jump.c 62 KB
Newer Older
Richard Kenner committed
1
/* Optimize jump instructions, for GNU compiler.
Jeff Law committed
2
   Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3
   1998, 1999, 2000, 2001 Free Software Foundation, Inc.
Richard Kenner committed
4

5
This file is part of GCC.
Richard Kenner committed
6

7 8 9 10
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
Richard Kenner committed
11

12 13 14 15
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Kenner committed
16 17

You should have received a copy of the GNU General Public License
18 19 20
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */
Richard Kenner committed
21

Jan Hubicka committed
22 23 24
/* This is the pathetic reminder of old fame of the jump-optimization pass
   of the compiler.  Now it contains basically set of utility function to
   operate with jumps.
Richard Kenner committed
25 26 27 28 29 30 31 32 33 34 35 36 37

   Each CODE_LABEL has a count of the times it is used
   stored in the LABEL_NUSES internal field, and each JUMP_INSN
   has one label that it refers to stored in the
   JUMP_LABEL internal field.  With this we can detect labels that
   become unused because of the deletion of all the jumps that
   formerly used them.  The JUMP_LABEL info is sometimes looked
   at by later passes.

   The subroutines delete_insn, redirect_jump, and invert_jump are used
   from other passes as well.  */

#include "config.h"
38
#include "system.h"
Richard Kenner committed
39
#include "rtl.h"
40
#include "tm_p.h"
Richard Kenner committed
41 42 43 44
#include "flags.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "insn-config.h"
45
#include "insn-attr.h"
46
#include "recog.h"
47
#include "function.h"
48
#include "expr.h"
Richard Kenner committed
49
#include "real.h"
Mike Stump committed
50
#include "except.h"
Graham Stott committed
51
#include "toplev.h"
52
#include "reload.h"
Jan Hubicka committed
53
#include "predict.h"
Richard Kenner committed
54 55 56 57 58 59 60 61

/* Optimize jump y; x: ... y: jumpif... x?
   Don't know if it is worth bothering with.  */
/* Optimize two cases of conditional jump to conditional jump?
   This can never delete any instruction or make anything dead,
   or even change what is live at any point.
   So perhaps let combiner do it.  */

62
static int init_label_info		PARAMS ((rtx));
63
static void mark_all_labels		PARAMS ((rtx));
64 65
static int duplicate_loop_exit_test	PARAMS ((rtx));
static void delete_computation		PARAMS ((rtx));
66
static void redirect_exp_1		PARAMS ((rtx *, rtx, rtx, rtx));
Jan Hubicka committed
67 68 69
static int redirect_exp			PARAMS ((rtx, rtx, rtx));
static void invert_exp_1		PARAMS ((rtx));
static int invert_exp			PARAMS ((rtx));
70 71
static int returnjump_p_1	        PARAMS ((rtx *, void *));
static void delete_prior_computation    PARAMS ((rtx, rtx));
72

73 74 75 76 77 78 79
/* Alternate entry into the jump optimizer.  This entry point only rebuilds
   the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
   instructions.  */
void
rebuild_jump_labels (f)
     rtx f;
{
80
  rtx insn;
Richard Kenner committed
81 82
  int max_uid = 0;

83
  max_uid = init_label_info (f) + 1;
Richard Kenner committed
84

85
  mark_all_labels (f);
Richard Kenner committed
86

87 88 89
  /* Keep track of labels used from static data; we don't track them
     closely enough to delete them here, so make sure their reference
     count doesn't drop to zero.  */
Richard Kenner committed
90 91

  for (insn = forced_labels; insn; insn = XEXP (insn, 1))
92 93
    if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
      LABEL_NUSES (XEXP (insn, 0))++;
Richard Kenner committed
94

Mike Stump committed
95 96 97 98
  /* Keep track of labels used for marking handlers for exception
     regions; they cannot usually be deleted.  */

  for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
99 100
    if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
      LABEL_NUSES (XEXP (insn, 0))++;
Jan Hubicka committed
101 102
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
   non-fallthru insn.  This is not generally true, as multiple barriers
   may have crept in, or the BARRIER may be separated from the last
   real insn by one or more NOTEs.

   This simple pass moves barriers and removes duplicates so that the
   old code is happy.
 */
void
cleanup_barriers ()
{
  rtx insn, next, prev;
  for (insn = get_insns (); insn; insn = next)
    {
      next = NEXT_INSN (insn);
      if (GET_CODE (insn) == BARRIER)
	{
	  prev = prev_nonnote_insn (insn);
	  if (GET_CODE (prev) == BARRIER)
	    delete_barrier (insn);
	  else if (prev != PREV_INSN (insn))
	    reorder_insns (insn, insn, prev);
	}
    }
}

Jan Hubicka committed
129 130 131 132
void
copy_loop_headers (f)
     rtx f;
{
133
  rtx insn, next;
Richard Kenner committed
134
  /* Now iterate optimizing jumps until nothing changes over one pass.  */
Jan Hubicka committed
135
  for (insn = f; insn; insn = next)
Richard Kenner committed
136
    {
Jan Hubicka committed
137
      rtx temp, temp1;
Richard Kenner committed
138

Jan Hubicka committed
139
      next = NEXT_INSN (insn);
Jeff Law committed
140

Jan Hubicka committed
141 142 143 144 145 146 147 148 149 150 151
      /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
	 jump.  Try to optimize by duplicating the loop exit test if so.
	 This is only safe immediately after regscan, because it uses
	 the values of regno_first_uid and regno_last_uid.  */
      if (GET_CODE (insn) == NOTE
	  && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
	  && (temp1 = next_nonnote_insn (insn)) != 0
	  && any_uncondjump_p (temp1) && onlyjump_p (temp1))
	{
	  temp = PREV_INSN (insn);
	  if (duplicate_loop_exit_test (insn))
Richard Kenner committed
152
	    {
Jan Hubicka committed
153
	      next = NEXT_INSN (temp);
Richard Kenner committed
154 155 156
	    }
	}
    }
Jan Hubicka committed
157
}
Richard Kenner committed
158

Jan Hubicka committed
159 160 161 162 163 164
void
purge_line_number_notes (f)
     rtx f;
{
  rtx last_note = 0;
  rtx insn;
Richard Kenner committed
165 166 167 168 169
  /* Delete extraneous line number notes.
     Note that two consecutive notes for different lines are not really
     extraneous.  There should be some indication where that line belonged,
     even if it became empty.  */

Jan Hubicka committed
170 171 172 173 174 175 176 177 178 179 180 181 182 183
  for (insn = f; insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == NOTE)
      {
	if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
	  /* Any previous line note was for the prologue; gdb wants a new
	     note after the prologue even if it is for the same line.  */
	  last_note = NULL_RTX;
	else if (NOTE_LINE_NUMBER (insn) >= 0)
	  {
	    /* Delete this note if it is identical to previous note.  */
	    if (last_note
		&& NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
		&& NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
	      {
184
		delete_related_insns (insn);
Jan Hubicka committed
185 186
		continue;
	      }
Richard Kenner committed
187

Jan Hubicka committed
188 189 190
	    last_note = insn;
	  }
      }
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
}

/* Initialize LABEL_NUSES and JUMP_LABEL fields.  Delete any REG_LABEL
   notes whose labels don't occur in the insn any more.  Returns the
   largest INSN_UID found.  */
static int
init_label_info (f)
     rtx f;
{
  int largest_uid = 0;
  rtx insn;

  for (insn = f; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) == CODE_LABEL)
	LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
      else if (GET_CODE (insn) == JUMP_INSN)
	JUMP_LABEL (insn) = 0;
      else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
	{
	  rtx note, next;

	  for (note = REG_NOTES (insn); note; note = next)
	    {
	      next = XEXP (note, 1);
	      if (REG_NOTE_KIND (note) == REG_LABEL
		  && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
		remove_note (insn, note);
	    }
	}
      if (INSN_UID (insn) > largest_uid)
	largest_uid = INSN_UID (insn);
    }

  return largest_uid;
}

/* Mark the label each jump jumps to.
Jan Hubicka committed
229
   Combine consecutive labels, and count uses of labels.  */
230 231

static void
232
mark_all_labels (f)
233 234 235 236 237
     rtx f;
{
  rtx insn;

  for (insn = f; insn; insn = NEXT_INSN (insn))
238
    if (INSN_P (insn))
239
      {
240 241 242
	if (GET_CODE (insn) == CALL_INSN
	    && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
	  {
243 244 245
	    mark_all_labels (XEXP (PATTERN (insn), 0));
	    mark_all_labels (XEXP (PATTERN (insn), 1));
	    mark_all_labels (XEXP (PATTERN (insn), 2));
246 247 248 249 250 251 252

	    /* Canonicalize the tail recursion label attached to the
	       CALL_PLACEHOLDER insn.  */
	    if (XEXP (PATTERN (insn), 3))
	      {
		rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
						   XEXP (PATTERN (insn), 3));
253
		mark_jump_label (label_ref, insn, 0);
254 255 256
		XEXP (PATTERN (insn), 3) = XEXP (label_ref, 0);
	      }

257 258
	    continue;
	  }
Kazu Hirata committed
259

260
	mark_jump_label (PATTERN (insn), insn, 0);
261 262
	if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
	  {
263 264 265 266 267 268 269 270 271 272 273 274 275
	    /* When we know the LABEL_REF contained in a REG used in
	       an indirect jump, we'll have a REG_LABEL note so that
	       flow can tell where it's going.  */
	    if (JUMP_LABEL (insn) == 0)
	      {
		rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
		if (label_note)
		  {
		    /* But a LABEL_REF around the REG_LABEL note, so
		       that we can canonicalize it.  */
		    rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
						       XEXP (label_note, 0));

276
		    mark_jump_label (label_ref, insn, 0);
277 278 279 280
		    XEXP (label_note, 0) = XEXP (label_ref, 0);
		    JUMP_LABEL (insn) = XEXP (label_note, 0);
		  }
	      }
281 282 283 284
	  }
      }
}

Richard Kenner committed
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
   jump.  Assume that this unconditional jump is to the exit test code.  If
   the code is sufficiently simple, make a copy of it before INSN,
   followed by a jump to the exit of the loop.  Then delete the unconditional
   jump after INSN.

   Return 1 if we made the change, else 0.

   This is only safe immediately after a regscan pass because it uses the
   values of regno_first_uid and regno_last_uid.  */

static int
duplicate_loop_exit_test (loop_start)
     rtx loop_start;
{
300
  rtx insn, set, reg, p, link;
301
  rtx copy = 0, first_copy = 0;
Richard Kenner committed
302 303 304 305 306
  int num_insns = 0;
  rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
  rtx lastexit;
  int max_reg = max_reg_num ();
  rtx *reg_map = 0;
307
  rtx loop_pre_header_label;
Richard Kenner committed
308 309 310 311 312 313 314 315

  /* Scan the exit code.  We do not perform this optimization if any insn:

         is a CALL_INSN
	 is a CODE_LABEL
	 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
	 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
	 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
316
	      is not valid.
317 318 319 320

     We also do not do this if we find an insn with ASM_OPERANDS.  While
     this restriction should not be necessary, copying an insn with
     ASM_OPERANDS can confuse asm_noperands in some cases.
Richard Kenner committed
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

     Also, don't do this if the exit code is more than 20 insns.  */

  for (insn = exitcode;
       insn
       && ! (GET_CODE (insn) == NOTE
	     && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
       insn = NEXT_INSN (insn))
    {
      switch (GET_CODE (insn))
	{
	case CODE_LABEL:
	case CALL_INSN:
	  return 0;
	case NOTE:
336 337 338 339 340 341 342 343 344
	  /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
	     a jump immediately after the loop start that branches outside
	     the loop but within an outer loop, near the exit test.
	     If we copied this exit test and created a phony
	     NOTE_INSN_LOOP_VTOP, this could make instructions immediately
	     before the exit test look like these could be safely moved
	     out of the loop even if they actually may be never executed.
	     This can be avoided by checking here for NOTE_INSN_LOOP_CONT.  */

Richard Kenner committed
345
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
346
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
Richard Kenner committed
347
	    return 0;
348 349 350 351 352 353 354 355 356 357

	  if (optimize < 2
	      && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
		  || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
	    /* If we were to duplicate this code, we would not move
	       the BLOCK notes, and so debugging the moved code would
	       be difficult.  Thus, we only move the code with -O2 or
	       higher.  */
	    return 0;

Richard Kenner committed
358 359 360
	  break;
	case JUMP_INSN:
	case INSN:
361 362 363 364
	  /* The code below would grossly mishandle REG_WAS_0 notes,
	     so get rid of them here.  */
	  while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
	    remove_note (insn, p);
Richard Kenner committed
365
	  if (++num_insns > 20
366
	      || find_reg_note (insn, REG_RETVAL, NULL_RTX)
367
	      || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
Richard Kenner committed
368 369
	    return 0;
	  break;
370 371
	default:
	  break;
Richard Kenner committed
372 373 374 375 376 377 378 379 380 381 382 383 384 385
	}
    }

  /* Unless INSN is zero, we can do the optimization.  */
  if (insn == 0)
    return 0;

  lastexit = insn;

  /* See if any insn sets a register only used in the loop exit code and
     not a user variable.  If so, replace it with a new register.  */
  for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == INSN
	&& (set = single_set (insn)) != 0
386 387 388 389
	&& ((reg = SET_DEST (set), GET_CODE (reg) == REG)
	    || (GET_CODE (reg) == SUBREG
		&& (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
	&& REGNO (reg) >= FIRST_PSEUDO_REGISTER
390
	&& REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
Richard Kenner committed
391 392
      {
	for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
393
	  if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
Richard Kenner committed
394 395 396 397 398 399 400
	    break;

	if (p != lastexit)
	  {
	    /* We can do the replacement.  Allocate reg_map if this is the
	       first replacement we found.  */
	    if (reg_map == 0)
401
	      reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
Richard Kenner committed
402

403
	    REG_LOOP_TEST_P (reg) = 1;
Richard Kenner committed
404

405
	    reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
Richard Kenner committed
406 407
	  }
      }
408
  loop_pre_header_label = gen_label_rtx ();
Richard Kenner committed
409 410 411

  /* Now copy each insn.  */
  for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
412 413 414 415 416 417 418 419 420 421 422 423 424 425
    {
      switch (GET_CODE (insn))
	{
	case BARRIER:
	  copy = emit_barrier_before (loop_start);
	  break;
	case NOTE:
	  /* Only copy line-number notes.  */
	  if (NOTE_LINE_NUMBER (insn) >= 0)
	    {
	      copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
	      NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
	    }
	  break;
Kazu Hirata committed
426

427
	case INSN:
428
	  copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
429 430
	  if (reg_map)
	    replace_regs (PATTERN (copy), reg_map, max_reg, 1);
Kazu Hirata committed
431

432
	  mark_jump_label (PATTERN (copy), copy, 0);
Kazu Hirata committed
433

434 435 436 437
	  /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
	     make them.  */
	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
	    if (REG_NOTE_KIND (link) != REG_LABEL)
438 439 440 441 442 443 444 445 446 447 448 449 450
	      {
		if (GET_CODE (link) == EXPR_LIST)
		  REG_NOTES (copy)
		    = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
						      XEXP (link, 0),
						      REG_NOTES (copy)));
		else
		  REG_NOTES (copy)
		    = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
						      XEXP (link, 0),
						      REG_NOTES (copy)));
	      }

451 452 453
	  if (reg_map && REG_NOTES (copy))
	    replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
	  break;
Kazu Hirata committed
454

455
	case JUMP_INSN:
Kazu Hirata committed
456 457
	  copy = emit_jump_insn_before (copy_insn (PATTERN (insn)),
					loop_start);
458 459
	  if (reg_map)
	    replace_regs (PATTERN (copy), reg_map, max_reg, 1);
460
	  mark_jump_label (PATTERN (copy), copy, 0);
461 462
	  if (REG_NOTES (insn))
	    {
463
	      REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
464 465 466
	      if (reg_map)
		replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
	    }
Kazu Hirata committed
467

Jan Hubicka committed
468 469 470 471 472 473 474 475
	  /* Predict conditional jump that do make loop looping as taken.
	     Other jumps are probably exit conditions, so predict
	     them as untaken.  */
	  if (any_condjump_p (copy))
	    {
	      rtx label = JUMP_LABEL (copy);
	      if (label)
		{
476 477 478
		  /* The jump_insn after loop_start should be followed
		     by barrier and loopback label.  */
		  if (prev_nonnote_insn (label)
479 480 481 482 483 484 485 486
		      && (prev_nonnote_insn (prev_nonnote_insn (label))
			  == next_nonnote_insn (loop_start)))
		    {
		      predict_insn_def (copy, PRED_LOOP_HEADER, TAKEN);
		      /* To keep pre-header, we need to redirect all loop
		         entrances before the LOOP_BEG note.  */
		      redirect_jump (copy, loop_pre_header_label, 0);
		    }
Jan Hubicka committed
487 488 489 490
		  else
		    predict_insn_def (copy, PRED_LOOP_HEADER, NOT_TAKEN);
		}
	    }
491
	  break;
Kazu Hirata committed
492

493 494 495
	default:
	  abort ();
	}
Richard Kenner committed
496

497 498 499 500 501
      /* Record the first insn we copied.  We need it so that we can
	 scan the copied insns for new pseudo registers.  */
      if (! first_copy)
	first_copy = copy;
    }
Richard Kenner committed
502 503 504

  /* Now clean up by emitting a jump to the end label and deleting the jump
     at the start of the loop.  */
505
  if (! copy || GET_CODE (copy) != BARRIER)
Richard Kenner committed
506 507 508
    {
      copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
				    loop_start);
509 510 511 512 513 514 515 516

      /* Record the first insn we copied.  We need it so that we can
	 scan the copied insns for new pseudo registers.   This may not
	 be strictly necessary since we should have copied at least one
	 insn above.  But I am going to be safe.  */
      if (! first_copy)
	first_copy = copy;

517
      mark_jump_label (PATTERN (copy), copy, 0);
Richard Kenner committed
518 519 520
      emit_barrier_before (loop_start);
    }

521 522
  emit_label_before (loop_pre_header_label, loop_start);

523 524 525 526 527
  /* Now scan from the first insn we copied to the last insn we copied
     (copy) for new pseudo registers.  Do this after the code to jump to
     the end label since that might create a new pseudo too.  */
  reg_scan_update (first_copy, copy, max_reg);

Richard Kenner committed
528 529 530
  /* Mark the exit code as the virtual top of the converted loop.  */
  emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);

531
  delete_related_insns (next_nonnote_insn (loop_start));
Kazu Hirata committed
532

533 534 535
  /* Clean up.  */
  if (reg_map)
    free (reg_map);
536

Richard Kenner committed
537 538 539
  return 1;
}

540
/* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
541 542
   notes between START and END out before START.  START and END may be such
   notes.  Returns the values of the new starting and ending insns, which
543 544
   may be different if the original ones were such notes.
   Return true if there were only such notes and no real instructions.  */
Richard Kenner committed
545

546
bool
547 548 549
squeeze_notes (startp, endp)
     rtx* startp;
     rtx* endp;
Richard Kenner committed
550
{
551 552 553
  rtx start = *startp;
  rtx end = *endp;

Richard Kenner committed
554 555
  rtx insn;
  rtx next;
556 557
  rtx last = NULL;
  rtx past_end = NEXT_INSN (end);
Richard Kenner committed
558

559
  for (insn = start; insn != past_end; insn = next)
Richard Kenner committed
560 561 562 563 564 565 566 567
    {
      next = NEXT_INSN (insn);
      if (GET_CODE (insn) == NOTE
	  && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
568
	      || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
Richard Kenner committed
569
	{
Jim Wilson committed
570 571 572 573 574 575 576 577 578 579 580 581
	  if (insn == start)
	    start = next;
	  else
	    {
	      rtx prev = PREV_INSN (insn);
	      PREV_INSN (insn) = PREV_INSN (start);
	      NEXT_INSN (insn) = start;
	      NEXT_INSN (PREV_INSN (insn)) = insn;
	      PREV_INSN (NEXT_INSN (insn)) = insn;
	      NEXT_INSN (prev) = next;
	      PREV_INSN (next) = prev;
	    }
Richard Kenner committed
582
	}
583 584
      else
	last = insn;
Richard Kenner committed
585
    }
Jim Wilson committed
586

587
  /* There were no real instructions.  */
588
  if (start == past_end)
589
    return true;
590 591 592 593 594

  end = last;

  *startp = start;
  *endp = end;
595
  return false;
Richard Kenner committed
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
}

/* Return the label before INSN, or put a new label there.  */

rtx
get_label_before (insn)
     rtx insn;
{
  rtx label;

  /* Find an existing label at this point
     or make a new one if there is none.  */
  label = prev_nonnote_insn (insn);

  if (label == 0 || GET_CODE (label) != CODE_LABEL)
    {
      rtx prev = PREV_INSN (insn);

      label = gen_label_rtx ();
      emit_label_after (label, prev);
      LABEL_NUSES (label) = 0;
    }
  return label;
}

/* Return the label after INSN, or put a new label there.  */

rtx
get_label_after (insn)
     rtx insn;
{
  rtx label;

  /* Find an existing label at this point
     or make a new one if there is none.  */
  label = next_nonnote_insn (insn);

  if (label == 0 || GET_CODE (label) != CODE_LABEL)
    {
      label = gen_label_rtx ();
      emit_label_after (label, insn);
      LABEL_NUSES (label) = 0;
    }
  return label;
}

642
/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
643 644 645 646 647 648 649 650 651
   of reversed comparison if it is possible to do so.  Otherwise return UNKNOWN.
   UNKNOWN may be returned in case we are having CC_MODE compare and we don't
   know whether it's source is floating point or integer comparison.  Machine
   description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
   to help this function avoid overhead in these cases.  */
enum rtx_code
reversed_comparison_code_parts (code, arg0, arg1, insn)
     rtx insn, arg0, arg1;
     enum rtx_code code;
Richard Kenner committed
652
{
653
  enum machine_mode mode;
Richard Kenner committed
654 655

  /* If this is not actually a comparison, we can't reverse it.  */
656 657 658 659 660 661 662 663 664 665 666
  if (GET_RTX_CLASS (code) != '<')
    return UNKNOWN;

  mode = GET_MODE (arg0);
  if (mode == VOIDmode)
    mode = GET_MODE (arg1);

  /* First see if machine description supply us way to reverse the comparison.
     Give it priority over everything else to allow machine description to do
     tricks.  */
#ifdef REVERSIBLE_CC_MODE
667
  if (GET_MODE_CLASS (mode) == MODE_CC
668 669 670
      && REVERSIBLE_CC_MODE (mode))
    {
#ifdef REVERSE_CONDITION
Kazu Hirata committed
671
      return REVERSE_CONDITION (code, mode);
672
#endif
Kazu Hirata committed
673 674
      return reverse_condition (code);
    }
675
#endif
Richard Kenner committed
676

677
  /* Try a few special cases based on the comparison code.  */
678 679
  switch (code)
    {
Kazu Hirata committed
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
    case GEU:
    case GTU:
    case LEU:
    case LTU:
    case NE:
    case EQ:
      /* It is always safe to reverse EQ and NE, even for the floating
	 point.  Similary the unsigned comparisons are never used for
	 floating point so we can reverse them in the default way.  */
      return reverse_condition (code);
    case ORDERED:
    case UNORDERED:
    case LTGT:
    case UNEQ:
      /* In case we already see unordered comparison, we can be sure to
	 be dealing with floating point so we don't need any more tests.  */
      return reverse_condition_maybe_unordered (code);
    case UNLT:
    case UNLE:
    case UNGT:
    case UNGE:
      /* We don't have safe way to reverse these yet.  */
      return UNKNOWN;
    default:
      break;
705 706 707
    }

  /* In case we give up IEEE compatibility, all comparisons are reversible.  */
Richard Kenner committed
708
  if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
709
      || flag_unsafe_math_optimizations)
710 711 712
    return reverse_condition (code);

  if (GET_MODE_CLASS (mode) == MODE_CC
Richard Kenner committed
713 714 715 716 717
#ifdef HAVE_cc0
      || arg0 == cc0_rtx
#endif
      )
    {
718 719 720 721 722
      rtx prev;
      /* Try to search for the comparison to determine the real mode.
         This code is expensive, but with sane machine description it
         will be never used, since REVERSIBLE_CC_MODE will return true
         in all cases.  */
723
      if (! insn)
724
	return UNKNOWN;
Kazu Hirata committed
725

Jeff Law committed
726 727 728
      for (prev = prev_nonnote_insn (insn);
	   prev != 0 && GET_CODE (prev) != CODE_LABEL;
	   prev = prev_nonnote_insn (prev))
729 730 731 732 733 734
	{
	  rtx set = set_of (arg0, prev);
	  if (set && GET_CODE (set) == SET
	      && rtx_equal_p (SET_DEST (set), arg0))
	    {
	      rtx src = SET_SRC (set);
Richard Kenner committed
735

736 737 738 739 740 741 742 743 744
	      if (GET_CODE (src) == COMPARE)
		{
		  rtx comparison = src;
		  arg0 = XEXP (src, 0);
		  mode = GET_MODE (arg0);
		  if (mode == VOIDmode)
		    mode = GET_MODE (XEXP (comparison, 1));
		  break;
		}
745
	      /* We can get past reg-reg moves.  This may be useful for model
746 747 748 749 750 751 752 753 754 755 756 757
	         of i387 comparisons that first move flag registers around.  */
	      if (REG_P (src))
		{
		  arg0 = src;
		  continue;
		}
	    }
	  /* If register is clobbered in some ununderstandable way,
	     give up.  */
	  if (set)
	    return UNKNOWN;
	}
Richard Kenner committed
758 759
    }

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
  /* An integer condition.  */
  if (GET_CODE (arg0) == CONST_INT
      || (GET_MODE (arg0) != VOIDmode
	  && GET_MODE_CLASS (mode) != MODE_CC
	  && ! FLOAT_MODE_P (mode)))
    return reverse_condition (code);

  return UNKNOWN;
}

/* An wrapper around the previous function to take COMPARISON as rtx
   expression.  This simplifies many callers.  */
enum rtx_code
reversed_comparison_code (comparison, insn)
     rtx comparison, insn;
{
  if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
    return UNKNOWN;
  return reversed_comparison_code_parts (GET_CODE (comparison),
					 XEXP (comparison, 0),
					 XEXP (comparison, 1), insn);
}

783 784 785 786 787
/* Given an rtx-code for a comparison, return the code for the negated
   comparison.  If no such code exists, return UNKNOWN.

   WATCH OUT!  reverse_condition is not safe to use on a jump that might
   be acting on the results of an IEEE floating point comparison, because
Kazu Hirata committed
788
   of the special treatment of non-signaling nans in comparisons.
789
   Use reversed_comparison_code instead.  */
Richard Kenner committed
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

enum rtx_code
reverse_condition (code)
     enum rtx_code code;
{
  switch (code)
    {
    case EQ:
      return NE;
    case NE:
      return EQ;
    case GT:
      return LE;
    case GE:
      return LT;
    case LT:
      return GE;
    case LE:
      return GT;
    case GTU:
      return LEU;
    case GEU:
      return LTU;
    case LTU:
      return GEU;
    case LEU:
      return GTU;
817 818 819 820 821 822 823 824 825 826
    case UNORDERED:
      return ORDERED;
    case ORDERED:
      return UNORDERED;

    case UNLT:
    case UNLE:
    case UNGT:
    case UNGE:
    case UNEQ:
827
    case LTGT:
828
      return UNKNOWN;
Richard Kenner committed
829 830 831 832 833 834

    default:
      abort ();
    }
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
/* Similar, but we're allowed to generate unordered comparisons, which
   makes it safe for IEEE floating-point.  Of course, we have to recognize
   that the target will support them too...  */

enum rtx_code
reverse_condition_maybe_unordered (code)
     enum rtx_code code;
{
  /* Non-IEEE formats don't have unordered conditions.  */
  if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
    return reverse_condition (code);

  switch (code)
    {
    case EQ:
      return NE;
    case NE:
      return EQ;
    case GT:
      return UNLE;
    case GE:
      return UNLT;
    case LT:
      return UNGE;
    case LE:
      return UNGT;
    case LTGT:
      return UNEQ;
    case UNORDERED:
      return ORDERED;
    case ORDERED:
      return UNORDERED;
    case UNLT:
      return GE;
    case UNLE:
      return GT;
    case UNGT:
      return LE;
    case UNGE:
      return LT;
    case UNEQ:
      return LTGT;

    default:
      abort ();
    }
}

Richard Kenner committed
883 884 885 886 887 888 889 890 891 892 893
/* Similar, but return the code when two operands of a comparison are swapped.
   This IS safe for IEEE floating-point.  */

enum rtx_code
swap_condition (code)
     enum rtx_code code;
{
  switch (code)
    {
    case EQ:
    case NE:
894 895 896
    case UNORDERED:
    case ORDERED:
    case UNEQ:
897
    case LTGT:
Richard Kenner committed
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
      return code;

    case GT:
      return LT;
    case GE:
      return LE;
    case LT:
      return GT;
    case LE:
      return GE;
    case GTU:
      return LTU;
    case GEU:
      return LEU;
    case LTU:
      return GTU;
    case LEU:
      return GEU;
916 917 918 919 920 921 922 923 924
    case UNLT:
      return UNGT;
    case UNLE:
      return UNGE;
    case UNGT:
      return UNLT;
    case UNGE:
      return UNLE;

Richard Kenner committed
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
    default:
      abort ();
    }
}

/* Given a comparison CODE, return the corresponding unsigned comparison.
   If CODE is an equality comparison or already an unsigned comparison,
   CODE is returned.  */

enum rtx_code
unsigned_condition (code)
     enum rtx_code code;
{
  switch (code)
    {
    case EQ:
    case NE:
    case GTU:
    case GEU:
    case LTU:
    case LEU:
      return code;

    case GT:
      return GTU;
    case GE:
      return GEU;
    case LT:
      return LTU;
    case LE:
      return LEU;

    default:
      abort ();
    }
}

/* Similarly, return the signed version of a comparison.  */

enum rtx_code
signed_condition (code)
     enum rtx_code code;
{
  switch (code)
    {
    case EQ:
    case NE:
    case GT:
    case GE:
    case LT:
    case LE:
      return code;

    case GTU:
      return GT;
    case GEU:
      return GE;
    case LTU:
      return LT;
    case LEU:
      return LE;

    default:
      abort ();
    }
}

/* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
   truth of CODE1 implies the truth of CODE2.  */

int
comparison_dominates_p (code1, code2)
     enum rtx_code code1, code2;
{
999 1000 1001 1002 1003 1004
  /* UNKNOWN comparison codes can happen as a result of trying to revert
     comparison codes.
     They can't match anything, so we have to reject them here.  */
  if (code1 == UNKNOWN || code2 == UNKNOWN)
    return 0;

Richard Kenner committed
1005 1006 1007 1008 1009
  if (code1 == code2)
    return 1;

  switch (code1)
    {
1010 1011 1012 1013 1014
    case UNEQ:
      if (code2 == UNLE || code2 == UNGE)
	return 1;
      break;

Richard Kenner committed
1015
    case EQ:
1016 1017
      if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
	  || code2 == ORDERED)
Richard Kenner committed
1018 1019 1020
	return 1;
      break;

1021 1022 1023 1024 1025
    case UNLT:
      if (code2 == UNLE || code2 == NE)
	return 1;
      break;

Richard Kenner committed
1026
    case LT:
1027 1028 1029 1030 1031 1032
      if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
	return 1;
      break;

    case UNGT:
      if (code2 == UNGE || code2 == NE)
Richard Kenner committed
1033 1034 1035 1036
	return 1;
      break;

    case GT:
1037
      if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	return 1;
      break;

    case GE:
    case LE:
      if (code2 == ORDERED)
	return 1;
      break;

    case LTGT:
      if (code2 == NE || code2 == ORDERED)
Richard Kenner committed
1049 1050 1051 1052
	return 1;
      break;

    case LTU:
1053
      if (code2 == LEU || code2 == NE)
Richard Kenner committed
1054 1055 1056 1057
	return 1;
      break;

    case GTU:
1058
      if (code2 == GEU || code2 == NE)
Richard Kenner committed
1059 1060
	return 1;
      break;
1061 1062

    case UNORDERED:
1063 1064
      if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
	  || code2 == UNGE || code2 == UNGT)
1065 1066
	return 1;
      break;
Kazu Hirata committed
1067

1068 1069
    default:
      break;
Richard Kenner committed
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
    }

  return 0;
}

/* Return 1 if INSN is an unconditional jump and nothing else.  */

int
simplejump_p (insn)
     rtx insn;
{
1081 1082 1083 1084
  return (GET_CODE (insn) == JUMP_INSN
	  && GET_CODE (PATTERN (insn)) == SET
	  && GET_CODE (SET_DEST (PATTERN (insn))) == PC
	  && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
Richard Kenner committed
1085 1086 1087
}

/* Return nonzero if INSN is a (possibly) conditional jump
Kazu Hirata committed
1088 1089
   and nothing more.

1090 1091
   Use this function is deprecated, since we need to support combined
   branch and compare insns.  Use any_condjump_p instead whenever possible.  */
Richard Kenner committed
1092 1093 1094 1095 1096

int
condjump_p (insn)
     rtx insn;
{
1097
  rtx x = PATTERN (insn);
Jeff Law committed
1098 1099 1100

  if (GET_CODE (x) != SET
      || GET_CODE (SET_DEST (x)) != PC)
Richard Kenner committed
1101
    return 0;
Jeff Law committed
1102 1103 1104

  x = SET_SRC (x);
  if (GET_CODE (x) == LABEL_REF)
1105
    return 1;
Kazu Hirata committed
1106 1107 1108 1109 1110 1111 1112 1113
  else
    return (GET_CODE (x) == IF_THEN_ELSE
	    && ((GET_CODE (XEXP (x, 2)) == PC
		 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
		     || GET_CODE (XEXP (x, 1)) == RETURN))
		|| (GET_CODE (XEXP (x, 1)) == PC
		    && (GET_CODE (XEXP (x, 2)) == LABEL_REF
			|| GET_CODE (XEXP (x, 2)) == RETURN))));
Jeff Law committed
1114

1115 1116 1117
  return 0;
}

Jeff Law committed
1118
/* Return nonzero if INSN is a (possibly) conditional jump inside a
1119
   PARALLEL.
Kazu Hirata committed
1120

1121 1122
   Use this function is deprecated, since we need to support combined
   branch and compare insns.  Use any_condjump_p instead whenever possible.  */
1123 1124 1125 1126 1127

int
condjump_in_parallel_p (insn)
     rtx insn;
{
1128
  rtx x = PATTERN (insn);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

  if (GET_CODE (x) != PARALLEL)
    return 0;
  else
    x = XVECEXP (x, 0, 0);

  if (GET_CODE (x) != SET)
    return 0;
  if (GET_CODE (SET_DEST (x)) != PC)
    return 0;
  if (GET_CODE (SET_SRC (x)) == LABEL_REF)
    return 1;
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
    return 0;
  if (XEXP (SET_SRC (x), 2) == pc_rtx
Richard Kenner committed
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
      && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
	  || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
    return 1;
  if (XEXP (SET_SRC (x), 1) == pc_rtx
      && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
	  || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
    return 1;
  return 0;
}

1154 1155
/* Return set of PC, otherwise NULL.  */

1156 1157 1158 1159 1160 1161
rtx
pc_set (insn)
     rtx insn;
{
  rtx pat;
  if (GET_CODE (insn) != JUMP_INSN)
1162
    return NULL_RTX;
1163
  pat = PATTERN (insn);
1164 1165 1166 1167 1168

  /* The set is allowed to appear either as the insn pattern or
     the first set in a PARALLEL.  */
  if (GET_CODE (pat) == PARALLEL)
    pat = XVECEXP (pat, 0, 0);
1169 1170
  if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
    return pat;
1171 1172

  return NULL_RTX;
1173 1174
}

1175 1176 1177
/* Return true when insn is an unconditional direct jump,
   possibly bundled inside a PARALLEL.  */

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
int
any_uncondjump_p (insn)
     rtx insn;
{
  rtx x = pc_set (insn);
  if (!x)
    return 0;
  if (GET_CODE (SET_SRC (x)) != LABEL_REF)
    return 0;
  return 1;
}

1190
/* Return true when insn is a conditional jump.  This function works for
1191 1192
   instructions containing PC sets in PARALLELs.  The instruction may have
   various other effects so before removing the jump you must verify
1193
   onlyjump_p.
1194

1195 1196
   Note that unlike condjump_p it returns false for unconditional jumps.  */

1197 1198 1199 1200 1201
int
any_condjump_p (insn)
     rtx insn;
{
  rtx x = pc_set (insn);
1202 1203
  enum rtx_code a, b;

1204 1205
  if (!x)
    return 0;
1206 1207
  if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
    return 0;
1208

1209 1210
  a = GET_CODE (XEXP (SET_SRC (x), 1));
  b = GET_CODE (XEXP (SET_SRC (x), 2));
1211

1212
  return ((b == PC && (a == LABEL_REF || a == RETURN))
Kazu Hirata committed
1213
	  || (a == PC && (b == LABEL_REF || b == RETURN)));
1214 1215
}

1216 1217 1218 1219 1220 1221
/* Return the label of a conditional jump.  */

rtx
condjump_label (insn)
     rtx insn;
{
1222
  rtx x = pc_set (insn);
1223

1224
  if (!x)
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
    return NULL_RTX;
  x = SET_SRC (x);
  if (GET_CODE (x) == LABEL_REF)
    return x;
  if (GET_CODE (x) != IF_THEN_ELSE)
    return NULL_RTX;
  if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
    return XEXP (x, 1);
  if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
    return XEXP (x, 2);
  return NULL_RTX;
}

1238 1239 1240 1241 1242 1243 1244 1245
/* Return true if INSN is a (possibly conditional) return insn.  */

static int
returnjump_p_1 (loc, data)
     rtx *loc;
     void *data ATTRIBUTE_UNUSED;
{
  rtx x = *loc;
1246 1247 1248

  return x && (GET_CODE (x) == RETURN
	       || (GET_CODE (x) == SET && SET_IS_RETURN_P (x)));
1249 1250 1251 1252 1253 1254
}

int
returnjump_p (insn)
     rtx insn;
{
1255 1256
  if (GET_CODE (insn) != JUMP_INSN)
    return 0;
1257 1258 1259
  return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/* Return true if INSN is a jump that only transfers control and
   nothing more.  */

int
onlyjump_p (insn)
     rtx insn;
{
  rtx set;

  if (GET_CODE (insn) != JUMP_INSN)
    return 0;

  set = single_set (insn);
  if (set == NULL)
    return 0;
  if (GET_CODE (SET_DEST (set)) != PC)
    return 0;
  if (side_effects_p (SET_SRC (set)))
    return 0;

  return 1;
}

1283 1284
#ifdef HAVE_cc0

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/* Return non-zero if X is an RTX that only sets the condition codes
   and has no side effects.  */

int
only_sets_cc0_p (x)
     rtx x;
{

  if (! x)
    return 0;

  if (INSN_P (x))
    x = PATTERN (x);

  return sets_cc0_p (x) == 1 && ! side_effects_p (x);
}

Richard Kenner committed
1302 1303 1304 1305 1306 1307 1308
/* Return 1 if X is an RTX that does nothing but set the condition codes
   and CLOBBER or USE registers.
   Return -1 if X does explicitly set the condition codes,
   but also does other things.  */

int
sets_cc0_p (x)
1309
     rtx x;
Richard Kenner committed
1310
{
1311 1312 1313 1314 1315 1316 1317

  if (! x)
    return 0;

  if (INSN_P (x))
    x = PATTERN (x);

Richard Kenner committed
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
  if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
    return 1;
  if (GET_CODE (x) == PARALLEL)
    {
      int i;
      int sets_cc0 = 0;
      int other_things = 0;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  if (GET_CODE (XVECEXP (x, 0, i)) == SET
	      && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
	    sets_cc0 = 1;
	  else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
	    other_things = 1;
	}
      return ! sets_cc0 ? 0 : other_things ? -1 : 1;
    }
  return 0;
}
1337
#endif
Richard Kenner committed
1338 1339 1340 1341

/* Follow any unconditional jump at LABEL;
   return the ultimate label reached by any such chain of jumps.
   If LABEL is not followed by a jump, return LABEL.
1342 1343
   If the chain loops or we can't find end, return LABEL,
   since that tells caller to avoid changing the insn.
Richard Kenner committed
1344 1345 1346 1347 1348 1349 1350 1351

   If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
   a USE or CLOBBER.  */

rtx
follow_jumps (label)
     rtx label;
{
1352 1353 1354 1355
  rtx insn;
  rtx next;
  rtx value = label;
  int depth;
Richard Kenner committed
1356 1357 1358 1359 1360

  for (depth = 0;
       (depth < 10
	&& (insn = next_active_insn (value)) != 0
	&& GET_CODE (insn) == JUMP_INSN
Jan Hubicka committed
1361 1362
	&& ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
	     && onlyjump_p (insn))
1363
	    || GET_CODE (PATTERN (insn)) == RETURN)
Richard Kenner committed
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	&& (next = NEXT_INSN (insn))
	&& GET_CODE (next) == BARRIER);
       depth++)
    {
      /* Don't chain through the insn that jumps into a loop
	 from outside the loop,
	 since that would create multiple loop entry jumps
	 and prevent loop optimization.  */
      rtx tem;
      if (!reload_completed)
	for (tem = value; tem != insn; tem = NEXT_INSN (tem))
	  if (GET_CODE (tem) == NOTE
1376 1377 1378 1379
	      && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
		  /* ??? Optional.  Disables some optimizations, but makes
		     gcov output more accurate with -O.  */
		  || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
Richard Kenner committed
1380 1381 1382 1383
	    return value;

      /* If we have found a cycle, make the insn jump to itself.  */
      if (JUMP_LABEL (insn) == label)
1384
	return label;
1385 1386 1387 1388 1389 1390

      tem = next_active_insn (JUMP_LABEL (insn));
      if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
		  || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
	break;

Richard Kenner committed
1391 1392
      value = JUMP_LABEL (insn);
    }
1393 1394
  if (depth == 10)
    return label;
Richard Kenner committed
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
  return value;
}


/* Find all CODE_LABELs referred to in X, and increment their use counts.
   If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
   in INSN, then store one of them in JUMP_LABEL (INSN).
   If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
   referenced in INSN, add a REG_LABEL note containing that label to INSN.
   Also, when there are consecutive labels, canonicalize on the last of them.

   Note that two labels separated by a loop-beginning note
   must be kept distinct if we have not yet done loop-optimization,
   because the gap between them is where loop-optimize
   will want to move invariant code to.  CROSS_JUMP tells us
1410
   that loop-optimization is done with.  */
Richard Kenner committed
1411

1412
void
1413
mark_jump_label (x, insn, in_mem)
1414
     rtx x;
Richard Kenner committed
1415
     rtx insn;
1416
     int in_mem;
Richard Kenner committed
1417
{
1418 1419 1420
  RTX_CODE code = GET_CODE (x);
  int i;
  const char *fmt;
Richard Kenner committed
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

  switch (code)
    {
    case PC:
    case CC0:
    case REG:
    case SUBREG:
    case CONST_INT:
    case CONST_DOUBLE:
    case CLOBBER:
    case CALL:
      return;

1434
    case MEM:
1435 1436 1437 1438 1439
      in_mem = 1;
      break;

    case SYMBOL_REF:
      if (!in_mem)
Kazu Hirata committed
1440
	return;
1441

1442
      /* If this is a constant-pool reference, see if it is a label.  */
1443
      if (CONSTANT_POOL_ADDRESS_P (x))
1444
	mark_jump_label (get_pool_constant (x), insn, in_mem);
1445 1446
      break;

Richard Kenner committed
1447 1448
    case LABEL_REF:
      {
1449 1450
	rtx label = XEXP (x, 0);

1451 1452
	/* Ignore remaining references to unreachable labels that
	   have been deleted.  */
Kazu Hirata committed
1453
	if (GET_CODE (label) == NOTE
1454 1455 1456
	    && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
	  break;

Richard Kenner committed
1457 1458
	if (GET_CODE (label) != CODE_LABEL)
	  abort ();
1459

Richard Stallman committed
1460 1461 1462
	/* Ignore references to labels of containing functions.  */
	if (LABEL_REF_NONLOCAL_P (x))
	  break;
1463

Richard Kenner committed
1464
	XEXP (x, 0) = label;
1465 1466
	if (! insn || ! INSN_DELETED_P (insn))
	  ++LABEL_NUSES (label);
1467

Richard Kenner committed
1468 1469 1470 1471
	if (insn)
	  {
	    if (GET_CODE (insn) == JUMP_INSN)
	      JUMP_LABEL (insn) = label;
1472
	    else
1473
	      {
1474 1475 1476 1477 1478
		/* Add a REG_LABEL note for LABEL unless there already
		   is one.  All uses of a label, except for labels
		   that are the targets of jumps, must have a
		   REG_LABEL note.  */
		if (! find_reg_note (insn, REG_LABEL, label))
1479
		  REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
1480
							REG_NOTES (insn));
Richard Kenner committed
1481 1482 1483 1484 1485 1486 1487 1488 1489
	      }
	  }
	return;
      }

  /* Do walk the labels in a vector, but not the first operand of an
     ADDR_DIFF_VEC.  Don't set the JUMP_LABEL of a vector.  */
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
1490 1491 1492
      if (! INSN_DELETED_P (insn))
	{
	  int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
Richard Kenner committed
1493

1494
	  for (i = 0; i < XVECLEN (x, eltnum); i++)
1495
	    mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, in_mem);
1496
	}
1497
      return;
Kazu Hirata committed
1498

1499 1500
    default:
      break;
Richard Kenner committed
1501 1502 1503 1504 1505 1506
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
1507
	mark_jump_label (XEXP (x, i), insn, in_mem);
Richard Kenner committed
1508 1509
      else if (fmt[i] == 'E')
	{
1510
	  int j;
Richard Kenner committed
1511
	  for (j = 0; j < XVECLEN (x, i); j++)
1512
	    mark_jump_label (XVECEXP (x, i, j), insn, in_mem);
Richard Kenner committed
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	}
    }
}

/* If all INSN does is set the pc, delete it,
   and delete the insn that set the condition codes for it
   if that's what the previous thing was.  */

void
delete_jump (insn)
     rtx insn;
{
1525
  rtx set = single_set (insn);
1526 1527 1528 1529 1530

  if (set && GET_CODE (SET_DEST (set)) == PC)
    delete_computation (insn);
}

Richard Kenner committed
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
/* Verify INSN is a BARRIER and delete it.  */

void
delete_barrier (insn)
     rtx insn;
{
  if (GET_CODE (insn) != BARRIER)
    abort ();

  delete_insn (insn);
}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/* Recursively delete prior insns that compute the value (used only by INSN
   which the caller is deleting) stored in the register mentioned by NOTE
   which is a REG_DEAD note associated with INSN.  */

static void
delete_prior_computation (note, insn)
     rtx note;
     rtx insn;
{
  rtx our_prev;
  rtx reg = XEXP (note, 0);

  for (our_prev = prev_nonnote_insn (insn);
1556 1557
       our_prev && (GET_CODE (our_prev) == INSN
		    || GET_CODE (our_prev) == CALL_INSN);
1558 1559 1560 1561
       our_prev = prev_nonnote_insn (our_prev))
    {
      rtx pat = PATTERN (our_prev);

1562 1563 1564
      /* If we reach a CALL which is not calling a const function
	 or the callee pops the arguments, then give up.  */
      if (GET_CODE (our_prev) == CALL_INSN
1565
	  && (! CONST_OR_PURE_CALL_P (our_prev)
1566 1567 1568
	      || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
	break;

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
      /* If we reach a SEQUENCE, it is too complex to try to
	 do anything with it, so give up.  */
      if (GET_CODE (pat) == SEQUENCE)
	break;

      if (GET_CODE (pat) == USE
	  && GET_CODE (XEXP (pat, 0)) == INSN)
	/* reorg creates USEs that look like this.  We leave them
	   alone because reorg needs them for its own purposes.  */
	break;

      if (reg_set_p (reg, pat))
	{
1582
	  if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	    break;

	  if (GET_CODE (pat) == PARALLEL)
	    {
	      /* If we find a SET of something else, we can't
		 delete the insn.  */

	      int i;

	      for (i = 0; i < XVECLEN (pat, 0); i++)
		{
		  rtx part = XVECEXP (pat, 0, i);

		  if (GET_CODE (part) == SET
		      && SET_DEST (part) != reg)
		    break;
		}

	      if (i == XVECLEN (pat, 0))
		delete_computation (our_prev);
	    }
	  else if (GET_CODE (pat) == SET
		   && GET_CODE (SET_DEST (pat)) == REG)
	    {
	      int dest_regno = REGNO (SET_DEST (pat));
	      int dest_endregno
Kazu Hirata committed
1609 1610
		= (dest_regno
		   + (dest_regno < FIRST_PSEUDO_REGISTER
1611
		      ? HARD_REGNO_NREGS (dest_regno,
Kazu Hirata committed
1612
					  GET_MODE (SET_DEST (pat))) : 1));
1613
	      int regno = REGNO (reg);
Kazu Hirata committed
1614 1615 1616 1617
	      int endregno
		= (regno
		   + (regno < FIRST_PSEUDO_REGISTER
		      ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1));
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

	      if (dest_regno >= regno
		  && dest_endregno <= endregno)
		delete_computation (our_prev);

	      /* We may have a multi-word hard register and some, but not
		 all, of the words of the register are needed in subsequent
		 insns.  Write REG_UNUSED notes for those parts that were not
		 needed.  */
	      else if (dest_regno <= regno
1628
		       && dest_endregno >= endregno)
1629 1630 1631 1632
		{
		  int i;

		  REG_NOTES (our_prev)
Kazu Hirata committed
1633 1634
		    = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
					 REG_NOTES (our_prev));
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

		  for (i = dest_regno; i < dest_endregno; i++)
		    if (! find_regno_note (our_prev, REG_UNUSED, i))
		      break;

		  if (i == dest_endregno)
		    delete_computation (our_prev);
		}
	    }

	  break;
	}

      /* If PAT references the register that dies here, it is an
	 additional use.  Hence any prior SET isn't dead.  However, this
	 insn becomes the new place for the REG_DEAD note.  */
      if (reg_overlap_mentioned_p (reg, pat))
	{
	  XEXP (note, 1) = REG_NOTES (our_prev);
	  REG_NOTES (our_prev) = note;
	  break;
	}
    }
}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
/* Delete INSN and recursively delete insns that compute values used only
   by INSN.  This uses the REG_DEAD notes computed during flow analysis.
   If we are running before flow.c, we need do nothing since flow.c will
   delete dead code.  We also can't know if the registers being used are
   dead or not at this point.

   Otherwise, look at all our REG_DEAD notes.  If a previous insn does
   nothing other than set a register that dies in this insn, we can delete
   that insn as well.

   On machines with CC0, if CC0 is used in this insn, we may be able to
   delete the insn that set it.  */

1673
static void
1674 1675 1676 1677
delete_computation (insn)
     rtx insn;
{
  rtx note, next;
Richard Kenner committed
1678 1679

#ifdef HAVE_cc0
1680
  if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
1681
    {
1682
      rtx prev = prev_nonnote_insn (insn);
Richard Kenner committed
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
      /* We assume that at this stage
	 CC's are always set explicitly
	 and always immediately before the jump that
	 will use them.  So if the previous insn
	 exists to set the CC's, delete it
	 (unless it performs auto-increments, etc.).  */
      if (prev && GET_CODE (prev) == INSN
	  && sets_cc0_p (PATTERN (prev)))
	{
	  if (sets_cc0_p (PATTERN (prev)) > 0
1693
	      && ! side_effects_p (PATTERN (prev)))
1694
	    delete_computation (prev);
Richard Kenner committed
1695 1696
	  else
	    /* Otherwise, show that cc0 won't be used.  */
1697 1698
	    REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
						  cc0_rtx, REG_NOTES (prev));
Richard Kenner committed
1699
	}
1700
    }
1701
#endif
Richard Kenner committed
1702

1703 1704 1705
  for (note = REG_NOTES (insn); note; note = next)
    {
      next = XEXP (note, 1);
Richard Kenner committed
1706

1707 1708 1709 1710
      if (REG_NOTE_KIND (note) != REG_DEAD
	  /* Verify that the REG_NOTE is legitimate.  */
	  || GET_CODE (XEXP (note, 0)) != REG)
	continue;
Richard Kenner committed
1711

1712
      delete_prior_computation (note, insn);
Richard Kenner committed
1713
    }
1714

1715
  delete_related_insns (insn);
Richard Kenner committed
1716 1717
}

1718 1719 1720 1721
/* Delete insn INSN from the chain of insns and update label ref counts
   and delete insns now unreachable. 

   Returns the first insn after INSN that was not deleted. 
Richard Kenner committed
1722

1723 1724
   Usage of this instruction is deprecated.  Use delete_insn instead and
   subsequent cfg_cleanup pass to delete unreachable code if needed.  */
Richard Kenner committed
1725 1726

rtx
1727
delete_related_insns (insn)
1728
     rtx insn;
Richard Kenner committed
1729
{
1730
  int was_code_label = (GET_CODE (insn) == CODE_LABEL);
1731
  rtx note;
1732
  rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
Richard Kenner committed
1733 1734 1735 1736 1737 1738 1739 1740

  while (next && INSN_DELETED_P (next))
    next = NEXT_INSN (next);

  /* This insn is already deleted => return first following nondeleted.  */
  if (INSN_DELETED_P (insn))
    return next;

1741
  delete_insn (insn);
Richard Kenner committed
1742 1743 1744 1745 1746

  /* If instruction is followed by a barrier,
     delete the barrier too.  */

  if (next != 0 && GET_CODE (next) == BARRIER)
1747
    delete_insn (next);
Richard Kenner committed
1748 1749 1750 1751 1752

  /* If deleting a jump, decrement the count of the label,
     and delete the label if it is now unused.  */

  if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
1753 1754 1755
    {
      rtx lab = JUMP_LABEL (insn), lab_next;

1756
      if (LABEL_NUSES (lab) == 0)
1757 1758 1759 1760
	{
	  /* This can delete NEXT or PREV,
	     either directly if NEXT is JUMP_LABEL (INSN),
	     or indirectly through more levels of jumps.  */
1761
	  delete_related_insns (lab);
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

	  /* I feel a little doubtful about this loop,
	     but I see no clean and sure alternative way
	     to find the first insn after INSN that is not now deleted.
	     I hope this works.  */
	  while (next && INSN_DELETED_P (next))
	    next = NEXT_INSN (next);
	  return next;
	}
      else if ((lab_next = next_nonnote_insn (lab)) != NULL
	       && GET_CODE (lab_next) == JUMP_INSN
	       && (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
		   || GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
	{
	  /* If we're deleting the tablejump, delete the dispatch table.
1777
	     We may not be able to kill the label immediately preceding
1778 1779
	     just yet, as it might be referenced in code leading up to
	     the tablejump.  */
1780
	  delete_related_insns (lab_next);
1781 1782
	}
    }
Richard Kenner committed
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
  /* Likewise if we're deleting a dispatch table.  */

  if (GET_CODE (insn) == JUMP_INSN
      && (GET_CODE (PATTERN (insn)) == ADDR_VEC
	  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
    {
      rtx pat = PATTERN (insn);
      int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
      int len = XVECLEN (pat, diff_vec_p);

      for (i = 0; i < len; i++)
1795 1796
	if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
	  delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1797 1798 1799 1800 1801
      while (next && INSN_DELETED_P (next))
	next = NEXT_INSN (next);
      return next;
    }

1802 1803 1804
  /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note.  */
  if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
    for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1805 1806 1807
      if (REG_NOTE_KIND (note) == REG_LABEL
	  /* This could also be a NOTE_INSN_DELETED_LABEL note.  */
	  && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
1808 1809
	if (LABEL_NUSES (XEXP (note, 0)) == 0)
	  delete_related_insns (XEXP (note, 0));
1810

Richard Kenner committed
1811 1812 1813 1814 1815 1816 1817
  while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
    prev = PREV_INSN (prev);

  /* If INSN was a label and a dispatch table follows it,
     delete the dispatch table.  The tablejump must have gone already.
     It isn't useful to fall through into a table.  */

1818
  if (was_code_label
Richard Kenner committed
1819 1820 1821 1822
      && NEXT_INSN (insn) != 0
      && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
      && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
	  || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
1823
    next = delete_related_insns (NEXT_INSN (insn));
Richard Kenner committed
1824 1825 1826

  /* If INSN was a label, delete insns following it if now unreachable.  */

1827
  if (was_code_label && prev && GET_CODE (prev) == BARRIER)
Richard Kenner committed
1828
    {
1829
      RTX_CODE code;
Richard Kenner committed
1830
      while (next != 0
1831
	     && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
1832
		 || code == NOTE || code == BARRIER
1833
		 || (code == CODE_LABEL && INSN_DELETED_P (next))))
Richard Kenner committed
1834 1835 1836 1837
	{
	  if (code == NOTE
	      && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
	    next = NEXT_INSN (next);
1838 1839 1840
	  /* Keep going past other deleted labels to delete what follows.  */
	  else if (code == CODE_LABEL && INSN_DELETED_P (next))
	    next = NEXT_INSN (next);
Richard Kenner committed
1841 1842 1843 1844 1845
	  else
	    /* Note: if this deletes a jump, it can cause more
	       deletion of unreachable code, after a different label.
	       As long as the value from this recursive call is correct,
	       this invocation functions correctly.  */
1846
	    next = delete_related_insns (next);
Richard Kenner committed
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	}
    }

  return next;
}

/* Advance from INSN till reaching something not deleted
   then return that.  May return INSN itself.  */

rtx
next_nondeleted_insn (insn)
     rtx insn;
{
  while (INSN_DELETED_P (insn))
    insn = NEXT_INSN (insn);
  return insn;
}

/* Delete a range of insns from FROM to TO, inclusive.
   This is for the sake of peephole optimization, so assume
   that whatever these insns do will still be done by a new
   peephole insn that will replace them.  */

void
delete_for_peephole (from, to)
1872
     rtx from, to;
Richard Kenner committed
1873
{
1874
  rtx insn = from;
Richard Kenner committed
1875 1876 1877

  while (1)
    {
1878 1879
      rtx next = NEXT_INSN (insn);
      rtx prev = PREV_INSN (insn);
Richard Kenner committed
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

      if (GET_CODE (insn) != NOTE)
	{
	  INSN_DELETED_P (insn) = 1;

	  /* Patch this insn out of the chain.  */
	  /* We don't do this all at once, because we
	     must preserve all NOTEs.  */
	  if (prev)
	    NEXT_INSN (prev) = next;

	  if (next)
	    PREV_INSN (next) = prev;
	}

      if (insn == to)
	break;
      insn = next;
    }

  /* Note that if TO is an unconditional jump
     we *do not* delete the BARRIER that follows,
     since the peephole that replaces this sequence
     is also an unconditional jump in that case.  */
}

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
/* We have determined that INSN is never reached, and are about to
   delete it.  Print a warning if the user asked for one.

   To try to make this warning more useful, this should only be called
   once per basic block not reached, and it only warns when the basic
   block contains more than one line from the current function, and
   contains at least one operation.  CSE and inlining can duplicate insns,
   so it's possible to get spurious warnings from this.  */

void
1916 1917
never_reached_warning (avoided_insn, finish)
     rtx avoided_insn, finish;
1918 1919 1920
{
  rtx insn;
  rtx a_line_note = NULL;
1921
  int two_avoided_lines = 0, contains_insn = 0, reached_end = 0;
Kazu Hirata committed
1922

1923 1924 1925 1926 1927
  if (! warn_notreached)
    return;

  /* Scan forwards, looking at LINE_NUMBER notes, until
     we hit a LABEL or we run out of insns.  */
Kazu Hirata committed
1928

1929 1930
  for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
    {
1931
      if (finish == NULL && GET_CODE (insn) == CODE_LABEL)
Kazu Hirata committed
1932
	break;
1933 1934 1935

      if (GET_CODE (insn) == NOTE		/* A line number note?  */
	  && NOTE_LINE_NUMBER (insn) >= 0)
1936 1937 1938 1939 1940 1941 1942
	{
	  if (a_line_note == NULL)
	    a_line_note = insn;
	  else
	    two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
				  != NOTE_LINE_NUMBER (insn));
	}
1943
      else if (INSN_P (insn))
1944 1945 1946 1947 1948 1949 1950 1951
	{
	  if (reached_end)
	    break;
	  contains_insn = 1;
	}

      if (insn == finish)
	reached_end = 1;
1952 1953 1954 1955 1956 1957 1958
    }
  if (two_avoided_lines && contains_insn)
    warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
				NOTE_LINE_NUMBER (a_line_note),
				"will never be executed");
}

1959 1960
/* Throughout LOC, redirect OLABEL to NLABEL.  Treat null OLABEL or
   NLABEL as a return.  Accrue modifications into the change group.  */
Richard Kenner committed
1961

1962 1963 1964 1965
static void
redirect_exp_1 (loc, olabel, nlabel, insn)
     rtx *loc;
     rtx olabel, nlabel;
Richard Kenner committed
1966 1967
     rtx insn;
{
1968 1969 1970 1971
  rtx x = *loc;
  RTX_CODE code = GET_CODE (x);
  int i;
  const char *fmt;
Richard Kenner committed
1972

1973
  if (code == LABEL_REF)
Richard Kenner committed
1974
    {
1975 1976 1977 1978 1979 1980
      if (XEXP (x, 0) == olabel)
	{
	  rtx n;
	  if (nlabel)
	    n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
	  else
Kazu Hirata committed
1981
	    n = gen_rtx_RETURN (VOIDmode);
Richard Kenner committed
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	  validate_change (insn, loc, n, 1);
	  return;
	}
    }
  else if (code == RETURN && olabel == 0)
    {
      x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
      if (loc == &PATTERN (insn))
	x = gen_rtx_SET (VOIDmode, pc_rtx, x);
      validate_change (insn, loc, x, 1);
      return;
    }
Richard Kenner committed
1995

1996 1997 1998 1999 2000 2001
  if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
      && GET_CODE (SET_SRC (x)) == LABEL_REF
      && XEXP (SET_SRC (x), 0) == olabel)
    {
      validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
      return;
Richard Kenner committed
2002 2003 2004 2005 2006 2007
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
2008
	redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
2009
      else if (fmt[i] == 'E')
Richard Kenner committed
2010
	{
2011
	  int j;
Richard Kenner committed
2012
	  for (j = 0; j < XVECLEN (x, i); j++)
2013
	    redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
Richard Kenner committed
2014 2015
	}
    }
2016
}
Richard Kenner committed
2017

2018 2019
/* Similar, but apply the change group and report success or failure.  */

Jan Hubicka committed
2020 2021
static int
redirect_exp (olabel, nlabel, insn)
2022 2023 2024
     rtx olabel, nlabel;
     rtx insn;
{
Jan Hubicka committed
2025 2026 2027 2028 2029 2030 2031
  rtx *loc;

  if (GET_CODE (PATTERN (insn)) == PARALLEL)
    loc = &XVECEXP (PATTERN (insn), 0, 0);
  else
    loc = &PATTERN (insn);

2032 2033 2034 2035 2036
  redirect_exp_1 (loc, olabel, nlabel, insn);
  if (num_validated_changes () == 0)
    return 0;

  return apply_change_group ();
Richard Kenner committed
2037
}
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

/* Make JUMP go to NLABEL instead of where it jumps now.  Accrue
   the modifications into the change group.  Return false if we did
   not see how to do that.  */

int
redirect_jump_1 (jump, nlabel)
     rtx jump, nlabel;
{
  int ochanges = num_validated_changes ();
Jan Hubicka committed
2048 2049 2050 2051 2052 2053 2054 2055
  rtx *loc;

  if (GET_CODE (PATTERN (jump)) == PARALLEL)
    loc = &XVECEXP (PATTERN (jump), 0, 0);
  else
    loc = &PATTERN (jump);

  redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
2056 2057 2058 2059 2060 2061
  return num_validated_changes () > ochanges;
}

/* Make JUMP go to NLABEL instead of where it jumps now.  If the old
   jump target label is unused as a result, it and the code following
   it may be deleted.
Richard Kenner committed
2062 2063 2064 2065

   If NLABEL is zero, we are to turn the jump into a (possibly conditional)
   RETURN insn.

2066 2067
   The return value will be 1 if the change was made, 0 if it wasn't
   (this can only occur for NLABEL == 0).  */
Richard Kenner committed
2068 2069

int
2070
redirect_jump (jump, nlabel, delete_unused)
Richard Kenner committed
2071
     rtx jump, nlabel;
2072
     int delete_unused;
Richard Kenner committed
2073
{
2074
  rtx olabel = JUMP_LABEL (jump);
Richard Kenner committed
2075 2076 2077 2078

  if (nlabel == olabel)
    return 1;

Jan Hubicka committed
2079
  if (! redirect_exp (olabel, nlabel, jump))
Richard Kenner committed
2080 2081 2082 2083 2084 2085
    return 0;

  JUMP_LABEL (jump) = nlabel;
  if (nlabel)
    ++LABEL_NUSES (nlabel);

2086 2087
  /* If we're eliding the jump over exception cleanups at the end of a
     function, move the function end note so that -Wreturn-type works.  */
2088 2089
  if (olabel && nlabel
      && NEXT_INSN (olabel)
2090 2091 2092 2093
      && GET_CODE (NEXT_INSN (olabel)) == NOTE
      && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
    emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);

2094 2095 2096
  if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused
      /* Undefined labels will remain outside the insn stream.  */
      && INSN_UID (olabel))
2097
    delete_related_insns (olabel);
Richard Kenner committed
2098 2099 2100 2101

  return 1;
}

Kazu Hirata committed
2102
/* Invert the jump condition of rtx X contained in jump insn, INSN.
2103 2104 2105
   Accrue the modifications into the change group.  */

static void
Jan Hubicka committed
2106
invert_exp_1 (insn)
2107 2108
     rtx insn;
{
2109
  RTX_CODE code;
Jan Hubicka committed
2110 2111 2112
  rtx x = pc_set (insn);

  if (!x)
Kazu Hirata committed
2113
    abort ();
Jan Hubicka committed
2114
  x = SET_SRC (x);
2115 2116 2117 2118 2119

  code = GET_CODE (x);

  if (code == IF_THEN_ELSE)
    {
2120 2121
      rtx comp = XEXP (x, 0);
      rtx tem;
2122
      enum rtx_code reversed_code;
2123 2124 2125 2126 2127 2128

      /* We can do this in two ways:  The preferable way, which can only
	 be done if this is not an integer comparison, is to reverse
	 the comparison code.  Otherwise, swap the THEN-part and ELSE-part
	 of the IF_THEN_ELSE.  If we can't do either, fail.  */

2129 2130 2131
      reversed_code = reversed_comparison_code (comp, insn);

      if (reversed_code != UNKNOWN)
2132 2133
	{
	  validate_change (insn, &XEXP (x, 0),
2134
			   gen_rtx_fmt_ee (reversed_code,
2135 2136 2137 2138 2139
					   GET_MODE (comp), XEXP (comp, 0),
					   XEXP (comp, 1)),
			   1);
	  return;
	}
Kazu Hirata committed
2140

2141 2142 2143 2144
      tem = XEXP (x, 1);
      validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
      validate_change (insn, &XEXP (x, 2), tem, 1);
    }
Jan Hubicka committed
2145 2146
  else
    abort ();
2147 2148
}

Kazu Hirata committed
2149
/* Invert the jump condition of conditional jump insn, INSN.
2150 2151 2152 2153

   Return 1 if we can do so, 0 if we cannot find a way to do so that
   matches a pattern.  */

Jan Hubicka committed
2154 2155
static int
invert_exp (insn)
2156 2157
     rtx insn;
{
Jan Hubicka committed
2158
  invert_exp_1 (insn);
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
  if (num_validated_changes () == 0)
    return 0;

  return apply_change_group ();
}

/* Invert the condition of the jump JUMP, and make it jump to label
   NLABEL instead of where it jumps now.  Accrue changes into the
   change group.  Return false if we didn't see how to perform the
   inversion and redirection.  */

int
invert_jump_1 (jump, nlabel)
     rtx jump, nlabel;
{
  int ochanges;

  ochanges = num_validated_changes ();
Jan Hubicka committed
2177
  invert_exp_1 (jump);
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
  if (num_validated_changes () == ochanges)
    return 0;

  return redirect_jump_1 (jump, nlabel);
}

/* Invert the condition of the jump JUMP, and make it jump to label
   NLABEL instead of where it jumps now.  Return true if successful.  */

int
2188
invert_jump (jump, nlabel, delete_unused)
2189
     rtx jump, nlabel;
2190
     int delete_unused;
2191 2192 2193 2194 2195 2196
{
  /* We have to either invert the condition and change the label or
     do neither.  Either operation could fail.  We first try to invert
     the jump. If that succeeds, we try changing the label.  If that fails,
     we invert the jump back to what it was.  */

Jan Hubicka committed
2197
  if (! invert_exp (jump))
2198 2199
    return 0;

2200
  if (redirect_jump (jump, nlabel, delete_unused))
2201
    {
Jan Hubicka committed
2202
      invert_br_probabilities (jump);
2203 2204 2205 2206

      return 1;
    }

Jan Hubicka committed
2207
  if (! invert_exp (jump))
2208 2209 2210 2211 2212 2213
    /* This should just be putting it back the way it was.  */
    abort ();

  return 0;
}

Richard Kenner committed
2214 2215

/* Like rtx_equal_p except that it considers two REGs as equal
2216 2217
   if they renumber to the same value and considers two commutative
   operations to be the same if the order of the operands has been
2218 2219 2220 2221 2222 2223 2224 2225 2226
   reversed.

   ??? Addition is not commutative on the PA due to the weird implicit
   space register selection rules for memory addresses.  Therefore, we
   don't consider a + b == b + a.

   We could/should make this test a little tighter.  Possibly only
   disabling it on the PA via some backend macro or only disabling this
   case when the PLUS is inside a MEM.  */
Richard Kenner committed
2227 2228 2229 2230 2231

int
rtx_renumbered_equal_p (x, y)
     rtx x, y;
{
2232 2233 2234
  int i;
  RTX_CODE code = GET_CODE (x);
  const char *fmt;
Kazu Hirata committed
2235

Richard Kenner committed
2236 2237
  if (x == y)
    return 1;
2238

Richard Kenner committed
2239 2240 2241 2242
  if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
      && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
				  && GET_CODE (SUBREG_REG (y)) == REG)))
    {
2243
      int reg_x = -1, reg_y = -1;
2244
      int byte_x = 0, byte_y = 0;
Richard Kenner committed
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

      if (GET_MODE (x) != GET_MODE (y))
	return 0;

      /* If we haven't done any renumbering, don't
	 make any assumptions.  */
      if (reg_renumber == 0)
	return rtx_equal_p (x, y);

      if (code == SUBREG)
	{
2256
	  reg_x = REGNO (SUBREG_REG (x));
2257
	  byte_x = SUBREG_BYTE (x);
2258 2259 2260

	  if (reg_renumber[reg_x] >= 0)
	    {
2261 2262 2263 2264 2265
	      reg_x = subreg_regno_offset (reg_renumber[reg_x],
					   GET_MODE (SUBREG_REG (x)),
					   byte_x,
					   GET_MODE (x));
	      byte_x = 0;
2266
	    }
Richard Kenner committed
2267 2268 2269
	}
      else
	{
2270 2271 2272
	  reg_x = REGNO (x);
	  if (reg_renumber[reg_x] >= 0)
	    reg_x = reg_renumber[reg_x];
Richard Kenner committed
2273
	}
2274

Richard Kenner committed
2275 2276
      if (GET_CODE (y) == SUBREG)
	{
2277
	  reg_y = REGNO (SUBREG_REG (y));
2278
	  byte_y = SUBREG_BYTE (y);
2279 2280 2281

	  if (reg_renumber[reg_y] >= 0)
	    {
2282 2283 2284 2285 2286
	      reg_y = subreg_regno_offset (reg_renumber[reg_y],
					   GET_MODE (SUBREG_REG (y)),
					   byte_y,
					   GET_MODE (y));
	      byte_y = 0;
2287
	    }
Richard Kenner committed
2288 2289 2290
	}
      else
	{
2291 2292 2293
	  reg_y = REGNO (y);
	  if (reg_renumber[reg_y] >= 0)
	    reg_y = reg_renumber[reg_y];
Richard Kenner committed
2294
	}
2295

2296
      return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
Richard Kenner committed
2297
    }
2298

Kazu Hirata committed
2299
  /* Now we have disposed of all the cases
Richard Kenner committed
2300 2301 2302
     in which different rtx codes can match.  */
  if (code != GET_CODE (y))
    return 0;
2303

Richard Kenner committed
2304 2305 2306 2307 2308 2309 2310 2311 2312
  switch (code)
    {
    case PC:
    case CC0:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 0;

    case CONST_INT:
2313
      return INTVAL (x) == INTVAL (y);
Richard Kenner committed
2314 2315

    case LABEL_REF:
Richard Stallman committed
2316 2317 2318
      /* We can't assume nonlocal labels have their following insns yet.  */
      if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
	return XEXP (x, 0) == XEXP (y, 0);
2319

Richard Kenner committed
2320 2321 2322 2323 2324 2325 2326
      /* Two label-refs are equivalent if they point at labels
	 in the same position in the instruction stream.  */
      return (next_real_insn (XEXP (x, 0))
	      == next_real_insn (XEXP (y, 0)));

    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);
2327

2328 2329 2330 2331
    case CODE_LABEL:
      /* If we didn't match EQ equality above, they aren't the same.  */
      return 0;

2332 2333
    default:
      break;
Richard Kenner committed
2334 2335 2336 2337 2338 2339 2340
    }

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */

  if (GET_MODE (x) != GET_MODE (y))
    return 0;

2341
  /* For commutative operations, the RTX match if the operand match in any
2342 2343 2344 2345 2346
     order.  Also handle the simple binary and unary cases without a loop.

     ??? Don't consider PLUS a commutative operator; see comments above.  */
  if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
      && code != PLUS)
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
    return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
	     && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
	    || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
		&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
  else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
    return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
	    && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
  else if (GET_RTX_CLASS (code) == '1')
    return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));

Richard Kenner committed
2357 2358 2359 2360 2361 2362
  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
2363
      int j;
Richard Kenner committed
2364 2365
      switch (fmt[i])
	{
2366 2367 2368 2369 2370
	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
	  break;

Richard Kenner committed
2371 2372 2373 2374 2375
	case 'i':
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
	  break;

2376 2377 2378 2379 2380
	case 't':
	  if (XTREE (x, i) != XTREE (y, i))
	    return 0;
	  break;

Richard Kenner committed
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	case 's':
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
	  break;

	case 'e':
	  if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
	    return 0;
	  break;

	case 'u':
	  if (XEXP (x, i) != XEXP (y, i))
	    return 0;
	  /* fall through.  */
	case '0':
	  break;

	case 'E':
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;
	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
	      return 0;
	  break;

	default:
	  abort ();
	}
    }
  return 1;
}

/* If X is a hard register or equivalent to one or a subregister of one,
   return the hard register number.  If X is a pseudo register that was not
   assigned a hard register, return the pseudo register number.  Otherwise,
   return -1.  Any rtx is valid for X.  */

int
true_regnum (x)
     rtx x;
{
  if (GET_CODE (x) == REG)
    {
      if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
	return reg_renumber[REGNO (x)];
      return REGNO (x);
    }
  if (GET_CODE (x) == SUBREG)
    {
      int base = true_regnum (SUBREG_REG (x));
      if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
2432 2433 2434
	return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
					   GET_MODE (SUBREG_REG (x)),
					   SUBREG_BYTE (x), GET_MODE (x));
Richard Kenner committed
2435 2436 2437
    }
  return -1;
}