_INT
5761 5762 5763
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && ! (INTVAL (src_const)
		    & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
Richard Kenner committed
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783
	    /* Exception: if the value is constant,
	       and it won't be truncated, record it.  */
	    ;
	  else
	    {
	      /* This is chosen so that the destination will be invalidated
		 but no new value will be recorded.
		 We must invalidate because sometimes constant
		 values can be recorded for bitfields.  */
	      sets[i].src_elt = 0;
	      sets[i].src_volatile = 1;
	      src_eqv = 0;
	      src_eqv_elt = 0;
	    }
	}

      /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
	 the insn.  */
      else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
	{
5784
	  /* One less use of the label this insn used to jump to.  */
5785
	  delete_insn (insn);
Richard Kenner committed
5786 5787 5788 5789 5790 5791
	  cse_jumps_altered = 1;
	  /* No more processing for this set.  */
	  sets[i].rtl = 0;
	}

      /* If this SET is now setting PC to a label, we know it used to
5792
	 be a conditional or computed branch.  */
Richard Kenner committed
5793 5794
      else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
	{
5795 5796 5797 5798 5799
	  /* Now emit a BARRIER after the unconditional jump.  */
	  if (NEXT_INSN (insn) == 0
	      || GET_CODE (NEXT_INSN (insn)) != BARRIER)
	    emit_barrier_after (insn);

5800 5801 5802 5803 5804 5805 5806 5807
	  /* We reemit the jump in as many cases as possible just in
	     case the form of an unconditional jump is significantly
	     different than a computed jump or conditional jump.

	     If this insn has multiple sets, then reemitting the
	     jump is nontrivial.  So instead we just force rerecognition
	     and hope for the best.  */
	  if (n_sets == 1)
Richard Kenner committed
5808
	    {
5809
	      rtx new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
5810

Richard Kenner committed
5811 5812
	      JUMP_LABEL (new) = XEXP (src, 0);
	      LABEL_NUSES (XEXP (src, 0))++;
5813
	      delete_insn (insn);
Richard Kenner committed
5814
	      insn = new;
5815 5816 5817 5818 5819

	      /* Now emit a BARRIER after the unconditional jump.  */
	      if (NEXT_INSN (insn) == 0
		  || GET_CODE (NEXT_INSN (insn)) != BARRIER)
		emit_barrier_after (insn);
Richard Kenner committed
5820
	    }
5821 5822
	  else
	    INSN_CODE (insn) = -1;
Richard Kenner committed
5823

5824
	  never_reached_warning (insn, NULL);
5825

5826 5827
	  /* Do not bother deleting any unreachable code,
	     let jump/flow do that.  */
Richard Kenner committed
5828 5829 5830 5831 5832

	  cse_jumps_altered = 1;
	  sets[i].rtl = 0;
	}

5833 5834
      /* If destination is volatile, invalidate it and then do no further
	 processing for this assignment.  */
Richard Kenner committed
5835 5836

      else if (do_not_record)
5837
	{
5838
	  if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
5839
	    invalidate (dest, VOIDmode);
5840 5841 5842 5843 5844 5845 5846
	  else if (GET_CODE (dest) == MEM)
	    {
	      /* Outgoing arguments for a libcall don't
		 affect any recorded expressions.  */
	      if (! libcall_insn || insn == libcall_insn)
		invalidate (dest, VOIDmode);
	    }
5847 5848
	  else if (GET_CODE (dest) == STRICT_LOW_PART
		   || GET_CODE (dest) == ZERO_EXTRACT)
5849
	    invalidate (XEXP (dest, 0), GET_MODE (dest));
5850 5851
	  sets[i].rtl = 0;
	}
Richard Kenner committed
5852 5853

      if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
Richard Kenner committed
5854
	sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
Richard Kenner committed
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866

#ifdef HAVE_cc0
      /* If setting CC0, record what it was set to, or a constant, if it
	 is equivalent to a constant.  If it is being set to a floating-point
	 value, make a COMPARE with the appropriate constant of 0.  If we
	 don't do this, later code can interpret this as a test against
	 const0_rtx, which can cause problems if we try to put it into an
	 insn as a floating-point operand.  */
      if (dest == cc0_rtx)
	{
	  this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
	  this_insn_cc0_mode = mode;
5867
	  if (FLOAT_MODE_P (mode))
5868 5869
	    this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
					     CONST0_RTX (mode));
Richard Kenner committed
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
	}
#endif
    }

  /* Now enter all non-volatile source expressions in the hash table
     if they are not already present.
     Record their equivalence classes in src_elt.
     This way we can insert the corresponding destinations into
     the same classes even if the actual sources are no longer in them
     (having been invalidated).  */

  if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
      && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
    {
5884 5885
      struct table_elt *elt;
      struct table_elt *classp = sets[0].src_elt;
Richard Kenner committed
5886 5887 5888 5889 5890 5891 5892 5893 5894
      rtx dest = SET_DEST (sets[0].rtl);
      enum machine_mode eqvmode = GET_MODE (dest);

      if (GET_CODE (dest) == STRICT_LOW_PART)
	{
	  eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  classp = 0;
	}
      if (insert_regs (src_eqv, classp, 0))
5895 5896 5897 5898
	{
	  rehash_using_reg (src_eqv);
	  src_eqv_hash = HASH (src_eqv, eqvmode);
	}
Richard Kenner committed
5899
      elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
Richard Kenner committed
5900 5901
      elt->in_memory = src_eqv_in_memory;
      src_eqv_elt = elt;
5902 5903 5904 5905 5906

      /* Check to see if src_eqv_elt is the same as a set source which
	 does not yet have an elt, and if so set the elt of the set source
	 to src_eqv_elt.  */
      for (i = 0; i < n_sets; i++)
5907 5908
	if (sets[i].rtl && sets[i].src_elt == 0
	    && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5909
	  sets[i].src_elt = src_eqv_elt;
Richard Kenner committed
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
    }

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl && ! sets[i].src_volatile
	&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
      {
	if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
	  {
	    /* REG_EQUAL in setting a STRICT_LOW_PART
	       gives an equivalent for the entire destination register,
	       not just for the subreg being stored in now.
	       This is a more interesting equivalence, so we arrange later
	       to treat the entire reg as the destination.  */
	    sets[i].src_elt = src_eqv_elt;
Richard Kenner committed
5924
	    sets[i].src_hash = src_eqv_hash;
Richard Kenner committed
5925 5926 5927 5928 5929
	  }
	else
	  {
	    /* Insert source and constant equivalent into hash table, if not
	       already present.  */
5930 5931 5932
	    struct table_elt *classp = src_eqv_elt;
	    rtx src = sets[i].src;
	    rtx dest = SET_DEST (sets[i].rtl);
Richard Kenner committed
5933 5934 5935
	    enum machine_mode mode
	      = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);

5936
	    if (sets[i].src_elt == 0)
Richard Kenner committed
5937
	      {
5938 5939 5940
		/* Don't put a hard register source into the table if this is
		   the last insn of a libcall.  In this case, we only need
		   to put src_eqv_elt in src_elt.  */
5941
		if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5942
		  {
5943
		    struct table_elt *elt;
5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955

		    /* Note that these insert_regs calls cannot remove
		       any of the src_elt's, because they would have failed to
		       match if not still valid.  */
		    if (insert_regs (src, classp, 0))
		      {
			rehash_using_reg (src);
			sets[i].src_hash = HASH (src, mode);
		      }
		    elt = insert (src, classp, sets[i].src_hash, mode);
		    elt->in_memory = sets[i].src_in_memory;
		    sets[i].src_elt = classp = elt;
5956
		  }
5957 5958
		else
		  sets[i].src_elt = classp;
Richard Kenner committed
5959 5960 5961 5962 5963
	      }
	    if (sets[i].src_const && sets[i].src_const_elt == 0
		&& src != sets[i].src_const
		&& ! rtx_equal_p (sets[i].src_const, src))
	      sets[i].src_elt = insert (sets[i].src_const, classp,
Richard Kenner committed
5964
					sets[i].src_const_hash, mode);
Richard Kenner committed
5965 5966 5967 5968 5969 5970 5971 5972
	  }
      }
    else if (sets[i].src_elt == 0)
      /* If we did not insert the source into the hash table (e.g., it was
	 volatile), note the equivalence class for the REG_EQUAL value, if any,
	 so that the destination goes into that class.  */
      sets[i].src_elt = src_eqv_elt;

5973
  invalidate_from_clobbers (x);
5974

5975
  /* Some registers are invalidated by subroutine calls.  Memory is
5976 5977
     invalidated by non-constant calls.  */

Richard Kenner committed
5978 5979
  if (GET_CODE (insn) == CALL_INSN)
    {
5980
      if (! CONST_OR_PURE_CALL_P (insn))
5981
	invalidate_memory ();
Richard Kenner committed
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
      invalidate_for_call ();
    }

  /* Now invalidate everything set by this instruction.
     If a SUBREG or other funny destination is being set,
     sets[i].rtl is still nonzero, so here we invalidate the reg
     a part of which is being set.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
5993 5994
	/* We can't use the inner dest, because the mode associated with
	   a ZERO_EXTRACT is significant.  */
5995
	rtx dest = SET_DEST (sets[i].rtl);
Richard Kenner committed
5996 5997 5998 5999 6000

	/* Needed for registers to remove the register from its
	   previous quantity's chain.
	   Needed for memory if this is a nonvarying address, unless
	   we have just done an invalidate_memory that covers even those.  */
6001
	if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
6002
	  invalidate (dest, VOIDmode);
6003 6004 6005 6006 6007 6008 6009
	else if (GET_CODE (dest) == MEM)
	  {
	    /* Outgoing arguments for a libcall don't
	       affect any recorded expressions.  */
	    if (! libcall_insn || insn == libcall_insn)
	      invalidate (dest, VOIDmode);
	  }
6010 6011
	else if (GET_CODE (dest) == STRICT_LOW_PART
		 || GET_CODE (dest) == ZERO_EXTRACT)
6012
	  invalidate (XEXP (dest, 0), GET_MODE (dest));
Richard Kenner committed
6013 6014
      }

6015 6016 6017 6018 6019 6020
  /* A volatile ASM invalidates everything.  */
  if (GET_CODE (insn) == INSN
      && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
      && MEM_VOLATILE_P (PATTERN (insn)))
    flush_hash_table ();

Richard Kenner committed
6021 6022 6023 6024 6025 6026 6027 6028 6029
  /* Make sure registers mentioned in destinations
     are safe for use in an expression to be inserted.
     This removes from the hash table
     any invalid entry that refers to one of these registers.

     We don't care about the return value from mention_regs because
     we are going to hash the SET_DEST values unconditionally.  */

  for (i = 0; i < n_sets; i++)
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041
    {
      if (sets[i].rtl)
	{
	  rtx x = SET_DEST (sets[i].rtl);

	  if (GET_CODE (x) != REG)
	    mention_regs (x);
	  else
	    {
	      /* We used to rely on all references to a register becoming
		 inaccessible when a register changes to a new quantity,
		 since that changes the hash code.  However, that is not
6042
		 safe, since after HASH_SIZE new quantities we get a
6043 6044 6045 6046 6047 6048 6049 6050
		 hash 'collision' of a register with its own invalid
		 entries.  And since SUBREGs have been changed not to
		 change their hash code with the hash code of the register,
		 it wouldn't work any longer at all.  So we have to check
		 for any invalid references lying around now.
		 This code is similar to the REG case in mention_regs,
		 but it knows that reg_tick has been incremented, and
		 it leaves reg_in_table as -1 .  */
6051 6052
	      unsigned int regno = REGNO (x);
	      unsigned int endregno
6053 6054
		= regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
			   : HARD_REGNO_NREGS (regno, GET_MODE (x)));
6055
	      unsigned int i;
6056 6057 6058

	      for (i = regno; i < endregno; i++)
		{
6059
		  if (REG_IN_TABLE (i) >= 0)
6060 6061
		    {
		      remove_invalid_refs (i);
6062
		      REG_IN_TABLE (i) = -1;
6063 6064 6065 6066 6067
		    }
		}
	    }
	}
    }
Richard Kenner committed
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078

  /* We may have just removed some of the src_elt's from the hash table.
     So replace each one with the current head of the same class.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
	if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
	  /* If elt was removed, find current head of same class,
	     or 0 if nothing remains of that class.  */
	  {
6079
	    struct table_elt *elt = sets[i].src_elt;
Richard Kenner committed
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094

	    while (elt && elt->prev_same_value)
	      elt = elt->prev_same_value;

	    while (elt && elt->first_same_value == 0)
	      elt = elt->next_same_value;
	    sets[i].src_elt = elt ? elt->first_same_value : 0;
	  }
      }

  /* Now insert the destinations into their equivalence classes.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
6095
	rtx dest = SET_DEST (sets[i].rtl);
6096
	rtx inner_dest = sets[i].inner_dest;
6097
	struct table_elt *elt;
Richard Kenner committed
6098 6099 6100 6101 6102 6103

	/* Don't record value if we are not supposed to risk allocating
	   floating-point values in registers that might be wider than
	   memory.  */
	if ((flag_float_store
	     && GET_CODE (dest) == MEM
6104
	     && FLOAT_MODE_P (GET_MODE (dest)))
6105 6106 6107 6108
	    /* Don't record BLKmode values, because we don't know the
	       size of it, and can't be sure that other BLKmode values
	       have the same or smaller size.  */
	    || GET_MODE (dest) == BLKmode
Richard Kenner committed
6109 6110 6111 6112
	    /* Don't record values of destinations set inside a libcall block
	       since we might delete the libcall.  Things should have been set
	       up so we won't want to reuse such a value, but we play it safe
	       here.  */
6113
	    || libcall_insn
Richard Kenner committed
6114 6115
	    /* If we didn't put a REG_EQUAL value or a source into the hash
	       table, there is no point is recording DEST.  */
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
	    || sets[i].src_elt == 0
	    /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
	       or SIGN_EXTEND, don't record DEST since it can cause
	       some tracking to be wrong.

	       ??? Think about this more later.  */
	    || (GET_CODE (dest) == SUBREG
		&& (GET_MODE_SIZE (GET_MODE (dest))
		    > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
		&& (GET_CODE (sets[i].src) == SIGN_EXTEND
		    || GET_CODE (sets[i].src) == ZERO_EXTEND)))
Richard Kenner committed
6127 6128 6129 6130 6131 6132 6133 6134
	  continue;

	/* STRICT_LOW_PART isn't part of the value BEING set,
	   and neither is the SUBREG inside it.
	   Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT.  */
	if (GET_CODE (dest) == STRICT_LOW_PART)
	  dest = SUBREG_REG (XEXP (dest, 0));

6135
	if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
Richard Kenner committed
6136 6137
	  /* Registers must also be inserted into chains for quantities.  */
	  if (insert_regs (dest, sets[i].src_elt, 1))
6138 6139 6140 6141 6142 6143
	    {
	      /* If `insert_regs' changes something, the hash code must be
		 recalculated.  */
	      rehash_using_reg (dest);
	      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
	    }
Richard Kenner committed
6144

6145 6146 6147
	if (GET_CODE (inner_dest) == MEM
	    && GET_CODE (XEXP (inner_dest, 0)) == ADDRESSOF)
	  /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
6148
	     that (MEM (ADDRESSOF (X))) is equivalent to Y.
6149 6150 6151 6152 6153 6154 6155 6156
	     Consider the case in which the address of the MEM is
	     passed to a function, which alters the MEM.  Then, if we
	     later use Y instead of the MEM we'll miss the update.  */
	  elt = insert (dest, 0, sets[i].dest_hash, GET_MODE (dest));
	else
	  elt = insert (dest, sets[i].src_elt,
			sets[i].dest_hash, GET_MODE (dest));

6157
	elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
6158
			  && (! RTX_UNCHANGING_P (sets[i].inner_dest)
6159
			      || fixed_base_plus_p (XEXP (sets[i].inner_dest,
6160
							  0))));
6161

6162 6163 6164 6165
	/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
	   narrower than M2, and both M1 and M2 are the same number of words,
	   we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
	   make that equivalence as well.
Richard Kenner committed
6166 6167 6168 6169

	   However, BAR may have equivalences for which gen_lowpart_if_possible
	   will produce a simpler value than gen_lowpart_if_possible applied to
	   BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6170
	   BAR's equivalences.  If we don't get a simplified form, make
Richard Kenner committed
6171 6172 6173 6174 6175 6176 6177
	   the SUBREG.  It will not be used in an equivalence, but will
	   cause two similar assignments to be detected.

	   Note the loop below will find SUBREG_REG (DEST) since we have
	   already entered SRC and DEST of the SET in the table.  */

	if (GET_CODE (dest) == SUBREG
6178 6179
	    && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
		 / UNITS_PER_WORD)
6180
		== (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
Richard Kenner committed
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
	    && (GET_MODE_SIZE (GET_MODE (dest))
		>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
	    && sets[i].src_elt != 0)
	  {
	    enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
	    struct table_elt *elt, *classp = 0;

	    for (elt = sets[i].src_elt->first_same_value; elt;
		 elt = elt->next_same_value)
	      {
		rtx new_src = 0;
Richard Kenner committed
6192
		unsigned src_hash;
Richard Kenner committed
6193
		struct table_elt *src_elt;
6194
		int byte = 0;
Richard Kenner committed
6195 6196 6197 6198 6199 6200

		/* Ignore invalid entries.  */
		if (GET_CODE (elt->exp) != REG
		    && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
		  continue;

6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
		/* We may have already been playing subreg games.  If the
		   mode is already correct for the destination, use it.  */
		if (GET_MODE (elt->exp) == new_mode)
		  new_src = elt->exp;
		else
		  {
		    /* Calculate big endian correction for the SUBREG_BYTE.
		       We have already checked that M1 (GET_MODE (dest))
		       is not narrower than M2 (new_mode).  */
		    if (BYTES_BIG_ENDIAN)
		      byte = (GET_MODE_SIZE (GET_MODE (dest))
			      - GET_MODE_SIZE (new_mode));

		    new_src = simplify_gen_subreg (new_mode, elt->exp,
					           GET_MODE (dest), byte);
		  }

6218 6219 6220 6221 6222 6223 6224 6225
		/* The call to simplify_gen_subreg fails if the value
		   is VOIDmode, yet we can't do any simplification, e.g.
		   for EXPR_LISTs denoting function call results.
		   It is invalid to construct a SUBREG with a VOIDmode
		   SUBREG_REG, hence a zero new_src means we can't do
		   this substitution.  */
		if (! new_src)
		  continue;
Richard Kenner committed
6226 6227 6228 6229 6230 6231 6232 6233 6234

		src_hash = HASH (new_src, new_mode);
		src_elt = lookup (new_src, src_hash, new_mode);

		/* Put the new source in the hash table is if isn't
		   already.  */
		if (src_elt == 0)
		  {
		    if (insert_regs (new_src, classp, 0))
6235 6236 6237 6238
		      {
			rehash_using_reg (new_src);
			src_hash = HASH (new_src, new_mode);
		      }
Richard Kenner committed
6239 6240 6241 6242
		    src_elt = insert (new_src, classp, src_hash, new_mode);
		    src_elt->in_memory = elt->in_memory;
		  }
		else if (classp && classp != src_elt->first_same_value)
6243
		  /* Show that two things that we've seen before are
Richard Kenner committed
6244 6245 6246 6247
		     actually the same.  */
		  merge_equiv_classes (src_elt, classp);

		classp = src_elt->first_same_value;
6248 6249 6250 6251 6252
		/* Ignore invalid entries.  */
		while (classp
		       && GET_CODE (classp->exp) != REG
		       && ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
		  classp = classp->next_same_value;
Richard Kenner committed
6253 6254 6255 6256
	      }
	  }
      }

6257 6258 6259 6260 6261 6262
  /* Special handling for (set REG0 REG1) where REG0 is the
     "cheapest", cheaper than REG1.  After cse, REG1 will probably not
     be used in the sequel, so (if easily done) change this insn to
     (set REG1 REG0) and replace REG1 with REG0 in the previous insn
     that computed their value.  Then REG1 will become a dead store
     and won't cloud the situation for later optimizations.
Richard Kenner committed
6263 6264 6265 6266 6267

     Do not make this change if REG1 is a hard register, because it will
     then be used in the sequel and we may be changing a two-operand insn
     into a three-operand insn.

6268 6269 6270 6271 6272
     Also do not do this if we are operating on a copy of INSN.

     Also don't do this if INSN ends a libcall; this would cause an unrelated
     register to be set in the middle of a libcall, and we then get bad code
     if the libcall is deleted.  */
Richard Kenner committed
6273 6274 6275 6276 6277

  if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
      && NEXT_INSN (PREV_INSN (insn)) == insn
      && GET_CODE (SET_SRC (sets[0].rtl)) == REG
      && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6278
      && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
Richard Kenner committed
6279
    {
6280 6281
      int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
      struct qty_table_elem *src_ent = &qty_table[src_q];
Richard Kenner committed
6282

6283 6284
      if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
	  && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
Richard Kenner committed
6285
	{
6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
	  rtx prev = insn;
	  /* Scan for the previous nonnote insn, but stop at a basic
	     block boundary.  */
	  do
	    {
	      prev = PREV_INSN (prev);
	    }
	  while (prev && GET_CODE (prev) == NOTE
		 && NOTE_LINE_NUMBER (prev) != NOTE_INSN_BASIC_BLOCK);
	    
6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
	  /* Do not swap the registers around if the previous instruction
	     attaches a REG_EQUIV note to REG1.

	     ??? It's not entirely clear whether we can transfer a REG_EQUIV
	     from the pseudo that originally shadowed an incoming argument
	     to another register.  Some uses of REG_EQUIV might rely on it
	     being attached to REG1 rather than REG2.

	     This section previously turned the REG_EQUIV into a REG_EQUAL
	     note.  We cannot do that because REG_EQUIV may provide an
6306
	     uninitialized stack slot when REG_PARM_STACK_SPACE is used.  */
6307

6308 6309
	  if (prev != 0 && GET_CODE (prev) == INSN
	      && GET_CODE (PATTERN (prev)) == SET
6310 6311
	      && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
	      && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6312 6313
	    {
	      rtx dest = SET_DEST (sets[0].rtl);
6314
	      rtx src = SET_SRC (sets[0].rtl);
6315
	      rtx note;
Richard Kenner committed
6316

6317 6318 6319
	      validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
	      validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
	      validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6320
	      apply_change_group ();
Richard Kenner committed
6321

6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
	      /* If there was a REG_WAS_0 note on PREV, remove it.  Move
		 any REG_WAS_0 note on INSN to PREV.  */
	      note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
	      if (note)
		remove_note (prev, note);

	      note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
	      if (note)
		{
		  remove_note (insn, note);
		  XEXP (note, 1) = REG_NOTES (prev);
		  REG_NOTES (prev) = note;
		}
6335

6336 6337 6338 6339
	      /* If INSN has a REG_EQUAL note, and this note mentions
		 REG0, then we must delete it, because the value in
		 REG0 has changed.  If the note's value is REG1, we must
		 also delete it because that is now this insn's dest.  */
6340
	      note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6341 6342 6343
	      if (note != 0
		  && (reg_mentioned_p (dest, XEXP (note, 0))
		      || rtx_equal_p (src, XEXP (note, 0))))
6344 6345
		remove_note (insn, note);
	    }
Richard Kenner committed
6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
	}
    }

  /* If this is a conditional jump insn, record any known equivalences due to
     the condition being tested.  */

  last_jump_equiv_class = 0;
  if (GET_CODE (insn) == JUMP_INSN
      && n_sets == 1 && GET_CODE (x) == SET
      && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
    record_jump_equiv (insn, 0);

#ifdef HAVE_cc0
  /* If the previous insn set CC0 and this insn no longer references CC0,
     delete the previous insn.  Here we use the fact that nothing expects CC0
     to be valid over an insn, which is true until the final pass.  */
  if (prev_insn && GET_CODE (prev_insn) == INSN
      && (tem = single_set (prev_insn)) != 0
      && SET_DEST (tem) == cc0_rtx
      && ! reg_mentioned_p (cc0_rtx, x))
6366
    delete_insn (prev_insn);
Richard Kenner committed
6367 6368 6369 6370

  prev_insn_cc0 = this_insn_cc0;
  prev_insn_cc0_mode = this_insn_cc0_mode;
  prev_insn = insn;
6371
#endif
Richard Kenner committed
6372 6373
}

6374
/* Remove from the hash table all expressions that reference memory.  */
Richard Kenner committed
6375

Richard Kenner committed
6376
static void
6377
invalidate_memory ()
Richard Kenner committed
6378
{
6379 6380
  int i;
  struct table_elt *p, *next;
Richard Kenner committed
6381

6382
  for (i = 0; i < HASH_SIZE; i++)
6383 6384 6385 6386 6387 6388 6389 6390
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (p->in_memory)
	  remove_from_table (p, i);
      }
}

Richard Kenner committed
6391 6392 6393
/* If ADDR is an address that implicitly affects the stack pointer, return
   1 and update the register tables to show the effect.  Else, return 0.  */

6394
static int
Richard Kenner committed
6395
addr_affects_sp_p (addr)
6396
     rtx addr;
6397
{
6398
  if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
6399 6400
      && GET_CODE (XEXP (addr, 0)) == REG
      && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
Richard Kenner committed
6401
    {
6402
      if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6403 6404 6405 6406 6407
	{
	  REG_TICK (STACK_POINTER_REGNUM)++;
	  /* Is it possible to use a subreg of SP?  */
	  SUBREG_TICKED (STACK_POINTER_REGNUM) = -1;
	}
6408 6409 6410 6411

      /* This should be *very* rare.  */
      if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
	invalidate (stack_pointer_rtx, VOIDmode);
Richard Kenner committed
6412

6413
      return 1;
Richard Kenner committed
6414
    }
Richard Kenner committed
6415

6416
  return 0;
Richard Kenner committed
6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
}

/* Perform invalidation on the basis of everything about an insn
   except for invalidating the actual places that are SET in it.
   This includes the places CLOBBERed, and anything that might
   alias with something that is SET or CLOBBERed.

   X is the pattern of the insn.  */

static void
6427
invalidate_from_clobbers (x)
Richard Kenner committed
6428 6429 6430 6431 6432
     rtx x;
{
  if (GET_CODE (x) == CLOBBER)
    {
      rtx ref = XEXP (x, 0);
6433 6434 6435 6436 6437 6438 6439 6440 6441
      if (ref)
	{
	  if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
	      || GET_CODE (ref) == MEM)
	    invalidate (ref, VOIDmode);
	  else if (GET_CODE (ref) == STRICT_LOW_PART
		   || GET_CODE (ref) == ZERO_EXTRACT)
	    invalidate (XEXP (ref, 0), GET_MODE (ref));
	}
Richard Kenner committed
6442 6443 6444
    }
  else if (GET_CODE (x) == PARALLEL)
    {
6445
      int i;
Richard Kenner committed
6446 6447
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
6448
	  rtx y = XVECEXP (x, 0, i);
Richard Kenner committed
6449 6450 6451
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx ref = XEXP (y, 0);
6452 6453 6454 6455 6456 6457
	      if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
		  || GET_CODE (ref) == MEM)
		invalidate (ref, VOIDmode);
	      else if (GET_CODE (ref) == STRICT_LOW_PART
		       || GET_CODE (ref) == ZERO_EXTRACT)
		invalidate (XEXP (ref, 0), GET_MODE (ref));
Richard Kenner committed
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477
	    }
	}
    }
}

/* Process X, part of the REG_NOTES of an insn.  Look at any REG_EQUAL notes
   and replace any registers in them with either an equivalent constant
   or the canonical form of the register.  If we are inside an address,
   only do this if the address remains valid.

   OBJECT is 0 except when within a MEM in which case it is the MEM.

   Return the replacement for X.  */

static rtx
cse_process_notes (x, object)
     rtx x;
     rtx object;
{
  enum rtx_code code = GET_CODE (x);
6478
  const char *fmt = GET_RTX_FORMAT (code);
Richard Kenner committed
6479 6480 6481 6482 6483 6484 6485 6486 6487
  int i;

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
6488
    case CONST_VECTOR:
Richard Kenner committed
6489 6490 6491 6492 6493 6494
    case PC:
    case CC0:
    case LO_SUM:
      return x;

    case MEM:
6495 6496
      validate_change (x, &XEXP (x, 0),
		       cse_process_notes (XEXP (x, 0), x), 0);
Richard Kenner committed
6497 6498 6499 6500 6501
      return x;

    case EXPR_LIST:
    case INSN_LIST:
      if (REG_NOTE_KIND (x) == REG_EQUAL)
6502
	XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
6503
      if (XEXP (x, 1))
6504
	XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
Richard Kenner committed
6505 6506
      return x;

6507 6508
    case SIGN_EXTEND:
    case ZERO_EXTEND:
6509
    case SUBREG:
6510 6511 6512 6513 6514 6515 6516 6517 6518
      {
	rtx new = cse_process_notes (XEXP (x, 0), object);
	/* We don't substitute VOIDmode constants into these rtx,
	   since they would impede folding.  */
	if (GET_MODE (new) != VOIDmode)
	  validate_change (object, &XEXP (x, 0), new, 0);
	return x;
      }

Richard Kenner committed
6519
    case REG:
6520
      i = REG_QTY (REGNO (x));
Richard Kenner committed
6521 6522

      /* Return a constant or a constant register.  */
6523
      if (REGNO_QTY_VALID_P (REGNO (x)))
Richard Kenner committed
6524
	{
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
	  struct qty_table_elem *ent = &qty_table[i];

	  if (ent->const_rtx != NULL_RTX
	      && (CONSTANT_P (ent->const_rtx)
		  || GET_CODE (ent->const_rtx) == REG))
	    {
	      rtx new = gen_lowpart_if_possible (GET_MODE (x), ent->const_rtx);
	      if (new)
		return new;
	    }
Richard Kenner committed
6535 6536 6537
	}

      /* Otherwise, canonicalize this register.  */
6538
      return canon_reg (x, NULL_RTX);
6539

6540 6541
    default:
      break;
Richard Kenner committed
6542 6543 6544 6545 6546
    }

  for (i = 0; i < GET_RTX_LENGTH (code); i++)
    if (fmt[i] == 'e')
      validate_change (object, &XEXP (x, i),
6547
		       cse_process_notes (XEXP (x, i), object), 0);
Richard Kenner committed
6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587

  return x;
}

/* Find common subexpressions between the end test of a loop and the beginning
   of the loop.  LOOP_START is the CODE_LABEL at the start of a loop.

   Often we have a loop where an expression in the exit test is used
   in the body of the loop.  For example "while (*p) *q++ = *p++;".
   Because of the way we duplicate the loop exit test in front of the loop,
   however, we don't detect that common subexpression.  This will be caught
   when global cse is implemented, but this is a quite common case.

   This function handles the most common cases of these common expressions.
   It is called after we have processed the basic block ending with the
   NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
   jumps to a label used only once.  */

static void
cse_around_loop (loop_start)
     rtx loop_start;
{
  rtx insn;
  int i;
  struct table_elt *p;

  /* If the jump at the end of the loop doesn't go to the start, we don't
     do anything.  */
  for (insn = PREV_INSN (loop_start);
       insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
       insn = PREV_INSN (insn))
    ;

  if (insn == 0
      || GET_CODE (insn) != NOTE
      || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
    return;

  /* If the last insn of the loop (the end test) was an NE comparison,
     we will interpret it as an EQ comparison, since we fell through
6588
     the loop.  Any equivalences resulting from that comparison are
Richard Kenner committed
6589 6590 6591 6592
     therefore not valid and must be invalidated.  */
  if (last_jump_equiv_class)
    for (p = last_jump_equiv_class->first_same_value; p;
	 p = p->next_same_value)
Kaveh R. Ghazi committed
6593
      {
6594
	if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
Kaveh R. Ghazi committed
6595
	    || (GET_CODE (p->exp) == SUBREG
6596
		&& GET_CODE (SUBREG_REG (p->exp)) == REG))
Kaveh R. Ghazi committed
6597
	  invalidate (p->exp, VOIDmode);
6598 6599
	else if (GET_CODE (p->exp) == STRICT_LOW_PART
		 || GET_CODE (p->exp) == ZERO_EXTRACT)
Kaveh R. Ghazi committed
6600 6601
	  invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
      }
Richard Kenner committed
6602 6603 6604 6605 6606 6607

  /* Process insns starting after LOOP_START until we hit a CALL_INSN or
     a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).

     The only thing we do with SET_DEST is invalidate entries, so we
     can safely process each SET in order.  It is slightly less efficient
6608 6609 6610 6611 6612 6613
     to do so, but we only want to handle the most common cases.

     The gen_move_insn call in cse_set_around_loop may create new pseudos.
     These pseudos won't have valid entries in any of the tables indexed
     by register number, such as reg_qty.  We avoid out-of-range array
     accesses by not processing any instructions created after cse started.  */
Richard Kenner committed
6614 6615 6616

  for (insn = NEXT_INSN (loop_start);
       GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
6617
       && INSN_UID (insn) < max_insn_uid
Richard Kenner committed
6618 6619 6620 6621
       && ! (GET_CODE (insn) == NOTE
	     && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
       insn = NEXT_INSN (insn))
    {
6622
      if (INSN_P (insn)
Richard Kenner committed
6623 6624 6625
	  && (GET_CODE (PATTERN (insn)) == SET
	      || GET_CODE (PATTERN (insn)) == CLOBBER))
	cse_set_around_loop (PATTERN (insn), insn, loop_start);
6626
      else if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == PARALLEL)
Richard Kenner committed
6627 6628 6629 6630 6631 6632 6633 6634
	for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	  if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
	      || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
	    cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
				 loop_start);
    }
}

6635 6636 6637 6638
/* Process one SET of an insn that was skipped.  We ignore CLOBBERs
   since they are done elsewhere.  This function is called via note_stores.  */

static void
6639
invalidate_skipped_set (dest, set, data)
6640 6641
     rtx set;
     rtx dest;
6642
     void *data ATTRIBUTE_UNUSED;
6643
{
6644 6645 6646
  enum rtx_code code = GET_CODE (dest);

  if (code == MEM
Kazu Hirata committed
6647
      && ! addr_affects_sp_p (dest)	/* If this is not a stack push ...  */
6648 6649 6650 6651 6652 6653
      /* There are times when an address can appear varying and be a PLUS
	 during this scan when it would be a fixed address were we to know
	 the proper equivalences.  So invalidate all memory if there is
	 a BLKmode or nonscalar memory reference or a reference to a
	 variable address.  */
      && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6654
	  || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6655 6656 6657 6658
    {
      invalidate_memory ();
      return;
    }
6659

6660
  if (GET_CODE (set) == CLOBBER
6661
      || CC0_P (dest)
6662 6663 6664
      || dest == pc_rtx)
    return;

6665
  if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6666
    invalidate (XEXP (dest, 0), GET_MODE (dest));
6667 6668
  else if (code == REG || code == SUBREG || code == MEM)
    invalidate (dest, VOIDmode);
6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
}

/* Invalidate all insns from START up to the end of the function or the
   next label.  This called when we wish to CSE around a block that is
   conditionally executed.  */

static void
invalidate_skipped_block (start)
     rtx start;
{
  rtx insn;

  for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
       insn = NEXT_INSN (insn))
    {
6684
      if (! INSN_P (insn))
6685 6686 6687 6688
	continue;

      if (GET_CODE (insn) == CALL_INSN)
	{
6689
	  if (! CONST_OR_PURE_CALL_P (insn))
6690
	    invalidate_memory ();
6691 6692 6693
	  invalidate_for_call ();
	}

6694
      invalidate_from_clobbers (PATTERN (insn));
6695
      note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6696 6697 6698
    }
}

6699 6700 6701
/* If modifying X will modify the value in *DATA (which is really an
   `rtx *'), indicate that fact by setting the pointed to value to
   NULL_RTX.  */
Richard Kenner committed
6702 6703

static void
6704
cse_check_loop_start (x, set, data)
Richard Kenner committed
6705
     rtx x;
Kaveh R. Ghazi committed
6706
     rtx set ATTRIBUTE_UNUSED;
6707
     void *data;
Richard Kenner committed
6708
{
6709 6710 6711
  rtx *cse_check_loop_start_value = (rtx *) data;

  if (*cse_check_loop_start_value == NULL_RTX
Richard Kenner committed
6712 6713 6714
      || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
    return;

6715 6716 6717
  if ((GET_CODE (x) == MEM && GET_CODE (*cse_check_loop_start_value) == MEM)
      || reg_overlap_mentioned_p (x, *cse_check_loop_start_value))
    *cse_check_loop_start_value = NULL_RTX;
Richard Kenner committed
6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
}

/* X is a SET or CLOBBER contained in INSN that was found near the start of
   a loop that starts with the label at LOOP_START.

   If X is a SET, we see if its SET_SRC is currently in our hash table.
   If so, we see if it has a value equal to some register used only in the
   loop exit code (as marked by jump.c).

   If those two conditions are true, we search backwards from the start of
   the loop to see if that same value was loaded into a register that still
   retains its value at the start of the loop.

   If so, we insert an insn after the load to copy the destination of that
   load into the equivalent register and (try to) replace our SET_SRC with that
   register.

   In any event, we invalidate whatever this SET or CLOBBER modifies.  */

static void
cse_set_around_loop (x, insn, loop_start)
     rtx x;
     rtx insn;
     rtx loop_start;
{
  struct table_elt *src_elt;

  /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
     are setting PC or CC0 or whose SET_SRC is already a register.  */
  if (GET_CODE (x) == SET
      && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
      && GET_CODE (SET_SRC (x)) != REG)
    {
      src_elt = lookup (SET_SRC (x),
			HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
			GET_MODE (SET_DEST (x)));

      if (src_elt)
	for (src_elt = src_elt->first_same_value; src_elt;
	     src_elt = src_elt->next_same_value)
	  if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
	      && COST (src_elt->exp) < COST (SET_SRC (x)))
	    {
	      rtx p, set;

	      /* Look for an insn in front of LOOP_START that sets
		 something in the desired mode to SET_SRC (x) before we hit
		 a label or CALL_INSN.  */

	      for (p = prev_nonnote_insn (loop_start);
		   p && GET_CODE (p) != CALL_INSN
		   && GET_CODE (p) != CODE_LABEL;
		   p = prev_nonnote_insn  (p))
		if ((set = single_set (p)) != 0
		    && GET_CODE (SET_DEST (set)) == REG
		    && GET_MODE (SET_DEST (set)) == src_elt->mode
		    && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
		  {
		    /* We now have to ensure that nothing between P
		       and LOOP_START modified anything referenced in
		       SET_SRC (x).  We know that nothing within the loop
		       can modify it, or we would have invalidated it in
		       the hash table.  */
		    rtx q;
6782
		    rtx cse_check_loop_start_value = SET_SRC (x);
Richard Kenner committed
6783
		    for (q = p; q != loop_start; q = NEXT_INSN (q))
6784
		      if (INSN_P (q))
6785 6786 6787
			note_stores (PATTERN (q),
				     cse_check_loop_start,
				     &cse_check_loop_start_value);
Richard Kenner committed
6788 6789 6790 6791 6792

		    /* If nothing was changed and we can replace our
		       SET_SRC, add an insn after P to copy its destination
		       to what we will be replacing SET_SRC with.  */
		    if (cse_check_loop_start_value
6793 6794
			&& single_set (p)
			&& !can_throw_internal (insn)
Richard Kenner committed
6795 6796
			&& validate_change (insn, &SET_SRC (x),
					    src_elt->exp, 0))
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
		      {
			/* If this creates new pseudos, this is unsafe,
			   because the regno of new pseudo is unsuitable
			   to index into reg_qty when cse_insn processes
			   the new insn.  Therefore, if a new pseudo was
			   created, discard this optimization.  */
			int nregs = max_reg_num ();
			rtx move
			  = gen_move_insn (src_elt->exp, SET_DEST (set));
			if (nregs != max_reg_num ())
			  {
			    if (! validate_change (insn, &SET_SRC (x),
						   SET_SRC (set), 0))
			      abort ();
			  }
			else
			  emit_insn_after (move, p);
		      }
Richard Kenner committed
6815 6816 6817 6818 6819
		    break;
		  }
	    }
    }

Richard Kenner committed
6820 6821
  /* Deal with the destination of X affecting the stack pointer.  */
  addr_affects_sp_p (SET_DEST (x));
Richard Kenner committed
6822

Richard Kenner committed
6823 6824
  /* See comment on similar code in cse_insn for explanation of these
     tests.  */
Richard Kenner committed
6825
  if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
6826
      || GET_CODE (SET_DEST (x)) == MEM)
6827
    invalidate (SET_DEST (x), VOIDmode);
6828 6829
  else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
	   || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
6830
    invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
Richard Kenner committed
6831 6832 6833 6834 6835 6836
}

/* Find the end of INSN's basic block and return its range,
   the total number of SETs in all the insns of the block, the last insn of the
   block, and the branch path.

6837
   The branch path indicates which branches should be followed.  If a nonzero
Richard Kenner committed
6838 6839
   path size is specified, the block should be rescanned and a different set
   of branches will be taken.  The branch path is only used if
6840
   FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
Richard Kenner committed
6841 6842 6843 6844 6845 6846 6847

   DATA is a pointer to a struct cse_basic_block_data, defined below, that is
   used to describe the block.  It is filled in with the information about
   the current block.  The incoming structure's branch path, if any, is used
   to construct the output branch path.  */

void
6848
cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
Richard Kenner committed
6849 6850 6851 6852
     rtx insn;
     struct cse_basic_block_data *data;
     int follow_jumps;
     int after_loop;
6853
     int skip_blocks;
Richard Kenner committed
6854 6855 6856 6857
{
  rtx p = insn, q;
  int nsets = 0;
  int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6858
  rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
Richard Kenner committed
6859 6860 6861 6862 6863 6864 6865
  int path_size = data->path_size;
  int path_entry = 0;
  int i;

  /* Update the previous branch path, if any.  If the last branch was
     previously TAKEN, mark it NOT_TAKEN.  If it was previously NOT_TAKEN,
     shorten the path by one and look at the previous branch.  We know that
6866
     at least one branch must have been taken if PATH_SIZE is nonzero.  */
Richard Kenner committed
6867 6868
  while (path_size > 0)
    {
6869
      if (data->path[path_size - 1].status != NOT_TAKEN)
Richard Kenner committed
6870 6871 6872 6873 6874 6875 6876 6877
	{
	  data->path[path_size - 1].status = NOT_TAKEN;
	  break;
	}
      else
	path_size--;
    }

6878 6879 6880 6881 6882 6883 6884 6885 6886
  /* If the first instruction is marked with QImode, that means we've
     already processed this block.  Our caller will look at DATA->LAST
     to figure out where to go next.  We want to return the next block
     in the instruction stream, not some branched-to block somewhere
     else.  We accomplish this by pretending our called forbid us to
     follow jumps, or skip blocks.  */
  if (GET_MODE (insn) == QImode)
    follow_jumps = skip_blocks = 0;

Richard Kenner committed
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906
  /* Scan to end of this basic block.  */
  while (p && GET_CODE (p) != CODE_LABEL)
    {
      /* Don't cse out the end of a loop.  This makes a difference
	 only for the unusual loops that always execute at least once;
	 all other loops have labels there so we will stop in any case.
	 Cse'ing out the end of the loop is dangerous because it
	 might cause an invariant expression inside the loop
	 to be reused after the end of the loop.  This would make it
	 hard to move the expression out of the loop in loop.c,
	 especially if it is one of several equivalent expressions
	 and loop.c would like to eliminate it.

	 If we are running after loop.c has finished, we can ignore
	 the NOTE_INSN_LOOP_END.  */

      if (! after_loop && GET_CODE (p) == NOTE
	  && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
	break;

6907
      /* Don't cse over a call to setjmp; on some machines (eg VAX)
Richard Kenner committed
6908 6909
	 the regs restored by the longjmp come from
	 a later time than the setjmp.  */
6910 6911
      if (PREV_INSN (p) && GET_CODE (PREV_INSN (p)) == CALL_INSN
	  && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
Richard Kenner committed
6912 6913 6914 6915
	break;

      /* A PARALLEL can have lots of SETs in it,
	 especially if it is really an ASM_OPERANDS.  */
6916
      if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
Richard Kenner committed
6917 6918 6919
	nsets += XVECLEN (PATTERN (p), 0);
      else if (GET_CODE (p) != NOTE)
	nsets += 1;
6920

6921 6922 6923 6924
      /* Ignore insns made by CSE; they cannot affect the boundaries of
	 the basic block.  */

      if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6925
	high_cuid = INSN_CUID (p);
6926 6927
      if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
	low_cuid = INSN_CUID (p);
Richard Kenner committed
6928 6929 6930 6931 6932

      /* See if this insn is in our branch path.  If it is and we are to
	 take it, do so.  */
      if (path_entry < path_size && data->path[path_entry].branch == p)
	{
6933
	  if (data->path[path_entry].status != NOT_TAKEN)
Richard Kenner committed
6934
	    p = JUMP_LABEL (p);
6935

Richard Kenner committed
6936 6937 6938 6939 6940 6941 6942
	  /* Point to next entry in path, if any.  */
	  path_entry++;
	}

      /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
	 was specified, we haven't reached our maximum path length, there are
	 insns following the target of the jump, this is the only use of the
6943 6944 6945 6946 6947 6948 6949 6950
	 jump label, and the target label is preceded by a BARRIER.

	 Alternatively, we can follow the jump if it branches around a
	 block of code and there are no other branches into the block.
	 In this case invalidate_skipped_block will be called to invalidate any
	 registers set in the block when following the jump.  */

      else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
Richard Kenner committed
6951
	       && GET_CODE (p) == JUMP_INSN
6952
	       && GET_CODE (PATTERN (p)) == SET
Richard Kenner committed
6953
	       && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6954
	       && JUMP_LABEL (p) != 0
Richard Kenner committed
6955 6956 6957 6958 6959
	       && LABEL_NUSES (JUMP_LABEL (p)) == 1
	       && NEXT_INSN (JUMP_LABEL (p)) != 0)
	{
	  for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
	    if ((GET_CODE (q) != NOTE
6960
		 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
6961 6962
		 || (PREV_INSN (q) && GET_CODE (PREV_INSN (q)) == CALL_INSN
		     && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6963
		&& (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
Richard Kenner committed
6964 6965 6966 6967
	      break;

	  /* If we ran into a BARRIER, this code is an extension of the
	     basic block when the branch is taken.  */
6968
	  if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
Richard Kenner committed
6969 6970 6971
	    {
	      /* Don't allow ourself to keep walking around an
		 always-executed loop.  */
6972 6973 6974 6975 6976
	      if (next_real_insn (q) == next)
		{
		  p = NEXT_INSN (p);
		  continue;
		}
Richard Kenner committed
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998

	      /* Similarly, don't put a branch in our path more than once.  */
	      for (i = 0; i < path_entry; i++)
		if (data->path[i].branch == p)
		  break;

	      if (i != path_entry)
		break;

	      data->path[path_entry].branch = p;
	      data->path[path_entry++].status = TAKEN;

	      /* This branch now ends our path.  It was possible that we
		 didn't see this branch the last time around (when the
		 insn in front of the target was a JUMP_INSN that was
		 turned into a no-op).  */
	      path_size = path_entry;

	      p = JUMP_LABEL (p);
	      /* Mark block so we won't scan it again later.  */
	      PUT_MODE (NEXT_INSN (p), QImode);
	    }
6999 7000 7001
	  /* Detect a branch around a block of code.  */
	  else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
	    {
7002
	      rtx tmp;
7003

7004 7005 7006 7007 7008
	      if (next_real_insn (q) == next)
		{
		  p = NEXT_INSN (p);
		  continue;
		}
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021

	      for (i = 0; i < path_entry; i++)
		if (data->path[i].branch == p)
		  break;

	      if (i != path_entry)
		break;

	      /* This is no_labels_between_p (p, q) with an added check for
		 reaching the end of a function (in case Q precedes P).  */
	      for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
		if (GET_CODE (tmp) == CODE_LABEL)
		  break;
7022

7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034
	      if (tmp == q)
		{
		  data->path[path_entry].branch = p;
		  data->path[path_entry++].status = AROUND;

		  path_size = path_entry;

		  p = JUMP_LABEL (p);
		  /* Mark block so we won't scan it again later.  */
		  PUT_MODE (NEXT_INSN (p), QImode);
		}
	    }
Richard Kenner committed
7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046
	}
      p = NEXT_INSN (p);
    }

  data->low_cuid = low_cuid;
  data->high_cuid = high_cuid;
  data->nsets = nsets;
  data->last = p;

  /* If all jumps in the path are not taken, set our path length to zero
     so a rescan won't be done.  */
  for (i = path_size - 1; i >= 0; i--)
7047
    if (data->path[i].status != NOT_TAKEN)
Richard Kenner committed
7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076
      break;

  if (i == -1)
    data->path_size = 0;
  else
    data->path_size = path_size;

  /* End the current branch path.  */
  data->path[path_size].branch = 0;
}

/* Perform cse on the instructions of a function.
   F is the first instruction.
   NREGS is one plus the highest pseudo-reg number used in the instruction.

   AFTER_LOOP is 1 if this is the cse call done after loop optimization
   (only if -frerun-cse-after-loop).

   Returns 1 if jump_optimize should be redone due to simplifications
   in conditional jump instructions.  */

int
cse_main (f, nregs, after_loop, file)
     rtx f;
     int nregs;
     int after_loop;
     FILE *file;
{
  struct cse_basic_block_data val;
7077 7078
  rtx insn = f;
  int i;
Richard Kenner committed
7079 7080

  cse_jumps_altered = 0;
7081
  recorded_label_ref = 0;
Richard Kenner committed
7082 7083 7084 7085
  constant_pool_entries_cost = 0;
  val.path_size = 0;

  init_recog ();
7086
  init_alias_analysis ();
Richard Kenner committed
7087 7088 7089

  max_reg = nregs;

7090 7091
  max_insn_uid = get_max_uid ();

7092
  reg_eqv_table = (struct reg_eqv_elem *)
7093
    xmalloc (nregs * sizeof (struct reg_eqv_elem));
Richard Kenner committed
7094

7095 7096 7097 7098
#ifdef LOAD_EXTEND_OP

  /* Allocate scratch rtl here.  cse_insn will fill in the memory reference
     and change the code and mode as appropriate.  */
7099
  memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
7100 7101
#endif

Mark Mitchell committed
7102 7103
  /* Reset the counter indicating how many elements have been made
     thus far.  */
Richard Kenner committed
7104 7105 7106 7107
  n_elements_made = 0;

  /* Find the largest uid.  */

7108
  max_uid = get_max_uid ();
7109
  uid_cuid = (int *) xcalloc (max_uid + 1, sizeof (int));
Richard Kenner committed
7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126

  /* Compute the mapping from uids to cuids.
     CUIDs are numbers assigned to insns, like uids,
     except that cuids increase monotonically through the code.
     Don't assign cuids to line-number NOTEs, so that the distance in cuids
     between two insns is not affected by -g.  */

  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) != NOTE
	  || NOTE_LINE_NUMBER (insn) < 0)
	INSN_CUID (insn) = ++i;
      else
	/* Give a line number note the same cuid as preceding insn.  */
	INSN_CUID (insn) = i;
    }

Mark Mitchell committed
7127
  ggc_push_context ();
7128

Richard Kenner committed
7129 7130 7131 7132 7133 7134
  /* Loop over basic blocks.
     Compute the maximum number of qty's needed for each basic block
     (which is 2 for each SET).  */
  insn = f;
  while (insn)
    {
7135
      cse_altered = 0;
7136 7137
      cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
			      flag_cse_skip_blocks);
Richard Kenner committed
7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150

      /* If this basic block was already processed or has no sets, skip it.  */
      if (val.nsets == 0 || GET_MODE (insn) == QImode)
	{
	  PUT_MODE (insn, VOIDmode);
	  insn = (val.last ? NEXT_INSN (val.last) : 0);
	  val.path_size = 0;
	  continue;
	}

      cse_basic_block_start = val.low_cuid;
      cse_basic_block_end = val.high_cuid;
      max_qty = val.nsets * 2;
7151

Richard Kenner committed
7152
      if (file)
7153
	fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
Richard Kenner committed
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
		 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
		 val.nsets);

      /* Make MAX_QTY bigger to give us room to optimize
	 past the end of this basic block, if that should prove useful.  */
      if (max_qty < 500)
	max_qty = 500;

      max_qty += max_reg;

      /* If this basic block is being extended by following certain jumps,
         (see `cse_end_of_basic_block'), we reprocess the code from the start.
         Otherwise, we start after this basic block.  */
      if (val.path_size > 0)
7168
	cse_basic_block (insn, val.last, val.path, 0);
Richard Kenner committed
7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
      else
	{
	  int old_cse_jumps_altered = cse_jumps_altered;
	  rtx temp;

	  /* When cse changes a conditional jump to an unconditional
	     jump, we want to reprocess the block, since it will give
	     us a new branch path to investigate.  */
	  cse_jumps_altered = 0;
	  temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
7179 7180
	  if (cse_jumps_altered == 0
	      || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
Richard Kenner committed
7181 7182 7183 7184 7185
	    insn = temp;

	  cse_jumps_altered |= old_cse_jumps_altered;
	}

Mark Mitchell committed
7186
      if (cse_altered)
7187 7188
	ggc_collect ();

Richard Kenner committed
7189 7190 7191 7192 7193
#ifdef USE_C_ALLOCA
      alloca (0);
#endif
    }

Mark Mitchell committed
7194
  ggc_pop_context ();
7195

Richard Kenner committed
7196 7197 7198
  if (max_elements_made < n_elements_made)
    max_elements_made = n_elements_made;

7199 7200
  /* Clean up.  */
  end_alias_analysis ();
7201
  free (uid_cuid);
7202
  free (reg_eqv_table);
7203

7204
  return cse_jumps_altered || recorded_label_ref;
Richard Kenner committed
7205 7206 7207 7208 7209 7210
}

/* Process a single basic block.  FROM and TO and the limits of the basic
   block.  NEXT_BRANCH points to the branch path when following jumps or
   a null path when not following jumps.

7211
   AROUND_LOOP is nonzero if we are to try to cse around to the start of a
Richard Kenner committed
7212 7213 7214 7215 7216
   loop.  This is true when we are being called for the last time on a
   block and this CSE pass is before loop.c.  */

static rtx
cse_basic_block (from, to, next_branch, around_loop)
7217
     rtx from, to;
Richard Kenner committed
7218 7219 7220
     struct branch_path *next_branch;
     int around_loop;
{
7221
  rtx insn;
Richard Kenner committed
7222
  int to_usage = 0;
7223
  rtx libcall_insn = NULL_RTX;
7224
  int num_insns = 0;
Richard Kenner committed
7225

7226 7227 7228
  /* This array is undefined before max_reg, so only allocate
     the space actually needed and adjust the start.  */

7229 7230
  qty_table
    = (struct qty_table_elem *) xmalloc ((max_qty - max_reg)
7231
					 * sizeof (struct qty_table_elem));
7232
  qty_table -= max_reg;
Richard Kenner committed
7233 7234 7235 7236 7237 7238 7239 7240 7241

  new_basic_block ();

  /* TO might be a label.  If so, protect it from being deleted.  */
  if (to != 0 && GET_CODE (to) == CODE_LABEL)
    ++LABEL_NUSES (to);

  for (insn = from; insn != to; insn = NEXT_INSN (insn))
    {
7242
      enum rtx_code code = GET_CODE (insn);
7243

7244 7245
      /* If we have processed 1,000 insns, flush the hash table to
	 avoid extreme quadratic behavior.  We must not include NOTEs
7246
	 in the count since there may be more of them when generating
7247 7248 7249
	 debugging information.  If we clear the table at different
	 times, code generated with -g -O might be different than code
	 generated with -O but not -g.
7250 7251 7252

	 ??? This is a real kludge and needs to be done some other way.
	 Perhaps for 2.9.  */
7253
      if (code != NOTE && num_insns++ > 1000)
7254
	{
7255
	  flush_hash_table ();
7256 7257
	  num_insns = 0;
	}
Richard Kenner committed
7258 7259 7260 7261 7262

      /* See if this is a branch that is part of the path.  If so, and it is
	 to be taken, do so.  */
      if (next_branch->branch == insn)
	{
7263 7264
	  enum taken status = next_branch++->status;
	  if (status != NOT_TAKEN)
Richard Kenner committed
7265
	    {
7266 7267 7268 7269 7270
	      if (status == TAKEN)
		record_jump_equiv (insn, 1);
	      else
		invalidate_skipped_block (NEXT_INSN (insn));

Richard Kenner committed
7271 7272 7273 7274 7275
	      /* Set the last insn as the jump insn; it doesn't affect cc0.
		 Then follow this branch.  */
#ifdef HAVE_cc0
	      prev_insn_cc0 = 0;
	      prev_insn = insn;
7276
#endif
Richard Kenner committed
7277 7278 7279 7280
	      insn = JUMP_LABEL (insn);
	      continue;
	    }
	}
7281

Richard Kenner committed
7282 7283 7284 7285 7286
      if (GET_MODE (insn) == QImode)
	PUT_MODE (insn, VOIDmode);

      if (GET_RTX_CLASS (code) == 'i')
	{
7287 7288
	  rtx p;

Richard Kenner committed
7289 7290 7291 7292
	  /* Process notes first so we have all notes in canonical forms when
	     looking for duplicate operations.  */

	  if (REG_NOTES (insn))
7293
	    REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
Richard Kenner committed
7294 7295 7296 7297

	  /* Track when we are inside in LIBCALL block.  Inside such a block,
	     we do not want to record destinations.  The last insn of a
	     LIBCALL block is not considered to be part of the block, since
7298
	     its destination is the result of the block and hence should be
Richard Kenner committed
7299 7300
	     recorded.  */

7301 7302 7303 7304 7305 7306 7307
	  if (REG_NOTES (insn) != 0)
	    {
	      if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
		libcall_insn = XEXP (p, 0);
	      else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
		libcall_insn = 0;
	    }
Richard Kenner committed
7308

7309
	  cse_insn (insn, libcall_insn);
7310

7311 7312 7313 7314 7315
	  /* If we haven't already found an insn where we added a LABEL_REF,
	     check this one.  */
	  if (GET_CODE (insn) == INSN && ! recorded_label_ref
	      && for_each_rtx (&PATTERN (insn), check_for_label_ref,
			       (void *) insn))
7316
	    recorded_label_ref = 1;
Richard Kenner committed
7317 7318 7319 7320 7321 7322 7323
	}

      /* If INSN is now an unconditional jump, skip to the end of our
	 basic block by pretending that we just did the last insn in the
	 basic block.  If we are jumping to the end of our block, show
	 that we can have one usage of TO.  */

7324
      if (any_uncondjump_p (insn))
Richard Kenner committed
7325 7326
	{
	  if (to == 0)
7327 7328 7329 7330
	    {
	      free (qty_table + max_reg);
	      return 0;
	    }
Richard Kenner committed
7331 7332 7333 7334

	  if (JUMP_LABEL (insn) == to)
	    to_usage = 1;

7335 7336 7337
	  /* Maybe TO was deleted because the jump is unconditional.
	     If so, there is nothing left in this basic block.  */
	  /* ??? Perhaps it would be smarter to set TO
7338
	     to whatever follows this insn,
7339 7340 7341 7342
	     and pretend the basic block had always ended here.  */
	  if (INSN_DELETED_P (to))
	    break;

Richard Kenner committed
7343 7344 7345 7346 7347
	  insn = PREV_INSN (to);
	}

      /* See if it is ok to keep on going past the label
	 which used to end our basic block.  Remember that we incremented
7348
	 the count of that label, so we decrement it here.  If we made
Richard Kenner committed
7349 7350 7351 7352 7353 7354 7355
	 a jump unconditional, TO_USAGE will be one; in that case, we don't
	 want to count the use in that jump.  */

      if (to != 0 && NEXT_INSN (insn) == to
	  && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
	{
	  struct cse_basic_block_data val;
7356
	  rtx prev;
Richard Kenner committed
7357 7358 7359

	  insn = NEXT_INSN (to);

7360 7361
	  /* If TO was the last insn in the function, we are done.  */
	  if (insn == 0)
7362 7363 7364 7365
	    {
	      free (qty_table + max_reg);
	      return 0;
	    }
Richard Kenner committed
7366

7367 7368 7369 7370
	  /* If TO was preceded by a BARRIER we are done with this block
	     because it has no continuation.  */
	  prev = prev_nonnote_insn (to);
	  if (prev && GET_CODE (prev) == BARRIER)
7371 7372 7373 7374
	    {
	      free (qty_table + max_reg);
	      return insn;
	    }
7375 7376 7377

	  /* Find the end of the following block.  Note that we won't be
	     following branches in this case.  */
Richard Kenner committed
7378 7379
	  to_usage = 0;
	  val.path_size = 0;
7380
	  cse_end_of_basic_block (insn, &val, 0, 0, 0);
Richard Kenner committed
7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409

	  /* If the tables we allocated have enough space left
	     to handle all the SETs in the next basic block,
	     continue through it.  Otherwise, return,
	     and that block will be scanned individually.  */
	  if (val.nsets * 2 + next_qty > max_qty)
	    break;

	  cse_basic_block_start = val.low_cuid;
	  cse_basic_block_end = val.high_cuid;
	  to = val.last;

	  /* Prevent TO from being deleted if it is a label.  */
	  if (to != 0 && GET_CODE (to) == CODE_LABEL)
	    ++LABEL_NUSES (to);

	  /* Back up so we process the first insn in the extension.  */
	  insn = PREV_INSN (insn);
	}
    }

  if (next_qty > max_qty)
    abort ();

  /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
     the previous insn is the only insn that branches to the head of a loop,
     we can cse into the loop.  Don't do this if we changed the jump
     structure of a loop unless we aren't going to be following jumps.  */

Kazu Hirata committed
7410
  insn = prev_nonnote_insn (to);
7411 7412
  if ((cse_jumps_altered == 0
       || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
Richard Kenner committed
7413 7414
      && around_loop && to != 0
      && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
7415 7416 7417 7418
      && GET_CODE (insn) == JUMP_INSN
      && JUMP_LABEL (insn) != 0
      && LABEL_NUSES (JUMP_LABEL (insn)) == 1)
    cse_around_loop (JUMP_LABEL (insn));
Richard Kenner committed
7419

7420
  free (qty_table + max_reg);
7421

Richard Kenner committed
7422 7423 7424
  return to ? NEXT_INSN (to) : 0;
}

7425
/* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7426
   there isn't a REG_LABEL note.  Return one if so.  DATA is the insn.  */
7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437

static int
check_for_label_ref (rtl, data)
     rtx *rtl;
     void *data;
{
  rtx insn = (rtx) data;

  /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
     we must rerun jump since it needs to place the note.  If this is a
     LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7438
     since no REG_LABEL will be added.  */
7439
  return (GET_CODE (*rtl) == LABEL_REF
7440
	  && ! LABEL_REF_NONLOCAL_P (*rtl)
7441
	  && LABEL_P (XEXP (*rtl, 0))
7442 7443 7444 7445
	  && INSN_UID (XEXP (*rtl, 0)) != 0
	  && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
}

Richard Kenner committed
7446 7447
/* Count the number of times registers are used (not set) in X.
   COUNTS is an array in which we accumulate the count, INCR is how much
7448
   we count each register usage.
7449

7450
   Don't count a usage of DEST, which is the SET_DEST of a SET which
7451 7452
   contains X in its SET_SRC.  This is because such a SET does not
   modify the liveness of DEST.  */
Richard Kenner committed
7453 7454

static void
7455
count_reg_usage (x, counts, dest, incr)
Richard Kenner committed
7456 7457
     rtx x;
     int *counts;
7458
     rtx dest;
Richard Kenner committed
7459 7460
     int incr;
{
7461
  enum rtx_code code;
7462
  rtx note;
7463
  const char *fmt;
Richard Kenner committed
7464 7465
  int i, j;

7466 7467 7468 7469
  if (x == 0)
    return;

  switch (code = GET_CODE (x))
Richard Kenner committed
7470 7471
    {
    case REG:
7472 7473
      if (x != dest)
	counts[REGNO (x)] += incr;
Richard Kenner committed
7474 7475 7476 7477 7478 7479 7480
      return;

    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
7481
    case CONST_VECTOR:
Richard Kenner committed
7482 7483
    case SYMBOL_REF:
    case LABEL_REF:
7484 7485
      return;

7486
    case CLOBBER:
7487 7488 7489 7490
      /* If we are clobbering a MEM, mark any registers inside the address
         as being used.  */
      if (GET_CODE (XEXP (x, 0)) == MEM)
	count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
Richard Kenner committed
7491 7492 7493 7494 7495
      return;

    case SET:
      /* Unless we are setting a REG, count everything in SET_DEST.  */
      if (GET_CODE (SET_DEST (x)) != REG)
7496
	count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
7497
      count_reg_usage (SET_SRC (x), counts,
7498
		       SET_DEST (x),
7499
		       incr);
Richard Kenner committed
7500 7501
      return;

7502 7503
    case CALL_INSN:
      count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);
Kazu Hirata committed
7504
      /* Fall through.  */
7505

Richard Kenner committed
7506 7507
    case INSN:
    case JUMP_INSN:
7508
      count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);
Richard Kenner committed
7509 7510 7511 7512

      /* Things used in a REG_EQUAL note aren't dead since loop may try to
	 use them.  */

7513 7514 7515
      note = find_reg_equal_equiv_note (x);
      if (note)
        count_reg_usage (XEXP (note, 0), counts, NULL_RTX, incr);
Richard Kenner committed
7516 7517
      return;

7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528
    case EXPR_LIST:
      if (REG_NOTE_KIND (x) == REG_EQUAL
	  || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
	  /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
	     involving registers in the address.  */
	  || GET_CODE (XEXP (x, 0)) == CLOBBER)
	count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);

      count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
      return;

Richard Kenner committed
7529
    case INSN_LIST:
7530
      abort ();
7531

7532 7533
    default:
      break;
Richard Kenner committed
7534 7535 7536 7537 7538 7539
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
7540
	count_reg_usage (XEXP (x, i), counts, dest, incr);
Richard Kenner committed
7541 7542
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7543
	  count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
Richard Kenner committed
7544 7545 7546
    }
}

7547 7548
/* Return true if set is live.  */
static bool
7549
set_live_p (set, insn, counts)
7550
     rtx set;
7551
     rtx insn ATTRIBUTE_UNUSED;	/* Only used with HAVE_cc0.  */
7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589
     int *counts;
{
#ifdef HAVE_cc0
  rtx tem;
#endif

  if (set_noop_p (set))
    ;

#ifdef HAVE_cc0
  else if (GET_CODE (SET_DEST (set)) == CC0
	   && !side_effects_p (SET_SRC (set))
	   && ((tem = next_nonnote_insn (insn)) == 0
	       || !INSN_P (tem)
	       || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
    return false;
#endif
  else if (GET_CODE (SET_DEST (set)) != REG
	   || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
	   || counts[REGNO (SET_DEST (set))] != 0
	   || side_effects_p (SET_SRC (set))
	   /* An ADDRESSOF expression can turn into a use of the
	      internal arg pointer, so always consider the
	      internal arg pointer live.  If it is truly dead,
	      flow will delete the initializing insn.  */
	   || (SET_DEST (set) == current_function_internal_arg_pointer))
    return true;
  return false;
}

/* Return true if insn is live.  */

static bool
insn_live_p (insn, counts)
     rtx insn;
     int *counts;
{
  int i;
7590
  if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
7591 7592
    return true;
  else if (GET_CODE (PATTERN (insn)) == SET)
7593
    return set_live_p (PATTERN (insn), insn, counts);
7594
  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7595 7596 7597 7598
    {
      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	{
	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
7599

7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
	  if (GET_CODE (elt) == SET)
	    {
	      if (set_live_p (elt, insn, counts))
		return true;
	    }
	  else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
	    return true;
	}
      return false;
    }
7610 7611 7612 7613 7614 7615 7616
  else
    return true;
}

/* Return true if libcall is dead as a whole.  */

static bool
7617
dead_libcall_p (insn, counts)
7618
     rtx insn;
7619
     int *counts;
7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635
{
  rtx note;
  /* See if there's a REG_EQUAL note on this insn and try to
     replace the source with the REG_EQUAL expression.

     We assume that insns with REG_RETVALs can only be reg->reg
     copies at this point.  */
  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
  if (note)
    {
      rtx set = single_set (insn);
      rtx new = simplify_rtx (XEXP (note, 0));

      if (!new)
	new = XEXP (note, 0);

7636 7637 7638
      /* While changing insn, we must update the counts accordingly.  */
      count_reg_usage (insn, counts, NULL_RTX, -1);

7639 7640
      if (set && validate_change (insn, &SET_SRC (set), new, 0))
	{
7641
          count_reg_usage (insn, counts, NULL_RTX, 1);
7642
	  remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7643
	  remove_note (insn, note);
7644 7645
	  return true;
	}
7646
       count_reg_usage (insn, counts, NULL_RTX, 1);
7647 7648 7649 7650
    }
  return false;
}

Richard Kenner committed
7651 7652 7653
/* Scan all the insns and delete any that are dead; i.e., they store a register
   that is never used or they copy a register to itself.

7654 7655 7656 7657
   This is used to remove insns made obviously dead by cse, loop or other
   optimizations.  It improves the heuristics in loop since it won't try to
   move dead invariants out of loops or make givs for dead quantities.  The
   remaining passes of the compilation are also sped up.  */
Richard Kenner committed
7658

7659 7660
int
delete_trivially_dead_insns (insns, nreg)
Richard Kenner committed
7661 7662 7663
     rtx insns;
     int nreg;
{
7664
  int *counts;
7665
  rtx insn, prev;
7666
  int in_libcall = 0, dead_libcall = 0;
7667
  int ndead = 0, nlastdead, niterations = 0;
Richard Kenner committed
7668

7669
  timevar_push (TV_DELETE_TRIVIALLY_DEAD);
Richard Kenner committed
7670
  /* First count the number of times each register is used.  */
7671
  counts = (int *) xcalloc (nreg, sizeof (int));
Richard Kenner committed
7672
  for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
7673
    count_reg_usage (insn, counts, NULL_RTX, 1);
Richard Kenner committed
7674

7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688
  do
    {
      nlastdead = ndead;
      niterations++;
      /* Go from the last insn to the first and delete insns that only set unused
	 registers or copy a register to itself.  As we delete an insn, remove
	 usage counts for registers it uses.

	 The first jump optimization pass may leave a real insn as the last
	 insn in the function.   We must not skip that insn or we may end
	 up deleting code that is not really dead.  */
      insn = get_last_insn ();
      if (! INSN_P (insn))
	insn = prev_real_insn (insn);
7689

7690
      for (; insn; insn = prev)
Richard Kenner committed
7691
	{
7692
	  int live_insn = 0;
Richard Kenner committed
7693

7694
	  prev = prev_real_insn (insn);
Richard Kenner committed
7695

7696 7697
	  /* Don't delete any insns that are part of a libcall block unless
	     we can delete the whole libcall block.
Richard Kenner committed
7698

7699 7700 7701 7702 7703
	     Flow or loop might get confused if we did that.  Remember
	     that we are scanning backwards.  */
	  if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
	    {
	      in_libcall = 1;
7704
	      live_insn = 1;
7705
	      dead_libcall = dead_libcall_p (insn, counts);
7706 7707 7708 7709 7710
	    }
	  else if (in_libcall)
	    live_insn = ! dead_libcall;
	  else
	    live_insn = insn_live_p (insn, counts);
Richard Kenner committed
7711

7712 7713
	  /* If this is a dead insn, delete it and show registers in it aren't
	     being used.  */
Richard Kenner committed
7714

7715 7716 7717
	  if (! live_insn)
	    {
	      count_reg_usage (insn, counts, NULL_RTX, -1);
7718 7719
	      delete_insn_and_edges (insn);
	      ndead++;
7720
	    }
7721

7722 7723 7724 7725 7726
	  if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
	    {
	      in_libcall = 0;
	      dead_libcall = 0;
	    }
7727
	}
Kazu Hirata committed
7728 7729
    }
  while (ndead != nlastdead);
7730

7731 7732 7733
  if (rtl_dump_file && ndead)
    fprintf (rtl_dump_file, "Deleted %i trivially dead insns; %i iterations\n",
	     ndead, niterations);
7734 7735
  /* Clean up.  */
  free (counts);
7736 7737
  timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
  return ndead;
Richard Kenner committed
7738
}