Commit 410d3bba by Victor Leikehman Committed by Victor Leikehman

Modified Files:

	ChangeLog generated/matmul_c4.c generated/matmul_c8.c
	generated/matmul_i4.c generated/matmul_i8.c
	generated/matmul_r4.c generated/matmul_r8.c m4/matmul.m4

2004-11-18  Victor Leikehman  <lei@il.ibm.com>

	* m4/matmul.m4: Loops reordered to improve cache behavior.
	* generated/matmul_??.c: Regenerated.

From-SVN: r90853
parent d7518354
2004-11-18 Victor Leikehman <lei@il.ibm.com>
* m4/matmul.m4: Loops reordered to improve cache behavior.
* generated/matmul_??.c: Regenerated.
2004-11-10 Paul Brook <paul@codesourcery.com> 2004-11-10 Paul Brook <paul@codesourcery.com>
PR fortran/18218 PR fortran/18218
......
...@@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */ ...@@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */
#include "config.h" #include "config.h"
#include <stdlib.h> #include <stdlib.h>
#include <string.h>
#include <assert.h> #include <assert.h>
#include "libgfortran.h" #include "libgfortran.h"
/* Dimensions: retarray(x,y) a(x, count) b(count,y). /* This is a C version of the following fortran pseudo-code. The key
Either a or b can be rank 1. In this case x or y is 1. */ point is the loop order -- we access all arrays column-first, which
improves the performance enough to boost galgel spec score by 50%.
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
C = 0
DO J=1,N
DO K=1,COUNT
DO I=1,M
C(I,J) = C(I,J)+A(I,K)*B(K,J)
*/
void void
__matmul_c4 (gfc_array_c4 * retarray, gfc_array_c4 * a, gfc_array_c4 * b) __matmul_c4 (gfc_array_c4 * retarray, gfc_array_c4 * a, gfc_array_c4 * b)
{ {
GFC_COMPLEX_4 *abase; GFC_COMPLEX_4 *abase;
GFC_COMPLEX_4 *bbase; GFC_COMPLEX_4 *bbase;
GFC_COMPLEX_4 *dest; GFC_COMPLEX_4 *dest;
GFC_COMPLEX_4 res;
index_type rxstride; index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
index_type rystride; index_type x, y, n, count, xcount, ycount;
index_type xcount;
index_type ycount;
index_type xstride;
index_type ystride;
index_type x;
index_type y;
GFC_COMPLEX_4 *pa;
GFC_COMPLEX_4 *pb;
index_type astride;
index_type bstride;
index_type count;
index_type n;
assert (GFC_DESCRIPTOR_RANK (a) == 2 assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2); || GFC_DESCRIPTOR_RANK (b) == 2);
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
Either A or B (but not both) can be rank 1:
o One-dimensional argument A is implicitly treated as a row matrix
dimensioned [1,count], so xcount=1.
o One-dimensional argument B is implicitly treated as a column matrix
dimensioned [count, 1], so ycount=1.
*/
if (retarray->data == NULL) if (retarray->data == NULL)
{ {
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
...@@ -95,8 +104,10 @@ __matmul_c4 (gfc_array_c4 * retarray, gfc_array_c4 * a, gfc_array_c4 * b) ...@@ -95,8 +104,10 @@ __matmul_c4 (gfc_array_c4 * retarray, gfc_array_c4 * a, gfc_array_c4 * b)
if (GFC_DESCRIPTOR_RANK (retarray) == 1) if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{ {
rxstride = retarray->dim[0].stride; /* One-dimensional result may be addressed in the code below
rystride = rxstride; either as a row or a column matrix. We want both cases to
work. */
rxstride = rystride = retarray->dim[0].stride;
} }
else else
{ {
...@@ -104,65 +115,88 @@ __matmul_c4 (gfc_array_c4 * retarray, gfc_array_c4 * a, gfc_array_c4 * b) ...@@ -104,65 +115,88 @@ __matmul_c4 (gfc_array_c4 * retarray, gfc_array_c4 * a, gfc_array_c4 * b)
rystride = retarray->dim[1].stride; rystride = retarray->dim[1].stride;
} }
/* If we have rank 1 parameters, zero the absent stride, and set the size to
one. */
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
{ {
astride = a->dim[0].stride; /* Treat it as a a row matrix A[1,count]. */
count = a->dim[0].ubound + 1 - a->dim[0].lbound; axstride = a->dim[0].stride;
xstride = 0; aystride = 1;
rxstride = 0;
xcount = 1; xcount = 1;
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
else else
{ {
astride = a->dim[1].stride; axstride = a->dim[0].stride;
aystride = a->dim[1].stride;
count = a->dim[1].ubound + 1 - a->dim[1].lbound; count = a->dim[1].ubound + 1 - a->dim[1].lbound;
xstride = a->dim[0].stride;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound; xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
if (GFC_DESCRIPTOR_RANK (b) == 1) if (GFC_DESCRIPTOR_RANK (b) == 1)
{ {
bstride = b->dim[0].stride; /* Treat it as a column matrix B[count,1] */
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bxstride = b->dim[0].stride;
ystride = 0;
rystride = 0; /* bystride should never be used for 1-dimensional b.
in case it is we want it to cause a segfault, rather than
an incorrect result. */
bystride = 0xDEADBEEF;
ycount = 1; ycount = 1;
} }
else else
{ {
bstride = b->dim[0].stride; bxstride = b->dim[0].stride;
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bystride = b->dim[1].stride;
ystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound; ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
} }
for (y = 0; y < ycount; y++) assert (a->base == 0);
assert (b->base == 0);
assert (retarray->base == 0);
abase = a->data;
bbase = b->data;
dest = retarray->data;
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{ {
for (x = 0; x < xcount; x++) GFC_COMPLEX_4 *bbase_y;
{ GFC_COMPLEX_4 *dest_y;
/* Do the summation for this element. For real and integer types GFC_COMPLEX_4 *abase_n;
this is the same as DOT_PRODUCT. For complex types we use do GFC_COMPLEX_4 bbase_yn;
a*b, not conjg(a)*b. */
pa = abase; memset (dest, 0, (sizeof (GFC_COMPLEX_4) * size0(retarray)));
pb = bbase;
res = 0; for (y = 0; y < ycount; y++)
{
for (n = 0; n < count; n++) bbase_y = bbase + y*bystride;
{ dest_y = dest + y*rystride;
res += *pa * *pb; for (n = 0; n < count; n++)
pa += astride; {
pb += bstride; abase_n = abase + n*aystride;
} bbase_yn = bbase_y[n];
for (x = 0; x < xcount; x++)
*dest = res; {
dest_y[x] += abase_n[x] * bbase_yn;
dest += rxstride; }
abase += xstride; }
} }
abase -= xstride * xcount; }
bbase += ystride; else
dest += rystride - (rxstride * xcount); {
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x*rxstride + y*rystride] = (GFC_COMPLEX_4)0;
for (y = 0; y < ycount; y++)
for (n = 0; n < count; n++)
for (x = 0; x < xcount; x++)
/* dest[x,y] += a[x,n] * b[n,y] */
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
} }
} }
...@@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */ ...@@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */
#include "config.h" #include "config.h"
#include <stdlib.h> #include <stdlib.h>
#include <string.h>
#include <assert.h> #include <assert.h>
#include "libgfortran.h" #include "libgfortran.h"
/* Dimensions: retarray(x,y) a(x, count) b(count,y). /* This is a C version of the following fortran pseudo-code. The key
Either a or b can be rank 1. In this case x or y is 1. */ point is the loop order -- we access all arrays column-first, which
improves the performance enough to boost galgel spec score by 50%.
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
C = 0
DO J=1,N
DO K=1,COUNT
DO I=1,M
C(I,J) = C(I,J)+A(I,K)*B(K,J)
*/
void void
__matmul_c8 (gfc_array_c8 * retarray, gfc_array_c8 * a, gfc_array_c8 * b) __matmul_c8 (gfc_array_c8 * retarray, gfc_array_c8 * a, gfc_array_c8 * b)
{ {
GFC_COMPLEX_8 *abase; GFC_COMPLEX_8 *abase;
GFC_COMPLEX_8 *bbase; GFC_COMPLEX_8 *bbase;
GFC_COMPLEX_8 *dest; GFC_COMPLEX_8 *dest;
GFC_COMPLEX_8 res;
index_type rxstride; index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
index_type rystride; index_type x, y, n, count, xcount, ycount;
index_type xcount;
index_type ycount;
index_type xstride;
index_type ystride;
index_type x;
index_type y;
GFC_COMPLEX_8 *pa;
GFC_COMPLEX_8 *pb;
index_type astride;
index_type bstride;
index_type count;
index_type n;
assert (GFC_DESCRIPTOR_RANK (a) == 2 assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2); || GFC_DESCRIPTOR_RANK (b) == 2);
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
Either A or B (but not both) can be rank 1:
o One-dimensional argument A is implicitly treated as a row matrix
dimensioned [1,count], so xcount=1.
o One-dimensional argument B is implicitly treated as a column matrix
dimensioned [count, 1], so ycount=1.
*/
if (retarray->data == NULL) if (retarray->data == NULL)
{ {
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
...@@ -95,8 +104,10 @@ __matmul_c8 (gfc_array_c8 * retarray, gfc_array_c8 * a, gfc_array_c8 * b) ...@@ -95,8 +104,10 @@ __matmul_c8 (gfc_array_c8 * retarray, gfc_array_c8 * a, gfc_array_c8 * b)
if (GFC_DESCRIPTOR_RANK (retarray) == 1) if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{ {
rxstride = retarray->dim[0].stride; /* One-dimensional result may be addressed in the code below
rystride = rxstride; either as a row or a column matrix. We want both cases to
work. */
rxstride = rystride = retarray->dim[0].stride;
} }
else else
{ {
...@@ -104,65 +115,88 @@ __matmul_c8 (gfc_array_c8 * retarray, gfc_array_c8 * a, gfc_array_c8 * b) ...@@ -104,65 +115,88 @@ __matmul_c8 (gfc_array_c8 * retarray, gfc_array_c8 * a, gfc_array_c8 * b)
rystride = retarray->dim[1].stride; rystride = retarray->dim[1].stride;
} }
/* If we have rank 1 parameters, zero the absent stride, and set the size to
one. */
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
{ {
astride = a->dim[0].stride; /* Treat it as a a row matrix A[1,count]. */
count = a->dim[0].ubound + 1 - a->dim[0].lbound; axstride = a->dim[0].stride;
xstride = 0; aystride = 1;
rxstride = 0;
xcount = 1; xcount = 1;
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
else else
{ {
astride = a->dim[1].stride; axstride = a->dim[0].stride;
aystride = a->dim[1].stride;
count = a->dim[1].ubound + 1 - a->dim[1].lbound; count = a->dim[1].ubound + 1 - a->dim[1].lbound;
xstride = a->dim[0].stride;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound; xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
if (GFC_DESCRIPTOR_RANK (b) == 1) if (GFC_DESCRIPTOR_RANK (b) == 1)
{ {
bstride = b->dim[0].stride; /* Treat it as a column matrix B[count,1] */
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bxstride = b->dim[0].stride;
ystride = 0;
rystride = 0; /* bystride should never be used for 1-dimensional b.
in case it is we want it to cause a segfault, rather than
an incorrect result. */
bystride = 0xDEADBEEF;
ycount = 1; ycount = 1;
} }
else else
{ {
bstride = b->dim[0].stride; bxstride = b->dim[0].stride;
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bystride = b->dim[1].stride;
ystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound; ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
} }
for (y = 0; y < ycount; y++) assert (a->base == 0);
assert (b->base == 0);
assert (retarray->base == 0);
abase = a->data;
bbase = b->data;
dest = retarray->data;
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{ {
for (x = 0; x < xcount; x++) GFC_COMPLEX_8 *bbase_y;
{ GFC_COMPLEX_8 *dest_y;
/* Do the summation for this element. For real and integer types GFC_COMPLEX_8 *abase_n;
this is the same as DOT_PRODUCT. For complex types we use do GFC_COMPLEX_8 bbase_yn;
a*b, not conjg(a)*b. */
pa = abase; memset (dest, 0, (sizeof (GFC_COMPLEX_8) * size0(retarray)));
pb = bbase;
res = 0; for (y = 0; y < ycount; y++)
{
for (n = 0; n < count; n++) bbase_y = bbase + y*bystride;
{ dest_y = dest + y*rystride;
res += *pa * *pb; for (n = 0; n < count; n++)
pa += astride; {
pb += bstride; abase_n = abase + n*aystride;
} bbase_yn = bbase_y[n];
for (x = 0; x < xcount; x++)
*dest = res; {
dest_y[x] += abase_n[x] * bbase_yn;
dest += rxstride; }
abase += xstride; }
} }
abase -= xstride * xcount; }
bbase += ystride; else
dest += rystride - (rxstride * xcount); {
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x*rxstride + y*rystride] = (GFC_COMPLEX_8)0;
for (y = 0; y < ycount; y++)
for (n = 0; n < count; n++)
for (x = 0; x < xcount; x++)
/* dest[x,y] += a[x,n] * b[n,y] */
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
} }
} }
...@@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */ ...@@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */
#include "config.h" #include "config.h"
#include <stdlib.h> #include <stdlib.h>
#include <string.h>
#include <assert.h> #include <assert.h>
#include "libgfortran.h" #include "libgfortran.h"
/* Dimensions: retarray(x,y) a(x, count) b(count,y). /* This is a C version of the following fortran pseudo-code. The key
Either a or b can be rank 1. In this case x or y is 1. */ point is the loop order -- we access all arrays column-first, which
improves the performance enough to boost galgel spec score by 50%.
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
C = 0
DO J=1,N
DO K=1,COUNT
DO I=1,M
C(I,J) = C(I,J)+A(I,K)*B(K,J)
*/
void void
__matmul_i4 (gfc_array_i4 * retarray, gfc_array_i4 * a, gfc_array_i4 * b) __matmul_i4 (gfc_array_i4 * retarray, gfc_array_i4 * a, gfc_array_i4 * b)
{ {
GFC_INTEGER_4 *abase; GFC_INTEGER_4 *abase;
GFC_INTEGER_4 *bbase; GFC_INTEGER_4 *bbase;
GFC_INTEGER_4 *dest; GFC_INTEGER_4 *dest;
GFC_INTEGER_4 res;
index_type rxstride; index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
index_type rystride; index_type x, y, n, count, xcount, ycount;
index_type xcount;
index_type ycount;
index_type xstride;
index_type ystride;
index_type x;
index_type y;
GFC_INTEGER_4 *pa;
GFC_INTEGER_4 *pb;
index_type astride;
index_type bstride;
index_type count;
index_type n;
assert (GFC_DESCRIPTOR_RANK (a) == 2 assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2); || GFC_DESCRIPTOR_RANK (b) == 2);
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
Either A or B (but not both) can be rank 1:
o One-dimensional argument A is implicitly treated as a row matrix
dimensioned [1,count], so xcount=1.
o One-dimensional argument B is implicitly treated as a column matrix
dimensioned [count, 1], so ycount=1.
*/
if (retarray->data == NULL) if (retarray->data == NULL)
{ {
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
...@@ -95,8 +104,10 @@ __matmul_i4 (gfc_array_i4 * retarray, gfc_array_i4 * a, gfc_array_i4 * b) ...@@ -95,8 +104,10 @@ __matmul_i4 (gfc_array_i4 * retarray, gfc_array_i4 * a, gfc_array_i4 * b)
if (GFC_DESCRIPTOR_RANK (retarray) == 1) if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{ {
rxstride = retarray->dim[0].stride; /* One-dimensional result may be addressed in the code below
rystride = rxstride; either as a row or a column matrix. We want both cases to
work. */
rxstride = rystride = retarray->dim[0].stride;
} }
else else
{ {
...@@ -104,65 +115,88 @@ __matmul_i4 (gfc_array_i4 * retarray, gfc_array_i4 * a, gfc_array_i4 * b) ...@@ -104,65 +115,88 @@ __matmul_i4 (gfc_array_i4 * retarray, gfc_array_i4 * a, gfc_array_i4 * b)
rystride = retarray->dim[1].stride; rystride = retarray->dim[1].stride;
} }
/* If we have rank 1 parameters, zero the absent stride, and set the size to
one. */
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
{ {
astride = a->dim[0].stride; /* Treat it as a a row matrix A[1,count]. */
count = a->dim[0].ubound + 1 - a->dim[0].lbound; axstride = a->dim[0].stride;
xstride = 0; aystride = 1;
rxstride = 0;
xcount = 1; xcount = 1;
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
else else
{ {
astride = a->dim[1].stride; axstride = a->dim[0].stride;
aystride = a->dim[1].stride;
count = a->dim[1].ubound + 1 - a->dim[1].lbound; count = a->dim[1].ubound + 1 - a->dim[1].lbound;
xstride = a->dim[0].stride;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound; xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
if (GFC_DESCRIPTOR_RANK (b) == 1) if (GFC_DESCRIPTOR_RANK (b) == 1)
{ {
bstride = b->dim[0].stride; /* Treat it as a column matrix B[count,1] */
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bxstride = b->dim[0].stride;
ystride = 0;
rystride = 0; /* bystride should never be used for 1-dimensional b.
in case it is we want it to cause a segfault, rather than
an incorrect result. */
bystride = 0xDEADBEEF;
ycount = 1; ycount = 1;
} }
else else
{ {
bstride = b->dim[0].stride; bxstride = b->dim[0].stride;
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bystride = b->dim[1].stride;
ystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound; ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
} }
for (y = 0; y < ycount; y++) assert (a->base == 0);
assert (b->base == 0);
assert (retarray->base == 0);
abase = a->data;
bbase = b->data;
dest = retarray->data;
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{ {
for (x = 0; x < xcount; x++) GFC_INTEGER_4 *bbase_y;
{ GFC_INTEGER_4 *dest_y;
/* Do the summation for this element. For real and integer types GFC_INTEGER_4 *abase_n;
this is the same as DOT_PRODUCT. For complex types we use do GFC_INTEGER_4 bbase_yn;
a*b, not conjg(a)*b. */
pa = abase; memset (dest, 0, (sizeof (GFC_INTEGER_4) * size0(retarray)));
pb = bbase;
res = 0; for (y = 0; y < ycount; y++)
{
for (n = 0; n < count; n++) bbase_y = bbase + y*bystride;
{ dest_y = dest + y*rystride;
res += *pa * *pb; for (n = 0; n < count; n++)
pa += astride; {
pb += bstride; abase_n = abase + n*aystride;
} bbase_yn = bbase_y[n];
for (x = 0; x < xcount; x++)
*dest = res; {
dest_y[x] += abase_n[x] * bbase_yn;
dest += rxstride; }
abase += xstride; }
} }
abase -= xstride * xcount; }
bbase += ystride; else
dest += rystride - (rxstride * xcount); {
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x*rxstride + y*rystride] = (GFC_INTEGER_4)0;
for (y = 0; y < ycount; y++)
for (n = 0; n < count; n++)
for (x = 0; x < xcount; x++)
/* dest[x,y] += a[x,n] * b[n,y] */
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
} }
} }
...@@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */ ...@@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */
#include "config.h" #include "config.h"
#include <stdlib.h> #include <stdlib.h>
#include <string.h>
#include <assert.h> #include <assert.h>
#include "libgfortran.h" #include "libgfortran.h"
/* Dimensions: retarray(x,y) a(x, count) b(count,y). /* This is a C version of the following fortran pseudo-code. The key
Either a or b can be rank 1. In this case x or y is 1. */ point is the loop order -- we access all arrays column-first, which
improves the performance enough to boost galgel spec score by 50%.
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
C = 0
DO J=1,N
DO K=1,COUNT
DO I=1,M
C(I,J) = C(I,J)+A(I,K)*B(K,J)
*/
void void
__matmul_i8 (gfc_array_i8 * retarray, gfc_array_i8 * a, gfc_array_i8 * b) __matmul_i8 (gfc_array_i8 * retarray, gfc_array_i8 * a, gfc_array_i8 * b)
{ {
GFC_INTEGER_8 *abase; GFC_INTEGER_8 *abase;
GFC_INTEGER_8 *bbase; GFC_INTEGER_8 *bbase;
GFC_INTEGER_8 *dest; GFC_INTEGER_8 *dest;
GFC_INTEGER_8 res;
index_type rxstride; index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
index_type rystride; index_type x, y, n, count, xcount, ycount;
index_type xcount;
index_type ycount;
index_type xstride;
index_type ystride;
index_type x;
index_type y;
GFC_INTEGER_8 *pa;
GFC_INTEGER_8 *pb;
index_type astride;
index_type bstride;
index_type count;
index_type n;
assert (GFC_DESCRIPTOR_RANK (a) == 2 assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2); || GFC_DESCRIPTOR_RANK (b) == 2);
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
Either A or B (but not both) can be rank 1:
o One-dimensional argument A is implicitly treated as a row matrix
dimensioned [1,count], so xcount=1.
o One-dimensional argument B is implicitly treated as a column matrix
dimensioned [count, 1], so ycount=1.
*/
if (retarray->data == NULL) if (retarray->data == NULL)
{ {
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
...@@ -95,8 +104,10 @@ __matmul_i8 (gfc_array_i8 * retarray, gfc_array_i8 * a, gfc_array_i8 * b) ...@@ -95,8 +104,10 @@ __matmul_i8 (gfc_array_i8 * retarray, gfc_array_i8 * a, gfc_array_i8 * b)
if (GFC_DESCRIPTOR_RANK (retarray) == 1) if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{ {
rxstride = retarray->dim[0].stride; /* One-dimensional result may be addressed in the code below
rystride = rxstride; either as a row or a column matrix. We want both cases to
work. */
rxstride = rystride = retarray->dim[0].stride;
} }
else else
{ {
...@@ -104,65 +115,88 @@ __matmul_i8 (gfc_array_i8 * retarray, gfc_array_i8 * a, gfc_array_i8 * b) ...@@ -104,65 +115,88 @@ __matmul_i8 (gfc_array_i8 * retarray, gfc_array_i8 * a, gfc_array_i8 * b)
rystride = retarray->dim[1].stride; rystride = retarray->dim[1].stride;
} }
/* If we have rank 1 parameters, zero the absent stride, and set the size to
one. */
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
{ {
astride = a->dim[0].stride; /* Treat it as a a row matrix A[1,count]. */
count = a->dim[0].ubound + 1 - a->dim[0].lbound; axstride = a->dim[0].stride;
xstride = 0; aystride = 1;
rxstride = 0;
xcount = 1; xcount = 1;
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
else else
{ {
astride = a->dim[1].stride; axstride = a->dim[0].stride;
aystride = a->dim[1].stride;
count = a->dim[1].ubound + 1 - a->dim[1].lbound; count = a->dim[1].ubound + 1 - a->dim[1].lbound;
xstride = a->dim[0].stride;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound; xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
if (GFC_DESCRIPTOR_RANK (b) == 1) if (GFC_DESCRIPTOR_RANK (b) == 1)
{ {
bstride = b->dim[0].stride; /* Treat it as a column matrix B[count,1] */
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bxstride = b->dim[0].stride;
ystride = 0;
rystride = 0; /* bystride should never be used for 1-dimensional b.
in case it is we want it to cause a segfault, rather than
an incorrect result. */
bystride = 0xDEADBEEF;
ycount = 1; ycount = 1;
} }
else else
{ {
bstride = b->dim[0].stride; bxstride = b->dim[0].stride;
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bystride = b->dim[1].stride;
ystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound; ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
} }
for (y = 0; y < ycount; y++) assert (a->base == 0);
assert (b->base == 0);
assert (retarray->base == 0);
abase = a->data;
bbase = b->data;
dest = retarray->data;
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{ {
for (x = 0; x < xcount; x++) GFC_INTEGER_8 *bbase_y;
{ GFC_INTEGER_8 *dest_y;
/* Do the summation for this element. For real and integer types GFC_INTEGER_8 *abase_n;
this is the same as DOT_PRODUCT. For complex types we use do GFC_INTEGER_8 bbase_yn;
a*b, not conjg(a)*b. */
pa = abase; memset (dest, 0, (sizeof (GFC_INTEGER_8) * size0(retarray)));
pb = bbase;
res = 0; for (y = 0; y < ycount; y++)
{
for (n = 0; n < count; n++) bbase_y = bbase + y*bystride;
{ dest_y = dest + y*rystride;
res += *pa * *pb; for (n = 0; n < count; n++)
pa += astride; {
pb += bstride; abase_n = abase + n*aystride;
} bbase_yn = bbase_y[n];
for (x = 0; x < xcount; x++)
*dest = res; {
dest_y[x] += abase_n[x] * bbase_yn;
dest += rxstride; }
abase += xstride; }
} }
abase -= xstride * xcount; }
bbase += ystride; else
dest += rystride - (rxstride * xcount); {
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x*rxstride + y*rystride] = (GFC_INTEGER_8)0;
for (y = 0; y < ycount; y++)
for (n = 0; n < count; n++)
for (x = 0; x < xcount; x++)
/* dest[x,y] += a[x,n] * b[n,y] */
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
} }
} }
...@@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */ ...@@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */
#include "config.h" #include "config.h"
#include <stdlib.h> #include <stdlib.h>
#include <string.h>
#include <assert.h> #include <assert.h>
#include "libgfortran.h" #include "libgfortran.h"
/* Dimensions: retarray(x,y) a(x, count) b(count,y). /* This is a C version of the following fortran pseudo-code. The key
Either a or b can be rank 1. In this case x or y is 1. */ point is the loop order -- we access all arrays column-first, which
improves the performance enough to boost galgel spec score by 50%.
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
C = 0
DO J=1,N
DO K=1,COUNT
DO I=1,M
C(I,J) = C(I,J)+A(I,K)*B(K,J)
*/
void void
__matmul_r4 (gfc_array_r4 * retarray, gfc_array_r4 * a, gfc_array_r4 * b) __matmul_r4 (gfc_array_r4 * retarray, gfc_array_r4 * a, gfc_array_r4 * b)
{ {
GFC_REAL_4 *abase; GFC_REAL_4 *abase;
GFC_REAL_4 *bbase; GFC_REAL_4 *bbase;
GFC_REAL_4 *dest; GFC_REAL_4 *dest;
GFC_REAL_4 res;
index_type rxstride; index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
index_type rystride; index_type x, y, n, count, xcount, ycount;
index_type xcount;
index_type ycount;
index_type xstride;
index_type ystride;
index_type x;
index_type y;
GFC_REAL_4 *pa;
GFC_REAL_4 *pb;
index_type astride;
index_type bstride;
index_type count;
index_type n;
assert (GFC_DESCRIPTOR_RANK (a) == 2 assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2); || GFC_DESCRIPTOR_RANK (b) == 2);
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
Either A or B (but not both) can be rank 1:
o One-dimensional argument A is implicitly treated as a row matrix
dimensioned [1,count], so xcount=1.
o One-dimensional argument B is implicitly treated as a column matrix
dimensioned [count, 1], so ycount=1.
*/
if (retarray->data == NULL) if (retarray->data == NULL)
{ {
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
...@@ -95,8 +104,10 @@ __matmul_r4 (gfc_array_r4 * retarray, gfc_array_r4 * a, gfc_array_r4 * b) ...@@ -95,8 +104,10 @@ __matmul_r4 (gfc_array_r4 * retarray, gfc_array_r4 * a, gfc_array_r4 * b)
if (GFC_DESCRIPTOR_RANK (retarray) == 1) if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{ {
rxstride = retarray->dim[0].stride; /* One-dimensional result may be addressed in the code below
rystride = rxstride; either as a row or a column matrix. We want both cases to
work. */
rxstride = rystride = retarray->dim[0].stride;
} }
else else
{ {
...@@ -104,65 +115,88 @@ __matmul_r4 (gfc_array_r4 * retarray, gfc_array_r4 * a, gfc_array_r4 * b) ...@@ -104,65 +115,88 @@ __matmul_r4 (gfc_array_r4 * retarray, gfc_array_r4 * a, gfc_array_r4 * b)
rystride = retarray->dim[1].stride; rystride = retarray->dim[1].stride;
} }
/* If we have rank 1 parameters, zero the absent stride, and set the size to
one. */
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
{ {
astride = a->dim[0].stride; /* Treat it as a a row matrix A[1,count]. */
count = a->dim[0].ubound + 1 - a->dim[0].lbound; axstride = a->dim[0].stride;
xstride = 0; aystride = 1;
rxstride = 0;
xcount = 1; xcount = 1;
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
else else
{ {
astride = a->dim[1].stride; axstride = a->dim[0].stride;
aystride = a->dim[1].stride;
count = a->dim[1].ubound + 1 - a->dim[1].lbound; count = a->dim[1].ubound + 1 - a->dim[1].lbound;
xstride = a->dim[0].stride;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound; xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
if (GFC_DESCRIPTOR_RANK (b) == 1) if (GFC_DESCRIPTOR_RANK (b) == 1)
{ {
bstride = b->dim[0].stride; /* Treat it as a column matrix B[count,1] */
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bxstride = b->dim[0].stride;
ystride = 0;
rystride = 0; /* bystride should never be used for 1-dimensional b.
in case it is we want it to cause a segfault, rather than
an incorrect result. */
bystride = 0xDEADBEEF;
ycount = 1; ycount = 1;
} }
else else
{ {
bstride = b->dim[0].stride; bxstride = b->dim[0].stride;
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bystride = b->dim[1].stride;
ystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound; ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
} }
for (y = 0; y < ycount; y++) assert (a->base == 0);
assert (b->base == 0);
assert (retarray->base == 0);
abase = a->data;
bbase = b->data;
dest = retarray->data;
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{ {
for (x = 0; x < xcount; x++) GFC_REAL_4 *bbase_y;
{ GFC_REAL_4 *dest_y;
/* Do the summation for this element. For real and integer types GFC_REAL_4 *abase_n;
this is the same as DOT_PRODUCT. For complex types we use do GFC_REAL_4 bbase_yn;
a*b, not conjg(a)*b. */
pa = abase; memset (dest, 0, (sizeof (GFC_REAL_4) * size0(retarray)));
pb = bbase;
res = 0; for (y = 0; y < ycount; y++)
{
for (n = 0; n < count; n++) bbase_y = bbase + y*bystride;
{ dest_y = dest + y*rystride;
res += *pa * *pb; for (n = 0; n < count; n++)
pa += astride; {
pb += bstride; abase_n = abase + n*aystride;
} bbase_yn = bbase_y[n];
for (x = 0; x < xcount; x++)
*dest = res; {
dest_y[x] += abase_n[x] * bbase_yn;
dest += rxstride; }
abase += xstride; }
} }
abase -= xstride * xcount; }
bbase += ystride; else
dest += rystride - (rxstride * xcount); {
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x*rxstride + y*rystride] = (GFC_REAL_4)0;
for (y = 0; y < ycount; y++)
for (n = 0; n < count; n++)
for (x = 0; x < xcount; x++)
/* dest[x,y] += a[x,n] * b[n,y] */
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
} }
} }
...@@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */ ...@@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */
#include "config.h" #include "config.h"
#include <stdlib.h> #include <stdlib.h>
#include <string.h>
#include <assert.h> #include <assert.h>
#include "libgfortran.h" #include "libgfortran.h"
/* Dimensions: retarray(x,y) a(x, count) b(count,y). /* This is a C version of the following fortran pseudo-code. The key
Either a or b can be rank 1. In this case x or y is 1. */ point is the loop order -- we access all arrays column-first, which
improves the performance enough to boost galgel spec score by 50%.
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
C = 0
DO J=1,N
DO K=1,COUNT
DO I=1,M
C(I,J) = C(I,J)+A(I,K)*B(K,J)
*/
void void
__matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b) __matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b)
{ {
GFC_REAL_8 *abase; GFC_REAL_8 *abase;
GFC_REAL_8 *bbase; GFC_REAL_8 *bbase;
GFC_REAL_8 *dest; GFC_REAL_8 *dest;
GFC_REAL_8 res;
index_type rxstride; index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
index_type rystride; index_type x, y, n, count, xcount, ycount;
index_type xcount;
index_type ycount;
index_type xstride;
index_type ystride;
index_type x;
index_type y;
GFC_REAL_8 *pa;
GFC_REAL_8 *pb;
index_type astride;
index_type bstride;
index_type count;
index_type n;
assert (GFC_DESCRIPTOR_RANK (a) == 2 assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2); || GFC_DESCRIPTOR_RANK (b) == 2);
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
Either A or B (but not both) can be rank 1:
o One-dimensional argument A is implicitly treated as a row matrix
dimensioned [1,count], so xcount=1.
o One-dimensional argument B is implicitly treated as a column matrix
dimensioned [count, 1], so ycount=1.
*/
if (retarray->data == NULL) if (retarray->data == NULL)
{ {
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
...@@ -95,8 +104,10 @@ __matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b) ...@@ -95,8 +104,10 @@ __matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b)
if (GFC_DESCRIPTOR_RANK (retarray) == 1) if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{ {
rxstride = retarray->dim[0].stride; /* One-dimensional result may be addressed in the code below
rystride = rxstride; either as a row or a column matrix. We want both cases to
work. */
rxstride = rystride = retarray->dim[0].stride;
} }
else else
{ {
...@@ -104,65 +115,88 @@ __matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b) ...@@ -104,65 +115,88 @@ __matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b)
rystride = retarray->dim[1].stride; rystride = retarray->dim[1].stride;
} }
/* If we have rank 1 parameters, zero the absent stride, and set the size to
one. */
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
{ {
astride = a->dim[0].stride; /* Treat it as a a row matrix A[1,count]. */
count = a->dim[0].ubound + 1 - a->dim[0].lbound; axstride = a->dim[0].stride;
xstride = 0; aystride = 1;
rxstride = 0;
xcount = 1; xcount = 1;
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
else else
{ {
astride = a->dim[1].stride; axstride = a->dim[0].stride;
aystride = a->dim[1].stride;
count = a->dim[1].ubound + 1 - a->dim[1].lbound; count = a->dim[1].ubound + 1 - a->dim[1].lbound;
xstride = a->dim[0].stride;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound; xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
if (GFC_DESCRIPTOR_RANK (b) == 1) if (GFC_DESCRIPTOR_RANK (b) == 1)
{ {
bstride = b->dim[0].stride; /* Treat it as a column matrix B[count,1] */
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bxstride = b->dim[0].stride;
ystride = 0;
rystride = 0; /* bystride should never be used for 1-dimensional b.
in case it is we want it to cause a segfault, rather than
an incorrect result. */
bystride = 0xDEADBEEF;
ycount = 1; ycount = 1;
} }
else else
{ {
bstride = b->dim[0].stride; bxstride = b->dim[0].stride;
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bystride = b->dim[1].stride;
ystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound; ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
} }
for (y = 0; y < ycount; y++) assert (a->base == 0);
assert (b->base == 0);
assert (retarray->base == 0);
abase = a->data;
bbase = b->data;
dest = retarray->data;
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{ {
for (x = 0; x < xcount; x++) GFC_REAL_8 *bbase_y;
{ GFC_REAL_8 *dest_y;
/* Do the summation for this element. For real and integer types GFC_REAL_8 *abase_n;
this is the same as DOT_PRODUCT. For complex types we use do GFC_REAL_8 bbase_yn;
a*b, not conjg(a)*b. */
pa = abase; memset (dest, 0, (sizeof (GFC_REAL_8) * size0(retarray)));
pb = bbase;
res = 0; for (y = 0; y < ycount; y++)
{
for (n = 0; n < count; n++) bbase_y = bbase + y*bystride;
{ dest_y = dest + y*rystride;
res += *pa * *pb; for (n = 0; n < count; n++)
pa += astride; {
pb += bstride; abase_n = abase + n*aystride;
} bbase_yn = bbase_y[n];
for (x = 0; x < xcount; x++)
*dest = res; {
dest_y[x] += abase_n[x] * bbase_yn;
dest += rxstride; }
abase += xstride; }
} }
abase -= xstride * xcount; }
bbase += ystride; else
dest += rystride - (rxstride * xcount); {
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x*rxstride + y*rystride] = (GFC_REAL_8)0;
for (y = 0; y < ycount; y++)
for (n = 0; n < count; n++)
for (x = 0; x < xcount; x++)
/* dest[x,y] += a[x,n] * b[n,y] */
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
} }
} }
...@@ -21,38 +21,47 @@ Boston, MA 02111-1307, USA. */ ...@@ -21,38 +21,47 @@ Boston, MA 02111-1307, USA. */
#include "config.h" #include "config.h"
#include <stdlib.h> #include <stdlib.h>
#include <string.h>
#include <assert.h> #include <assert.h>
#include "libgfortran.h"' #include "libgfortran.h"'
include(iparm.m4)dnl include(iparm.m4)dnl
/* Dimensions: retarray(x,y) a(x, count) b(count,y). /* This is a C version of the following fortran pseudo-code. The key
Either a or b can be rank 1. In this case x or y is 1. */ point is the loop order -- we access all arrays column-first, which
improves the performance enough to boost galgel spec score by 50%.
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
C = 0
DO J=1,N
DO K=1,COUNT
DO I=1,M
C(I,J) = C(I,J)+A(I,K)*B(K,J)
*/
void void
`__matmul_'rtype_code (rtype * retarray, rtype * a, rtype * b) `__matmul_'rtype_code (rtype * retarray, rtype * a, rtype * b)
{ {
rtype_name *abase; rtype_name *abase;
rtype_name *bbase; rtype_name *bbase;
rtype_name *dest; rtype_name *dest;
rtype_name res;
index_type rxstride; index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
index_type rystride; index_type x, y, n, count, xcount, ycount;
index_type xcount;
index_type ycount;
index_type xstride;
index_type ystride;
index_type x;
index_type y;
rtype_name *pa;
rtype_name *pb;
index_type astride;
index_type bstride;
index_type count;
index_type n;
assert (GFC_DESCRIPTOR_RANK (a) == 2 assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2); || GFC_DESCRIPTOR_RANK (b) == 2);
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
Either A or B (but not both) can be rank 1:
o One-dimensional argument A is implicitly treated as a row matrix
dimensioned [1,count], so xcount=1.
o One-dimensional argument B is implicitly treated as a column matrix
dimensioned [count, 1], so ycount=1.
*/
if (retarray->data == NULL) if (retarray->data == NULL)
{ {
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
...@@ -97,8 +106,10 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl ...@@ -97,8 +106,10 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl
if (GFC_DESCRIPTOR_RANK (retarray) == 1) if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{ {
rxstride = retarray->dim[0].stride; /* One-dimensional result may be addressed in the code below
rystride = rxstride; either as a row or a column matrix. We want both cases to
work. */
rxstride = rystride = retarray->dim[0].stride;
} }
else else
{ {
...@@ -106,65 +117,88 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl ...@@ -106,65 +117,88 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl
rystride = retarray->dim[1].stride; rystride = retarray->dim[1].stride;
} }
/* If we have rank 1 parameters, zero the absent stride, and set the size to
one. */
if (GFC_DESCRIPTOR_RANK (a) == 1) if (GFC_DESCRIPTOR_RANK (a) == 1)
{ {
astride = a->dim[0].stride; /* Treat it as a a row matrix A[1,count]. */
count = a->dim[0].ubound + 1 - a->dim[0].lbound; axstride = a->dim[0].stride;
xstride = 0; aystride = 1;
rxstride = 0;
xcount = 1; xcount = 1;
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
else else
{ {
astride = a->dim[1].stride; axstride = a->dim[0].stride;
aystride = a->dim[1].stride;
count = a->dim[1].ubound + 1 - a->dim[1].lbound; count = a->dim[1].ubound + 1 - a->dim[1].lbound;
xstride = a->dim[0].stride;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound; xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
} }
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
if (GFC_DESCRIPTOR_RANK (b) == 1) if (GFC_DESCRIPTOR_RANK (b) == 1)
{ {
bstride = b->dim[0].stride; /* Treat it as a column matrix B[count,1] */
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bxstride = b->dim[0].stride;
ystride = 0;
rystride = 0; /* bystride should never be used for 1-dimensional b.
in case it is we want it to cause a segfault, rather than
an incorrect result. */
bystride = 0xDEADBEEF;
ycount = 1; ycount = 1;
} }
else else
{ {
bstride = b->dim[0].stride; bxstride = b->dim[0].stride;
assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); bystride = b->dim[1].stride;
ystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound; ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
} }
for (y = 0; y < ycount; y++) assert (a->base == 0);
assert (b->base == 0);
assert (retarray->base == 0);
abase = a->data;
bbase = b->data;
dest = retarray->data;
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{ {
for (x = 0; x < xcount; x++) rtype_name *bbase_y;
{ rtype_name *dest_y;
/* Do the summation for this element. For real and integer types rtype_name *abase_n;
this is the same as DOT_PRODUCT. For complex types we use do rtype_name bbase_yn;
a*b, not conjg(a)*b. */
pa = abase; memset (dest, 0, (sizeof (rtype_name) * size0(retarray)));
pb = bbase;
res = 0; for (y = 0; y < ycount; y++)
{
for (n = 0; n < count; n++) bbase_y = bbase + y*bystride;
{ dest_y = dest + y*rystride;
res += *pa * *pb; for (n = 0; n < count; n++)
pa += astride; {
pb += bstride; abase_n = abase + n*aystride;
} bbase_yn = bbase_y[n];
for (x = 0; x < xcount; x++)
*dest = res; {
dest_y[x] += abase_n[x] * bbase_yn;
dest += rxstride; }
abase += xstride; }
} }
abase -= xstride * xcount; }
bbase += ystride; else
dest += rystride - (rxstride * xcount); {
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x*rxstride + y*rystride] = (rtype_name)0;
for (y = 0; y < ycount; y++)
for (n = 0; n < count; n++)
for (x = 0; x < xcount; x++)
/* dest[x,y] += a[x,n] * b[n,y] */
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
} }
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment