matmul_r4.c 10.8 KB
Newer Older
1
/* Implementation of the MATMUL intrinsic
2
   Copyright (C) 2002-2014 Free Software Foundation, Inc.
3 4
   Contributed by Paul Brook <paul@nowt.org>

5
This file is part of the GNU Fortran runtime library (libgfortran).
6 7

Libgfortran is free software; you can redistribute it and/or
8
modify it under the terms of the GNU General Public
9
License as published by the Free Software Foundation; either
10
version 3 of the License, or (at your option) any later version.
11 12 13 14

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
GNU General Public License for more details.
16

17 18 19 20 21 22 23 24
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
25

26
#include "libgfortran.h"
27
#include <stdlib.h>
Victor Leikehman committed
28
#include <string.h>
29
#include <assert.h>
30

31

32 33
#if defined (HAVE_GFC_REAL_4)

34 35 36 37 38 39 40 41 42 43
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
   passed to us by the front-end, in which case we'll call it for large
   matrices.  */

typedef void (*blas_call)(const char *, const char *, const int *, const int *,
                          const int *, const GFC_REAL_4 *, const GFC_REAL_4 *,
                          const int *, const GFC_REAL_4 *, const int *,
                          const GFC_REAL_4 *, GFC_REAL_4 *, const int *,
                          int, int);

44 45 46 47 48 49 50
/* The order of loops is different in the case of plain matrix
   multiplication C=MATMUL(A,B), and in the frequent special case where
   the argument A is the temporary result of a TRANSPOSE intrinsic:
   C=MATMUL(TRANSPOSE(A),B).  Transposed temporaries are detected by
   looking at their strides.

   The equivalent Fortran pseudo-code is:
Victor Leikehman committed
51 52

   DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
53 54 55 56 57 58 59 60
   IF (.NOT.IS_TRANSPOSED(A)) THEN
     C = 0
     DO J=1,N
       DO K=1,COUNT
         DO I=1,M
           C(I,J) = C(I,J)+A(I,K)*B(K,J)
   ELSE
     DO J=1,N
Victor Leikehman committed
61
       DO I=1,M
62 63
         S = 0
         DO K=1,COUNT
64
           S = S+A(I,K)*B(K,J)
65 66
         C(I,J) = S
   ENDIF
Victor Leikehman committed
67 68
*/

69 70 71 72
/* If try_blas is set to a nonzero value, then the matmul function will
   see if there is a way to perform the matrix multiplication by a call
   to the BLAS gemm function.  */

73
extern void matmul_r4 (gfc_array_r4 * const restrict retarray, 
74 75
	gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
	int blas_limit, blas_call gemm);
76
export_proto(matmul_r4);
77

78
void
79
matmul_r4 (gfc_array_r4 * const restrict retarray, 
80 81
	gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
	int blas_limit, blas_call gemm)
82
{
83 84 85
  const GFC_REAL_4 * restrict abase;
  const GFC_REAL_4 * restrict bbase;
  GFC_REAL_4 * restrict dest;
Victor Leikehman committed
86 87 88

  index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
  index_type x, y, n, count, xcount, ycount;
89 90 91

  assert (GFC_DESCRIPTOR_RANK (a) == 2
          || GFC_DESCRIPTOR_RANK (b) == 2);
92

Victor Leikehman committed
93 94 95 96 97 98 99 100 101 102 103
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]

   Either A or B (but not both) can be rank 1:

   o One-dimensional argument A is implicitly treated as a row matrix
     dimensioned [1,count], so xcount=1.

   o One-dimensional argument B is implicitly treated as a column matrix
     dimensioned [count, 1], so ycount=1.
  */

104
  if (retarray->base_addr == NULL)
105 106 107
    {
      if (GFC_DESCRIPTOR_RANK (a) == 1)
        {
108 109
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
110 111 112
        }
      else if (GFC_DESCRIPTOR_RANK (b) == 1)
        {
113 114
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
115 116 117
        }
      else
        {
118 119
	  GFC_DIMENSION_SET(retarray->dim[0], 0,
	                    GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
120

121 122 123
          GFC_DIMENSION_SET(retarray->dim[1], 0,
	                    GFC_DESCRIPTOR_EXTENT(b,1) - 1,
			    GFC_DESCRIPTOR_EXTENT(retarray,0));
124
        }
125

126
      retarray->base_addr
127
	= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_4));
128
      retarray->offset = 0;
129
    }
130
    else if (unlikely (compile_options.bounds_check))
131 132 133 134 135
      {
	index_type ret_extent, arg_extent;

	if (GFC_DESCRIPTOR_RANK (a) == 1)
	  {
136 137
	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
138 139 140 141 142 143 144
	    if (arg_extent != ret_extent)
	      runtime_error ("Incorrect extent in return array in"
			     " MATMUL intrinsic: is %ld, should be %ld",
			     (long int) ret_extent, (long int) arg_extent);
	  }
	else if (GFC_DESCRIPTOR_RANK (b) == 1)
	  {
145 146
	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
147 148 149 150 151 152 153
	    if (arg_extent != ret_extent)
	      runtime_error ("Incorrect extent in return array in"
			     " MATMUL intrinsic: is %ld, should be %ld",
			     (long int) ret_extent, (long int) arg_extent);	    
	  }
	else
	  {
154 155
	    arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
156 157 158 159 160 161
	    if (arg_extent != ret_extent)
	      runtime_error ("Incorrect extent in return array in"
			     " MATMUL intrinsic for dimension 1:"
			     " is %ld, should be %ld",
			     (long int) ret_extent, (long int) arg_extent);

162 163
	    arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
	    ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
164 165 166 167 168 169 170
	    if (arg_extent != ret_extent)
	      runtime_error ("Incorrect extent in return array in"
			     " MATMUL intrinsic for dimension 2:"
			     " is %ld, should be %ld",
			     (long int) ret_extent, (long int) arg_extent);
	  }
      }
171

172 173 174

  if (GFC_DESCRIPTOR_RANK (retarray) == 1)
    {
Victor Leikehman committed
175 176 177
      /* One-dimensional result may be addressed in the code below
	 either as a row or a column matrix. We want both cases to
	 work. */
178
      rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
179 180 181
    }
  else
    {
182 183
      rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
      rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
184 185
    }

Victor Leikehman committed
186

187 188
  if (GFC_DESCRIPTOR_RANK (a) == 1)
    {
Victor Leikehman committed
189
      /* Treat it as a a row matrix A[1,count]. */
190
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
Victor Leikehman committed
191 192
      aystride = 1;

193
      xcount = 1;
194
      count = GFC_DESCRIPTOR_EXTENT(a,0);
195 196 197
    }
  else
    {
198 199
      axstride = GFC_DESCRIPTOR_STRIDE(a,0);
      aystride = GFC_DESCRIPTOR_STRIDE(a,1);
Victor Leikehman committed
200

201 202
      count = GFC_DESCRIPTOR_EXTENT(a,1);
      xcount = GFC_DESCRIPTOR_EXTENT(a,0);
203
    }
Victor Leikehman committed
204

205
  if (count != GFC_DESCRIPTOR_EXTENT(b,0))
206
    {
207
      if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
208 209
	runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
    }
Victor Leikehman committed
210

211 212
  if (GFC_DESCRIPTOR_RANK (b) == 1)
    {
Victor Leikehman committed
213
      /* Treat it as a column matrix B[count,1] */
214
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
Victor Leikehman committed
215 216 217 218

      /* bystride should never be used for 1-dimensional b.
	 in case it is we want it to cause a segfault, rather than
	 an incorrect result. */
219
      bystride = 0xDEADBEEF;
220 221 222 223
      ycount = 1;
    }
  else
    {
224 225 226
      bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
      bystride = GFC_DESCRIPTOR_STRIDE(b,1);
      ycount = GFC_DESCRIPTOR_EXTENT(b,1);
227 228
    }

229 230 231
  abase = a->base_addr;
  bbase = b->base_addr;
  dest = retarray->base_addr;
Victor Leikehman committed
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

  /* Now that everything is set up, we're performing the multiplication
     itself.  */

#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))

  if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
      && (bxstride == 1 || bystride == 1)
      && (((float) xcount) * ((float) ycount) * ((float) count)
          > POW3(blas_limit)))
  {
    const int m = xcount, n = ycount, k = count, ldc = rystride;
    const GFC_REAL_4 one = 1, zero = 0;
    const int lda = (axstride == 1) ? aystride : axstride,
              ldb = (bxstride == 1) ? bystride : bxstride;

    if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
      {
        assert (gemm != NULL);
        gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
              &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
        return;
      }
  }

Victor Leikehman committed
258
  if (rxstride == 1 && axstride == 1 && bxstride == 1)
259
    {
260 261 262
      const GFC_REAL_4 * restrict bbase_y;
      GFC_REAL_4 * restrict dest_y;
      const GFC_REAL_4 * restrict abase_n;
Victor Leikehman committed
263 264
      GFC_REAL_4 bbase_yn;

265 266
      if (rystride == xcount)
	memset (dest, 0, (sizeof (GFC_REAL_4) * xcount * ycount));
267 268 269 270 271 272
      else
	{
	  for (y = 0; y < ycount; y++)
	    for (x = 0; x < xcount; x++)
	      dest[x + y*rystride] = (GFC_REAL_4)0;
	}
Victor Leikehman committed
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

      for (y = 0; y < ycount; y++)
	{
	  bbase_y = bbase + y*bystride;
	  dest_y = dest + y*rystride;
	  for (n = 0; n < count; n++)
	    {
	      abase_n = abase + n*aystride;
	      bbase_yn = bbase_y[n];
	      for (x = 0; x < xcount; x++)
		{
		  dest_y[x] += abase_n[x] * bbase_yn;
		}
	    }
	}
    }
289 290
  else if (rxstride == 1 && aystride == 1 && bxstride == 1)
    {
291 292 293 294 295 296
      if (GFC_DESCRIPTOR_RANK (a) != 1)
	{
	  const GFC_REAL_4 *restrict abase_x;
	  const GFC_REAL_4 *restrict bbase_y;
	  GFC_REAL_4 *restrict dest_y;
	  GFC_REAL_4 s;
297

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	  for (y = 0; y < ycount; y++)
	    {
	      bbase_y = &bbase[y*bystride];
	      dest_y = &dest[y*rystride];
	      for (x = 0; x < xcount; x++)
		{
		  abase_x = &abase[x*axstride];
		  s = (GFC_REAL_4) 0;
		  for (n = 0; n < count; n++)
		    s += abase_x[n] * bbase_y[n];
		  dest_y[x] = s;
		}
	    }
	}
      else
313
	{
314 315 316 317
	  const GFC_REAL_4 *restrict bbase_y;
	  GFC_REAL_4 s;

	  for (y = 0; y < ycount; y++)
318
	    {
319
	      bbase_y = &bbase[y*bystride];
320 321
	      s = (GFC_REAL_4) 0;
	      for (n = 0; n < count; n++)
322 323
		s += abase[n*axstride] * bbase_y[n];
	      dest[y*rystride] = s;
324 325 326 327
	    }
	}
    }
  else if (axstride < aystride)
Victor Leikehman committed
328 329 330 331 332 333 334 335 336 337
    {
      for (y = 0; y < ycount; y++)
	for (x = 0; x < xcount; x++)
	  dest[x*rxstride + y*rystride] = (GFC_REAL_4)0;

      for (y = 0; y < ycount; y++)
	for (n = 0; n < count; n++)
	  for (x = 0; x < xcount; x++)
	    /* dest[x,y] += a[x,n] * b[n,y] */
	    dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
338
    }
339 340 341 342 343 344 345 346 347 348 349 350 351 352
  else if (GFC_DESCRIPTOR_RANK (a) == 1)
    {
      const GFC_REAL_4 *restrict bbase_y;
      GFC_REAL_4 s;

      for (y = 0; y < ycount; y++)
	{
	  bbase_y = &bbase[y*bystride];
	  s = (GFC_REAL_4) 0;
	  for (n = 0; n < count; n++)
	    s += abase[n*axstride] * bbase_y[n*bxstride];
	  dest[y*rxstride] = s;
	}
    }
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
  else
    {
      const GFC_REAL_4 *restrict abase_x;
      const GFC_REAL_4 *restrict bbase_y;
      GFC_REAL_4 *restrict dest_y;
      GFC_REAL_4 s;

      for (y = 0; y < ycount; y++)
	{
	  bbase_y = &bbase[y*bystride];
	  dest_y = &dest[y*rystride];
	  for (x = 0; x < xcount; x++)
	    {
	      abase_x = &abase[x*axstride];
	      s = (GFC_REAL_4) 0;
	      for (n = 0; n < count; n++)
		s += abase_x[n*aystride] * bbase_y[n*bxstride];
	      dest_y[x*rxstride] = s;
	    }
	}
    }
374
}
375 376

#endif