cse.c 237 KB
Newer Older
Richard Kenner committed
1
/* Common subexpression elimination for GNU compiler.
Jeff Law committed
2
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
Kazu Hirata committed
3
   1999, 2000, 2001, 2002 Free Software Foundation, Inc.
Richard Kenner committed
4

5
This file is part of GCC.
Richard Kenner committed
6

7 8 9 10
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
Richard Kenner committed
11

12 13 14 15
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Kenner committed
16 17

You should have received a copy of the GNU General Public License
18 19 20
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */
Richard Kenner committed
21 22

#include "config.h"
23 24
/* stdio.h must precede rtl.h for FFS.  */
#include "system.h"
25

Richard Kenner committed
26
#include "rtl.h"
27
#include "tm_p.h"
Richard Kenner committed
28 29
#include "regs.h"
#include "hard-reg-set.h"
30
#include "basic-block.h"
Richard Kenner committed
31 32 33 34
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
35
#include "function.h"
Jeff Law committed
36
#include "expr.h"
Kaveh R. Ghazi committed
37 38
#include "toplev.h"
#include "output.h"
39
#include "ggc.h"
40
#include "timevar.h"
Richard Kenner committed
41 42 43 44 45 46 47

/* The basic idea of common subexpression elimination is to go
   through the code, keeping a record of expressions that would
   have the same value at the current scan point, and replacing
   expressions encountered with the cheapest equivalent expression.

   It is too complicated to keep track of the different possibilities
Jeffrey A Law committed
48 49 50 51 52 53 54 55
   when control paths merge in this code; so, at each label, we forget all
   that is known and start fresh.  This can be described as processing each
   extended basic block separately.  We have a separate pass to perform
   global CSE.

   Note CSE can turn a conditional or computed jump into a nop or
   an unconditional jump.  When this occurs we arrange to run the jump
   optimizer after CSE to delete the unreachable code.
Richard Kenner committed
56 57

   We use two data structures to record the equivalent expressions:
58 59
   a hash table for most expressions, and a vector of "quantity
   numbers" to record equivalent (pseudo) registers.
Richard Kenner committed
60 61 62 63 64 65 66 67 68 69 70

   The use of the special data structure for registers is desirable
   because it is faster.  It is possible because registers references
   contain a fairly small number, the register number, taken from
   a contiguously allocated series, and two register references are
   identical if they have the same number.  General expressions
   do not have any such thing, so the only way to retrieve the
   information recorded on an expression other than a register
   is to keep it in a hash table.

Registers and "quantity numbers":
71

Richard Kenner committed
72 73 74 75 76 77 78 79 80 81 82 83
   At the start of each basic block, all of the (hardware and pseudo)
   registers used in the function are given distinct quantity
   numbers to indicate their contents.  During scan, when the code
   copies one register into another, we copy the quantity number.
   When a register is loaded in any other way, we allocate a new
   quantity number to describe the value generated by this operation.
   `reg_qty' records what quantity a register is currently thought
   of as containing.

   All real quantity numbers are greater than or equal to `max_reg'.
   If register N has not been assigned a quantity, reg_qty[N] will equal N.

84 85
   Quantity numbers below `max_reg' do not exist and none of the `qty_table'
   entries should be referenced with an index below `max_reg'.
Richard Kenner committed
86 87

   We also maintain a bidirectional chain of registers for each
88 89
   quantity number.  The `qty_table` members `first_reg' and `last_reg',
   and `reg_eqv_table' members `next' and `prev' hold these chains.
Richard Kenner committed
90 91 92 93 94 95

   The first register in a chain is the one whose lifespan is least local.
   Among equals, it is the one that was seen first.
   We replace any equivalent register with that one.

   If two registers have the same quantity number, it must be true that
96
   REG expressions with qty_table `mode' must be in the hash table for both
Richard Kenner committed
97 98 99 100 101 102
   registers and must be in the same class.

   The converse is not true.  Since hard registers may be referenced in
   any mode, two REG expressions might be equivalent in the hash table
   but not have the same quantity number if the quantity number of one
   of the registers is not the same mode as those expressions.
103

Richard Kenner committed
104 105 106
Constants and quantity numbers

   When a quantity has a known constant value, that value is stored
107
   in the appropriate qty_table `const_rtx'.  This is in addition to
Richard Kenner committed
108 109
   putting the constant in the hash table as is usual for non-regs.

110
   Whether a reg or a constant is preferred is determined by the configuration
Richard Kenner committed
111 112 113 114
   macro CONST_COSTS and will often depend on the constant value.  In any
   event, expressions containing constants can be simplified, by fold_rtx.

   When a quantity has a known nearly constant value (such as an address
115 116
   of a stack slot), that value is stored in the appropriate qty_table
   `const_rtx'.
Richard Kenner committed
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

   Integer constants don't have a machine mode.  However, cse
   determines the intended machine mode from the destination
   of the instruction that moves the constant.  The machine mode
   is recorded in the hash table along with the actual RTL
   constant expression so that different modes are kept separate.

Other expressions:

   To record known equivalences among expressions in general
   we use a hash table called `table'.  It has a fixed number of buckets
   that contain chains of `struct table_elt' elements for expressions.
   These chains connect the elements whose expressions have the same
   hash codes.

   Other chains through the same elements connect the elements which
   currently have equivalent values.

   Register references in an expression are canonicalized before hashing
136
   the expression.  This is done using `reg_qty' and qty_table `first_reg'.
Richard Kenner committed
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
   The hash code of a register reference is computed using the quantity
   number, not the register number.

   When the value of an expression changes, it is necessary to remove from the
   hash table not just that expression but all expressions whose values
   could be different as a result.

     1. If the value changing is in memory, except in special cases
     ANYTHING referring to memory could be changed.  That is because
     nobody knows where a pointer does not point.
     The function `invalidate_memory' removes what is necessary.

     The special cases are when the address is constant or is
     a constant plus a fixed register such as the frame pointer
     or a static chain pointer.  When such addresses are stored in,
     we can tell exactly which other such addresses must be invalidated
     due to overlap.  `invalidate' does this.
     All expressions that refer to non-constant
     memory addresses are also invalidated.  `invalidate_memory' does this.

     2. If the value changing is a register, all expressions
     containing references to that register, and only those,
     must be removed.

   Because searching the entire hash table for expressions that contain
   a register is very slow, we try to figure out when it isn't necessary.
   Precisely, this is necessary only when expressions have been
   entered in the hash table using this register, and then the value has
   changed, and then another expression wants to be added to refer to
   the register's new value.  This sequence of circumstances is rare
   within any one basic block.

   The vectors `reg_tick' and `reg_in_table' are used to detect this case.
   reg_tick[i] is incremented whenever a value is stored in register i.
   reg_in_table[i] holds -1 if no references to register i have been
   entered in the table; otherwise, it contains the value reg_tick[i] had
   when the references were entered.  If we want to enter a reference
   and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
   Until we want to enter a new entry, the mere fact that the two vectors
   don't match makes the entries be ignored if anyone tries to match them.

   Registers themselves are entered in the hash table as well as in
   the equivalent-register chains.  However, the vectors `reg_tick'
   and `reg_in_table' do not apply to expressions which are simple
   register references.  These expressions are removed from the table
   immediately when they become invalid, and this can be done even if
   we do not immediately search for all the expressions that refer to
   the register.

   A CLOBBER rtx in an instruction invalidates its operand for further
   reuse.  A CLOBBER or SET rtx whose operand is a MEM:BLK
   invalidates everything that resides in memory.

Related expressions:

   Constant expressions that differ only by an additive integer
   are called related.  When a constant expression is put in
   the table, the related expression with no constant term
   is also entered.  These are made to point at each other
   so that it is possible to find out if there exists any
   register equivalent to an expression related to a given expression.  */
198

Richard Kenner committed
199 200 201 202
/* One plus largest register number used in this function.  */

static int max_reg;

203 204 205 206 207
/* One plus largest instruction UID used in this function at time of
   cse_main call.  */

static int max_insn_uid;

208 209
/* Length of qty_table vector.  We know in advance we will not need
   a quantity number this big.  */
Richard Kenner committed
210 211 212 213 214 215 216 217

static int max_qty;

/* Next quantity number to be allocated.
   This is 1 + the largest number needed so far.  */

static int next_qty;

218
/* Per-qty information tracking.
Richard Kenner committed
219

220 221
   `first_reg' and `last_reg' track the head and tail of the
   chain of registers which currently contain this quantity.
Richard Kenner committed
222

223
   `mode' contains the machine mode of this quantity.
Richard Kenner committed
224

225 226 227 228 229
   `const_rtx' holds the rtx of the constant value of this
   quantity, if known.  A summations of the frame/arg pointer
   and a constant can also be entered here.  When this holds
   a known value, `const_insn' is the insn which stored the
   constant value.
Richard Kenner committed
230

231 232 233 234 235 236 237 238 239 240 241
   `comparison_{code,const,qty}' are used to track when a
   comparison between a quantity and some constant or register has
   been passed.  In such a case, we know the results of the comparison
   in case we see it again.  These members record a comparison that
   is known to be true.  `comparison_code' holds the rtx code of such
   a comparison, else it is set to UNKNOWN and the other two
   comparison members are undefined.  `comparison_const' holds
   the constant being compared against, or zero if the comparison
   is not against a constant.  `comparison_qty' holds the quantity
   being compared against when the result is known.  If the comparison
   is not with a register, `comparison_qty' is -1.  */
Richard Kenner committed
242

243 244 245 246 247 248
struct qty_table_elem
{
  rtx const_rtx;
  rtx const_insn;
  rtx comparison_const;
  int comparison_qty;
249
  unsigned int first_reg, last_reg;
250 251 252
  enum machine_mode mode;
  enum rtx_code comparison_code;
};
Richard Kenner committed
253

254 255
/* The table of all qtys, indexed by qty number.  */
static struct qty_table_elem *qty_table;
Richard Kenner committed
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

#ifdef HAVE_cc0
/* For machines that have a CC0, we do not record its value in the hash
   table since its use is guaranteed to be the insn immediately following
   its definition and any other insn is presumed to invalidate it.

   Instead, we store below the value last assigned to CC0.  If it should
   happen to be a constant, it is stored in preference to the actual
   assigned value.  In case it is a constant, we store the mode in which
   the constant should be interpreted.  */

static rtx prev_insn_cc0;
static enum machine_mode prev_insn_cc0_mode;
#endif

/* Previous actual insn.  0 if at first insn of basic block.  */

static rtx prev_insn;

/* Insn being scanned.  */

static rtx this_insn;

279 280
/* Index by register number, gives the number of the next (or
   previous) register in the chain of registers sharing the same
Richard Kenner committed
281 282 283 284
   value.

   Or -1 if this register is at the end of the chain.

285 286 287 288 289 290 291
   If reg_qty[N] == N, reg_eqv_table[N].next is undefined.  */

/* Per-register equivalence chain.  */
struct reg_eqv_elem
{
  int next, prev;
};
Richard Kenner committed
292

293 294
/* The table of all register equivalence chains.  */
static struct reg_eqv_elem *reg_eqv_table;
Richard Kenner committed
295

Richard Kenner committed
296 297
struct cse_reg_info
{
298 299
  /* Next in hash chain.  */
  struct cse_reg_info *hash_next;
300 301

  /* The next cse_reg_info structure in the free or used list.  */
Richard Kenner committed
302
  struct cse_reg_info *next;
303

304
  /* Search key */
305
  unsigned int regno;
306 307 308 309 310 311 312 313

  /* The quantity number of the register's current contents.  */
  int reg_qty;

  /* The number of times the register has been altered in the current
     basic block.  */
  int reg_tick;

314 315 316 317 318 319
  /* The REG_TICK value at which rtx's containing this register are
     valid in the hash table.  If this does not equal the current
     reg_tick value, such expressions existing in the hash table are
     invalid.  */
  int reg_in_table;
};
Richard Kenner committed
320

321 322
/* A free list of cse_reg_info entries.  */
static struct cse_reg_info *cse_reg_info_free_list;
Richard Kenner committed
323

324 325 326 327
/* A used list of cse_reg_info entries.  */
static struct cse_reg_info *cse_reg_info_used_list;
static struct cse_reg_info *cse_reg_info_used_list_end;

328
/* A mapping from registers to cse_reg_info data structures.  */
329 330 331 332 333 334 335
#define REGHASH_SHIFT	7
#define REGHASH_SIZE	(1 << REGHASH_SHIFT)
#define REGHASH_MASK	(REGHASH_SIZE - 1)
static struct cse_reg_info *reg_hash[REGHASH_SIZE];

#define REGHASH_FN(REGNO)	\
	(((REGNO) ^ ((REGNO) >> REGHASH_SHIFT)) & REGHASH_MASK)
Richard Kenner committed
336

337 338
/* The last lookup we did into the cse_reg_info_tree.  This allows us
   to cache repeated lookups.  */
339
static unsigned int cached_regno;
340
static struct cse_reg_info *cached_cse_reg_info;
Richard Kenner committed
341

342
/* A HARD_REG_SET containing all the hard registers for which there is
Richard Kenner committed
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
   currently a REG expression in the hash table.  Note the difference
   from the above variables, which indicate if the REG is mentioned in some
   expression in the table.  */

static HARD_REG_SET hard_regs_in_table;

/* CUID of insn that starts the basic block currently being cse-processed.  */

static int cse_basic_block_start;

/* CUID of insn that ends the basic block currently being cse-processed.  */

static int cse_basic_block_end;

/* Vector mapping INSN_UIDs to cuids.
358
   The cuids are like uids but increase monotonically always.
Richard Kenner committed
359 360
   We use them to see whether a reg is used outside a given basic block.  */

361
static int *uid_cuid;
Richard Kenner committed
362

363 364 365
/* Highest UID in UID_CUID.  */
static int max_uid;

Richard Kenner committed
366 367 368 369
/* Get the cuid of an insn.  */

#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])

370 371 372 373 374
/* Nonzero if this pass has made changes, and therefore it's
   worthwhile to run the garbage collector.  */

static int cse_altered;

Richard Kenner committed
375 376 377 378 379
/* Nonzero if cse has altered conditional jump insns
   in such a way that jump optimization should be redone.  */

static int cse_jumps_altered;

380 381
/* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
   REG_LABEL, we have to rerun jump after CSE to put in the note.  */
382 383
static int recorded_label_ref;

Richard Kenner committed
384 385 386 387 388 389
/* canon_hash stores 1 in do_not_record
   if it notices a reference to CC0, PC, or some other volatile
   subexpression.  */

static int do_not_record;

390 391 392 393 394 395
#ifdef LOAD_EXTEND_OP

/* Scratch rtl used when looking for load-extended copy of a MEM.  */
static rtx memory_extend_rtx;
#endif

Richard Kenner committed
396 397 398 399 400 401 402 403 404
/* canon_hash stores 1 in hash_arg_in_memory
   if it notices a reference to memory within the expression being hashed.  */

static int hash_arg_in_memory;

/* The hash table contains buckets which are chains of `struct table_elt's,
   each recording one expression's information.
   That expression is in the `exp' field.

405 406 407
   The canon_exp field contains a canonical (from the point of view of
   alias analysis) version of the `exp' field.

Richard Kenner committed
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
   Those elements with the same hash code are chained in both directions
   through the `next_same_hash' and `prev_same_hash' fields.

   Each set of expressions with equivalent values
   are on a two-way chain through the `next_same_value'
   and `prev_same_value' fields, and all point with
   the `first_same_value' field at the first element in
   that chain.  The chain is in order of increasing cost.
   Each element's cost value is in its `cost' field.

   The `in_memory' field is nonzero for elements that
   involve any reference to memory.  These elements are removed
   whenever a write is done to an unidentified location in memory.
   To be safe, we assume that a memory address is unidentified unless
   the address is either a symbol constant or a constant plus
   the frame pointer or argument pointer.

   The `related_value' field is used to connect related expressions
   (that differ by adding an integer).
   The related expressions are chained in a circular fashion.
   `related_value' is zero for expressions for which this
   chain is not useful.

   The `cost' field stores the cost of this element's expression.
432 433
   The `regcost' field stores the value returned by approx_reg_cost for
   this element's expression.
Richard Kenner committed
434 435 436 437 438 439 440 441 442 443 444 445 446 447

   The `is_const' flag is set if the element is a constant (including
   a fixed address).

   The `flag' field is used as a temporary during some search routines.

   The `mode' field is usually the same as GET_MODE (`exp'), but
   if `exp' is a CONST_INT and has no machine mode then the `mode'
   field is the mode it was being used as.  Each constant is
   recorded separately for each mode it is used with.  */

struct table_elt
{
  rtx exp;
448
  rtx canon_exp;
Richard Kenner committed
449 450 451 452 453 454 455
  struct table_elt *next_same_hash;
  struct table_elt *prev_same_hash;
  struct table_elt *next_same_value;
  struct table_elt *prev_same_value;
  struct table_elt *first_same_value;
  struct table_elt *related_value;
  int cost;
456
  int regcost;
Richard Kenner committed
457 458 459 460 461 462 463 464 465
  enum machine_mode mode;
  char in_memory;
  char is_const;
  char flag;
};

/* We don't want a lot of buckets, because we rarely have very many
   things stored in the hash table, and a lot of buckets slows
   down a lot of loops that happen frequently.  */
466 467 468
#define HASH_SHIFT	5
#define HASH_SIZE	(1 << HASH_SHIFT)
#define HASH_MASK	(HASH_SIZE - 1)
Richard Kenner committed
469 470 471 472 473

/* Compute hash code of X in mode M.  Special-case case where X is a pseudo
   register (hard registers may require `do_not_record' to be set).  */

#define HASH(X, M)	\
474 475 476
 ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
  ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
  : canon_hash (X, M)) & HASH_MASK)
Richard Kenner committed
477

478 479
/* Determine whether register number N is considered a fixed register for the
   purpose of approximating register costs.
Richard Kenner committed
480 481
   It is desirable to replace other regs with fixed regs, to reduce need for
   non-fixed hard regs.
Bernd Schmidt committed
482
   A reg wins if it is either the frame pointer or designated as fixed.  */
Richard Kenner committed
483
#define FIXED_REGNO_P(N)  \
484
  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
485
   || fixed_regs[N] || global_regs[N])
Richard Kenner committed
486 487

/* Compute cost of X, as stored in the `cost' field of a table_elt.  Fixed
488 489 490 491
   hard registers and pointers into the frame are the cheapest with a cost
   of 0.  Next come pseudos with a cost of one and other hard registers with
   a cost of 2.  Aside from these special cases, call `rtx_cost'.  */

492
#define CHEAP_REGNO(N) \
493 494 495 496
  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM 	\
   || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM	     	\
   || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) 	\
   || ((N) < FIRST_PSEUDO_REGISTER					\
497
       && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
Richard Kenner committed
498

499 500
#define COST(X) (GET_CODE (X) == REG ? 0 : notreg_cost (X, SET))
#define COST_IN(X,OUTER) (GET_CODE (X) == REG ? 0 : notreg_cost (X, OUTER))
Richard Kenner committed
501

502 503 504 505 506 507 508 509 510
/* Get the info associated with register N.  */

#define GET_CSE_REG_INFO(N) 			\
  (((N) == cached_regno && cached_cse_reg_info)	\
   ? cached_cse_reg_info : get_cse_reg_info ((N)))

/* Get the number of times this register has been updated in this
   basic block.  */

511
#define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)
512 513 514 515 516 517 518 519 520

/* Get the point at which REG was recorded in the table.  */

#define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)

/* Get the quantity number for REG.  */

#define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)

Richard Kenner committed
521
/* Determine if the quantity number for register X represents a valid index
522
   into the qty_table.  */
Richard Kenner committed
523

524
#define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (int) (N))
Richard Kenner committed
525

526
static struct table_elt *table[HASH_SIZE];
Richard Kenner committed
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

/* Chain of `struct table_elt's made so far for this function
   but currently removed from the table.  */

static struct table_elt *free_element_chain;

/* Number of `struct table_elt' structures made so far for this function.  */

static int n_elements_made;

/* Maximum value `n_elements_made' has had so far in this compilation
   for functions previously processed.  */

static int max_elements_made;

542
/* Surviving equivalence class when two equivalence classes are merged
Richard Kenner committed
543 544 545 546 547 548 549 550 551 552 553 554
   by recording the effects of a jump in the last insn.  Zero if the
   last insn was not a conditional jump.  */

static struct table_elt *last_jump_equiv_class;

/* Set to the cost of a constant pool reference if one was found for a
   symbolic constant.  If this was found, it means we should try to
   convert constants into constant pool entries if they don't fit in
   the insn.  */

static int constant_pool_entries_cost;

555 556 557 558 559 560
/* Define maximum length of a branch path.  */

#define PATHLENGTH	10

/* This data describes a block that will be processed by cse_basic_block.  */

Richard Kenner committed
561 562
struct cse_basic_block_data
{
563 564 565 566 567 568 569 570 571 572 573
  /* Lowest CUID value of insns in block.  */
  int low_cuid;
  /* Highest CUID value of insns in block.  */
  int high_cuid;
  /* Total number of SETs in block.  */
  int nsets;
  /* Last insn in the block.  */
  rtx last;
  /* Size of current branch path, if any.  */
  int path_size;
  /* Current branch path, indicating which branches will be taken.  */
Richard Kenner committed
574 575 576 577 578 579
  struct branch_path
    {
      /* The branch insn.  */
      rtx branch;
      /* Whether it should be taken or not.  AROUND is the same as taken
	 except that it is used when the destination label is not preceded
580
       by a BARRIER.  */
Richard Kenner committed
581 582
      enum taken {TAKEN, NOT_TAKEN, AROUND} status;
    } path[PATHLENGTH];
583 584
};

Richard Kenner committed
585 586
/* Nonzero if X has the form (PLUS frame-pointer integer).  We check for
   virtual regs here because the simplify_*_operation routines are called
587
   by integrate.c, which is called before virtual register instantiation.
588 589 590 591 592

   ?!? FIXED_BASE_PLUS_P and NONZERO_BASE_PLUS_P need to move into
   a header file so that their definitions can be shared with the
   simplification routines in simplify-rtx.c.  Until then, do not
   change these macros without also changing the copy in simplify-rtx.c.  */
Richard Kenner committed
593 594

#define FIXED_BASE_PLUS_P(X)					\
595
  ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx	\
596
   || ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
Richard Kenner committed
597 598 599 600
   || (X) == virtual_stack_vars_rtx				\
   || (X) == virtual_incoming_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == frame_pointer_rtx			\
601
	   || XEXP (X, 0) == hard_frame_pointer_rtx		\
602 603
	   || ((X) == arg_pointer_rtx				\
	       && fixed_regs[ARG_POINTER_REGNUM])		\
Richard Kenner committed
604
	   || XEXP (X, 0) == virtual_stack_vars_rtx		\
605 606
	   || XEXP (X, 0) == virtual_incoming_args_rtx))	\
   || GET_CODE (X) == ADDRESSOF)
Richard Kenner committed
607

Jim Wilson committed
608 609 610 611 612
/* Similar, but also allows reference to the stack pointer.

   This used to include FIXED_BASE_PLUS_P, however, we can't assume that
   arg_pointer_rtx by itself is nonzero, because on at least one machine,
   the i960, the arg pointer is zero when it is unused.  */
Richard Kenner committed
613 614

#define NONZERO_BASE_PLUS_P(X)					\
615
  ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx	\
Jim Wilson committed
616 617 618 619
   || (X) == virtual_stack_vars_rtx				\
   || (X) == virtual_incoming_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == frame_pointer_rtx			\
620
	   || XEXP (X, 0) == hard_frame_pointer_rtx		\
621 622
	   || ((X) == arg_pointer_rtx				\
	       && fixed_regs[ARG_POINTER_REGNUM])		\
Jim Wilson committed
623 624
	   || XEXP (X, 0) == virtual_stack_vars_rtx		\
	   || XEXP (X, 0) == virtual_incoming_args_rtx))	\
Richard Kenner committed
625 626 627 628 629 630
   || (X) == stack_pointer_rtx					\
   || (X) == virtual_stack_dynamic_rtx				\
   || (X) == virtual_outgoing_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == stack_pointer_rtx			\
	   || XEXP (X, 0) == virtual_stack_dynamic_rtx		\
631 632
	   || XEXP (X, 0) == virtual_outgoing_args_rtx))	\
   || GET_CODE (X) == ADDRESSOF)
Richard Kenner committed
633

634
static int notreg_cost		PARAMS ((rtx, enum rtx_code));
635 636 637
static int approx_reg_cost_1	PARAMS ((rtx *, void *));
static int approx_reg_cost	PARAMS ((rtx));
static int preferrable		PARAMS ((int, int, int, int));
638
static void new_basic_block	PARAMS ((void));
639 640 641
static void make_new_qty	PARAMS ((unsigned int, enum machine_mode));
static void make_regs_eqv	PARAMS ((unsigned int, unsigned int));
static void delete_reg_equiv	PARAMS ((unsigned int));
642 643 644 645 646 647 648 649 650 651 652
static int mention_regs		PARAMS ((rtx));
static int insert_regs		PARAMS ((rtx, struct table_elt *, int));
static void remove_from_table	PARAMS ((struct table_elt *, unsigned));
static struct table_elt *lookup	PARAMS ((rtx, unsigned, enum machine_mode)),
       *lookup_for_remove PARAMS ((rtx, unsigned, enum machine_mode));
static rtx lookup_as_function	PARAMS ((rtx, enum rtx_code));
static struct table_elt *insert PARAMS ((rtx, struct table_elt *, unsigned,
					 enum machine_mode));
static void merge_equiv_classes PARAMS ((struct table_elt *,
					 struct table_elt *));
static void invalidate		PARAMS ((rtx, enum machine_mode));
653
static int cse_rtx_varies_p	PARAMS ((rtx, int));
654 655 656
static void remove_invalid_refs	PARAMS ((unsigned int));
static void remove_invalid_subreg_refs	PARAMS ((unsigned int, unsigned int,
						 enum machine_mode));
657 658 659 660 661
static void rehash_using_reg	PARAMS ((rtx));
static void invalidate_memory	PARAMS ((void));
static void invalidate_for_call	PARAMS ((void));
static rtx use_related_value	PARAMS ((rtx, struct table_elt *));
static unsigned canon_hash	PARAMS ((rtx, enum machine_mode));
662
static unsigned canon_hash_string PARAMS ((const char *));
663 664 665
static unsigned safe_hash	PARAMS ((rtx, enum machine_mode));
static int exp_equiv_p		PARAMS ((rtx, rtx, int, int));
static rtx canon_reg		PARAMS ((rtx, rtx));
666
static void find_best_addr	PARAMS ((rtx, rtx *, enum machine_mode));
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
static enum rtx_code find_comparison_args PARAMS ((enum rtx_code, rtx *, rtx *,
						   enum machine_mode *,
						   enum machine_mode *));
static rtx fold_rtx		PARAMS ((rtx, rtx));
static rtx equiv_constant	PARAMS ((rtx));
static void record_jump_equiv	PARAMS ((rtx, int));
static void record_jump_cond	PARAMS ((enum rtx_code, enum machine_mode,
					 rtx, rtx, int));
static void cse_insn		PARAMS ((rtx, rtx));
static int addr_affects_sp_p	PARAMS ((rtx));
static void invalidate_from_clobbers PARAMS ((rtx));
static rtx cse_process_notes	PARAMS ((rtx, rtx));
static void cse_around_loop	PARAMS ((rtx));
static void invalidate_skipped_set PARAMS ((rtx, rtx, void *));
static void invalidate_skipped_block PARAMS ((rtx));
static void cse_check_loop_start PARAMS ((rtx, rtx, void *));
static void cse_set_around_loop	PARAMS ((rtx, rtx, rtx));
static rtx cse_basic_block	PARAMS ((rtx, rtx, struct branch_path *, int));
static void count_reg_usage	PARAMS ((rtx, int *, rtx, int));
686
static int check_for_label_ref	PARAMS ((rtx *, void *));
687
extern void dump_class          PARAMS ((struct table_elt*));
688
static struct cse_reg_info * get_cse_reg_info PARAMS ((unsigned int));
689
static int check_dependence	PARAMS ((rtx *, void *));
690 691

static void flush_hash_table	PARAMS ((void));
692
static bool insn_live_p		PARAMS ((rtx, int *));
693
static bool set_live_p		PARAMS ((rtx, rtx, int *));
694
static bool dead_libcall_p	PARAMS ((rtx, int *));
Richard Kenner committed
695

696 697
/* Dump the expressions in the equivalence class indicated by CLASSP.
   This function is used only for debugging.  */
698
void
699 700 701 702 703 704 705 706
dump_class (classp)
     struct table_elt *classp;
{
  struct table_elt *elt;

  fprintf (stderr, "Equivalence chain for ");
  print_rtl (stderr, classp->exp);
  fprintf (stderr, ": \n");
707

708 709 710 711 712 713 714
  for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
    {
      print_rtl (stderr, elt->exp);
      fprintf (stderr, "\n");
    }
}

715
/* Subroutine of approx_reg_cost; called through for_each_rtx.  */
716

717 718 719 720 721 722
static int
approx_reg_cost_1 (xp, data)
     rtx *xp;
     void *data;
{
  rtx x = *xp;
723
  int *cost_p = data;
724 725

  if (x && GET_CODE (x) == REG)
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
    {
      unsigned int regno = REGNO (x);

      if (! CHEAP_REGNO (regno))
	{
	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      if (SMALL_REGISTER_CLASSES)
		return 1;
	      *cost_p += 2;
	    }
	  else
	    *cost_p += 1;
	}
    }

742 743 744 745 746
  return 0;
}

/* Return an estimate of the cost of the registers used in an rtx.
   This is mostly the number of different REG expressions in the rtx;
747
   however for some exceptions like fixed registers we use a cost of
748
   0.  If any other hard register reference occurs, return MAX_COST.  */
749 750 751 752 753 754

static int
approx_reg_cost (x)
     rtx x;
{
  int cost = 0;
755

756 757
  if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
    return MAX_COST;
758

759
  return cost;
760 761 762 763 764 765 766 767 768 769
}

/* Return a negative value if an rtx A, whose costs are given by COST_A
   and REGCOST_A, is more desirable than an rtx B.
   Return a positive value if A is less desirable, or 0 if the two are
   equally good.  */
static int
preferrable (cost_a, regcost_a, cost_b, regcost_b)
     int cost_a, regcost_a, cost_b, regcost_b;
{
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
  /* First, get rid of a cases involving expressions that are entirely
     unwanted.  */
  if (cost_a != cost_b)
    {
      if (cost_a == MAX_COST)
	return 1;
      if (cost_b == MAX_COST)
	return -1;
    }

  /* Avoid extending lifetimes of hardregs.  */
  if (regcost_a != regcost_b)
    {
      if (regcost_a == MAX_COST)
	return 1;
      if (regcost_b == MAX_COST)
	return -1;
    }

  /* Normal operation costs take precedence.  */
790 791
  if (cost_a != cost_b)
    return cost_a - cost_b;
792
  /* Only if these are identical consider effects on register pressure.  */
793 794 795 796 797
  if (regcost_a != regcost_b)
    return regcost_a - regcost_b;
  return 0;
}

798 799 800 801
/* Internal function, to compute cost when X is not a register; called
   from COST macro to keep it simple.  */

static int
802
notreg_cost (x, outer)
803
     rtx x;
804
     enum rtx_code outer;
805 806 807 808 809 810 811 812 813 814
{
  return ((GET_CODE (x) == SUBREG
	   && GET_CODE (SUBREG_REG (x)) == REG
	   && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
	   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
	   && (GET_MODE_SIZE (GET_MODE (x))
	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
	   && subreg_lowpart_p (x)
	   && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
				     GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
815
	  ? 0
816
	  : rtx_cost (x, outer) * 2);
817 818
}

819 820 821 822 823
/* Return an estimate of the cost of computing rtx X.
   One use is in cse, to decide which expression to keep in the hash table.
   Another is in rtl generation, to pick the cheapest way to multiply.
   Other uses like the latter are expected in the future.  */

Richard Kenner committed
824
int
825
rtx_cost (x, outer_code)
Richard Kenner committed
826
     rtx x;
Kaveh R. Ghazi committed
827
     enum rtx_code outer_code ATTRIBUTE_UNUSED;
Richard Kenner committed
828
{
829 830 831 832
  int i, j;
  enum rtx_code code;
  const char *fmt;
  int total;
Richard Kenner committed
833 834 835 836 837 838 839 840 841 842 843

  if (x == 0)
    return 0;

  /* Compute the default costs of certain things.
     Note that RTX_COSTS can override the defaults.  */

  code = GET_CODE (x);
  switch (code)
    {
    case MULT:
844
      total = COSTS_N_INSNS (5);
Richard Kenner committed
845 846 847 848 849 850 851 852 853 854 855 856
      break;
    case DIV:
    case UDIV:
    case MOD:
    case UMOD:
      total = COSTS_N_INSNS (7);
      break;
    case USE:
      /* Used in loop.c and combine.c as a marker.  */
      total = 0;
      break;
    default:
857
      total = COSTS_N_INSNS (1);
Richard Kenner committed
858 859 860 861 862
    }

  switch (code)
    {
    case REG:
863
      return 0;
864

Richard Kenner committed
865
    case SUBREG:
866 867 868 869 870
      /* If we can't tie these modes, make this expensive.  The larger
	 the mode, the more expensive it is.  */
      if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
	return COSTS_N_INSNS (2
			      + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
871 872
      break;

Richard Kenner committed
873
#ifdef RTX_COSTS
874
      RTX_COSTS (x, code, outer_code);
875
#endif
876
#ifdef CONST_COSTS
877
      CONST_COSTS (x, code, outer_code);
878
#endif
879 880 881

    default:
#ifdef DEFAULT_RTX_COSTS
882
      DEFAULT_RTX_COSTS (x, code, outer_code);
883 884
#endif
      break;
Richard Kenner committed
885 886 887 888 889 890 891 892
    }

  /* Sum the costs of the sub-rtx's, plus cost of this operation,
     which is already in total.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
893
      total += rtx_cost (XEXP (x, i), code);
Richard Kenner committed
894 895
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
896
	total += rtx_cost (XVECEXP (x, i, j), code);
Richard Kenner committed
897 898 899 900

  return total;
}

901
/* Return cost of address expression X.
902
   Expect that X is properly formed address reference.  */
903

904 905 906 907 908 909 910 911 912 913 914 915 916 917
int
address_cost (x, mode)
     rtx x;
     enum machine_mode mode;
{
  /* The ADDRESS_COST macro does not deal with ADDRESSOF nodes.  But,
     during CSE, such nodes are present.  Using an ADDRESSOF node which
     refers to the address of a REG is a good thing because we can then
     turn (MEM (ADDRESSSOF (REG))) into just plain REG.  */

  if (GET_CODE (x) == ADDRESSOF && REG_P (XEXP ((x), 0)))
    return -1;

  /* We may be asked for cost of various unusual addresses, such as operands
918
     of push instruction.  It is not worthwhile to complicate writing
919 920 921 922 923 924 925 926 927 928
     of ADDRESS_COST macro by such cases.  */

  if (!memory_address_p (mode, x))
    return 1000;
#ifdef ADDRESS_COST
  return ADDRESS_COST (x);
#else
  return rtx_cost (x, MEM);
#endif
}
929

930

931 932
static struct cse_reg_info *
get_cse_reg_info (regno)
933
     unsigned int regno;
934
{
935 936 937
  struct cse_reg_info **hash_head = &reg_hash[REGHASH_FN (regno)];
  struct cse_reg_info *p;

938
  for (p = *hash_head; p != NULL; p = p->hash_next)
939 940 941 942
    if (p->regno == regno)
      break;

  if (p == NULL)
943 944
    {
      /* Get a new cse_reg_info structure.  */
945
      if (cse_reg_info_free_list)
946
	{
947 948
	  p = cse_reg_info_free_list;
	  cse_reg_info_free_list = p->next;
949 950
	}
      else
951 952 953 954 955
	p = (struct cse_reg_info *) xmalloc (sizeof (struct cse_reg_info));

      /* Insert into hash table.  */
      p->hash_next = *hash_head;
      *hash_head = p;
956 957

      /* Initialize it.  */
958 959 960 961 962 963
      p->reg_tick = 1;
      p->reg_in_table = -1;
      p->reg_qty = regno;
      p->regno = regno;
      p->next = cse_reg_info_used_list;
      cse_reg_info_used_list = p;
964
      if (!cse_reg_info_used_list_end)
965
	cse_reg_info_used_list_end = p;
966 967 968 969 970
    }

  /* Cache this lookup; we tend to be looking up information about the
     same register several times in a row.  */
  cached_regno = regno;
971
  cached_cse_reg_info = p;
972

973
  return p;
974 975
}

Richard Kenner committed
976 977 978 979 980 981
/* Clear the hash table and initialize each register with its own quantity,
   for a new basic block.  */

static void
new_basic_block ()
{
982
  int i;
Richard Kenner committed
983 984 985

  next_qty = max_reg;

986 987
  /* Clear out hash table state for this pass.  */

988
  memset ((char *) reg_hash, 0, sizeof reg_hash);
989 990

  if (cse_reg_info_used_list)
991
    {
992 993 994
      cse_reg_info_used_list_end->next = cse_reg_info_free_list;
      cse_reg_info_free_list = cse_reg_info_used_list;
      cse_reg_info_used_list = cse_reg_info_used_list_end = 0;
995
    }
996
  cached_cse_reg_info = 0;
Richard Kenner committed
997 998 999 1000 1001 1002

  CLEAR_HARD_REG_SET (hard_regs_in_table);

  /* The per-quantity values used to be initialized here, but it is
     much faster to initialize each as it is made in `make_new_qty'.  */

1003
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1004
    {
1005 1006 1007 1008
      struct table_elt *first;

      first = table[i];
      if (first != NULL)
Richard Kenner committed
1009
	{
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	  struct table_elt *last = first;

	  table[i] = NULL;

	  while (last->next_same_hash != NULL)
	    last = last->next_same_hash;

	  /* Now relink this hash entire chain into
	     the free element list.  */

	  last->next_same_hash = free_element_chain;
	  free_element_chain = first;
Richard Kenner committed
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	}
    }

  prev_insn = 0;

#ifdef HAVE_cc0
  prev_insn_cc0 = 0;
#endif
}

1032 1033
/* Say that register REG contains a quantity in mode MODE not in any
   register before and initialize that quantity.  */
Richard Kenner committed
1034 1035

static void
1036
make_new_qty (reg, mode)
1037 1038
     unsigned int reg;
     enum machine_mode mode;
Richard Kenner committed
1039
{
1040 1041 1042
  int q;
  struct qty_table_elem *ent;
  struct reg_eqv_elem *eqv;
Richard Kenner committed
1043 1044 1045 1046

  if (next_qty >= max_qty)
    abort ();

1047
  q = REG_QTY (reg) = next_qty++;
1048 1049 1050 1051 1052 1053 1054 1055 1056
  ent = &qty_table[q];
  ent->first_reg = reg;
  ent->last_reg = reg;
  ent->mode = mode;
  ent->const_rtx = ent->const_insn = NULL_RTX;
  ent->comparison_code = UNKNOWN;

  eqv = &reg_eqv_table[reg];
  eqv->next = eqv->prev = -1;
Richard Kenner committed
1057 1058 1059 1060 1061 1062 1063
}

/* Make reg NEW equivalent to reg OLD.
   OLD is not changing; NEW is.  */

static void
make_regs_eqv (new, old)
1064
     unsigned int new, old;
Richard Kenner committed
1065
{
1066 1067 1068
  unsigned int lastr, firstr;
  int q = REG_QTY (old);
  struct qty_table_elem *ent;
1069 1070

  ent = &qty_table[q];
Richard Kenner committed
1071 1072 1073 1074 1075

  /* Nothing should become eqv until it has a "non-invalid" qty number.  */
  if (! REGNO_QTY_VALID_P (old))
    abort ();

1076
  REG_QTY (new) = q;
1077 1078
  firstr = ent->first_reg;
  lastr = ent->last_reg;
Richard Kenner committed
1079 1080 1081 1082 1083 1084 1085 1086

  /* Prefer fixed hard registers to anything.  Prefer pseudo regs to other
     hard regs.  Among pseudos, if NEW will live longer than any other reg
     of the same qty, and that is beyond the current basic block,
     make it the new canonical replacement for this qty.  */
  if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
      /* Certain fixed registers might be of the class NO_REGS.  This means
	 that not only can they not be allocated by the compiler, but
1087
	 they cannot be used in substitutions or canonicalizations
Richard Kenner committed
1088 1089 1090 1091 1092
	 either.  */
      && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
      && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
	  || (new >= FIRST_PSEUDO_REGISTER
	      && (firstr < FIRST_PSEUDO_REGISTER
1093 1094
		  || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
		       || (uid_cuid[REGNO_FIRST_UID (new)]
Richard Kenner committed
1095
			   < cse_basic_block_start))
1096 1097
		      && (uid_cuid[REGNO_LAST_UID (new)]
			  > uid_cuid[REGNO_LAST_UID (firstr)]))))))
Richard Kenner committed
1098
    {
1099 1100 1101 1102
      reg_eqv_table[firstr].prev = new;
      reg_eqv_table[new].next = firstr;
      reg_eqv_table[new].prev = -1;
      ent->first_reg = new;
Richard Kenner committed
1103 1104 1105 1106 1107 1108 1109
    }
  else
    {
      /* If NEW is a hard reg (known to be non-fixed), insert at end.
	 Otherwise, insert before any non-fixed hard regs that are at the
	 end.  Registers of class NO_REGS cannot be used as an
	 equivalent for anything.  */
1110
      while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
Richard Kenner committed
1111 1112
	     && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
	     && new >= FIRST_PSEUDO_REGISTER)
1113 1114 1115 1116
	lastr = reg_eqv_table[lastr].prev;
      reg_eqv_table[new].next = reg_eqv_table[lastr].next;
      if (reg_eqv_table[lastr].next >= 0)
	reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
Richard Kenner committed
1117
      else
1118 1119 1120
	qty_table[q].last_reg = new;
      reg_eqv_table[lastr].next = new;
      reg_eqv_table[new].prev = lastr;
Richard Kenner committed
1121 1122 1123 1124 1125 1126 1127
    }
}

/* Remove REG from its equivalence class.  */

static void
delete_reg_equiv (reg)
1128
     unsigned int reg;
Richard Kenner committed
1129
{
1130 1131 1132
  struct qty_table_elem *ent;
  int q = REG_QTY (reg);
  int p, n;
Richard Kenner committed
1133

1134
  /* If invalid, do nothing.  */
1135
  if (q == (int) reg)
Richard Kenner committed
1136 1137
    return;

1138 1139 1140 1141
  ent = &qty_table[q];

  p = reg_eqv_table[reg].prev;
  n = reg_eqv_table[reg].next;
1142

Richard Kenner committed
1143
  if (n != -1)
1144
    reg_eqv_table[n].prev = p;
Richard Kenner committed
1145
  else
1146
    ent->last_reg = p;
Richard Kenner committed
1147
  if (p != -1)
1148
    reg_eqv_table[p].next = n;
Richard Kenner committed
1149
  else
1150
    ent->first_reg = n;
Richard Kenner committed
1151

1152
  REG_QTY (reg) = reg;
Richard Kenner committed
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
}

/* Remove any invalid expressions from the hash table
   that refer to any of the registers contained in expression X.

   Make sure that newly inserted references to those registers
   as subexpressions will be considered valid.

   mention_regs is not called when a register itself
   is being stored in the table.

   Return 1 if we have done something that may have changed the hash code
   of X.  */

static int
mention_regs (x)
     rtx x;
{
1171 1172 1173 1174
  enum rtx_code code;
  int i, j;
  const char *fmt;
  int changed = 0;
Richard Kenner committed
1175 1176

  if (x == 0)
1177
    return 0;
Richard Kenner committed
1178 1179 1180 1181

  code = GET_CODE (x);
  if (code == REG)
    {
1182 1183
      unsigned int regno = REGNO (x);
      unsigned int endregno
Richard Kenner committed
1184 1185
	= regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
		   : HARD_REGNO_NREGS (regno, GET_MODE (x)));
1186
      unsigned int i;
Richard Kenner committed
1187 1188 1189

      for (i = regno; i < endregno; i++)
	{
1190
	  if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
Richard Kenner committed
1191 1192
	    remove_invalid_refs (i);

1193
	  REG_IN_TABLE (i) = REG_TICK (i);
Richard Kenner committed
1194 1195 1196 1197 1198
	}

      return 0;
    }

1199 1200 1201 1202 1203 1204
  /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
     pseudo if they don't use overlapping words.  We handle only pseudos
     here for simplicity.  */
  if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
      && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
    {
1205
      unsigned int i = REGNO (SUBREG_REG (x));
1206

1207
      if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1208 1209 1210 1211
	{
	  /* If reg_tick has been incremented more than once since
	     reg_in_table was last set, that means that the entire
	     register has been set before, so discard anything memorized
1212
	     for the entire register, including all SUBREG expressions.  */
1213
	  if (REG_IN_TABLE (i) != REG_TICK (i) - 1)
1214 1215
	    remove_invalid_refs (i);
	  else
1216
	    remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1217 1218
	}

1219
      REG_IN_TABLE (i) = REG_TICK (i);
1220 1221 1222
      return 0;
    }

Richard Kenner committed
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
  /* If X is a comparison or a COMPARE and either operand is a register
     that does not have a quantity, give it one.  This is so that a later
     call to record_jump_equiv won't cause X to be assigned a different
     hash code and not found in the table after that call.

     It is not necessary to do this here, since rehash_using_reg can
     fix up the table later, but doing this here eliminates the need to
     call that expensive function in the most common case where the only
     use of the register is in the comparison.  */

  if (code == COMPARE || GET_RTX_CLASS (code) == '<')
    {
      if (GET_CODE (XEXP (x, 0)) == REG
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1237
	if (insert_regs (XEXP (x, 0), NULL, 0))
Richard Kenner committed
1238 1239 1240 1241 1242 1243 1244
	  {
	    rehash_using_reg (XEXP (x, 0));
	    changed = 1;
	  }

      if (GET_CODE (XEXP (x, 1)) == REG
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1245
	if (insert_regs (XEXP (x, 1), NULL, 0))
Richard Kenner committed
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	  {
	    rehash_using_reg (XEXP (x, 1));
	    changed = 1;
	  }
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      changed |= mention_regs (XEXP (x, i));
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	changed |= mention_regs (XVECEXP (x, i, j));

  return changed;
}

/* Update the register quantities for inserting X into the hash table
   with a value equivalent to CLASSP.
   (If the class does not contain a REG, it is irrelevant.)
   If MODIFIED is nonzero, X is a destination; it is being modified.
   Note that delete_reg_equiv should be called on a register
   before insert_regs is done on that register with MODIFIED != 0.

   Nonzero value means that elements of reg_qty have changed
   so X's hash code may be different.  */

static int
insert_regs (x, classp, modified)
     rtx x;
     struct table_elt *classp;
     int modified;
{
  if (GET_CODE (x) == REG)
    {
1281 1282
      unsigned int regno = REGNO (x);
      int qty_valid;
Richard Kenner committed
1283

1284 1285 1286
      /* If REGNO is in the equivalence table already but is of the
	 wrong mode for that equivalence, don't do anything here.  */

1287 1288 1289 1290
      qty_valid = REGNO_QTY_VALID_P (regno);
      if (qty_valid)
	{
	  struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1291

1292 1293 1294 1295 1296
	  if (ent->mode != GET_MODE (x))
	    return 0;
	}

      if (modified || ! qty_valid)
Richard Kenner committed
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	{
	  if (classp)
	    for (classp = classp->first_same_value;
		 classp != 0;
		 classp = classp->next_same_value)
	      if (GET_CODE (classp->exp) == REG
		  && GET_MODE (classp->exp) == GET_MODE (x))
		{
		  make_regs_eqv (regno, REGNO (classp->exp));
		  return 1;
		}

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	  /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
	     than REG_IN_TABLE to find out if there was only a single preceding
	     invalidation - for the SUBREG - or another one, which would be
	     for the full register.  However, if we find here that REG_TICK
	     indicates that the register is invalid, it means that it has
	     been invalidated in a separate operation.  The SUBREG might be used
	     now (then this is a recursive call), or we might use the full REG
	     now and a SUBREG of it later.  So bump up REG_TICK so that
	     mention_regs will do the right thing.  */
	  if (! modified
	      && REG_IN_TABLE (regno) >= 0
	      && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
	    REG_TICK (regno)++;
1322
	  make_new_qty (regno, GET_MODE (x));
Richard Kenner committed
1323 1324
	  return 1;
	}
1325 1326

      return 0;
Richard Kenner committed
1327
    }
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

  /* If X is a SUBREG, we will likely be inserting the inner register in the
     table.  If that register doesn't have an assigned quantity number at
     this point but does later, the insertion that we will be doing now will
     not be accessible because its hash code will have changed.  So assign
     a quantity number now.  */

  else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
	   && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
    {
1338
      insert_regs (SUBREG_REG (x), NULL, 0);
1339
      mention_regs (x);
1340 1341
      return 1;
    }
Richard Kenner committed
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
  else
    return mention_regs (x);
}

/* Look in or update the hash table.  */

/* Remove table element ELT from use in the table.
   HASH is its hash code, made using the HASH macro.
   It's an argument because often that is known in advance
   and we save much time not recomputing it.  */

static void
remove_from_table (elt, hash)
1355
     struct table_elt *elt;
Richard Kenner committed
1356
     unsigned hash;
Richard Kenner committed
1357 1358 1359 1360 1361 1362 1363 1364
{
  if (elt == 0)
    return;

  /* Mark this element as removed.  See cse_insn.  */
  elt->first_same_value = 0;

  /* Remove the table element from its equivalence class.  */
1365

Richard Kenner committed
1366
  {
1367 1368
    struct table_elt *prev = elt->prev_same_value;
    struct table_elt *next = elt->next_same_value;
Richard Kenner committed
1369

1370 1371
    if (next)
      next->prev_same_value = prev;
Richard Kenner committed
1372 1373 1374 1375 1376

    if (prev)
      prev->next_same_value = next;
    else
      {
1377
	struct table_elt *newfirst = next;
Richard Kenner committed
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	while (next)
	  {
	    next->first_same_value = newfirst;
	    next = next->next_same_value;
	  }
      }
  }

  /* Remove the table element from its hash bucket.  */

  {
1389 1390
    struct table_elt *prev = elt->prev_same_hash;
    struct table_elt *next = elt->next_same_hash;
Richard Kenner committed
1391

1392 1393
    if (next)
      next->prev_same_hash = prev;
Richard Kenner committed
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

    if (prev)
      prev->next_same_hash = next;
    else if (table[hash] == elt)
      table[hash] = next;
    else
      {
	/* This entry is not in the proper hash bucket.  This can happen
	   when two classes were merged by `merge_equiv_classes'.  Search
	   for the hash bucket that it heads.  This happens only very
	   rarely, so the cost is acceptable.  */
1405
	for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
1406 1407 1408 1409 1410 1411 1412 1413 1414
	  if (table[hash] == elt)
	    table[hash] = next;
      }
  }

  /* Remove the table element from its related-value circular chain.  */

  if (elt->related_value != 0 && elt->related_value != elt)
    {
1415
      struct table_elt *p = elt->related_value;
1416

Richard Kenner committed
1417 1418 1419 1420 1421 1422 1423
      while (p->related_value != elt)
	p = p->related_value;
      p->related_value = elt->related_value;
      if (p->related_value == p)
	p->related_value = 0;
    }

1424 1425 1426
  /* Now add it to the free element chain.  */
  elt->next_same_hash = free_element_chain;
  free_element_chain = elt;
Richard Kenner committed
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
}

/* Look up X in the hash table and return its table element,
   or 0 if X is not in the table.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   Here we are satisfied to find an expression whose tree structure
   looks like X.  */

static struct table_elt *
lookup (x, hash, mode)
     rtx x;
Richard Kenner committed
1441
     unsigned hash;
Richard Kenner committed
1442 1443
     enum machine_mode mode;
{
1444
  struct table_elt *p;
Richard Kenner committed
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

  for (p = table[hash]; p; p = p->next_same_hash)
    if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
			    || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
      return p;

  return 0;
}

/* Like `lookup' but don't care whether the table element uses invalid regs.
   Also ignore discrepancies in the machine mode of a register.  */

static struct table_elt *
lookup_for_remove (x, hash, mode)
     rtx x;
Richard Kenner committed
1460
     unsigned hash;
Richard Kenner committed
1461 1462
     enum machine_mode mode;
{
1463
  struct table_elt *p;
Richard Kenner committed
1464 1465 1466

  if (GET_CODE (x) == REG)
    {
1467 1468
      unsigned int regno = REGNO (x);

Richard Kenner committed
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
      /* Don't check the machine mode when comparing registers;
	 invalidating (REG:SI 0) also invalidates (REG:DF 0).  */
      for (p = table[hash]; p; p = p->next_same_hash)
	if (GET_CODE (p->exp) == REG
	    && REGNO (p->exp) == regno)
	  return p;
    }
  else
    {
      for (p = table[hash]; p; p = p->next_same_hash)
	if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
	  return p;
    }

  return 0;
}

/* Look for an expression equivalent to X and with code CODE.
   If one is found, return that expression.  */

static rtx
lookup_as_function (x, code)
     rtx x;
     enum rtx_code code;
{
1494
  struct table_elt *p
1495 1496
    = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, GET_MODE (x));

1497 1498 1499 1500 1501 1502 1503 1504
  /* If we are looking for a CONST_INT, the mode doesn't really matter, as
     long as we are narrowing.  So if we looked in vain for a mode narrower
     than word_mode before, look for word_mode now.  */
  if (p == 0 && code == CONST_INT
      && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
    {
      x = copy_rtx (x);
      PUT_MODE (x, word_mode);
1505
      p = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, word_mode);
1506 1507
    }

Richard Kenner committed
1508 1509 1510 1511
  if (p == 0)
    return 0;

  for (p = p->first_same_value; p; p = p->next_same_value)
1512 1513 1514 1515
    if (GET_CODE (p->exp) == code
	/* Make sure this is a valid entry in the table.  */
	&& exp_equiv_p (p->exp, p->exp, 1, 0))
      return p->exp;
1516

Richard Kenner committed
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
  return 0;
}

/* Insert X in the hash table, assuming HASH is its hash code
   and CLASSP is an element of the class it should go in
   (or 0 if a new class should be made).
   It is inserted at the proper position to keep the class in
   the order cheapest first.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   For elements of equal cheapness, the most recent one
   goes in front, except that the first element in the list
   remains first unless a cheaper element is added.  The order of
   pseudo-registers does not matter, as canon_reg will be called to
1533
   find the cheapest when a register is retrieved from the table.
Richard Kenner committed
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543

   The in_memory field in the hash table element is set to 0.
   The caller must set it nonzero if appropriate.

   You should call insert_regs (X, CLASSP, MODIFY) before calling here,
   and if insert_regs returns a nonzero value
   you must then recompute its hash code before calling here.

   If necessary, update table showing constant values of quantities.  */

1544 1545
#define CHEAPER(X, Y) \
 (preferrable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
Richard Kenner committed
1546 1547 1548

static struct table_elt *
insert (x, classp, hash, mode)
1549 1550
     rtx x;
     struct table_elt *classp;
Richard Kenner committed
1551
     unsigned hash;
Richard Kenner committed
1552 1553
     enum machine_mode mode;
{
1554
  struct table_elt *elt;
Richard Kenner committed
1555 1556 1557 1558 1559 1560 1561 1562 1563

  /* If X is a register and we haven't made a quantity for it,
     something is wrong.  */
  if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
    abort ();

  /* If X is a hard register, show it is being put in the table.  */
  if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
    {
1564 1565 1566
      unsigned int regno = REGNO (x);
      unsigned int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
      unsigned int i;
Richard Kenner committed
1567 1568

      for (i = regno; i < endregno; i++)
1569
	SET_HARD_REG_BIT (hard_regs_in_table, i);
Richard Kenner committed
1570 1571 1572 1573
    }

  /* Put an element for X into the right hash bucket.  */

1574 1575
  elt = free_element_chain;
  if (elt)
1576
    free_element_chain = elt->next_same_hash;
1577 1578 1579
  else
    {
      n_elements_made++;
Mark Mitchell committed
1580
      elt = (struct table_elt *) xmalloc (sizeof (struct table_elt));
1581 1582
    }

Richard Kenner committed
1583
  elt->exp = x;
1584
  elt->canon_exp = NULL_RTX;
Richard Kenner committed
1585
  elt->cost = COST (x);
1586
  elt->regcost = approx_reg_cost (x);
Richard Kenner committed
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
  elt->next_same_value = 0;
  elt->prev_same_value = 0;
  elt->next_same_hash = table[hash];
  elt->prev_same_hash = 0;
  elt->related_value = 0;
  elt->in_memory = 0;
  elt->mode = mode;
  elt->is_const = (CONSTANT_P (x)
		   /* GNU C++ takes advantage of this for `this'
		      (and other const values).  */
1597 1598
		   || (GET_CODE (x) == REG
		       && RTX_UNCHANGING_P (x)
Richard Kenner committed
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		       && REGNO (x) >= FIRST_PSEUDO_REGISTER)
		   || FIXED_BASE_PLUS_P (x));

  if (table[hash])
    table[hash]->prev_same_hash = elt;
  table[hash] = elt;

  /* Put it into the proper value-class.  */
  if (classp)
    {
      classp = classp->first_same_value;
      if (CHEAPER (elt, classp))
	/* Insert at the head of the class */
	{
1613
	  struct table_elt *p;
Richard Kenner committed
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	  elt->next_same_value = classp;
	  classp->prev_same_value = elt;
	  elt->first_same_value = elt;

	  for (p = classp; p; p = p->next_same_value)
	    p->first_same_value = elt;
	}
      else
	{
	  /* Insert not at head of the class.  */
	  /* Put it after the last element cheaper than X.  */
1625
	  struct table_elt *p, *next;
1626

Richard Kenner committed
1627 1628
	  for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
	       p = next);
1629

Richard Kenner committed
1630 1631 1632 1633
	  /* Put it after P and before NEXT.  */
	  elt->next_same_value = next;
	  if (next)
	    next->prev_same_value = elt;
1634

Richard Kenner committed
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	  elt->prev_same_value = p;
	  p->next_same_value = elt;
	  elt->first_same_value = classp;
	}
    }
  else
    elt->first_same_value = elt;

  /* If this is a constant being set equivalent to a register or a register
     being set equivalent to a constant, note the constant equivalence.

     If this is a constant, it cannot be equivalent to a different constant,
     and a constant is the only thing that can be cheaper than a register.  So
     we know the register is the head of the class (before the constant was
     inserted).

     If this is a register that is not already known equivalent to a
     constant, we must check the entire class.

     If this is a register that is already known equivalent to an insn,
1655
     update the qtys `const_insn' to show that `this_insn' is the latest
Richard Kenner committed
1656 1657
     insn making that quantity equivalent to the constant.  */

1658 1659
  if (elt->is_const && classp && GET_CODE (classp->exp) == REG
      && GET_CODE (x) != REG)
Richard Kenner committed
1660
    {
1661 1662 1663 1664 1665
      int exp_q = REG_QTY (REGNO (classp->exp));
      struct qty_table_elem *exp_ent = &qty_table[exp_q];

      exp_ent->const_rtx = gen_lowpart_if_possible (exp_ent->mode, x);
      exp_ent->const_insn = this_insn;
Richard Kenner committed
1666 1667
    }

1668 1669 1670
  else if (GET_CODE (x) == REG
	   && classp
	   && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1671
	   && ! elt->is_const)
Richard Kenner committed
1672
    {
1673
      struct table_elt *p;
Richard Kenner committed
1674 1675 1676

      for (p = classp; p != 0; p = p->next_same_value)
	{
1677
	  if (p->is_const && GET_CODE (p->exp) != REG)
Richard Kenner committed
1678
	    {
1679 1680 1681
	      int x_q = REG_QTY (REGNO (x));
	      struct qty_table_elem *x_ent = &qty_table[x_q];

1682 1683
	      x_ent->const_rtx
		= gen_lowpart_if_possible (GET_MODE (x), p->exp);
1684
	      x_ent->const_insn = this_insn;
Richard Kenner committed
1685 1686 1687 1688 1689
	      break;
	    }
	}
    }

1690 1691 1692 1693
  else if (GET_CODE (x) == REG
	   && qty_table[REG_QTY (REGNO (x))].const_rtx
	   && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
    qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
Richard Kenner committed
1694 1695 1696 1697 1698 1699 1700

  /* If this is a constant with symbolic value,
     and it has a term with an explicit integer value,
     link it up with related expressions.  */
  if (GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
Richard Kenner committed
1701
      unsigned subhash;
Richard Kenner committed
1702 1703 1704 1705 1706
      struct table_elt *subelt, *subelt_prev;

      if (subexp != 0)
	{
	  /* Get the integer-free subexpression in the hash table.  */
1707
	  subhash = safe_hash (subexp, mode) & HASH_MASK;
Richard Kenner committed
1708 1709
	  subelt = lookup (subexp, subhash, mode);
	  if (subelt == 0)
1710
	    subelt = insert (subexp, NULL, subhash, mode);
Richard Kenner committed
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	  /* Initialize SUBELT's circular chain if it has none.  */
	  if (subelt->related_value == 0)
	    subelt->related_value = subelt;
	  /* Find the element in the circular chain that precedes SUBELT.  */
	  subelt_prev = subelt;
	  while (subelt_prev->related_value != subelt)
	    subelt_prev = subelt_prev->related_value;
	  /* Put new ELT into SUBELT's circular chain just before SUBELT.
	     This way the element that follows SUBELT is the oldest one.  */
	  elt->related_value = subelt_prev->related_value;
	  subelt_prev->related_value = elt;
	}
    }

  return elt;
}

/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
   CLASS2 into CLASS1.  This is done when we have reached an insn which makes
   the two classes equivalent.

   CLASS1 will be the surviving class; CLASS2 should not be used after this
   call.

   Any invalid entries in CLASS2 will not be copied.  */

static void
merge_equiv_classes (class1, class2)
     struct table_elt *class1, *class2;
{
  struct table_elt *elt, *next, *new;

  /* Ensure we start with the head of the classes.  */
  class1 = class1->first_same_value;
  class2 = class2->first_same_value;

  /* If they were already equal, forget it.  */
  if (class1 == class2)
    return;

  for (elt = class2; elt; elt = next)
    {
1753
      unsigned int hash;
Richard Kenner committed
1754 1755 1756 1757 1758 1759 1760
      rtx exp = elt->exp;
      enum machine_mode mode = elt->mode;

      next = elt->next_same_value;

      /* Remove old entry, make a new one in CLASS1's class.
	 Don't do this for invalid entries as we cannot find their
Mike Stump committed
1761
	 hash code (it also isn't necessary).  */
Richard Kenner committed
1762 1763 1764 1765
      if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
	{
	  hash_arg_in_memory = 0;
	  hash = HASH (exp, mode);
1766

Richard Kenner committed
1767 1768
	  if (GET_CODE (exp) == REG)
	    delete_reg_equiv (REGNO (exp));
1769

Richard Kenner committed
1770 1771 1772
	  remove_from_table (elt, hash);

	  if (insert_regs (exp, class1, 0))
1773 1774 1775 1776
	    {
	      rehash_using_reg (exp);
	      hash = HASH (exp, mode);
	    }
Richard Kenner committed
1777 1778 1779 1780 1781 1782
	  new = insert (exp, class1, hash, mode);
	  new->in_memory = hash_arg_in_memory;
	}
    }
}

1783 1784 1785 1786 1787 1788 1789 1790
/* Flush the entire hash table.  */

static void
flush_hash_table ()
{
  int i;
  struct table_elt *p;

1791
  for (i = 0; i < HASH_SIZE; i++)
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
    for (p = table[i]; p; p = table[i])
      {
	/* Note that invalidate can remove elements
	   after P in the current hash chain.  */
	if (GET_CODE (p->exp) == REG)
	  invalidate (p->exp, p->mode);
	else
	  remove_from_table (p, i);
      }
}
Richard Kenner committed
1802

1803 1804 1805 1806 1807 1808
/* Function called for each rtx to check whether true dependence exist.  */
struct check_dependence_data
{
  enum machine_mode mode;
  rtx exp;
};
1809

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
static int
check_dependence (x, data)
     rtx *x;
     void *data;
{
  struct check_dependence_data *d = (struct check_dependence_data *) data;
  if (*x && GET_CODE (*x) == MEM)
    return true_dependence (d->exp, d->mode, *x, cse_rtx_varies_p);
  else
    return 0;
}

Richard Kenner committed
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
/* Remove from the hash table, or mark as invalid, all expressions whose
   values could be altered by storing in X.  X is a register, a subreg, or
   a memory reference with nonvarying address (because, when a memory
   reference with a varying address is stored in, all memory references are
   removed by invalidate_memory so specific invalidation is superfluous).
   FULL_MODE, if not VOIDmode, indicates that this much should be
   invalidated instead of just the amount indicated by the mode of X.  This
   is only used for bitfield stores into memory.

   A nonvarying address may be just a register or just a symbol reference,
   or it may be either of those plus a numeric offset.  */
Richard Kenner committed
1833 1834

static void
1835
invalidate (x, full_mode)
Richard Kenner committed
1836
     rtx x;
1837
     enum machine_mode full_mode;
Richard Kenner committed
1838
{
1839 1840
  int i;
  struct table_elt *p;
Richard Kenner committed
1841

Richard Kenner committed
1842
  switch (GET_CODE (x))
Richard Kenner committed
1843
    {
Richard Kenner committed
1844 1845 1846 1847 1848 1849
    case REG:
      {
	/* If X is a register, dependencies on its contents are recorded
	   through the qty number mechanism.  Just change the qty number of
	   the register, mark it as invalid for expressions that refer to it,
	   and remove it itself.  */
1850 1851
	unsigned int regno = REGNO (x);
	unsigned int hash = HASH (x, GET_MODE (x));
Richard Kenner committed
1852

Richard Kenner committed
1853 1854 1855
	/* Remove REGNO from any quantity list it might be on and indicate
	   that its value might have changed.  If it is a pseudo, remove its
	   entry from the hash table.
Richard Kenner committed
1856

Richard Kenner committed
1857 1858 1859 1860
	   For a hard register, we do the first two actions above for any
	   additional hard registers corresponding to X.  Then, if any of these
	   registers are in the table, we must remove any REG entries that
	   overlap these registers.  */
Richard Kenner committed
1861

Richard Kenner committed
1862 1863
	delete_reg_equiv (regno);
	REG_TICK (regno)++;
1864

Richard Kenner committed
1865 1866 1867 1868 1869
	if (regno >= FIRST_PSEUDO_REGISTER)
	  {
	    /* Because a register can be referenced in more than one mode,
	       we might have to remove more than one table entry.  */
	    struct table_elt *elt;
1870

Richard Kenner committed
1871 1872 1873 1874 1875 1876 1877
	    while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
	      remove_from_table (elt, hash);
	  }
	else
	  {
	    HOST_WIDE_INT in_table
	      = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1878 1879 1880
	    unsigned int endregno
	      = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
	    unsigned int tregno, tendregno, rn;
1881
	    struct table_elt *p, *next;
Richard Kenner committed
1882

Richard Kenner committed
1883
	    CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
Richard Kenner committed
1884

1885
	    for (rn = regno + 1; rn < endregno; rn++)
Richard Kenner committed
1886
	      {
1887 1888 1889 1890
		in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
		CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
		delete_reg_equiv (rn);
		REG_TICK (rn)++;
Richard Kenner committed
1891
	      }
Richard Kenner committed
1892

Richard Kenner committed
1893
	    if (in_table)
1894
	      for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
1895 1896 1897
		for (p = table[hash]; p; p = next)
		  {
		    next = p->next_same_hash;
Richard Kenner committed
1898

1899 1900 1901 1902
		    if (GET_CODE (p->exp) != REG
			|| REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
		      continue;

Richard Kenner committed
1903 1904 1905 1906 1907 1908 1909 1910
		    tregno = REGNO (p->exp);
		    tendregno
		      = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
		    if (tendregno > regno && tregno < endregno)
		      remove_from_table (p, hash);
		  }
	  }
      }
Richard Kenner committed
1911 1912
      return;

Richard Kenner committed
1913
    case SUBREG:
1914
      invalidate (SUBREG_REG (x), VOIDmode);
Richard Kenner committed
1915
      return;
1916

Richard Kenner committed
1917
    case PARALLEL:
1918
      for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1919 1920 1921
	invalidate (XVECEXP (x, 0, i), VOIDmode);
      return;

Richard Kenner committed
1922 1923 1924
    case EXPR_LIST:
      /* This is part of a disjoint return value; extract the location in
	 question ignoring the offset.  */
1925 1926
      invalidate (XEXP (x, 0), VOIDmode);
      return;
Richard Kenner committed
1927

Richard Kenner committed
1928
    case MEM:
1929 1930 1931 1932
      /* Calculate the canonical version of X here so that
	 true_dependence doesn't generate new RTL for X on each call.  */
      x = canon_rtx (x);

Richard Kenner committed
1933 1934 1935 1936
      /* Remove all hash table elements that refer to overlapping pieces of
	 memory.  */
      if (full_mode == VOIDmode)
	full_mode = GET_MODE (x);
1937

1938
      for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1939
	{
1940
	  struct table_elt *next;
Richard Kenner committed
1941 1942 1943 1944

	  for (p = table[i]; p; p = next)
	    {
	      next = p->next_same_hash;
1945 1946
	      if (p->in_memory)
		{
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		  struct check_dependence_data d;

		  /* Just canonicalize the expression once;
		     otherwise each time we call invalidate
		     true_dependence will canonicalize the
		     expression again.  */
		  if (!p->canon_exp)
		    p->canon_exp = canon_rtx (p->exp);
		  d.exp = x;
		  d.mode = full_mode;
		  if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1958 1959
		    remove_from_table (p, i);
		}
Richard Kenner committed
1960
	    }
Richard Kenner committed
1961
	}
Richard Kenner committed
1962 1963 1964 1965
      return;

    default:
      abort ();
Richard Kenner committed
1966 1967
    }
}
Richard Kenner committed
1968

Richard Kenner committed
1969 1970 1971 1972 1973 1974 1975
/* Remove all expressions that refer to register REGNO,
   since they are already invalid, and we are about to
   mark that register valid again and don't want the old
   expressions to reappear as valid.  */

static void
remove_invalid_refs (regno)
1976
     unsigned int regno;
Richard Kenner committed
1977
{
1978 1979
  unsigned int i;
  struct table_elt *p, *next;
Richard Kenner committed
1980

1981
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1982 1983 1984 1985
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (GET_CODE (p->exp) != REG
Kazu Hirata committed
1986
	    && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
Richard Kenner committed
1987 1988 1989
	  remove_from_table (p, i);
      }
}
1990

1991 1992
/* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
   and mode MODE.  */
1993
static void
1994
remove_invalid_subreg_refs (regno, offset, mode)
1995
     unsigned int regno;
1996
     unsigned int offset;
1997 1998
     enum machine_mode mode;
{
1999 2000
  unsigned int i;
  struct table_elt *p, *next;
2001
  unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2002

2003
  for (i = 0; i < HASH_SIZE; i++)
2004 2005
    for (p = table[i]; p; p = next)
      {
2006
	rtx exp = p->exp;
2007
	next = p->next_same_hash;
2008

2009
	if (GET_CODE (exp) != REG
2010 2011 2012
	    && (GET_CODE (exp) != SUBREG
		|| GET_CODE (SUBREG_REG (exp)) != REG
		|| REGNO (SUBREG_REG (exp)) != regno
2013 2014 2015
		|| (((SUBREG_BYTE (exp)
		      + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
		    && SUBREG_BYTE (exp) <= end))
Kazu Hirata committed
2016
	    && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2017 2018 2019
	  remove_from_table (p, i);
      }
}
Richard Kenner committed
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

/* Recompute the hash codes of any valid entries in the hash table that
   reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.

   This is called when we make a jump equivalence.  */

static void
rehash_using_reg (x)
     rtx x;
{
Kaveh R. Ghazi committed
2030
  unsigned int i;
Richard Kenner committed
2031
  struct table_elt *p, *next;
Richard Kenner committed
2032
  unsigned hash;
Richard Kenner committed
2033 2034 2035 2036 2037 2038 2039 2040

  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  /* If X is not a register or if the register is known not to be in any
     valid entries in the table, we have no work to do.  */

  if (GET_CODE (x) != REG
2041 2042
      || REG_IN_TABLE (REGNO (x)) < 0
      || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
Richard Kenner committed
2043 2044 2045 2046 2047 2048
    return;

  /* Scan all hash chains looking for valid entries that mention X.
     If we find one and it is in the wrong hash chain, move it.  We can skip
     objects that are registers, since they are handled specially.  */

2049
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
2050 2051 2052 2053
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
2054
	    && exp_equiv_p (p->exp, p->exp, 1, 0)
2055
	    && i != (hash = safe_hash (p->exp, p->mode) & HASH_MASK))
Richard Kenner committed
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	  {
	    if (p->next_same_hash)
	      p->next_same_hash->prev_same_hash = p->prev_same_hash;

	    if (p->prev_same_hash)
	      p->prev_same_hash->next_same_hash = p->next_same_hash;
	    else
	      table[i] = p->next_same_hash;

	    p->next_same_hash = table[hash];
	    p->prev_same_hash = 0;
	    if (table[hash])
	      table[hash]->prev_same_hash = p;
	    table[hash] = p;
	  }
      }
}

/* Remove from the hash table any expression that is a call-clobbered
   register.  Also update their TICK values.  */

static void
invalidate_for_call ()
{
2080 2081
  unsigned int regno, endregno;
  unsigned int i;
Richard Kenner committed
2082
  unsigned hash;
Richard Kenner committed
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
  struct table_elt *p, *next;
  int in_table = 0;

  /* Go through all the hard registers.  For each that is clobbered in
     a CALL_INSN, remove the register from quantity chains and update
     reg_tick if defined.  Also see if any of these registers is currently
     in the table.  */

  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
      {
	delete_reg_equiv (regno);
2095 2096
	if (REG_TICK (regno) >= 0)
	  REG_TICK (regno)++;
Richard Kenner committed
2097

2098
	in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
Richard Kenner committed
2099 2100 2101 2102 2103 2104 2105
      }

  /* In the case where we have no call-clobbered hard registers in the
     table, we are done.  Otherwise, scan the table and remove any
     entry that overlaps a call-clobbered register.  */

  if (in_table)
2106
    for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
      for (p = table[hash]; p; p = next)
	{
	  next = p->next_same_hash;

	  if (GET_CODE (p->exp) != REG
	      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
	    continue;

	  regno = REGNO (p->exp);
	  endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));

	  for (i = regno; i < endregno; i++)
	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
	      {
		remove_from_table (p, hash);
		break;
	      }
	}
}

/* Given an expression X of type CONST,
   and ELT which is its table entry (or 0 if it
   is not in the hash table),
   return an alternate expression for X as a register plus integer.
   If none can be found, return 0.  */

static rtx
use_related_value (x, elt)
     rtx x;
     struct table_elt *elt;
{
2138 2139
  struct table_elt *relt = 0;
  struct table_elt *p, *q;
2140
  HOST_WIDE_INT offset;
Richard Kenner committed
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

  /* First, is there anything related known?
     If we have a table element, we can tell from that.
     Otherwise, must look it up.  */

  if (elt != 0 && elt->related_value != 0)
    relt = elt;
  else if (elt == 0 && GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
      if (subexp != 0)
	relt = lookup (subexp,
2153
		       safe_hash (subexp, GET_MODE (subexp)) & HASH_MASK,
Richard Kenner committed
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
		       GET_MODE (subexp));
    }

  if (relt == 0)
    return 0;

  /* Search all related table entries for one that has an
     equivalent register.  */

  p = relt;
  while (1)
    {
      /* This loop is strange in that it is executed in two different cases.
	 The first is when X is already in the table.  Then it is searching
	 the RELATED_VALUE list of X's class (RELT).  The second case is when
	 X is not in the table.  Then RELT points to a class for the related
	 value.

	 Ensure that, whatever case we are in, that we ignore classes that have
	 the same value as X.  */

      if (rtx_equal_p (x, p->exp))
	q = 0;
      else
	for (q = p->first_same_value; q; q = q->next_same_value)
	  if (GET_CODE (q->exp) == REG)
	    break;

      if (q)
	break;

      p = p->related_value;

      /* We went all the way around, so there is nothing to be found.
	 Alternatively, perhaps RELT was in the table for some other reason
	 and it has no related values recorded.  */
      if (p == relt || p == 0)
	break;
    }

  if (q == 0)
    return 0;

  offset = (get_integer_term (x) - get_integer_term (p->exp));
  /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity.  */
  return plus_constant (q->exp, offset);
}

2202 2203 2204 2205 2206 2207
/* Hash a string.  Just add its bytes up.  */
static inline unsigned
canon_hash_string (ps)
     const char *ps;
{
  unsigned hash = 0;
Kazu Hirata committed
2208 2209
  const unsigned char *p = (const unsigned char *) ps;

2210 2211 2212 2213 2214 2215 2216
  if (p)
    while (*p)
      hash += *p++;

  return hash;
}

Richard Kenner committed
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
/* Hash an rtx.  We are careful to make sure the value is never negative.
   Equivalent registers hash identically.
   MODE is used in hashing for CONST_INTs only;
   otherwise the mode of X is used.

   Store 1 in do_not_record if any subexpression is volatile.

   Store 1 in hash_arg_in_memory if X contains a MEM rtx
   which does not have the RTX_UNCHANGING_P bit set.

   Note that cse_insn knows that the hash code of a MEM expression
   is just (int) MEM plus the hash code of the address.  */

Richard Kenner committed
2230
static unsigned
Richard Kenner committed
2231 2232 2233 2234
canon_hash (x, mode)
     rtx x;
     enum machine_mode mode;
{
2235 2236 2237 2238
  int i, j;
  unsigned hash = 0;
  enum rtx_code code;
  const char *fmt;
Richard Kenner committed
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249

  /* repeat is used to turn tail-recursion into iteration.  */
 repeat:
  if (x == 0)
    return hash;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      {
2250
	unsigned int regno = REGNO (x);
2251
	bool record;
Richard Kenner committed
2252 2253 2254

	/* On some machines, we can't record any non-fixed hard register,
	   because extending its life will cause reload problems.  We
2255
	   consider ap, fp, sp, gp to be fixed for this purpose.
2256 2257 2258 2259 2260

	   We also consider CCmode registers to be fixed for this purpose;
	   failure to do so leads to failure to simplify 0<100 type of
	   conditionals.

Kazu Hirata committed
2261
	   On all machines, we can't record any global registers.
2262 2263
	   Nor should we record any register that is in a small
	   class, as defined by CLASS_LIKELY_SPILLED_P.  */
Richard Kenner committed
2264

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	if (regno >= FIRST_PSEUDO_REGISTER)
	  record = true;
	else if (x == frame_pointer_rtx
		 || x == hard_frame_pointer_rtx
		 || x == arg_pointer_rtx
		 || x == stack_pointer_rtx
		 || x == pic_offset_table_rtx)
	  record = true;
	else if (global_regs[regno])
	  record = false;
	else if (fixed_regs[regno])
	  record = true;
	else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
	  record = true;
	else if (SMALL_REGISTER_CLASSES)
	  record = false;
	else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
	  record = false;
	else
	  record = true;
	    
	if (!record)
Richard Kenner committed
2287 2288 2289 2290
	  {
	    do_not_record = 1;
	    return 0;
	  }
2291

2292
	hash += ((unsigned) REG << 7) + (unsigned) REG_QTY (regno);
Richard Kenner committed
2293
	return hash;
Richard Kenner committed
2294 2295
      }

2296 2297 2298 2299 2300 2301 2302 2303
    /* We handle SUBREG of a REG specially because the underlying
       reg changes its hash value with every value change; we don't
       want to have to forget unrelated subregs when one subreg changes.  */
    case SUBREG:
      {
	if (GET_CODE (SUBREG_REG (x)) == REG)
	  {
	    hash += (((unsigned) SUBREG << 7)
2304 2305
		     + REGNO (SUBREG_REG (x))
		     + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2306 2307 2308 2309 2310
	    return hash;
	  }
	break;
      }

Richard Kenner committed
2311
    case CONST_INT:
Richard Kenner committed
2312 2313 2314 2315 2316
      {
	unsigned HOST_WIDE_INT tem = INTVAL (x);
	hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
	return hash;
      }
Richard Kenner committed
2317 2318 2319 2320

    case CONST_DOUBLE:
      /* This is like the general case, except that it only counts
	 the integers representing the constant.  */
Richard Kenner committed
2321
      hash += (unsigned) code + (unsigned) GET_MODE (x);
2322 2323 2324
      if (GET_MODE (x) != VOIDmode)
	for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
	  {
2325
	    unsigned HOST_WIDE_INT tem = XWINT (x, i);
2326 2327 2328 2329 2330
	    hash += tem;
	  }
      else
	hash += ((unsigned) CONST_DOUBLE_LOW (x)
		 + (unsigned) CONST_DOUBLE_HIGH (x));
Richard Kenner committed
2331 2332
      return hash;

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
    case CONST_VECTOR:
      {
	int units;
	rtx elt;

	units = CONST_VECTOR_NUNITS (x);

	for (i = 0; i < units; ++i)
	  {
	    elt = CONST_VECTOR_ELT (x, i);
	    hash += canon_hash (elt, GET_MODE (elt));
	  }

	return hash;
      }

Richard Kenner committed
2349 2350
      /* Assume there is only one rtx object for any given label.  */
    case LABEL_REF:
Kazu Hirata committed
2351
      hash += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
Richard Kenner committed
2352
      return hash;
Richard Kenner committed
2353 2354

    case SYMBOL_REF:
Kazu Hirata committed
2355
      hash += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
Richard Kenner committed
2356
      return hash;
Richard Kenner committed
2357 2358

    case MEM:
Richard Kenner committed
2359 2360 2361
      /* We don't record if marked volatile or if BLKmode since we don't
	 know the size of the move.  */
      if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
Richard Kenner committed
2362 2363 2364 2365
	{
	  do_not_record = 1;
	  return 0;
	}
2366
      if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
Richard Kenner committed
2367 2368 2369 2370 2371
	{
	  hash_arg_in_memory = 1;
	}
      /* Now that we have already found this special case,
	 might as well speed it up as much as possible.  */
Richard Kenner committed
2372
      hash += (unsigned) MEM;
Richard Kenner committed
2373 2374 2375
      x = XEXP (x, 0);
      goto repeat;

2376 2377 2378 2379 2380 2381 2382 2383
    case USE:
      /* A USE that mentions non-volatile memory needs special
	 handling since the MEM may be BLKmode which normally
	 prevents an entry from being made.  Pure calls are
	 marked by a USE which mentions BLKmode memory.  */
      if (GET_CODE (XEXP (x, 0)) == MEM
	  && ! MEM_VOLATILE_P (XEXP (x, 0)))
	{
Kazu Hirata committed
2384
	  hash += (unsigned) USE;
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	  x = XEXP (x, 0);

	  if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
	    hash_arg_in_memory = 1;

	  /* Now that we have already found this special case,
	     might as well speed it up as much as possible.  */
	  hash += (unsigned) MEM;
	  x = XEXP (x, 0);
	  goto repeat;
	}
      break;

Richard Kenner committed
2398 2399 2400 2401
    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
2402 2403
    case PRE_MODIFY:
    case POST_MODIFY:
Richard Kenner committed
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
    case PC:
    case CC0:
    case CALL:
    case UNSPEC_VOLATILE:
      do_not_record = 1;
      return 0;

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	{
	  do_not_record = 1;
	  return 0;
	}
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
      else
	{
	  /* We don't want to take the filename and line into account.  */
	  hash += (unsigned) code + (unsigned) GET_MODE (x)
	    + canon_hash_string (ASM_OPERANDS_TEMPLATE (x))
	    + canon_hash_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
	    + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);

	  if (ASM_OPERANDS_INPUT_LENGTH (x))
	    {
	      for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
		{
		  hash += (canon_hash (ASM_OPERANDS_INPUT (x, i),
				       GET_MODE (ASM_OPERANDS_INPUT (x, i)))
			   + canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT
						(x, i)));
		}

	      hash += canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
	      x = ASM_OPERANDS_INPUT (x, 0);
	      mode = GET_MODE (x);
	      goto repeat;
	    }

	  return hash;
	}
2443
      break;
2444

2445 2446
    default:
      break;
Richard Kenner committed
2447 2448 2449
    }

  i = GET_RTX_LENGTH (code) - 1;
Richard Kenner committed
2450
  hash += (unsigned) code + (unsigned) GET_MODE (x);
Richard Kenner committed
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
  fmt = GET_RTX_FORMAT (code);
  for (; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  rtx tem = XEXP (x, i);

	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function  is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = tem;
	      goto repeat;
	    }
	  hash += canon_hash (tem, 0);
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  hash += canon_hash (XVECEXP (x, i, j), 0);
      else if (fmt[i] == 's')
2472
	hash += canon_hash_string (XSTR (x, i));
Richard Kenner committed
2473 2474
      else if (fmt[i] == 'i')
	{
2475
	  unsigned tem = XINT (x, i);
Richard Kenner committed
2476
	  hash += tem;
Richard Kenner committed
2477
	}
2478
      else if (fmt[i] == '0' || fmt[i] == 't')
Kazu Hirata committed
2479 2480
	/* Unused.  */
	;
Richard Kenner committed
2481 2482 2483 2484 2485 2486 2487 2488
      else
	abort ();
    }
  return hash;
}

/* Like canon_hash but with no side effects.  */

Richard Kenner committed
2489
static unsigned
Richard Kenner committed
2490 2491 2492 2493 2494 2495
safe_hash (x, mode)
     rtx x;
     enum machine_mode mode;
{
  int save_do_not_record = do_not_record;
  int save_hash_arg_in_memory = hash_arg_in_memory;
Richard Kenner committed
2496
  unsigned hash = canon_hash (x, mode);
Richard Kenner committed
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
  hash_arg_in_memory = save_hash_arg_in_memory;
  do_not_record = save_do_not_record;
  return hash;
}

/* Return 1 iff X and Y would canonicalize into the same thing,
   without actually constructing the canonicalization of either one.
   If VALIDATE is nonzero,
   we assume X is an expression being processed from the rtl
   and Y was found in the hash table.  We check register refs
   in Y for being marked as valid.

   If EQUAL_VALUES is nonzero, we allow a register to match a constant value
   that is known to be in the register.  Ordinarily, we don't allow them
   to match, because letting them match would cause unpredictable results
   in all the places that search a hash table chain for an equivalent
   for a given value.  A possible equivalent that has different structure
   has its hash code computed from different data.  Whether the hash code
Jeff Law committed
2515
   is the same as that of the given value is pure luck.  */
Richard Kenner committed
2516 2517 2518 2519 2520 2521 2522

static int
exp_equiv_p (x, y, validate, equal_values)
     rtx x, y;
     int validate;
     int equal_values;
{
2523 2524 2525
  int i, j;
  enum rtx_code code;
  const char *fmt;
Richard Kenner committed
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542

  /* Note: it is incorrect to assume an expression is equivalent to itself
     if VALIDATE is nonzero.  */
  if (x == y && !validate)
    return 1;
  if (x == 0 || y == 0)
    return x == y;

  code = GET_CODE (x);
  if (code != GET_CODE (y))
    {
      if (!equal_values)
	return 0;

      /* If X is a constant and Y is a register or vice versa, they may be
	 equivalent.  We only have to validate if Y is a register.  */
      if (CONSTANT_P (x) && GET_CODE (y) == REG
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
	  && REGNO_QTY_VALID_P (REGNO (y)))
	{
	  int y_q = REG_QTY (REGNO (y));
	  struct qty_table_elem *y_ent = &qty_table[y_q];

	  if (GET_MODE (y) == y_ent->mode
	      && rtx_equal_p (x, y_ent->const_rtx)
	      && (! validate || REG_IN_TABLE (REGNO (y)) == REG_TICK (REGNO (y))))
	    return 1;
	}
Richard Kenner committed
2553 2554

      if (CONSTANT_P (y) && code == REG
2555 2556 2557 2558 2559 2560 2561 2562 2563
	  && REGNO_QTY_VALID_P (REGNO (x)))
	{
	  int x_q = REG_QTY (REGNO (x));
	  struct qty_table_elem *x_ent = &qty_table[x_q];

	  if (GET_MODE (x) == x_ent->mode
	      && rtx_equal_p (y, x_ent->const_rtx))
	    return 1;
	}
Richard Kenner committed
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576

      return 0;
    }

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
  if (GET_MODE (x) != GET_MODE (y))
    return 0;

  switch (code)
    {
    case PC:
    case CC0:
    case CONST_INT:
2577
      return x == y;
Richard Kenner committed
2578 2579 2580 2581

    case LABEL_REF:
      return XEXP (x, 0) == XEXP (y, 0);

2582 2583 2584
    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);

Richard Kenner committed
2585 2586
    case REG:
      {
2587 2588
	unsigned int regno = REGNO (y);
	unsigned int endregno
Richard Kenner committed
2589 2590
	  = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
		     : HARD_REGNO_NREGS (regno, GET_MODE (y)));
2591
	unsigned int i;
Richard Kenner committed
2592 2593 2594 2595 2596

	/* If the quantities are not the same, the expressions are not
	   equivalent.  If there are and we are not to validate, they
	   are equivalent.  Otherwise, ensure all regs are up-to-date.  */

2597
	if (REG_QTY (REGNO (x)) != REG_QTY (regno))
Richard Kenner committed
2598 2599 2600 2601 2602 2603
	  return 0;

	if (! validate)
	  return 1;

	for (i = regno; i < endregno; i++)
2604
	  if (REG_IN_TABLE (i) != REG_TICK (i))
Richard Kenner committed
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	    return 0;

	return 1;
      }

    /*  For commutative operations, check both orders.  */
    case PLUS:
    case MULT:
    case AND:
    case IOR:
    case XOR:
    case NE:
    case EQ:
      return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
	       && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
			       validate, equal_values))
	      || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
			       validate, equal_values)
		  && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
				  validate, equal_values)));
2625

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
    case ASM_OPERANDS:
      /* We don't use the generic code below because we want to
	 disregard filename and line numbers.  */

      /* A volatile asm isn't equivalent to any other.  */
      if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
	return 0;

      if (GET_MODE (x) != GET_MODE (y)
	  || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
	  || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
		     ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
	  || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
	  || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
	return 0;

      if (ASM_OPERANDS_INPUT_LENGTH (x))
	{
	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
	    if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
			       ASM_OPERANDS_INPUT (y, i),
			       validate, equal_values)
		|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
			   ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
	      return 0;
	}

      return 1;

2655 2656
    default:
      break;
Richard Kenner committed
2657 2658 2659 2660 2661 2662 2663 2664
    }

  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
2665
      switch (fmt[i])
Richard Kenner committed
2666
	{
2667
	case 'e':
Richard Kenner committed
2668 2669
	  if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
	    return 0;
2670 2671 2672
	  break;

	case 'E':
Richard Kenner committed
2673 2674 2675 2676 2677 2678
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
			       validate, equal_values))
	      return 0;
2679 2680 2681
	  break;

	case 's':
Richard Kenner committed
2682 2683
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
2684 2685 2686
	  break;

	case 'i':
Richard Kenner committed
2687 2688
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
2689 2690 2691 2692 2693
	  break;

	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
2694
	  break;
2695 2696

	case '0':
2697
	case 't':
2698 2699 2700 2701
	  break;

	default:
	  abort ();
Richard Kenner committed
2702
	}
2703
    }
2704

Richard Kenner committed
2705 2706 2707
  return 1;
}

2708 2709 2710
/* Return 1 if X has a value that can vary even between two
   executions of the program.  0 means X can be compared reliably
   against certain constants or near-constants.  */
Richard Kenner committed
2711 2712

static int
2713
cse_rtx_varies_p (x, from_alias)
2714
     rtx x;
2715
     int from_alias;
Richard Kenner committed
2716 2717 2718 2719 2720
{
  /* We need not check for X and the equivalence class being of the same
     mode because if X is equivalent to a constant in some mode, it
     doesn't vary in any mode.  */

2721
  if (GET_CODE (x) == REG
2722 2723 2724 2725 2726 2727 2728 2729 2730
      && REGNO_QTY_VALID_P (REGNO (x)))
    {
      int x_q = REG_QTY (REGNO (x));
      struct qty_table_elem *x_ent = &qty_table[x_q];

      if (GET_MODE (x) == x_ent->mode
	  && x_ent->const_rtx != NULL_RTX)
	return 0;
    }
Richard Kenner committed
2731

2732 2733 2734
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 1)) == CONST_INT
      && GET_CODE (XEXP (x, 0)) == REG
2735 2736 2737 2738 2739 2740 2741 2742 2743
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
    {
      int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
      struct qty_table_elem *x0_ent = &qty_table[x0_q];

      if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
	  && x0_ent->const_rtx != NULL_RTX)
	return 0;
    }
Richard Kenner committed
2744

2745 2746 2747 2748 2749
  /* This can happen as the result of virtual register instantiation, if
     the initial constant is too large to be a valid address.  This gives
     us a three instruction sequence, load large offset into a register,
     load fp minus a constant into a register, then a MEM which is the
     sum of the two `constant' registers.  */
2750 2751 2752 2753
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == REG
      && GET_CODE (XEXP (x, 1)) == REG
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
    {
      int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
      int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
      struct qty_table_elem *x0_ent = &qty_table[x0_q];
      struct qty_table_elem *x1_ent = &qty_table[x1_q];

      if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
	  && x0_ent->const_rtx != NULL_RTX
	  && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
	  && x1_ent->const_rtx != NULL_RTX)
	return 0;
    }
2767

2768
  return rtx_varies_p (x, from_alias);
Richard Kenner committed
2769 2770 2771 2772 2773 2774 2775
}

/* Canonicalize an expression:
   replace each register reference inside it
   with the "oldest" equivalent register.

   If INSN is non-zero and we are replacing a pseudo with a hard register
2776 2777 2778 2779 2780
   or vice versa, validate_change is used to ensure that INSN remains valid
   after we make our substitution.  The calls are made with IN_GROUP non-zero
   so apply_change_group must be called upon the outermost return from this
   function (unless INSN is zero).  The result of apply_change_group can
   generally be discarded since the changes we are making are optional.  */
Richard Kenner committed
2781 2782 2783 2784 2785 2786

static rtx
canon_reg (x, insn)
     rtx x;
     rtx insn;
{
2787 2788 2789
  int i;
  enum rtx_code code;
  const char *fmt;
Richard Kenner committed
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

  if (x == 0)
    return x;

  code = GET_CODE (x);
  switch (code)
    {
    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
2802
    case CONST_VECTOR:
Richard Kenner committed
2803 2804 2805 2806 2807 2808 2809 2810
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return x;

    case REG:
      {
2811 2812 2813
	int first;
	int q;
	struct qty_table_elem *ent;
Richard Kenner committed
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823

	/* Never replace a hard reg, because hard regs can appear
	   in more than one machine mode, and we must preserve the mode
	   of each occurrence.  Also, some hard regs appear in
	   MEMs that are shared and mustn't be altered.  Don't try to
	   replace any reg that maps to a reg of class NO_REGS.  */
	if (REGNO (x) < FIRST_PSEUDO_REGISTER
	    || ! REGNO_QTY_VALID_P (REGNO (x)))
	  return x;

2824
	q = REG_QTY (REGNO (x));
2825 2826
	ent = &qty_table[q];
	first = ent->first_reg;
Richard Kenner committed
2827 2828
	return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
		: REGNO_REG_CLASS (first) == NO_REGS ? x
2829
		: gen_rtx_REG (ent->mode, first));
Richard Kenner committed
2830
      }
2831

2832 2833
    default:
      break;
Richard Kenner committed
2834 2835 2836 2837 2838
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
2839
      int j;
Richard Kenner committed
2840 2841 2842 2843

      if (fmt[i] == 'e')
	{
	  rtx new = canon_reg (XEXP (x, i), insn);
2844
	  int insn_code;
Richard Kenner committed
2845 2846

	  /* If replacing pseudo with hard reg or vice versa, ensure the
2847
	     insn remains valid.  Likewise if the insn has MATCH_DUPs.  */
2848 2849
	  if (insn != 0 && new != 0
	      && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
2850 2851
	      && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
		   != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
2852
		  || (insn_code = recog_memoized (insn)) < 0
2853
		  || insn_data[insn_code].n_dups > 0))
2854
	    validate_change (insn, &XEXP (x, i), new, 1);
Richard Kenner committed
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
	  else
	    XEXP (x, i) = new;
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
    }

  return x;
}

Richard Kenner committed
2866
/* LOC is a location within INSN that is an operand address (the contents of
Richard Kenner committed
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
   a MEM).  Find the best equivalent address to use that is valid for this
   insn.

   On most CISC machines, complicated address modes are costly, and rtx_cost
   is a good approximation for that cost.  However, most RISC machines have
   only a few (usually only one) memory reference formats.  If an address is
   valid at all, it is often just as cheap as any other address.  Hence, for
   RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
   costs of various addresses.  For two addresses of equal cost, choose the one
   with the highest `rtx_cost' value as that has the potential of eliminating
   the most insns.  For equal costs, we choose the first in the equivalence
   class.  Note that we ignore the fact that pseudo registers are cheaper
   than hard registers here because we would also prefer the pseudo registers.
  */

2882
static void
2883
find_best_addr (insn, loc, mode)
Richard Kenner committed
2884 2885
     rtx insn;
     rtx *loc;
2886
     enum machine_mode mode;
Richard Kenner committed
2887
{
2888
  struct table_elt *elt;
Richard Kenner committed
2889
  rtx addr = *loc;
2890 2891
#ifdef ADDRESS_COST
  struct table_elt *p;
Richard Kenner committed
2892
  int found_better = 1;
2893
#endif
Richard Kenner committed
2894 2895 2896 2897
  int save_do_not_record = do_not_record;
  int save_hash_arg_in_memory = hash_arg_in_memory;
  int addr_volatile;
  int regno;
Richard Kenner committed
2898
  unsigned hash;
Richard Kenner committed
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

  /* Do not try to replace constant addresses or addresses of local and
     argument slots.  These MEM expressions are made only once and inserted
     in many instructions, as well as being used to control symbol table
     output.  It is not safe to clobber them.

     There are some uncommon cases where the address is already in a register
     for some reason, but we cannot take advantage of that because we have
     no easy way to unshare the MEM.  In addition, looking up all stack
     addresses is costly.  */
  if ((GET_CODE (addr) == PLUS
       && GET_CODE (XEXP (addr, 0)) == REG
       && GET_CODE (XEXP (addr, 1)) == CONST_INT
       && (regno = REGNO (XEXP (addr, 0)),
2913 2914
	   regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
	   || regno == ARG_POINTER_REGNUM))
Richard Kenner committed
2915
      || (GET_CODE (addr) == REG
2916 2917 2918
	  && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
	      || regno == HARD_FRAME_POINTER_REGNUM
	      || regno == ARG_POINTER_REGNUM))
2919
      || GET_CODE (addr) == ADDRESSOF
Richard Kenner committed
2920 2921 2922 2923 2924 2925 2926
      || CONSTANT_ADDRESS_P (addr))
    return;

  /* If this address is not simply a register, try to fold it.  This will
     sometimes simplify the expression.  Many simplifications
     will not be valid, but some, usually applying the associative rule, will
     be valid and produce better code.  */
2927 2928 2929
  if (GET_CODE (addr) != REG)
    {
      rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);
2930 2931 2932 2933 2934 2935 2936 2937 2938
      int addr_folded_cost = address_cost (folded, mode);
      int addr_cost = address_cost (addr, mode);

      if ((addr_folded_cost < addr_cost
	   || (addr_folded_cost == addr_cost
	       /* ??? The rtx_cost comparison is left over from an older
		  version of this code.  It is probably no longer helpful.  */
	       && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
		   || approx_reg_cost (folded) < approx_reg_cost (addr))))
2939 2940 2941
	  && validate_change (insn, loc, folded, 0))
	addr = folded;
    }
2942

2943 2944 2945
  /* If this address is not in the hash table, we can't look for equivalences
     of the whole address.  Also, ignore if volatile.  */

Richard Kenner committed
2946
  do_not_record = 0;
Richard Kenner committed
2947
  hash = HASH (addr, Pmode);
Richard Kenner committed
2948 2949 2950 2951 2952 2953 2954
  addr_volatile = do_not_record;
  do_not_record = save_do_not_record;
  hash_arg_in_memory = save_hash_arg_in_memory;

  if (addr_volatile)
    return;

Richard Kenner committed
2955
  elt = lookup (addr, hash, Pmode);
Richard Kenner committed
2956 2957

#ifndef ADDRESS_COST
2958 2959
  if (elt)
    {
2960
      int our_cost = elt->cost;
2961 2962 2963 2964 2965 2966 2967

      /* Find the lowest cost below ours that works.  */
      for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
	if (elt->cost < our_cost
	    && (GET_CODE (elt->exp) == REG
		|| exp_equiv_p (elt->exp, elt->exp, 1, 0))
	    && validate_change (insn, loc,
2968
				canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
2969 2970 2971
	  return;
    }
#else
Richard Kenner committed
2972

2973 2974 2975 2976 2977 2978
  if (elt)
    {
      /* We need to find the best (under the criteria documented above) entry
	 in the class that is valid.  We use the `flag' field to indicate
	 choices that were invalid and iterate until we can't find a better
	 one that hasn't already been tried.  */
Richard Kenner committed
2979

2980 2981
      for (p = elt->first_same_value; p; p = p->next_same_value)
	p->flag = 0;
Richard Kenner committed
2982

2983 2984
      while (found_better)
	{
2985
	  int best_addr_cost = address_cost (*loc, mode);
2986
	  int best_rtx_cost = (elt->cost + 1) >> 1;
2987
	  int exp_cost;
2988
	  struct table_elt *best_elt = elt;
2989 2990 2991

	  found_better = 0;
	  for (p = elt->first_same_value; p; p = p->next_same_value)
2992
	    if (! p->flag)
2993
	      {
2994 2995
		if ((GET_CODE (p->exp) == REG
		     || exp_equiv_p (p->exp, p->exp, 1, 0))
2996 2997
		    && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
			|| (exp_cost == best_addr_cost
2998
			    && ((p->cost + 1) >> 1) > best_rtx_cost)))
2999 3000
		  {
		    found_better = 1;
3001
		    best_addr_cost = exp_cost;
3002 3003 3004
		    best_rtx_cost = (p->cost + 1) >> 1;
		    best_elt = p;
		  }
3005
	      }
Richard Kenner committed
3006

3007 3008 3009
	  if (found_better)
	    {
	      if (validate_change (insn, loc,
3010 3011
				   canon_reg (copy_rtx (best_elt->exp),
					      NULL_RTX), 0))
3012 3013 3014 3015 3016 3017
		return;
	      else
		best_elt->flag = 1;
	    }
	}
    }
Richard Kenner committed
3018

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
  /* If the address is a binary operation with the first operand a register
     and the second a constant, do the same as above, but looking for
     equivalences of the register.  Then try to simplify before checking for
     the best address to use.  This catches a few cases:  First is when we
     have REG+const and the register is another REG+const.  We can often merge
     the constants and eliminate one insn and one register.  It may also be
     that a machine has a cheap REG+REG+const.  Finally, this improves the
     code on the Alpha for unaligned byte stores.  */

  if (flag_expensive_optimizations
      && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
	  || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
      && GET_CODE (XEXP (*loc, 0)) == REG
      && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
Richard Kenner committed
3033
    {
3034 3035 3036
      rtx c = XEXP (*loc, 1);

      do_not_record = 0;
Richard Kenner committed
3037
      hash = HASH (XEXP (*loc, 0), Pmode);
3038 3039 3040
      do_not_record = save_do_not_record;
      hash_arg_in_memory = save_hash_arg_in_memory;

Richard Kenner committed
3041
      elt = lookup (XEXP (*loc, 0), hash, Pmode);
3042 3043 3044 3045 3046 3047 3048
      if (elt == 0)
	return;

      /* We need to find the best (under the criteria documented above) entry
	 in the class that is valid.  We use the `flag' field to indicate
	 choices that were invalid and iterate until we can't find a better
	 one that hasn't already been tried.  */
Richard Kenner committed
3049 3050

      for (p = elt->first_same_value; p; p = p->next_same_value)
3051
	p->flag = 0;
Richard Kenner committed
3052

3053
      while (found_better)
Richard Kenner committed
3054
	{
3055
	  int best_addr_cost = address_cost (*loc, mode);
3056
	  int best_rtx_cost = (COST (*loc) + 1) >> 1;
3057
	  struct table_elt *best_elt = elt;
3058
	  rtx best_rtx = *loc;
3059 3060 3061 3062 3063
	  int count;

	  /* This is at worst case an O(n^2) algorithm, so limit our search
	     to the first 32 elements on the list.  This avoids trouble
	     compiling code with very long basic blocks that can easily
3064 3065
	     call simplify_gen_binary so many times that we run out of
	     memory.  */
3066

3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
	  found_better = 0;
	  for (p = elt->first_same_value, count = 0;
	       p && count < 32;
	       p = p->next_same_value, count++)
	    if (! p->flag
		&& (GET_CODE (p->exp) == REG
		    || exp_equiv_p (p->exp, p->exp, 1, 0)))
	      {
		rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
					       p->exp, c);
3077 3078
		int new_cost;
		new_cost = address_cost (new, mode);
3079

3080 3081 3082
		if (new_cost < best_addr_cost
		    || (new_cost == best_addr_cost
			&& (COST (new) + 1) >> 1 > best_rtx_cost))
3083 3084
		  {
		    found_better = 1;
3085
		    best_addr_cost = new_cost;
3086 3087 3088 3089 3090
		    best_rtx_cost = (COST (new) + 1) >> 1;
		    best_elt = p;
		    best_rtx = new;
		  }
	      }
3091

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
	  if (found_better)
	    {
	      if (validate_change (insn, loc,
				   canon_reg (copy_rtx (best_rtx),
					      NULL_RTX), 0))
		return;
	      else
		best_elt->flag = 1;
	    }
	}
    }
#endif
3104 3105
}

3106 3107 3108
/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
   operation (EQ, NE, GT, etc.), follow it back through the hash table and
   what values are being compared.
3109

3110 3111 3112 3113
   *PARG1 and *PARG2 are updated to contain the rtx representing the values
   actually being compared.  For example, if *PARG1 was (cc0) and *PARG2
   was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
   compared to produce cc0.
3114

3115 3116
   The return value is the comparison operator and is either the code of
   A or the code corresponding to the inverse of the comparison.  */
Richard Kenner committed
3117

3118 3119
static enum rtx_code
find_comparison_args (code, parg1, parg2, pmode1, pmode2)
Richard Kenner committed
3120
     enum rtx_code code;
3121 3122
     rtx *parg1, *parg2;
     enum machine_mode *pmode1, *pmode2;
Richard Kenner committed
3123
{
3124
  rtx arg1, arg2;
3125

3126
  arg1 = *parg1, arg2 = *parg2;
Richard Kenner committed
3127

3128
  /* If ARG2 is const0_rtx, see what ARG1 is equivalent to.  */
Richard Kenner committed
3129

3130
  while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3131
    {
3132 3133 3134 3135
      /* Set non-zero when we find something of interest.  */
      rtx x = 0;
      int reverse_code = 0;
      struct table_elt *p = 0;
3136

3137 3138 3139 3140
      /* If arg1 is a COMPARE, extract the comparison arguments from it.
	 On machines with CC0, this is the only case that can occur, since
	 fold_rtx will return the COMPARE or item being compared with zero
	 when given CC0.  */
3141

3142 3143
      if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
	x = arg1;
3144

3145 3146
      /* If ARG1 is a comparison operator and CODE is testing for
	 STORE_FLAG_VALUE, get the inner arguments.  */
3147

3148
      else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
Richard Kenner committed
3149
	{
3150 3151 3152 3153 3154
	  if (code == NE
	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		  && code == LT && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3155 3156
		  && (REAL_VALUE_NEGATIVE
		      (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
Richard Kenner committed
3157
#endif
3158
	      )
3159 3160 3161 3162 3163 3164
	    x = arg1;
	  else if (code == EQ
		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		       && code == GE && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3165 3166
		       && (REAL_VALUE_NEGATIVE
			   (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3167 3168 3169
#endif
		   )
	    x = arg1, reverse_code = 1;
Richard Kenner committed
3170 3171
	}

3172
      /* ??? We could also check for
Richard Kenner committed
3173

3174
	 (ne (and (eq (...) (const_int 1))) (const_int 0))
Richard Kenner committed
3175

3176
	 and related forms, but let's wait until we see them occurring.  */
Richard Kenner committed
3177

3178 3179 3180
      if (x == 0)
	/* Look up ARG1 in the hash table and see if it has an equivalence
	   that lets us see what is being compared.  */
3181
	p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) & HASH_MASK,
3182
		    GET_MODE (arg1));
3183
      if (p)
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
	{
	  p = p->first_same_value;

	  /* If what we compare is already known to be constant, that is as
	     good as it gets.
	     We need to break the loop in this case, because otherwise we
	     can have an infinite loop when looking at a reg that is known
	     to be a constant which is the same as a comparison of a reg
	     against zero which appears later in the insn stream, which in
	     turn is constant and the same as the comparison of the first reg
	     against zero...  */
	  if (p->is_const)
	    break;
	}
Richard Kenner committed
3198

3199
      for (; p; p = p->next_same_value)
Richard Kenner committed
3200
	{
3201
	  enum machine_mode inner_mode = GET_MODE (p->exp);
Richard Kenner committed
3202

3203 3204 3205
	  /* If the entry isn't valid, skip it.  */
	  if (! exp_equiv_p (p->exp, p->exp, 1, 0))
	    continue;
3206

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
	  if (GET_CODE (p->exp) == COMPARE
	      /* Another possibility is that this machine has a compare insn
		 that includes the comparison code.  In that case, ARG1 would
		 be equivalent to a comparison operation that would set ARG1 to
		 either STORE_FLAG_VALUE or zero.  If this is an NE operation,
		 ORIG_CODE is the actual comparison being done; if it is an EQ,
		 we must reverse ORIG_CODE.  On machine with a negative value
		 for STORE_FLAG_VALUE, also look at LT and GE operations.  */
	      || ((code == NE
		   || (code == LT
		       && GET_MODE_CLASS (inner_mode) == MODE_INT
		       && (GET_MODE_BITSIZE (inner_mode)
			   <= HOST_BITS_PER_WIDE_INT)
		       && (STORE_FLAG_VALUE
			   & ((HOST_WIDE_INT) 1
			      << (GET_MODE_BITSIZE (inner_mode) - 1))))
3223
#ifdef FLOAT_STORE_FLAG_VALUE
3224 3225 3226 3227
		   || (code == LT
		       && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
		       && (REAL_VALUE_NEGATIVE
			   (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3228
#endif
3229 3230
		   )
		  && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
Richard Kenner committed
3231
	    {
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
	      x = p->exp;
	      break;
	    }
	  else if ((code == EQ
		    || (code == GE
			&& GET_MODE_CLASS (inner_mode) == MODE_INT
			&& (GET_MODE_BITSIZE (inner_mode)
			    <= HOST_BITS_PER_WIDE_INT)
			&& (STORE_FLAG_VALUE
			    & ((HOST_WIDE_INT) 1
			       << (GET_MODE_BITSIZE (inner_mode) - 1))))
#ifdef FLOAT_STORE_FLAG_VALUE
		    || (code == GE
			&& GET_MODE_CLASS (inner_mode) == MODE_FLOAT
Kazu Hirata committed
3246
			&& (REAL_VALUE_NEGATIVE
3247
			    (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3248 3249 3250 3251 3252 3253 3254
#endif
		    )
		   && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
	    {
	      reverse_code = 1;
	      x = p->exp;
	      break;
Richard Kenner committed
3255 3256
	    }

3257 3258 3259 3260 3261 3262 3263
	  /* If this is fp + constant, the equivalent is a better operand since
	     it may let us predict the value of the comparison.  */
	  else if (NONZERO_BASE_PLUS_P (p->exp))
	    {
	      arg1 = p->exp;
	      continue;
	    }
Richard Kenner committed
3264 3265
	}

3266 3267 3268 3269
      /* If we didn't find a useful equivalence for ARG1, we are done.
	 Otherwise, set up for the next iteration.  */
      if (x == 0)
	break;
Richard Kenner committed
3270

3271 3272 3273
      /* If we need to reverse the comparison, make sure that that is
	 possible -- we can't necessarily infer the value of GE from LT
	 with floating-point operands.  */
3274
      if (reverse_code)
3275 3276 3277 3278
	{
	  enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
	  if (reversed == UNKNOWN)
	    break;
Kazu Hirata committed
3279 3280
	  else
	    code = reversed;
3281 3282 3283 3284
	}
      else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
	code = GET_CODE (x);
      arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
Richard Kenner committed
3285 3286
    }

3287 3288 3289 3290 3291 3292
  /* Return our results.  Return the modes from before fold_rtx
     because fold_rtx might produce const_int, and then it's too late.  */
  *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
  *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);

  return code;
Richard Kenner committed
3293 3294 3295 3296 3297 3298 3299 3300
}

/* If X is a nontrivial arithmetic operation on an argument
   for which a constant value can be determined, return
   the result of operating on that value, as a constant.
   Otherwise, return X, possibly with one or more operands
   modified by recursive calls to this function.

3301 3302 3303
   If X is a register whose contents are known, we do NOT
   return those contents here.  equiv_constant is called to
   perform that task.
Richard Kenner committed
3304 3305 3306 3307 3308 3309 3310

   INSN is the insn that we may be modifying.  If it is 0, make a copy
   of X before modifying it.  */

static rtx
fold_rtx (x, insn)
     rtx x;
3311
     rtx insn;
Richard Kenner committed
3312
{
3313 3314 3315 3316
  enum rtx_code code;
  enum machine_mode mode;
  const char *fmt;
  int i;
Richard Kenner committed
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
  rtx new = 0;
  int copied = 0;
  int must_swap = 0;

  /* Folded equivalents of first two operands of X.  */
  rtx folded_arg0;
  rtx folded_arg1;

  /* Constant equivalents of first three operands of X;
     0 when no such equivalent is known.  */
  rtx const_arg0;
  rtx const_arg1;
  rtx const_arg2;

  /* The mode of the first operand of X.  We need this for sign and zero
     extends.  */
  enum machine_mode mode_arg0;

  if (x == 0)
    return x;

  mode = GET_MODE (x);
  code = GET_CODE (x);
  switch (code)
    {
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
3345
    case CONST_VECTOR:
Richard Kenner committed
3346 3347 3348 3349 3350 3351 3352
    case SYMBOL_REF:
    case LABEL_REF:
    case REG:
      /* No use simplifying an EXPR_LIST
	 since they are used only for lists of args
	 in a function call's REG_EQUAL note.  */
    case EXPR_LIST:
Jeff Law committed
3353 3354 3355 3356
      /* Changing anything inside an ADDRESSOF is incorrect; we don't
	 want to (e.g.,) make (addressof (const_int 0)) just because
	 the location is known to be zero.  */
    case ADDRESSOF:
Richard Kenner committed
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
      return x;

#ifdef HAVE_cc0
    case CC0:
      return prev_insn_cc0;
#endif

    case PC:
      /* If the next insn is a CODE_LABEL followed by a jump table,
	 PC's value is a LABEL_REF pointing to that label.  That
3367
	 lets us fold switch statements on the VAX.  */
Richard Kenner committed
3368 3369 3370 3371 3372 3373 3374 3375 3376
      if (insn && GET_CODE (insn) == JUMP_INSN)
	{
	  rtx next = next_nonnote_insn (insn);

	  if (next && GET_CODE (next) == CODE_LABEL
	      && NEXT_INSN (next) != 0
	      && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
	      && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
		  || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
3377
	    return gen_rtx_LABEL_REF (Pmode, next);
Richard Kenner committed
3378 3379 3380 3381
	}
      break;

    case SUBREG:
3382 3383 3384
      /* See if we previously assigned a constant value to this SUBREG.  */
      if ((new = lookup_as_function (x, CONST_INT)) != 0
	  || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
Richard Kenner committed
3385 3386
	return new;

3387 3388 3389 3390
      /* If this is a paradoxical SUBREG, we have no idea what value the
	 extra bits would have.  However, if the operand is equivalent
	 to a SUBREG whose operand is the same as our mode, and all the
	 modes are within a word, we can just use the inner operand
3391 3392 3393
	 because these SUBREGs just say how to treat the register.

	 Similarly if we find an integer constant.  */
3394

3395
      if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3396 3397 3398 3399 3400 3401 3402 3403
	{
	  enum machine_mode imode = GET_MODE (SUBREG_REG (x));
	  struct table_elt *elt;

	  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
	      && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
	      && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
				imode)) != 0)
Kazu Hirata committed
3404
	    for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3405 3406 3407 3408 3409
	      {
		if (CONSTANT_P (elt->exp)
		    && GET_MODE (elt->exp) == VOIDmode)
		  return elt->exp;

3410 3411
		if (GET_CODE (elt->exp) == SUBREG
		    && GET_MODE (SUBREG_REG (elt->exp)) == mode
3412
		    && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3413
		  return copy_rtx (SUBREG_REG (elt->exp));
3414
	      }
3415 3416 3417

	  return x;
	}
3418

Richard Kenner committed
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
      /* Fold SUBREG_REG.  If it changed, see if we can simplify the SUBREG.
	 We might be able to if the SUBREG is extracting a single word in an
	 integral mode or extracting the low part.  */

      folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
      const_arg0 = equiv_constant (folded_arg0);
      if (const_arg0)
	folded_arg0 = const_arg0;

      if (folded_arg0 != SUBREG_REG (x))
	{
3430 3431
	  new = simplify_subreg (mode, folded_arg0,
				 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
Richard Kenner committed
3432 3433 3434
	  if (new)
	    return new;
	}
3435 3436

      /* If this is a narrowing SUBREG and our operand is a REG, see if
3437
	 we can find an equivalence for REG that is an arithmetic operation
3438 3439 3440 3441 3442 3443
	 in a wider mode where both operands are paradoxical SUBREGs
	 from objects of our result mode.  In that case, we couldn't report
	 an equivalent value for that operation, since we don't know what the
	 extra bits will be.  But we can find an equivalence for this SUBREG
	 by folding that operation is the narrow mode.  This allows us to
	 fold arithmetic in narrow modes when the machine only supports
3444
	 word-sized arithmetic.
3445 3446 3447 3448 3449

	 Also look for a case where we have a SUBREG whose operand is the
	 same as our result.  If both modes are smaller than a word, we
	 are simply interpreting a register in different modes and we
	 can use the inner value.  */
3450 3451

      if (GET_CODE (folded_arg0) == REG
3452 3453
	  && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
	  && subreg_lowpart_p (x))
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	{
	  struct table_elt *elt;

	  /* We can use HASH here since we know that canon_hash won't be
	     called.  */
	  elt = lookup (folded_arg0,
			HASH (folded_arg0, GET_MODE (folded_arg0)),
			GET_MODE (folded_arg0));

	  if (elt)
	    elt = elt->first_same_value;

	  for (; elt; elt = elt->next_same_value)
	    {
3468 3469
	      enum rtx_code eltcode = GET_CODE (elt->exp);

3470 3471 3472 3473 3474
	      /* Just check for unary and binary operations.  */
	      if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
		  && GET_CODE (elt->exp) != SIGN_EXTEND
		  && GET_CODE (elt->exp) != ZERO_EXTEND
		  && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3475 3476 3477
		  && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
		  && (GET_MODE_CLASS (mode)
		      == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3478 3479 3480 3481
		{
		  rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));

		  if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3482
		    op0 = fold_rtx (op0, NULL_RTX);
3483 3484 3485 3486 3487 3488 3489 3490

		  op0 = equiv_constant (op0);
		  if (op0)
		    new = simplify_unary_operation (GET_CODE (elt->exp), mode,
						    op0, mode);
		}
	      else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
			|| GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
3491 3492 3493 3494
		       && eltcode != DIV && eltcode != MOD
		       && eltcode != UDIV && eltcode != UMOD
		       && eltcode != ASHIFTRT && eltcode != LSHIFTRT
		       && eltcode != ROTATE && eltcode != ROTATERT
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
		       && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
			    && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
				== mode))
			   || CONSTANT_P (XEXP (elt->exp, 0)))
		       && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
			    && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
				== mode))
			   || CONSTANT_P (XEXP (elt->exp, 1))))
		{
		  rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
		  rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));

		  if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3508
		    op0 = fold_rtx (op0, NULL_RTX);
3509 3510 3511 3512 3513

		  if (op0)
		    op0 = equiv_constant (op0);

		  if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
3514
		    op1 = fold_rtx (op1, NULL_RTX);
3515 3516 3517 3518

		  if (op1)
		    op1 = equiv_constant (op1);

3519
		  /* If we are looking for the low SImode part of
3520 3521 3522 3523
		     (ashift:DI c (const_int 32)), it doesn't work
		     to compute that in SImode, because a 32-bit shift
		     in SImode is unpredictable.  We know the value is 0.  */
		  if (op0 && op1
3524
		      && GET_CODE (elt->exp) == ASHIFT
3525 3526 3527 3528
		      && GET_CODE (op1) == CONST_INT
		      && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
		    {
		      if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3529

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
			/* If the count fits in the inner mode's width,
			   but exceeds the outer mode's width,
			   the value will get truncated to 0
			   by the subreg.  */
			new = const0_rtx;
		      else
			/* If the count exceeds even the inner mode's width,
			   don't fold this expression.  */
			new = 0;
		    }
		  else if (op0 && op1)
3541 3542 3543 3544
		    new = simplify_binary_operation (GET_CODE (elt->exp), mode,
						     op0, op1);
		}

3545 3546 3547 3548
	      else if (GET_CODE (elt->exp) == SUBREG
		       && GET_MODE (SUBREG_REG (elt->exp)) == mode
		       && (GET_MODE_SIZE (GET_MODE (folded_arg0))
			   <= UNITS_PER_WORD)
3549
		       && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3550 3551
		new = copy_rtx (SUBREG_REG (elt->exp));

3552 3553 3554 3555 3556
	      if (new)
		return new;
	    }
	}

Richard Kenner committed
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
      return x;

    case NOT:
    case NEG:
      /* If we have (NOT Y), see if Y is known to be (NOT Z).
	 If so, (NOT Y) simplifies to Z.  Similarly for NEG.  */
      new = lookup_as_function (XEXP (x, 0), code);
      if (new)
	return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
      break;
3567

Richard Kenner committed
3568 3569 3570 3571 3572
    case MEM:
      /* If we are not actually processing an insn, don't try to find the
	 best address.  Not only don't we care, but we could modify the
	 MEM in an invalid way since we have no insn to validate against.  */
      if (insn != 0)
3573
	find_best_addr (insn, &XEXP (x, 0), GET_MODE (x));
Richard Kenner committed
3574 3575 3576 3577

      {
	/* Even if we don't fold in the insn itself,
	   we can safely do so here, in hopes of getting a constant.  */
3578
	rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
3579
	rtx base = 0;
3580
	HOST_WIDE_INT offset = 0;
Richard Kenner committed
3581 3582

	if (GET_CODE (addr) == REG
3583 3584 3585 3586 3587 3588 3589 3590 3591
	    && REGNO_QTY_VALID_P (REGNO (addr)))
	  {
	    int addr_q = REG_QTY (REGNO (addr));
	    struct qty_table_elem *addr_ent = &qty_table[addr_q];

	    if (GET_MODE (addr) == addr_ent->mode
		&& addr_ent->const_rtx != NULL_RTX)
	      addr = addr_ent->const_rtx;
	  }
Richard Kenner committed
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604

	/* If address is constant, split it into a base and integer offset.  */
	if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
	  base = addr;
	else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
		 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
	  {
	    base = XEXP (XEXP (addr, 0), 0);
	    offset = INTVAL (XEXP (XEXP (addr, 0), 1));
	  }
	else if (GET_CODE (addr) == LO_SUM
		 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
	  base = XEXP (addr, 1);
3605
	else if (GET_CODE (addr) == ADDRESSOF)
Jeff Law committed
3606
	  return change_address (x, VOIDmode, addr);
Richard Kenner committed
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623

	/* If this is a constant pool reference, we can fold it into its
	   constant to allow better value tracking.  */
	if (base && GET_CODE (base) == SYMBOL_REF
	    && CONSTANT_POOL_ADDRESS_P (base))
	  {
	    rtx constant = get_pool_constant (base);
	    enum machine_mode const_mode = get_pool_mode (base);
	    rtx new;

	    if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
	      constant_pool_entries_cost = COST (constant);

	    /* If we are loading the full constant, we have an equivalence.  */
	    if (offset == 0 && mode == const_mode)
	      return constant;

Richard Kenner committed
3624
	    /* If this actually isn't a constant (weird!), we can't do
Richard Kenner committed
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
	       anything.  Otherwise, handle the two most common cases:
	       extracting a word from a multi-word constant, and extracting
	       the low-order bits.  Other cases don't seem common enough to
	       worry about.  */
	    if (! CONSTANT_P (constant))
	      return x;

	    if (GET_MODE_CLASS (mode) == MODE_INT
		&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
		&& offset % UNITS_PER_WORD == 0
		&& (new = operand_subword (constant,
					   offset / UNITS_PER_WORD,
					   0, const_mode)) != 0)
	      return new;

	    if (((BYTES_BIG_ENDIAN
		  && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
		 || (! BYTES_BIG_ENDIAN && offset == 0))
		&& (new = gen_lowpart_if_possible (mode, constant)) != 0)
	      return new;
	  }

	/* If this is a reference to a label at a known position in a jump
	   table, we also know its value.  */
	if (base && GET_CODE (base) == LABEL_REF)
	  {
	    rtx label = XEXP (base, 0);
	    rtx table_insn = NEXT_INSN (label);
3653

Richard Kenner committed
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
	    if (table_insn && GET_CODE (table_insn) == JUMP_INSN
		&& GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
	      {
		rtx table = PATTERN (table_insn);

		if (offset >= 0
		    && (offset / GET_MODE_SIZE (GET_MODE (table))
			< XVECLEN (table, 0)))
		  return XVECEXP (table, 0,
				  offset / GET_MODE_SIZE (GET_MODE (table)));
	      }
	    if (table_insn && GET_CODE (table_insn) == JUMP_INSN
		&& GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
	      {
		rtx table = PATTERN (table_insn);

		if (offset >= 0
		    && (offset / GET_MODE_SIZE (GET_MODE (table))
			< XVECLEN (table, 1)))
		  {
		    offset /= GET_MODE_SIZE (GET_MODE (table));
3675 3676
		    new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
					 XEXP (table, 0));
Richard Kenner committed
3677 3678

		    if (GET_MODE (table) != Pmode)
3679
		      new = gen_rtx_TRUNCATE (GET_MODE (table), new);
Richard Kenner committed
3680

3681
		    /* Indicate this is a constant.  This isn't a
3682 3683
		       valid form of CONST, but it will only be used
		       to fold the next insns and then discarded, so
3684 3685 3686 3687 3688
		       it should be safe.

		       Note this expression must be explicitly discarded,
		       by cse_insn, else it may end up in a REG_EQUAL note
		       and "escape" to cause problems elsewhere.  */
3689
		    return gen_rtx_CONST (GET_MODE (new), new);
Richard Kenner committed
3690 3691 3692 3693 3694 3695
		  }
	      }
	  }

	return x;
      }
3696

3697 3698 3699 3700 3701 3702 3703
#ifdef NO_FUNCTION_CSE
    case CALL:
      if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
	return x;
      break;
#endif

3704
    case ASM_OPERANDS:
3705 3706 3707
      for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
	validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
			 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3708
      break;
3709

3710 3711
    default:
      break;
Richard Kenner committed
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
    }

  const_arg0 = 0;
  const_arg1 = 0;
  const_arg2 = 0;
  mode_arg0 = VOIDmode;

  /* Try folding our operands.
     Then see which ones have constant values known.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	rtx arg = XEXP (x, i);
	rtx folded_arg = arg, const_arg = 0;
	enum machine_mode mode_arg = GET_MODE (arg);
	rtx cheap_arg, expensive_arg;
	rtx replacements[2];
	int j;

	/* Most arguments are cheap, so handle them specially.  */
	switch (GET_CODE (arg))
	  {
	  case REG:
	    /* This is the same as calling equiv_constant; it is duplicated
	       here for speed.  */
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	    if (REGNO_QTY_VALID_P (REGNO (arg)))
	      {
		int arg_q = REG_QTY (REGNO (arg));
		struct qty_table_elem *arg_ent = &qty_table[arg_q];

		if (arg_ent->const_rtx != NULL_RTX
		    && GET_CODE (arg_ent->const_rtx) != REG
		    && GET_CODE (arg_ent->const_rtx) != PLUS)
		  const_arg
		    = gen_lowpart_if_possible (GET_MODE (arg),
					       arg_ent->const_rtx);
	      }
Richard Kenner committed
3751 3752 3753 3754 3755 3756 3757
	    break;

	  case CONST:
	  case CONST_INT:
	  case SYMBOL_REF:
	  case LABEL_REF:
	  case CONST_DOUBLE:
3758
	  case CONST_VECTOR:
Richard Kenner committed
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
	    const_arg = arg;
	    break;

#ifdef HAVE_cc0
	  case CC0:
	    folded_arg = prev_insn_cc0;
	    mode_arg = prev_insn_cc0_mode;
	    const_arg = equiv_constant (folded_arg);
	    break;
#endif

	  default:
	    folded_arg = fold_rtx (arg, insn);
	    const_arg = equiv_constant (folded_arg);
	  }

	/* For the first three operands, see if the operand
	   is constant or equivalent to a constant.  */
	switch (i)
	  {
	  case 0:
	    folded_arg0 = folded_arg;
	    const_arg0 = const_arg;
	    mode_arg0 = mode_arg;
	    break;
	  case 1:
	    folded_arg1 = folded_arg;
	    const_arg1 = const_arg;
	    break;
	  case 2:
	    const_arg2 = const_arg;
	    break;
	  }

	/* Pick the least expensive of the folded argument and an
	   equivalent constant argument.  */
	if (const_arg == 0 || const_arg == folded_arg
3796
	    || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
Richard Kenner committed
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
	  cheap_arg = folded_arg, expensive_arg = const_arg;
	else
	  cheap_arg = const_arg, expensive_arg = folded_arg;

	/* Try to replace the operand with the cheapest of the two
	   possibilities.  If it doesn't work and this is either of the first
	   two operands of a commutative operation, try swapping them.
	   If THAT fails, try the more expensive, provided it is cheaper
	   than what is already there.  */

	if (cheap_arg == XEXP (x, i))
	  continue;

	if (insn == 0 && ! copied)
	  {
	    x = copy_rtx (x);
	    copied = 1;
	  }

3816 3817 3818 3819
	/* Order the replacements from cheapest to most expensive.  */
	replacements[0] = cheap_arg;
	replacements[1] = expensive_arg;

Kazu Hirata committed
3820
	for (j = 0; j < 2 && replacements[j]; j++)
Richard Kenner committed
3821
	  {
3822 3823 3824 3825 3826 3827 3828 3829 3830
	    int old_cost = COST_IN (XEXP (x, i), code);
	    int new_cost = COST_IN (replacements[j], code);

	    /* Stop if what existed before was cheaper.  Prefer constants
	       in the case of a tie.  */
	    if (new_cost > old_cost
		|| (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
	      break;

Richard Kenner committed
3831 3832 3833
	    if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
	      break;

3834 3835 3836
	    if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c'
		|| code == LTGT || code == UNEQ || code == ORDERED
		|| code == UNORDERED)
Richard Kenner committed
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
	      {
		validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
		validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);

		if (apply_change_group ())
		  {
		    /* Swap them back to be invalid so that this loop can
		       continue and flag them to be swapped back later.  */
		    rtx tem;

		    tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
				       XEXP (x, 1) = tem;
		    must_swap = 1;
		    break;
		  }
	      }
	  }
      }

3856 3857 3858 3859 3860
    else
      {
	if (fmt[i] == 'E')
	  /* Don't try to fold inside of a vector of expressions.
	     Doing nothing is harmless.  */
3861
	  {;}
3862
      }
Richard Kenner committed
3863 3864 3865 3866 3867

  /* If a commutative operation, place a constant integer as the second
     operand unless the first operand is also a constant integer.  Otherwise,
     place any constant second unless the first operand is also a constant.  */

3868 3869 3870
  if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c'
      || code == LTGT || code == UNEQ || code == ORDERED
      || code == UNORDERED)
Richard Kenner committed
3871 3872 3873 3874 3875 3876
    {
      if (must_swap || (const_arg0
	  		&& (const_arg1 == 0
	      		    || (GET_CODE (const_arg0) == CONST_INT
			        && GET_CODE (const_arg1) != CONST_INT))))
	{
3877
	  rtx tem = XEXP (x, 0);
Richard Kenner committed
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899

	  if (insn == 0 && ! copied)
	    {
	      x = copy_rtx (x);
	      copied = 1;
	    }

	  validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
	  validate_change (insn, &XEXP (x, 1), tem, 1);
	  if (apply_change_group ())
	    {
	      tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
	      tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
	    }
	}
    }

  /* If X is an arithmetic operation, see if we can simplify it.  */

  switch (GET_RTX_CLASS (code))
    {
    case '1':
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
      {
	int is_const = 0;

	/* We can't simplify extension ops unless we know the
	   original mode.  */
	if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
	    && mode_arg0 == VOIDmode)
	  break;

	/* If we had a CONST, strip it off and put it back later if we
	   fold.  */
	if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
	  is_const = 1, const_arg0 = XEXP (const_arg0, 0);

	new = simplify_unary_operation (code, mode,
					const_arg0 ? const_arg0 : folded_arg0,
					mode_arg0);
	if (new != 0 && is_const)
3918
	  new = gen_rtx_CONST (mode, new);
3919
      }
Richard Kenner committed
3920
      break;
3921

Richard Kenner committed
3922 3923 3924 3925 3926 3927 3928 3929 3930
    case '<':
      /* See what items are actually being compared and set FOLDED_ARG[01]
	 to those values and CODE to the actual comparison code.  If any are
	 constant, set CONST_ARG0 and CONST_ARG1 appropriately.  We needn't
	 do anything if both operands are already known to be constant.  */

      if (const_arg0 == 0 || const_arg1 == 0)
	{
	  struct table_elt *p0, *p1;
3931
	  rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3932
	  enum machine_mode mode_arg1;
3933 3934

#ifdef FLOAT_STORE_FLAG_VALUE
3935
	  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3936
	    {
3937
	      true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
Kazu Hirata committed
3938
			  (FLOAT_STORE_FLAG_VALUE (mode), mode));
3939
	      false_rtx = CONST0_RTX (mode);
3940 3941
	    }
#endif
Richard Kenner committed
3942

3943 3944
	  code = find_comparison_args (code, &folded_arg0, &folded_arg1,
				       &mode_arg0, &mode_arg1);
Richard Kenner committed
3945 3946 3947
	  const_arg0 = equiv_constant (folded_arg0);
	  const_arg1 = equiv_constant (folded_arg1);

3948 3949 3950
	  /* If the mode is VOIDmode or a MODE_CC mode, we don't know
	     what kinds of things are being compared, so we can't do
	     anything with this comparison.  */
Richard Kenner committed
3951 3952 3953 3954

	  if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
	    break;

Mike Stump committed
3955 3956 3957
	  /* If we do not now have two constants being compared, see
	     if we can nevertheless deduce some things about the
	     comparison.  */
Richard Kenner committed
3958 3959
	  if (const_arg0 == 0 || const_arg1 == 0)
	    {
Mike Stump committed
3960 3961 3962
	      /* Is FOLDED_ARG0 frame-pointer plus a constant?  Or
		 non-explicit constant?  These aren't zero, but we
		 don't know their sign.  */
Richard Kenner committed
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
	      if (const_arg1 == const0_rtx
		  && (NONZERO_BASE_PLUS_P (folded_arg0)
#if 0  /* Sad to say, on sysvr4, #pragma weak can make a symbol address
	  come out as 0.  */
		      || GET_CODE (folded_arg0) == SYMBOL_REF
#endif
		      || GET_CODE (folded_arg0) == LABEL_REF
		      || GET_CODE (folded_arg0) == CONST))
		{
		  if (code == EQ)
3973
		    return false_rtx;
Richard Kenner committed
3974
		  else if (code == NE)
3975
		    return true_rtx;
Richard Kenner committed
3976 3977
		}

3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	      /* See if the two operands are the same.  */

	      if (folded_arg0 == folded_arg1
		  || (GET_CODE (folded_arg0) == REG
		      && GET_CODE (folded_arg1) == REG
		      && (REG_QTY (REGNO (folded_arg0))
			  == REG_QTY (REGNO (folded_arg1))))
		  || ((p0 = lookup (folded_arg0,
				    (safe_hash (folded_arg0, mode_arg0)
				     & HASH_MASK), mode_arg0))
		      && (p1 = lookup (folded_arg1,
				       (safe_hash (folded_arg1, mode_arg0)
					& HASH_MASK), mode_arg0))
		      && p0->first_same_value == p1->first_same_value))
		{
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
		  /* Sadly two equal NaNs are not equivalent.  */
		  if (!HONOR_NANS (mode_arg0))
		    return ((code == EQ || code == LE || code == GE
			     || code == LEU || code == GEU || code == UNEQ
			     || code == UNLE || code == UNGE
			     || code == ORDERED)
			    ? true_rtx : false_rtx);
		  /* Take care for the FP compares we can resolve.  */
		  if (code == UNEQ || code == UNLE || code == UNGE)
		    return true_rtx;
		  if (code == LTGT || code == LT || code == GT)
		    return false_rtx;
4005
		}
Richard Kenner committed
4006 4007 4008 4009 4010 4011

	      /* If FOLDED_ARG0 is a register, see if the comparison we are
		 doing now is either the same as we did before or the reverse
		 (we only check the reverse if not floating-point).  */
	      else if (GET_CODE (folded_arg0) == REG)
		{
4012
		  int qty = REG_QTY (REGNO (folded_arg0));
Richard Kenner committed
4013

4014 4015 4016 4017 4018
		  if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
		    {
		      struct qty_table_elem *ent = &qty_table[qty];

		      if ((comparison_dominates_p (ent->comparison_code, code)
4019 4020 4021
			   || (! FLOAT_MODE_P (mode_arg0)
			       && comparison_dominates_p (ent->comparison_code,
						          reverse_condition (code))))
4022 4023 4024 4025 4026 4027 4028
			  && (rtx_equal_p (ent->comparison_const, folded_arg1)
			      || (const_arg1
				  && rtx_equal_p (ent->comparison_const,
						  const_arg1))
			      || (GET_CODE (folded_arg1) == REG
				  && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
			return (comparison_dominates_p (ent->comparison_code, code)
4029
				? true_rtx : false_rtx);
4030
		    }
Richard Kenner committed
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
		}
	    }
	}

      /* If we are comparing against zero, see if the first operand is
	 equivalent to an IOR with a constant.  If so, we may be able to
	 determine the result of this comparison.  */

      if (const_arg1 == const0_rtx)
	{
	  rtx y = lookup_as_function (folded_arg0, IOR);
	  rtx inner_const;

	  if (y != 0
	      && (inner_const = equiv_constant (XEXP (y, 1))) != 0
	      && GET_CODE (inner_const) == CONST_INT
	      && INTVAL (inner_const) != 0)
	    {
	      int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
4050 4051 4052
	      int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
			      && (INTVAL (inner_const)
				  & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4053
	      rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
4054 4055

#ifdef FLOAT_STORE_FLAG_VALUE
4056
	      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4057
		{
4058
		  true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
4059
			  (FLOAT_STORE_FLAG_VALUE (mode), mode));
4060
		  false_rtx = CONST0_RTX (mode);
4061 4062
		}
#endif
Richard Kenner committed
4063 4064 4065 4066

	      switch (code)
		{
		case EQ:
4067
		  return false_rtx;
Richard Kenner committed
4068
		case NE:
4069
		  return true_rtx;
Richard Kenner committed
4070 4071
		case LT:  case LE:
		  if (has_sign)
4072
		    return true_rtx;
Richard Kenner committed
4073 4074 4075
		  break;
		case GT:  case GE:
		  if (has_sign)
4076
		    return false_rtx;
Richard Kenner committed
4077
		  break;
4078 4079
		default:
		  break;
Richard Kenner committed
4080 4081 4082 4083
		}
	    }
	}

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
      new = simplify_relational_operation (code,
					   (mode_arg0 != VOIDmode
					    ? mode_arg0
					    : (GET_MODE (const_arg0
							 ? const_arg0
							 : folded_arg0)
					       != VOIDmode)
					    ? GET_MODE (const_arg0
							? const_arg0
							: folded_arg0)
					    : GET_MODE (const_arg1
							? const_arg1
							: folded_arg1)),
Richard Kenner committed
4097 4098
					   const_arg0 ? const_arg0 : folded_arg0,
					   const_arg1 ? const_arg1 : folded_arg1);
4099 4100
#ifdef FLOAT_STORE_FLAG_VALUE
      if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
4101 4102 4103 4104 4105 4106 4107
	{
	  if (new == const0_rtx)
	    new = CONST0_RTX (mode);
	  else
	    new = (CONST_DOUBLE_FROM_REAL_VALUE
		   (FLOAT_STORE_FLAG_VALUE (mode), mode));
	}
4108
#endif
Richard Kenner committed
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
      break;

    case '2':
    case 'c':
      switch (code)
	{
	case PLUS:
	  /* If the second operand is a LABEL_REF, see if the first is a MINUS
	     with that LABEL_REF as its second operand.  If so, the result is
	     the first operand of that MINUS.  This handles switches with an
	     ADDR_DIFF_VEC table.  */
	  if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
	    {
4122 4123
	      rtx y
		= GET_CODE (folded_arg0) == MINUS ? folded_arg0
Kazu Hirata committed
4124
		: lookup_as_function (folded_arg0, MINUS);
Richard Kenner committed
4125 4126 4127 4128

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
		return XEXP (y, 0);
4129 4130

	      /* Now try for a CONST of a MINUS like the above.  */
4131 4132
	      if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
			: lookup_as_function (folded_arg0, CONST))) != 0
4133 4134
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
Kazu Hirata committed
4135
		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4136
		return XEXP (XEXP (y, 0), 0);
Richard Kenner committed
4137
	    }
Richard Kenner committed
4138

4139 4140 4141 4142 4143
	  /* Likewise if the operands are in the other order.  */
	  if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
	    {
	      rtx y
		= GET_CODE (folded_arg1) == MINUS ? folded_arg1
Kazu Hirata committed
4144
		: lookup_as_function (folded_arg1, MINUS);
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
		return XEXP (y, 0);

	      /* Now try for a CONST of a MINUS like the above.  */
	      if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
			: lookup_as_function (folded_arg1, CONST))) != 0
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
Kazu Hirata committed
4155
		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4156 4157 4158
		return XEXP (XEXP (y, 0), 0);
	    }

Richard Kenner committed
4159 4160 4161
	  /* If second operand is a register equivalent to a negative
	     CONST_INT, see if we can find a register equivalent to the
	     positive constant.  Make a MINUS if so.  Don't do this for
4162
	     a non-negative constant since we might then alternate between
4163
	     choosing positive and negative constants.  Having the positive
4164 4165 4166 4167 4168 4169 4170
	     constant previously-used is the more common case.  Be sure
	     the resulting constant is non-negative; if const_arg1 were
	     the smallest negative number this would overflow: depending
	     on the mode, this would either just be the same value (and
	     hence not save anything) or be incorrect.  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
	      && INTVAL (const_arg1) < 0
4171 4172
	      /* This used to test

Kazu Hirata committed
4173
	         -INTVAL (const_arg1) >= 0
4174 4175 4176 4177

		 But The Sun V5.0 compilers mis-compiled that test.  So
		 instead we test for the problematic value in a more direct
		 manner and hope the Sun compilers get it correct.  */
4178 4179
	      && INTVAL (const_arg1) !=
	        ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4180
	      && GET_CODE (folded_arg1) == REG)
Richard Kenner committed
4181
	    {
Kazu Hirata committed
4182
	      rtx new_const = GEN_INT (-INTVAL (const_arg1));
Richard Kenner committed
4183
	      struct table_elt *p
4184
		= lookup (new_const, safe_hash (new_const, mode) & HASH_MASK,
Richard Kenner committed
4185 4186 4187 4188 4189
			  mode);

	      if (p)
		for (p = p->first_same_value; p; p = p->next_same_value)
		  if (GET_CODE (p->exp) == REG)
4190 4191
		    return simplify_gen_binary (MINUS, mode, folded_arg0,
						canon_reg (p->exp, NULL_RTX));
Richard Kenner committed
4192
	    }
4193 4194 4195 4196 4197 4198 4199 4200 4201
	  goto from_plus;

	case MINUS:
	  /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
	     If so, produce (PLUS Z C2-C).  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      rtx y = lookup_as_function (XEXP (x, 0), PLUS);
	      if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4202 4203
		return fold_rtx (plus_constant (copy_rtx (y),
						-INTVAL (const_arg1)),
4204
				 NULL_RTX);
4205
	    }
Richard Kenner committed
4206

Kazu Hirata committed
4207
	  /* Fall through.  */
Richard Kenner committed
4208

4209
	from_plus:
Richard Kenner committed
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
	case SMIN:    case SMAX:      case UMIN:    case UMAX:
	case IOR:     case AND:       case XOR:
	case MULT:    case DIV:       case UDIV:
	case ASHIFT:  case LSHIFTRT:  case ASHIFTRT:
	  /* If we have (<op> <reg> <const_int>) for an associative OP and REG
	     is known to be of similar form, we may be able to replace the
	     operation with a combined operation.  This may eliminate the
	     intermediate operation if every use is simplified in this way.
	     Note that the similar optimization done by combine.c only works
	     if the intermediate operation's result has only one reference.  */

	  if (GET_CODE (folded_arg0) == REG
	      && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      int is_shift
		= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
	      rtx y = lookup_as_function (folded_arg0, code);
	      rtx inner_const;
	      enum rtx_code associate_code;
	      rtx new_const;

	      if (y == 0
		  || 0 == (inner_const
			   = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
		  || GET_CODE (inner_const) != CONST_INT
		  /* If we have compiled a statement like
		     "if (x == (x & mask1))", and now are looking at
		     "x & mask2", we will have a case where the first operand
		     of Y is the same as our first operand.  Unless we detect
		     this case, an infinite loop will result.  */
		  || XEXP (y, 0) == folded_arg0)
		break;

	      /* Don't associate these operations if they are a PLUS with the
		 same constant and it is a power of two.  These might be doable
		 with a pre- or post-increment.  Similarly for two subtracts of
		 identical powers of two with post decrement.  */

	      if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
4249 4250 4251 4252 4253 4254 4255 4256
		  && ((HAVE_PRE_INCREMENT
			  && exact_log2 (INTVAL (const_arg1)) >= 0)
		      || (HAVE_POST_INCREMENT
			  && exact_log2 (INTVAL (const_arg1)) >= 0)
		      || (HAVE_PRE_DECREMENT
			  && exact_log2 (- INTVAL (const_arg1)) >= 0)
		      || (HAVE_POST_DECREMENT
			  && exact_log2 (- INTVAL (const_arg1)) >= 0)))
Richard Kenner committed
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
		break;

	      /* Compute the code used to compose the constants.  For example,
		 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT.  */

	      associate_code
		= (code == MULT || code == DIV || code == UDIV ? MULT
		   : is_shift || code == PLUS || code == MINUS ? PLUS : code);

	      new_const = simplify_binary_operation (associate_code, mode,
						     const_arg1, inner_const);

	      if (new_const == 0)
		break;

	      /* If we are associating shift operations, don't let this
4273 4274 4275 4276
		 produce a shift of the size of the object or larger.
		 This could occur when we follow a sign-extend by a right
		 shift on a machine that does a sign-extend as a pair
		 of shifts.  */
Richard Kenner committed
4277 4278

	      if (is_shift && GET_CODE (new_const) == CONST_INT
4279 4280 4281 4282 4283 4284 4285 4286 4287
		  && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
		{
		  /* As an exception, we can turn an ASHIFTRT of this
		     form into a shift of the number of bits - 1.  */
		  if (code == ASHIFTRT)
		    new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
		  else
		    break;
		}
Richard Kenner committed
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297

	      y = copy_rtx (XEXP (y, 0));

	      /* If Y contains our first operand (the most common way this
		 can happen is if Y is a MEM), we would do into an infinite
		 loop if we tried to fold it.  So don't in that case.  */

	      if (! reg_mentioned_p (folded_arg0, y))
		y = fold_rtx (y, insn);

4298
	      return simplify_gen_binary (code, mode, y, new_const);
Richard Kenner committed
4299
	    }
4300 4301 4302 4303
	  break;

	default:
	  break;
Richard Kenner committed
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
	}

      new = simplify_binary_operation (code, mode,
				       const_arg0 ? const_arg0 : folded_arg0,
				       const_arg1 ? const_arg1 : folded_arg1);
      break;

    case 'o':
      /* (lo_sum (high X) X) is simply X.  */
      if (code == LO_SUM && const_arg0 != 0
	  && GET_CODE (const_arg0) == HIGH
	  && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
	return const_arg1;
      break;

    case '3':
    case 'b':
      new = simplify_ternary_operation (code, mode, mode_arg0,
					const_arg0 ? const_arg0 : folded_arg0,
					const_arg1 ? const_arg1 : folded_arg1,
					const_arg2 ? const_arg2 : XEXP (x, 2));
      break;
4326 4327

    case 'x':
Kazu Hirata committed
4328
      /* Always eliminate CONSTANT_P_RTX at this stage.  */
4329 4330 4331
      if (code == CONSTANT_P_RTX)
	return (const_arg0 ? const1_rtx : const0_rtx);
      break;
Richard Kenner committed
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
    }

  return new ? new : x;
}

/* Return a constant value currently equivalent to X.
   Return 0 if we don't know one.  */

static rtx
equiv_constant (x)
     rtx x;
{
  if (GET_CODE (x) == REG
4345 4346 4347 4348 4349 4350 4351 4352
      && REGNO_QTY_VALID_P (REGNO (x)))
    {
      int x_q = REG_QTY (REGNO (x));
      struct qty_table_elem *x_ent = &qty_table[x_q];

      if (x_ent->const_rtx)
	x = gen_lowpart_if_possible (GET_MODE (x), x_ent->const_rtx);
    }
Richard Kenner committed
4353

4354
  if (x == 0 || CONSTANT_P (x))
Richard Kenner committed
4355 4356
    return x;

4357 4358 4359 4360 4361 4362 4363 4364 4365
  /* If X is a MEM, try to fold it outside the context of any insn to see if
     it might be equivalent to a constant.  That handles the case where it
     is a constant-pool reference.  Then try to look it up in the hash table
     in case it is something whose value we have seen before.  */

  if (GET_CODE (x) == MEM)
    {
      struct table_elt *elt;

4366
      x = fold_rtx (x, NULL_RTX);
4367 4368 4369
      if (CONSTANT_P (x))
	return x;

4370
      elt = lookup (x, safe_hash (x, GET_MODE (x)) & HASH_MASK, GET_MODE (x));
4371 4372 4373 4374 4375 4376 4377 4378
      if (elt == 0)
	return 0;

      for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
	if (elt->is_const && CONSTANT_P (elt->exp))
	  return elt->exp;
    }

Richard Kenner committed
4379 4380 4381 4382 4383 4384
  return 0;
}

/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
   number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
   least-significant part of X.
4385
   MODE specifies how big a part of X to return.
Richard Kenner committed
4386 4387 4388 4389 4390 4391 4392 4393

   If the requested operation cannot be done, 0 is returned.

   This is similar to gen_lowpart in emit-rtl.c.  */

rtx
gen_lowpart_if_possible (mode, x)
     enum machine_mode mode;
4394
     rtx x;
Richard Kenner committed
4395 4396 4397 4398 4399 4400 4401 4402
{
  rtx result = gen_lowpart_common (mode, x);

  if (result)
    return result;
  else if (GET_CODE (x) == MEM)
    {
      /* This is the only other case we handle.  */
4403
      int offset = 0;
Richard Kenner committed
4404 4405
      rtx new;

4406 4407 4408 4409
      if (WORDS_BIG_ENDIAN)
	offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
		  - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
      if (BYTES_BIG_ENDIAN)
Richard Kenner committed
4410 4411 4412 4413 4414 4415
	/* Adjust the address so that the address-after-the-data is
	   unchanged.  */
	offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
		   - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));

      new = adjust_address_nv (x, mode, offset);
Richard Kenner committed
4416 4417
      if (! memory_address_p (mode, XEXP (new, 0)))
	return 0;
Richard Kenner committed
4418

Richard Kenner committed
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
      return new;
    }
  else
    return 0;
}

/* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
   branch.  It will be zero if not.

   In certain cases, this can cause us to add an equivalence.  For example,
4429
   if we are following the taken case of
Richard Kenner committed
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
   	if (i == 2)
   we can add the fact that `i' and '2' are now equivalent.

   In any case, we can record that this comparison was passed.  If the same
   comparison is seen later, we will know its value.  */

static void
record_jump_equiv (insn, taken)
     rtx insn;
     int taken;
{
  int cond_known_true;
  rtx op0, op1;
4443
  rtx set;
4444
  enum machine_mode mode, mode0, mode1;
Richard Kenner committed
4445 4446 4447 4448
  int reversed_nonequality = 0;
  enum rtx_code code;

  /* Ensure this is the right kind of insn.  */
4449
  if (! any_condjump_p (insn))
Richard Kenner committed
4450
    return;
4451
  set = pc_set (insn);
Richard Kenner committed
4452 4453 4454

  /* See if this jump condition is known true or false.  */
  if (taken)
4455
    cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
Richard Kenner committed
4456
  else
4457
    cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
Richard Kenner committed
4458 4459 4460 4461

  /* Get the type of comparison being done and the operands being compared.
     If we had to reverse a non-equality condition, record that fact so we
     know that it isn't valid for floating-point.  */
4462 4463 4464
  code = GET_CODE (XEXP (SET_SRC (set), 0));
  op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
  op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
Richard Kenner committed
4465

4466
  code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
Richard Kenner committed
4467 4468
  if (! cond_known_true)
    {
4469
      code = reversed_comparison_code_parts (code, op0, op1, insn);
4470 4471 4472 4473

      /* Don't remember if we can't find the inverse.  */
      if (code == UNKNOWN)
	return;
Richard Kenner committed
4474 4475 4476
    }

  /* The mode is the mode of the non-constant.  */
4477 4478 4479
  mode = mode0;
  if (mode1 != VOIDmode)
    mode = mode1;
Richard Kenner committed
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495

  record_jump_cond (code, mode, op0, op1, reversed_nonequality);
}

/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
   REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
   Make any useful entries we can with that information.  Called from
   above function and called recursively.  */

static void
record_jump_cond (code, mode, op0, op1, reversed_nonequality)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
     int reversed_nonequality;
{
Richard Kenner committed
4496
  unsigned op0_hash, op1_hash;
Bernd Schmidt committed
4497
  int op0_in_memory, op1_in_memory;
Richard Kenner committed
4498 4499 4500 4501 4502
  struct table_elt *op0_elt, *op1_elt;

  /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
     we know that they are also equal in the smaller mode (this is also
     true for all smaller modes whether or not there is a SUBREG, but
4503
     is not worth testing for with no SUBREG).  */
Richard Kenner committed
4504

4505
  /* Note that GET_MODE (op0) may not equal MODE.  */
Richard Kenner committed
4506
  if (code == EQ && GET_CODE (op0) == SUBREG
4507 4508
      && (GET_MODE_SIZE (GET_MODE (op0))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
Richard Kenner committed
4509 4510 4511 4512 4513
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
      rtx tem = gen_lowpart_if_possible (inner_mode, op1);

      record_jump_cond (code, mode, SUBREG_REG (op0),
4514
			tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
Richard Kenner committed
4515 4516 4517 4518
			reversed_nonequality);
    }

  if (code == EQ && GET_CODE (op1) == SUBREG
4519 4520
      && (GET_MODE_SIZE (GET_MODE (op1))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
Richard Kenner committed
4521 4522 4523 4524 4525
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
      rtx tem = gen_lowpart_if_possible (inner_mode, op0);

      record_jump_cond (code, mode, SUBREG_REG (op1),
4526
			tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
Richard Kenner committed
4527 4528 4529
			reversed_nonequality);
    }

4530
  /* Similarly, if this is an NE comparison, and either is a SUBREG
Richard Kenner committed
4531 4532
     making a smaller mode, we know the whole thing is also NE.  */

4533 4534 4535 4536
  /* Note that GET_MODE (op0) may not equal MODE;
     if we test MODE instead, we can get an infinite recursion
     alternating between two modes each wider than MODE.  */

Richard Kenner committed
4537 4538
  if (code == NE && GET_CODE (op0) == SUBREG
      && subreg_lowpart_p (op0)
4539 4540
      && (GET_MODE_SIZE (GET_MODE (op0))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
Richard Kenner committed
4541 4542 4543 4544 4545
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
      rtx tem = gen_lowpart_if_possible (inner_mode, op1);

      record_jump_cond (code, mode, SUBREG_REG (op0),
4546
			tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
Richard Kenner committed
4547 4548 4549 4550 4551
			reversed_nonequality);
    }

  if (code == NE && GET_CODE (op1) == SUBREG
      && subreg_lowpart_p (op1)
4552 4553
      && (GET_MODE_SIZE (GET_MODE (op1))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
Richard Kenner committed
4554 4555 4556 4557 4558
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
      rtx tem = gen_lowpart_if_possible (inner_mode, op0);

      record_jump_cond (code, mode, SUBREG_REG (op1),
4559
			tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
Richard Kenner committed
4560 4561 4562 4563 4564 4565 4566
			reversed_nonequality);
    }

  /* Hash both operands.  */

  do_not_record = 0;
  hash_arg_in_memory = 0;
Richard Kenner committed
4567
  op0_hash = HASH (op0, mode);
Richard Kenner committed
4568 4569 4570 4571 4572 4573 4574
  op0_in_memory = hash_arg_in_memory;

  if (do_not_record)
    return;

  do_not_record = 0;
  hash_arg_in_memory = 0;
Richard Kenner committed
4575
  op1_hash = HASH (op1, mode);
Richard Kenner committed
4576
  op1_in_memory = hash_arg_in_memory;
4577

Richard Kenner committed
4578 4579 4580 4581
  if (do_not_record)
    return;

  /* Look up both operands.  */
Richard Kenner committed
4582 4583
  op0_elt = lookup (op0, op0_hash, mode);
  op1_elt = lookup (op1, op1_hash, mode);
Richard Kenner committed
4584

4585 4586 4587 4588 4589 4590 4591
  /* If both operands are already equivalent or if they are not in the
     table but are identical, do nothing.  */
  if ((op0_elt != 0 && op1_elt != 0
       && op0_elt->first_same_value == op1_elt->first_same_value)
      || op0 == op1 || rtx_equal_p (op0, op1))
    return;

Richard Kenner committed
4592
  /* If we aren't setting two things equal all we can do is save this
4593 4594 4595 4596 4597
     comparison.   Similarly if this is floating-point.  In the latter
     case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
     If we record the equality, we might inadvertently delete code
     whose intent was to change -0 to +0.  */

4598
  if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
Richard Kenner committed
4599
    {
4600 4601 4602
      struct qty_table_elem *ent;
      int qty;

Richard Kenner committed
4603 4604 4605 4606 4607 4608 4609
      /* If we reversed a floating-point comparison, if OP0 is not a
	 register, or if OP1 is neither a register or constant, we can't
	 do anything.  */

      if (GET_CODE (op1) != REG)
	op1 = equiv_constant (op1);

4610
      if ((reversed_nonequality && FLOAT_MODE_P (mode))
Richard Kenner committed
4611 4612 4613 4614 4615 4616 4617
	  || GET_CODE (op0) != REG || op1 == 0)
	return;

      /* Put OP0 in the hash table if it isn't already.  This gives it a
	 new quantity number.  */
      if (op0_elt == 0)
	{
4618
	  if (insert_regs (op0, NULL, 0))
Richard Kenner committed
4619 4620
	    {
	      rehash_using_reg (op0);
Richard Kenner committed
4621
	      op0_hash = HASH (op0, mode);
4622 4623 4624 4625 4626

	      /* If OP0 is contained in OP1, this changes its hash code
		 as well.  Faster to rehash than to check, except
		 for the simple case of a constant.  */
	      if (! CONSTANT_P (op1))
Richard Kenner committed
4627
		op1_hash = HASH (op1,mode);
Richard Kenner committed
4628 4629
	    }

4630
	  op0_elt = insert (op0, NULL, op0_hash, mode);
Richard Kenner committed
4631 4632 4633
	  op0_elt->in_memory = op0_in_memory;
	}

4634 4635 4636 4637
      qty = REG_QTY (REGNO (op0));
      ent = &qty_table[qty];

      ent->comparison_code = code;
Richard Kenner committed
4638 4639
      if (GET_CODE (op1) == REG)
	{
4640
	  /* Look it up again--in case op0 and op1 are the same.  */
Richard Kenner committed
4641
	  op1_elt = lookup (op1, op1_hash, mode);
4642

Richard Kenner committed
4643 4644 4645
	  /* Put OP1 in the hash table so it gets a new quantity number.  */
	  if (op1_elt == 0)
	    {
4646
	      if (insert_regs (op1, NULL, 0))
Richard Kenner committed
4647 4648
		{
		  rehash_using_reg (op1);
Richard Kenner committed
4649
		  op1_hash = HASH (op1, mode);
Richard Kenner committed
4650 4651
		}

4652
	      op1_elt = insert (op1, NULL, op1_hash, mode);
Richard Kenner committed
4653 4654 4655
	      op1_elt->in_memory = op1_in_memory;
	    }

4656 4657
	  ent->comparison_const = NULL_RTX;
	  ent->comparison_qty = REG_QTY (REGNO (op1));
Richard Kenner committed
4658 4659 4660
	}
      else
	{
4661 4662
	  ent->comparison_const = op1;
	  ent->comparison_qty = -1;
Richard Kenner committed
4663 4664 4665 4666 4667
	}

      return;
    }

4668 4669
  /* If either side is still missing an equivalence, make it now,
     then merge the equivalences.  */
Richard Kenner committed
4670 4671 4672

  if (op0_elt == 0)
    {
4673
      if (insert_regs (op0, NULL, 0))
Richard Kenner committed
4674 4675
	{
	  rehash_using_reg (op0);
Richard Kenner committed
4676
	  op0_hash = HASH (op0, mode);
Richard Kenner committed
4677 4678
	}

4679
      op0_elt = insert (op0, NULL, op0_hash, mode);
Richard Kenner committed
4680 4681 4682 4683 4684
      op0_elt->in_memory = op0_in_memory;
    }

  if (op1_elt == 0)
    {
4685
      if (insert_regs (op1, NULL, 0))
Richard Kenner committed
4686 4687
	{
	  rehash_using_reg (op1);
Richard Kenner committed
4688
	  op1_hash = HASH (op1, mode);
Richard Kenner committed
4689 4690
	}

4691
      op1_elt = insert (op1, NULL, op1_hash, mode);
Richard Kenner committed
4692 4693
      op1_elt->in_memory = op1_in_memory;
    }
4694 4695 4696

  merge_equiv_classes (op0_elt, op1_elt);
  last_jump_equiv_class = op0_elt;
Richard Kenner committed
4697 4698 4699 4700 4701 4702
}

/* CSE processing for one instruction.
   First simplify sources and addresses of all assignments
   in the instruction, using previously-computed equivalents values.
   Then install the new sources and destinations in the table
4703
   of available values.
Richard Kenner committed
4704

4705 4706
   If LIBCALL_INSN is nonzero, don't record any equivalence made in
   the insn.  It means that INSN is inside libcall block.  In this
Kazu Hirata committed
4707
   case LIBCALL_INSN is the corresponding insn with REG_LIBCALL.  */
Richard Kenner committed
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718

/* Data on one SET contained in the instruction.  */

struct set
{
  /* The SET rtx itself.  */
  rtx rtl;
  /* The SET_SRC of the rtx (the original value, if it is changing).  */
  rtx src;
  /* The hash-table element for the SET_SRC of the SET.  */
  struct table_elt *src_elt;
Richard Kenner committed
4719 4720 4721 4722
  /* Hash value for the SET_SRC.  */
  unsigned src_hash;
  /* Hash value for the SET_DEST.  */
  unsigned dest_hash;
Richard Kenner committed
4723 4724
  /* The SET_DEST, with SUBREG, etc., stripped.  */
  rtx inner_dest;
4725
  /* Nonzero if the SET_SRC is in memory.  */
Richard Kenner committed
4726 4727 4728 4729 4730 4731 4732 4733
  char src_in_memory;
  /* Nonzero if the SET_SRC contains something
     whose value cannot be predicted and understood.  */
  char src_volatile;
  /* Original machine mode, in case it becomes a CONST_INT.  */
  enum machine_mode mode;
  /* A constant equivalent for SET_SRC, if any.  */
  rtx src_const;
4734 4735
  /* Original SET_SRC value used for libcall notes.  */
  rtx orig_src;
Richard Kenner committed
4736 4737
  /* Hash value of constant equivalent for SET_SRC.  */
  unsigned src_const_hash;
Richard Kenner committed
4738 4739 4740 4741 4742
  /* Table entry for constant equivalent for SET_SRC, if any.  */
  struct table_elt *src_const_elt;
};

static void
4743
cse_insn (insn, libcall_insn)
Richard Kenner committed
4744
     rtx insn;
4745
     rtx libcall_insn;
Richard Kenner committed
4746
{
4747 4748
  rtx x = PATTERN (insn);
  int i;
4749
  rtx tem;
4750
  int n_sets = 0;
Richard Kenner committed
4751

4752
#ifdef HAVE_cc0
Richard Kenner committed
4753 4754
  /* Records what this insn does to set CC0.  */
  rtx this_insn_cc0 = 0;
4755
  enum machine_mode this_insn_cc0_mode = VOIDmode;
4756
#endif
Richard Kenner committed
4757 4758 4759

  rtx src_eqv = 0;
  struct table_elt *src_eqv_elt = 0;
Kaveh R. Ghazi committed
4760 4761 4762
  int src_eqv_volatile = 0;
  int src_eqv_in_memory = 0;
  unsigned src_eqv_hash = 0;
Richard Kenner committed
4763

4764
  struct set *sets = (struct set *) 0;
Richard Kenner committed
4765 4766 4767 4768 4769 4770 4771 4772

  this_insn = insn;

  /* Find all the SETs and CLOBBERs in this instruction.
     Record all the SETs in the array `set' and count them.
     Also determine whether there is a CLOBBER that invalidates
     all memory references, or all references at varying addresses.  */

4773 4774 4775
  if (GET_CODE (insn) == CALL_INSN)
    {
      for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4776 4777 4778 4779 4780
	{
	  if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
	    invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
	  XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
	}
4781 4782
    }

Richard Kenner committed
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
  if (GET_CODE (x) == SET)
    {
      sets = (struct set *) alloca (sizeof (struct set));
      sets[0].rtl = x;

      /* Ignore SETs that are unconditional jumps.
	 They never need cse processing, so this does not hurt.
	 The reason is not efficiency but rather
	 so that we can test at the end for instructions
	 that have been simplified to unconditional jumps
	 and not be misled by unchanged instructions
	 that were unconditional jumps to begin with.  */
      if (SET_DEST (x) == pc_rtx
	  && GET_CODE (SET_SRC (x)) == LABEL_REF)
	;

      /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
	 The hard function value register is used only once, to copy to
	 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
	 Ensure we invalidate the destination register.  On the 80386 no
4803
	 other code would invalidate it since it is a fixed_reg.
Mike Stump committed
4804
	 We need not check the return of apply_change_group; see canon_reg.  */
Richard Kenner committed
4805 4806 4807 4808

      else if (GET_CODE (SET_SRC (x)) == CALL)
	{
	  canon_reg (SET_SRC (x), insn);
4809
	  apply_change_group ();
Richard Kenner committed
4810
	  fold_rtx (SET_SRC (x), insn);
4811
	  invalidate (SET_DEST (x), VOIDmode);
Richard Kenner committed
4812 4813 4814 4815 4816 4817
	}
      else
	n_sets = 1;
    }
  else if (GET_CODE (x) == PARALLEL)
    {
4818
      int lim = XVECLEN (x, 0);
Richard Kenner committed
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829

      sets = (struct set *) alloca (lim * sizeof (struct set));

      /* Find all regs explicitly clobbered in this insn,
	 and ensure they are not replaced with any other regs
	 elsewhere in this insn.
	 When a reg that is clobbered is also used for input,
	 we should presume that that is for a reason,
	 and we should not substitute some other register
	 which is not supposed to be clobbered.
	 Therefore, this loop cannot be merged into the one below
4830
	 because a CALL may precede a CLOBBER and refer to the
Richard Kenner committed
4831 4832 4833 4834
	 value clobbered.  We must not let a canonicalization do
	 anything in that case.  */
      for (i = 0; i < lim; i++)
	{
4835
	  rtx y = XVECEXP (x, 0, i);
4836 4837 4838 4839 4840 4841
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx clobbered = XEXP (y, 0);

	      if (GET_CODE (clobbered) == REG
		  || GET_CODE (clobbered) == SUBREG)
4842
		invalidate (clobbered, VOIDmode);
4843 4844
	      else if (GET_CODE (clobbered) == STRICT_LOW_PART
		       || GET_CODE (clobbered) == ZERO_EXTRACT)
4845
		invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4846
	    }
Richard Kenner committed
4847
	}
4848

Richard Kenner committed
4849 4850
      for (i = 0; i < lim; i++)
	{
4851
	  rtx y = XVECEXP (x, 0, i);
Richard Kenner committed
4852 4853
	  if (GET_CODE (y) == SET)
	    {
4854 4855
	      /* As above, we ignore unconditional jumps and call-insns and
		 ignore the result of apply_change_group.  */
Richard Kenner committed
4856 4857 4858
	      if (GET_CODE (SET_SRC (y)) == CALL)
		{
		  canon_reg (SET_SRC (y), insn);
4859
		  apply_change_group ();
Richard Kenner committed
4860
		  fold_rtx (SET_SRC (y), insn);
4861
		  invalidate (SET_DEST (y), VOIDmode);
Richard Kenner committed
4862 4863 4864 4865 4866 4867 4868 4869 4870
		}
	      else if (SET_DEST (y) == pc_rtx
		       && GET_CODE (SET_SRC (y)) == LABEL_REF)
		;
	      else
		sets[n_sets++].rtl = y;
	    }
	  else if (GET_CODE (y) == CLOBBER)
	    {
4871
	      /* If we clobber memory, canon the address.
Richard Kenner committed
4872 4873 4874
		 This does nothing when a register is clobbered
		 because we have already invalidated the reg.  */
	      if (GET_CODE (XEXP (y, 0)) == MEM)
4875
		canon_reg (XEXP (y, 0), NULL_RTX);
Richard Kenner committed
4876 4877 4878 4879
	    }
	  else if (GET_CODE (y) == USE
		   && ! (GET_CODE (XEXP (y, 0)) == REG
			 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4880
	    canon_reg (y, NULL_RTX);
Richard Kenner committed
4881 4882
	  else if (GET_CODE (y) == CALL)
	    {
4883 4884
	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */
Richard Kenner committed
4885
	      canon_reg (y, insn);
4886
	      apply_change_group ();
Richard Kenner committed
4887 4888 4889 4890 4891 4892 4893
	      fold_rtx (y, insn);
	    }
	}
    }
  else if (GET_CODE (x) == CLOBBER)
    {
      if (GET_CODE (XEXP (x, 0)) == MEM)
4894
	canon_reg (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
4895 4896 4897 4898 4899 4900
    }

  /* Canonicalize a USE of a pseudo register or memory location.  */
  else if (GET_CODE (x) == USE
	   && ! (GET_CODE (XEXP (x, 0)) == REG
		 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4901
    canon_reg (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
4902 4903
  else if (GET_CODE (x) == CALL)
    {
4904
      /* The result of apply_change_group can be ignored; see canon_reg.  */
Richard Kenner committed
4905
      canon_reg (x, insn);
4906
      apply_change_group ();
Richard Kenner committed
4907 4908 4909
      fold_rtx (x, insn);
    }

4910 4911 4912
  /* Store the equivalent value in SRC_EQV, if different, or if the DEST
     is a STRICT_LOW_PART.  The latter condition is necessary because SRC_EQV
     is handled specially for this case, and if it isn't set, then there will
Richard Kenner committed
4913
     be no equivalence for the destination.  */
4914 4915
  if (n_sets == 1 && REG_NOTES (insn) != 0
      && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4916 4917
      && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
	  || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4918 4919 4920 4921
    {
      src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
      XEXP (tem, 0) = src_eqv;
    }
Richard Kenner committed
4922 4923 4924 4925 4926 4927 4928 4929 4930

  /* Canonicalize sources and addresses of destinations.
     We do this in a separate pass to avoid problems when a MATCH_DUP is
     present in the insn pattern.  In that case, we want to ensure that
     we don't break the duplicate nature of the pattern.  So we will replace
     both operands at the same time.  Otherwise, we would fail to find an
     equivalent substitution in the loop calling validate_change below.

     We used to suppress canonicalization of DEST if it appears in SRC,
4931
     but we don't do this any more.  */
Richard Kenner committed
4932 4933 4934 4935 4936 4937

  for (i = 0; i < n_sets; i++)
    {
      rtx dest = SET_DEST (sets[i].rtl);
      rtx src = SET_SRC (sets[i].rtl);
      rtx new = canon_reg (src, insn);
4938
      int insn_code;
Richard Kenner committed
4939

4940
      sets[i].orig_src = src;
4941 4942 4943
      if ((GET_CODE (new) == REG && GET_CODE (src) == REG
	   && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
	       != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4944
	  || (insn_code = recog_memoized (insn)) < 0
4945
	  || insn_data[insn_code].n_dups > 0)
4946
	validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
Richard Kenner committed
4947 4948 4949 4950 4951 4952
      else
	SET_SRC (sets[i].rtl) = new;

      if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
	{
	  validate_change (insn, &XEXP (dest, 1),
4953
			   canon_reg (XEXP (dest, 1), insn), 1);
Richard Kenner committed
4954
	  validate_change (insn, &XEXP (dest, 2),
4955
			   canon_reg (XEXP (dest, 2), insn), 1);
Richard Kenner committed
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
	}

      while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SIGN_EXTRACT)
	dest = XEXP (dest, 0);

      if (GET_CODE (dest) == MEM)
	canon_reg (dest, insn);
    }

4967 4968 4969 4970
  /* Now that we have done all the replacements, we can apply the change
     group and see if they all work.  Note that this will cause some
     canonicalizations that would have worked individually not to be applied
     because some other canonicalization didn't work, but this should not
4971
     occur often.
4972 4973

     The result of apply_change_group can be ignored; see canon_reg.  */
4974 4975 4976

  apply_change_group ();

Richard Kenner committed
4977 4978 4979 4980 4981 4982 4983 4984 4985
  /* Set sets[i].src_elt to the class each source belongs to.
     Detect assignments from or to volatile things
     and set set[i] to zero so they will be ignored
     in the rest of this function.

     Nothing in this loop changes the hash table or the register chains.  */

  for (i = 0; i < n_sets; i++)
    {
4986 4987 4988
      rtx src, dest;
      rtx src_folded;
      struct table_elt *elt = 0, *p;
Richard Kenner committed
4989 4990 4991 4992 4993
      enum machine_mode mode;
      rtx src_eqv_here;
      rtx src_const = 0;
      rtx src_related = 0;
      struct table_elt *src_const_elt = 0;
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
      int src_cost = MAX_COST;
      int src_eqv_cost = MAX_COST;
      int src_folded_cost = MAX_COST;
      int src_related_cost = MAX_COST;
      int src_elt_cost = MAX_COST;
      int src_regcost = MAX_COST;
      int src_eqv_regcost = MAX_COST;
      int src_folded_regcost = MAX_COST;
      int src_related_regcost = MAX_COST;
      int src_elt_regcost = MAX_COST;
Richard Kenner committed
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024
      /* Set non-zero if we need to call force_const_mem on with the
	 contents of src_folded before using it.  */
      int src_folded_force_flag = 0;

      dest = SET_DEST (sets[i].rtl);
      src = SET_SRC (sets[i].rtl);

      /* If SRC is a constant that has no machine mode,
	 hash it with the destination's machine mode.
	 This way we can keep different modes separate.  */

      mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
      sets[i].mode = mode;

      if (src_eqv)
	{
	  enum machine_mode eqvmode = mode;
	  if (GET_CODE (dest) == STRICT_LOW_PART)
	    eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  do_not_record = 0;
	  hash_arg_in_memory = 0;
Richard Kenner committed
5025
	  src_eqv_hash = HASH (src_eqv, eqvmode);
Richard Kenner committed
5026 5027 5028 5029

	  /* Find the equivalence class for the equivalent expression.  */

	  if (!do_not_record)
Richard Kenner committed
5030
	    src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
Richard Kenner committed
5031 5032 5033 5034 5035 5036 5037

	  src_eqv_volatile = do_not_record;
	  src_eqv_in_memory = hash_arg_in_memory;
	}

      /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
	 value of the INNER register, not the destination.  So it is not
Richard Kenner committed
5038
	 a valid substitution for the source.  But save it for later.  */
Richard Kenner committed
5039 5040 5041 5042 5043 5044 5045 5046 5047
      if (GET_CODE (dest) == STRICT_LOW_PART)
	src_eqv_here = 0;
      else
	src_eqv_here = src_eqv;

      /* Simplify and foldable subexpressions in SRC.  Then get the fully-
	 simplified result, which may not necessarily be valid.  */
      src_folded = fold_rtx (src, insn);

5048 5049 5050 5051 5052 5053 5054
#if 0
      /* ??? This caused bad code to be generated for the m68k port with -O2.
	 Suppose src is (CONST_INT -1), and that after truncation src_folded
	 is (CONST_INT 3).  Suppose src_folded is then used for src_const.
	 At the end we will add src and src_const to the same equivalence
	 class.  We now have 3 and -1 on the same equivalence class.  This
	 causes later instructions to be mis-optimized.  */
Richard Kenner committed
5055 5056 5057 5058 5059 5060 5061 5062 5063
      /* If storing a constant in a bitfield, pre-truncate the constant
	 so we will be able to record it later.  */
      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
	  || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (GET_CODE (src) == CONST_INT
	      && GET_CODE (width) == CONST_INT
5064 5065 5066 5067 5068
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
	    src_folded
	      = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
					  << INTVAL (width)) - 1));
Richard Kenner committed
5069
	}
5070
#endif
Richard Kenner committed
5071 5072 5073 5074 5075 5076 5077 5078

      /* Compute SRC's hash code, and also notice if it
	 should not be recorded at all.  In that case,
	 prevent any further processing of this assignment.  */
      do_not_record = 0;
      hash_arg_in_memory = 0;

      sets[i].src = src;
Richard Kenner committed
5079
      sets[i].src_hash = HASH (src, mode);
Richard Kenner committed
5080 5081 5082
      sets[i].src_volatile = do_not_record;
      sets[i].src_in_memory = hash_arg_in_memory;

5083
      /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
5084 5085 5086 5087 5088
	 a pseudo, do not record SRC.  Using SRC as a replacement for
	 anything else will be incorrect in that situation.  Note that
	 this usually occurs only for stack slots, in which case all the
	 RTL would be referring to SRC, so we don't lose any optimization
	 opportunities by not having SRC in the hash table.  */
5089 5090

      if (GET_CODE (src) == MEM
5091
	  && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
5092
	  && GET_CODE (dest) == REG
5093
	  && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5094 5095
	sets[i].src_volatile = 1;

5096 5097 5098 5099
#if 0
      /* It is no longer clear why we used to do this, but it doesn't
	 appear to still be needed.  So let's try without it since this
	 code hurts cse'ing widened ops.  */
Richard Kenner committed
5100 5101 5102 5103 5104 5105 5106 5107
      /* If source is a perverse subreg (such as QI treated as an SI),
	 treat it as volatile.  It may do the work of an SI in one context
	 where the extra bits are not being used, but cannot replace an SI
	 in general.  */
      if (GET_CODE (src) == SUBREG
	  && (GET_MODE_SIZE (GET_MODE (src))
	      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
	sets[i].src_volatile = 1;
5108
#endif
Richard Kenner committed
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126

      /* Locate all possible equivalent forms for SRC.  Try to replace
         SRC in the insn with each cheaper equivalent.

         We have the following types of equivalents: SRC itself, a folded
         version, a value given in a REG_EQUAL note, or a value related
	 to a constant.

         Each of these equivalents may be part of an additional class
         of equivalents (if more than one is in the table, they must be in
         the same class; we check for this).

	 If the source is volatile, we don't do any table lookups.

         We note any constant equivalent for possible later use in a
         REG_NOTE.  */

      if (!sets[i].src_volatile)
Richard Kenner committed
5127
	elt = lookup (src, sets[i].src_hash, mode);
Richard Kenner committed
5128 5129 5130 5131

      sets[i].src_elt = elt;

      if (elt && src_eqv_here && src_eqv_elt)
5132 5133
	{
	  if (elt->first_same_value != src_eqv_elt->first_same_value)
Richard Kenner committed
5134 5135 5136 5137
	    {
	      /* The REG_EQUAL is indicating that two formerly distinct
		 classes are now equivalent.  So merge them.  */
	      merge_equiv_classes (elt, src_eqv_elt);
Richard Kenner committed
5138 5139
	      src_eqv_hash = HASH (src_eqv, elt->mode);
	      src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
Richard Kenner committed
5140 5141
	    }

5142 5143
	  src_eqv_here = 0;
	}
Richard Kenner committed
5144 5145

      else if (src_eqv_elt)
5146
	elt = src_eqv_elt;
Richard Kenner committed
5147 5148 5149 5150

      /* Try to find a constant somewhere and record it in `src_const'.
	 Record its table element, if any, in `src_const_elt'.  Look in
	 any known equivalences first.  (If the constant is not in the
Richard Kenner committed
5151
	 table, also set `sets[i].src_const_hash').  */
Richard Kenner committed
5152
      if (elt)
5153
	for (p = elt->first_same_value; p; p = p->next_same_value)
Richard Kenner committed
5154 5155 5156 5157 5158 5159 5160 5161 5162
	  if (p->is_const)
	    {
	      src_const = p->exp;
	      src_const_elt = elt;
	      break;
	    }

      if (src_const == 0
	  && (CONSTANT_P (src_folded)
5163
	      /* Consider (minus (label_ref L1) (label_ref L2)) as
Richard Kenner committed
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
		 "constant" here so we will record it. This allows us
		 to fold switch statements when an ADDR_DIFF_VEC is used.  */
	      || (GET_CODE (src_folded) == MINUS
		  && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
		  && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
	src_const = src_folded, src_const_elt = elt;
      else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
	src_const = src_eqv_here, src_const_elt = src_eqv_elt;

      /* If we don't know if the constant is in the table, get its
	 hash code and look it up.  */
      if (src_const && src_const_elt == 0)
	{
Richard Kenner committed
5177 5178
	  sets[i].src_const_hash = HASH (src_const, mode);
	  src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
Richard Kenner committed
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
	}

      sets[i].src_const = src_const;
      sets[i].src_const_elt = src_const_elt;

      /* If the constant and our source are both in the table, mark them as
	 equivalent.  Otherwise, if a constant is in the table but the source
	 isn't, set ELT to it.  */
      if (src_const_elt && elt
	  && src_const_elt->first_same_value != elt->first_same_value)
	merge_equiv_classes (elt, src_const_elt);
      else if (src_const_elt && elt == 0)
	elt = src_const_elt;

      /* See if there is a register linearly related to a constant
         equivalent of SRC.  */
      if (src_const
	  && (GET_CODE (src_const) == CONST
	      || (src_const_elt && src_const_elt->related_value != 0)))
5198 5199 5200 5201
	{
	  src_related = use_related_value (src_const, src_const_elt);
	  if (src_related)
	    {
Richard Kenner committed
5202
	      struct table_elt *src_related_elt
5203
		= lookup (src_related, HASH (src_related, mode), mode);
Richard Kenner committed
5204
	      if (src_related_elt && elt)
5205
		{
Richard Kenner committed
5206 5207
		  if (elt->first_same_value
		      != src_related_elt->first_same_value)
5208
		    /* This can occur when we previously saw a CONST
Richard Kenner committed
5209 5210 5211 5212
		       involving a SYMBOL_REF and then see the SYMBOL_REF
		       twice.  Merge the involved classes.  */
		    merge_equiv_classes (elt, src_related_elt);

5213
		  src_related = 0;
Richard Kenner committed
5214
		  src_related_elt = 0;
5215 5216 5217
		}
	      else if (src_related_elt && elt == 0)
		elt = src_related_elt;
Richard Kenner committed
5218
	    }
5219
	}
Richard Kenner committed
5220

5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
      /* See if we have a CONST_INT that is already in a register in a
	 wider mode.  */

      if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
	  && GET_MODE_CLASS (mode) == MODE_INT
	  && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
	{
	  enum machine_mode wider_mode;

	  for (wider_mode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
	       && src_related == 0;
	       wider_mode = GET_MODE_WIDER_MODE (wider_mode))
	    {
	      struct table_elt *const_elt
		= lookup (src_const, HASH (src_const, wider_mode), wider_mode);

	      if (const_elt == 0)
		continue;

	      for (const_elt = const_elt->first_same_value;
		   const_elt; const_elt = const_elt->next_same_value)
		if (GET_CODE (const_elt->exp) == REG)
		  {
		    src_related = gen_lowpart_if_possible (mode,
							   const_elt->exp);
		    break;
		  }
	    }
	}

5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
      /* Another possibility is that we have an AND with a constant in
	 a mode narrower than a word.  If so, it might have been generated
	 as part of an "if" which would narrow the AND.  If we already
	 have done the AND in a wider mode, we can use a SUBREG of that
	 value.  */

      if (flag_expensive_optimizations && ! src_related
	  && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
	  && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	{
	  enum machine_mode tmode;
5263
	  rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293

	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
	      rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
	      struct table_elt *larger_elt;

	      if (inner)
		{
		  PUT_MODE (new_and, tmode);
		  XEXP (new_and, 0) = inner;
		  larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
		  if (larger_elt == 0)
		    continue;

		  for (larger_elt = larger_elt->first_same_value;
		       larger_elt; larger_elt = larger_elt->next_same_value)
		    if (GET_CODE (larger_elt->exp) == REG)
		      {
			src_related
			  = gen_lowpart_if_possible (mode, larger_elt->exp);
			break;
		      }

		  if (src_related)
		    break;
		}
	    }
	}
5294 5295 5296 5297 5298 5299

#ifdef LOAD_EXTEND_OP
      /* See if a MEM has already been loaded with a widening operation;
	 if it has, we can use a subreg of that.  Many CISC machines
	 also have such operations, but this is only likely to be
	 beneficial these machines.  */
5300

Kazu Hirata committed
5301
      if (flag_expensive_optimizations && src_related == 0
5302 5303 5304 5305 5306 5307
	  && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	  && GET_MODE_CLASS (mode) == MODE_INT
	  && GET_CODE (src) == MEM && ! do_not_record
	  && LOAD_EXTEND_OP (mode) != NIL)
	{
	  enum machine_mode tmode;
5308

5309 5310 5311 5312
	  /* Set what we are trying to extend and the operation it might
	     have been extended with.  */
	  PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
	  XEXP (memory_extend_rtx, 0) = src;
5313

5314 5315 5316 5317 5318
	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
	      struct table_elt *larger_elt;
5319

5320
	      PUT_MODE (memory_extend_rtx, tmode);
5321
	      larger_elt = lookup (memory_extend_rtx,
5322 5323 5324
				   HASH (memory_extend_rtx, tmode), tmode);
	      if (larger_elt == 0)
		continue;
5325

5326 5327 5328 5329
	      for (larger_elt = larger_elt->first_same_value;
		   larger_elt; larger_elt = larger_elt->next_same_value)
		if (GET_CODE (larger_elt->exp) == REG)
		  {
5330
		    src_related = gen_lowpart_if_possible (mode,
5331 5332 5333
							   larger_elt->exp);
		    break;
		  }
5334

5335 5336 5337 5338 5339
	      if (src_related)
		break;
	    }
	}
#endif /* LOAD_EXTEND_OP */
5340

Richard Kenner committed
5341
      if (src == src_folded)
5342
	src_folded = 0;
Richard Kenner committed
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354

      /* At this point, ELT, if non-zero, points to a class of expressions
         equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
	 and SRC_RELATED, if non-zero, each contain additional equivalent
	 expressions.  Prune these latter expressions by deleting expressions
	 already in the equivalence class.

	 Check for an equivalent identical to the destination.  If found,
	 this is the preferred equivalent since it will likely lead to
	 elimination of the insn.  Indicate this by placing it in
	 `src_related'.  */

5355 5356
      if (elt)
	elt = elt->first_same_value;
Richard Kenner committed
5357
      for (p = elt; p; p = p->next_same_value)
5358
	{
Richard Kenner committed
5359 5360 5361 5362 5363 5364 5365 5366
	  enum rtx_code code = GET_CODE (p->exp);

	  /* If the expression is not valid, ignore it.  Then we do not
	     have to check for validity below.  In most cases, we can use
	     `rtx_equal_p', since canonicalization has already been done.  */
	  if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
	    continue;

5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
	  /* Also skip paradoxical subregs, unless that's what we're
	     looking for.  */
	  if (code == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (p->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (p->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
	    continue;

5379
	  if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
Richard Kenner committed
5380
	    src = 0;
5381
	  else if (src_folded && GET_CODE (src_folded) == code
Richard Kenner committed
5382 5383
		   && rtx_equal_p (src_folded, p->exp))
	    src_folded = 0;
5384
	  else if (src_eqv_here && GET_CODE (src_eqv_here) == code
Richard Kenner committed
5385 5386
		   && rtx_equal_p (src_eqv_here, p->exp))
	    src_eqv_here = 0;
5387
	  else if (src_related && GET_CODE (src_related) == code
Richard Kenner committed
5388 5389 5390 5391 5392 5393 5394 5395
		   && rtx_equal_p (src_related, p->exp))
	    src_related = 0;

	  /* This is the same as the destination of the insns, we want
	     to prefer it.  Copy it to src_related.  The code below will
	     then give it a negative cost.  */
	  if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
	    src_related = dest;
5396
	}
Richard Kenner committed
5397 5398 5399 5400 5401

      /* Find the cheapest valid equivalent, trying all the available
         possibilities.  Prefer items not in the hash table to ones
         that are when they are equal cost.  Note that we can never
         worsen an insn as the current contents will also succeed.
5402
	 If we find an equivalent identical to the destination, use it as best,
Mike Stump committed
5403
	 since this insn will probably be eliminated in that case.  */
Richard Kenner committed
5404 5405 5406
      if (src)
	{
	  if (rtx_equal_p (src, dest))
5407
	    src_cost = src_regcost = -1;
Richard Kenner committed
5408
	  else
5409 5410 5411 5412
	    {
	      src_cost = COST (src);
	      src_regcost = approx_reg_cost (src);
	    }
Richard Kenner committed
5413 5414 5415 5416 5417
	}

      if (src_eqv_here)
	{
	  if (rtx_equal_p (src_eqv_here, dest))
5418
	    src_eqv_cost = src_eqv_regcost = -1;
Richard Kenner committed
5419
	  else
5420 5421 5422 5423
	    {
	      src_eqv_cost = COST (src_eqv_here);
	      src_eqv_regcost = approx_reg_cost (src_eqv_here);
	    }
Richard Kenner committed
5424 5425 5426 5427 5428
	}

      if (src_folded)
	{
	  if (rtx_equal_p (src_folded, dest))
5429
	    src_folded_cost = src_folded_regcost = -1;
Richard Kenner committed
5430
	  else
5431 5432 5433 5434
	    {
	      src_folded_cost = COST (src_folded);
	      src_folded_regcost = approx_reg_cost (src_folded);
	    }
Richard Kenner committed
5435 5436 5437 5438 5439
	}

      if (src_related)
	{
	  if (rtx_equal_p (src_related, dest))
5440
	    src_related_cost = src_related_regcost = -1;
Richard Kenner committed
5441
	  else
5442 5443 5444 5445
	    {
	      src_related_cost = COST (src_related);
	      src_related_regcost = approx_reg_cost (src_related);
	    }
Richard Kenner committed
5446 5447 5448 5449 5450
	}

      /* If this was an indirect jump insn, a known label will really be
	 cheaper even though it looks more expensive.  */
      if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5451
	src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5452

Richard Kenner committed
5453 5454 5455
      /* Terminate loop when replacement made.  This must terminate since
         the current contents will be tested and will always be valid.  */
      while (1)
5456 5457
	{
	  rtx trial;
Richard Kenner committed
5458

5459 5460 5461 5462
	  /* Skip invalid entries.  */
	  while (elt && GET_CODE (elt->exp) != REG
		 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
	    elt = elt->next_same_value;
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481

	  /* A paradoxical subreg would be bad here: it'll be the right
	     size, but later may be adjusted so that the upper bits aren't
	     what we want.  So reject it.  */
	  if (elt != 0
	      && GET_CODE (elt->exp) == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (elt->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
	      /* It is okay, though, if the rtx we're trying to match
		 will ignore any of the bits we can't predict.  */
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (elt->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
	    {
	      elt = elt->next_same_value;
	      continue;
	    }
5482

Kazu Hirata committed
5483
	  if (elt)
5484 5485 5486 5487
	    {
	      src_elt_cost = elt->cost;
	      src_elt_regcost = elt->regcost;
	    }
Richard Kenner committed
5488

Kazu Hirata committed
5489
	  /* Find cheapest and skip it for the next time.   For items
Richard Kenner committed
5490 5491
	     of equal cost, use this order:
	     src_folded, src, src_eqv, src_related and hash table entry.  */
5492 5493 5494
	  if (src_folded
	      && preferrable (src_folded_cost, src_folded_regcost,
			      src_cost, src_regcost) <= 0
5495 5496 5497 5498 5499 5500
	      && preferrable (src_folded_cost, src_folded_regcost,
			      src_eqv_cost, src_eqv_regcost) <= 0
	      && preferrable (src_folded_cost, src_folded_regcost,
			      src_related_cost, src_related_regcost) <= 0
	      && preferrable (src_folded_cost, src_folded_regcost,
			      src_elt_cost, src_elt_regcost) <= 0)
Richard Kenner committed
5501
	    {
5502
	      trial = src_folded, src_folded_cost = MAX_COST;
Richard Kenner committed
5503 5504 5505
	      if (src_folded_force_flag)
		trial = force_const_mem (mode, trial);
	    }
5506 5507 5508
	  else if (src
		   && preferrable (src_cost, src_regcost,
				   src_eqv_cost, src_eqv_regcost) <= 0
5509 5510 5511 5512
		   && preferrable (src_cost, src_regcost,
				   src_related_cost, src_related_regcost) <= 0
		   && preferrable (src_cost, src_regcost,
				   src_elt_cost, src_elt_regcost) <= 0)
5513
	    trial = src, src_cost = MAX_COST;
5514 5515 5516
	  else if (src_eqv_here
		   && preferrable (src_eqv_cost, src_eqv_regcost,
				   src_related_cost, src_related_regcost) <= 0
5517 5518
		   && preferrable (src_eqv_cost, src_eqv_regcost,
				   src_elt_cost, src_elt_regcost) <= 0)
5519
	    trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5520 5521 5522
	  else if (src_related
		   && preferrable (src_related_cost, src_related_regcost,
				   src_elt_cost, src_elt_regcost) <= 0)
Kazu Hirata committed
5523
	    trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5524
	  else
Richard Kenner committed
5525
	    {
5526
	      trial = copy_rtx (elt->exp);
Richard Kenner committed
5527
	      elt = elt->next_same_value;
5528
	      src_elt_cost = MAX_COST;
Richard Kenner committed
5529 5530 5531 5532 5533 5534
	    }

	  /* We don't normally have an insn matching (set (pc) (pc)), so
	     check for this separately here.  We will delete such an
	     insn below.

5535 5536 5537 5538 5539
	     For other cases such as a table jump or conditional jump
	     where we know the ultimate target, go ahead and replace the
	     operand.  While that may not make a valid insn, we will
	     reemit the jump below (and also insert any necessary
	     barriers).  */
Richard Kenner committed
5540 5541 5542 5543 5544
	  if (n_sets == 1 && dest == pc_rtx
	      && (trial == pc_rtx
		  || (GET_CODE (trial) == LABEL_REF
		      && ! condjump_p (insn))))
	    {
5545
	      SET_SRC (sets[i].rtl) = trial;
5546
	      cse_jumps_altered = 1;
Richard Kenner committed
5547 5548
	      break;
	    }
5549

Richard Kenner committed
5550
	  /* Look for a substitution that makes a valid insn.  */
Kazu Hirata committed
5551
	  else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5552
	    {
5553 5554 5555
	      /* If we just made a substitution inside a libcall, then we
		 need to make the same substitution in any notes attached
		 to the RETVAL insn.  */
5556
	      if (libcall_insn
5557 5558
		  && (GET_CODE (sets[i].orig_src) == REG
		      || GET_CODE (sets[i].orig_src) == SUBREG
5559 5560
		      || GET_CODE (sets[i].orig_src) == MEM))
		replace_rtx (REG_NOTES (libcall_insn), sets[i].orig_src,
5561 5562
			     canon_reg (SET_SRC (sets[i].rtl), insn));

5563 5564 5565 5566 5567 5568
	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */

	      validate_change (insn, &SET_SRC (sets[i].rtl),
			       canon_reg (SET_SRC (sets[i].rtl), insn),
			       1);
5569
	      apply_change_group ();
5570 5571
	      break;
	    }
Richard Kenner committed
5572

5573
	  /* If we previously found constant pool entries for
Richard Kenner committed
5574 5575 5576 5577 5578 5579
	     constants and this is a constant, try making a
	     pool entry.  Put it in src_folded unless we already have done
	     this since that is where it likely came from.  */

	  else if (constant_pool_entries_cost
		   && CONSTANT_P (trial)
5580 5581 5582
		   /* Reject cases that will abort in decode_rtx_const.
		      On the alpha when simplifying a switch, we get
		      (const (truncate (minus (label_ref) (label_ref)))).  */
5583 5584
		   && ! (GET_CODE (trial) == CONST
			 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5585 5586 5587 5588 5589
		   /* Likewise on IA-64, except without the truncate.  */
		   && ! (GET_CODE (trial) == CONST
			 && GET_CODE (XEXP (trial, 0)) == MINUS
			 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
			 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
5590 5591 5592
		   && (src_folded == 0
		       || (GET_CODE (src_folded) != MEM
			   && ! src_folded_force_flag))
5593 5594
		   && GET_MODE_CLASS (mode) != MODE_CC
		   && mode != VOIDmode)
Richard Kenner committed
5595 5596 5597 5598 5599
	    {
	      src_folded_force_flag = 1;
	      src_folded = trial;
	      src_folded_cost = constant_pool_entries_cost;
	    }
5600
	}
Richard Kenner committed
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610

      src = SET_SRC (sets[i].rtl);

      /* In general, it is good to have a SET with SET_SRC == SET_DEST.
	 However, there is an important exception:  If both are registers
	 that are not the head of their equivalence class, replace SET_SRC
	 with the head of the class.  If we do not do this, we will have
	 both registers live over a portion of the basic block.  This way,
	 their lifetimes will likely abut instead of overlapping.  */
      if (GET_CODE (dest) == REG
5611
	  && REGNO_QTY_VALID_P (REGNO (dest)))
Richard Kenner committed
5612
	{
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
	  int dest_q = REG_QTY (REGNO (dest));
	  struct qty_table_elem *dest_ent = &qty_table[dest_q];

	  if (dest_ent->mode == GET_MODE (dest)
	      && dest_ent->first_reg != REGNO (dest)
	      && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
	      /* Don't do this if the original insn had a hard reg as
		 SET_SRC or SET_DEST.  */
	      && (GET_CODE (sets[i].src) != REG
		  || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
	      && (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
	    /* We can't call canon_reg here because it won't do anything if
	       SRC is a hard register.  */
5626
	    {
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
	      int src_q = REG_QTY (REGNO (src));
	      struct qty_table_elem *src_ent = &qty_table[src_q];
	      int first = src_ent->first_reg;
	      rtx new_src
		= (first >= FIRST_PSEUDO_REGISTER
		   ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));

	      /* We must use validate-change even for this, because this
		 might be a special no-op instruction, suitable only to
		 tag notes onto.  */
	      if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
		{
		  src = new_src;
		  /* If we had a constant that is cheaper than what we are now
		     setting SRC to, use that constant.  We ignored it when we
		     thought we could make this into a no-op.  */
		  if (src_const && COST (src_const) < COST (src)
5644 5645
		      && validate_change (insn, &SET_SRC (sets[i].rtl),
					  src_const, 0))
5646 5647
		    src = src_const;
		}
5648
	    }
Richard Kenner committed
5649 5650 5651 5652
	}

      /* If we made a change, recompute SRC values.  */
      if (src != sets[i].src)
5653
	{
5654
	  cse_altered = 1;
5655 5656
	  do_not_record = 0;
	  hash_arg_in_memory = 0;
Richard Kenner committed
5657
	  sets[i].src = src;
5658 5659 5660 5661 5662
	  sets[i].src_hash = HASH (src, mode);
	  sets[i].src_volatile = do_not_record;
	  sets[i].src_in_memory = hash_arg_in_memory;
	  sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
	}
Richard Kenner committed
5663 5664 5665 5666

      /* If this is a single SET, we are setting a register, and we have an
	 equivalent constant, we want to add a REG_NOTE.   We don't want
	 to write a REG_EQUAL note for a constant pseudo since verifying that
5667
	 that pseudo hasn't been eliminated is a pain.  Such a note also
5668
	 won't help anything.
5669 5670 5671 5672 5673

	 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
	 which can be created for a reference to a compile time computable
	 entry in a jump table.  */

Richard Kenner committed
5674
      if (n_sets == 1 && src_const && GET_CODE (dest) == REG
5675 5676 5677 5678 5679
	  && GET_CODE (src_const) != REG
	  && ! (GET_CODE (src_const) == CONST
		&& GET_CODE (XEXP (src_const, 0)) == MINUS
		&& GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
		&& GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
Richard Kenner committed
5680
	{
5681 5682 5683
	  /* Make sure that the rtx is not shared with any other insn.  */
	  src_const = copy_rtx (src_const);

Richard Kenner committed
5684 5685
	  /* Record the actual constant value in a REG_EQUAL note, making
	     a new one if one does not already exist.  */
5686
	  set_unique_reg_note (insn, REG_EQUAL, src_const);
Richard Kenner committed
5687

Kazu Hirata committed
5688
	  /* If storing a constant value in a register that
Richard Kenner committed
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
	     previously held the constant value 0,
	     record this fact with a REG_WAS_0 note on this insn.

	     Note that the *register* is required to have previously held 0,
	     not just any register in the quantity and we must point to the
	     insn that set that register to zero.

	     Rather than track each register individually, we just see if
	     the last set for this quantity was for this register.  */

5699
	  if (REGNO_QTY_VALID_P (REGNO (dest)))
Richard Kenner committed
5700
	    {
5701 5702
	      int dest_q = REG_QTY (REGNO (dest));
	      struct qty_table_elem *dest_ent = &qty_table[dest_q];
Richard Kenner committed
5703

5704
	      if (dest_ent->const_rtx == const0_rtx)
Richard Kenner committed
5705
		{
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
		  /* See if we previously had a REG_WAS_0 note.  */
		  rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
		  rtx const_insn = dest_ent->const_insn;

		  if ((tem = single_set (const_insn)) != 0
		      && rtx_equal_p (SET_DEST (tem), dest))
		    {
		      if (note)
			XEXP (note, 0) = const_insn;
		      else
			REG_NOTES (insn)
			  = gen_rtx_INSN_LIST (REG_WAS_0, const_insn,
					       REG_NOTES (insn));
		    }
Richard Kenner committed
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
		}
	    }
	}

      /* Now deal with the destination.  */
      do_not_record = 0;

      /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
	 to the MEM or REG within it.  */
      while (GET_CODE (dest) == SIGN_EXTRACT
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SUBREG
	     || GET_CODE (dest) == STRICT_LOW_PART)
5733
	dest = XEXP (dest, 0);
Richard Kenner committed
5734 5735 5736 5737 5738

      sets[i].inner_dest = dest;

      if (GET_CODE (dest) == MEM)
	{
5739 5740 5741
#ifdef PUSH_ROUNDING
	  /* Stack pushes invalidate the stack pointer.  */
	  rtx addr = XEXP (dest, 0);
5742
	  if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
5743 5744 5745
	      && XEXP (addr, 0) == stack_pointer_rtx)
	    invalidate (stack_pointer_rtx, Pmode);
#endif
Richard Kenner committed
5746 5747 5748 5749 5750 5751 5752
	  dest = fold_rtx (dest, insn);
	}

      /* Compute the hash code of the destination now,
	 before the effects of this instruction are recorded,
	 since the register values used in the address computation
	 are those before this instruction.  */
Richard Kenner committed
5753
      sets[i].dest_hash = HASH (dest, mode);
Richard Kenner committed
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765

      /* Don't enter a bit-field in the hash table
	 because the value in it after the store
	 may not equal what was stored, due to truncation.  */

      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
	  || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (src_const != 0 && GET_CODE (src_const) == CONST_INT
	      && GET_CODE (width) == CONST_INT
5766 5767 5768
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && ! (INTVAL (src_const)
		    & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
Richard Kenner committed
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
	    /* Exception: if the value is constant,
	       and it won't be truncated, record it.  */
	    ;
	  else
	    {
	      /* This is chosen so that the destination will be invalidated
		 but no new value will be recorded.
		 We must invalidate because sometimes constant
		 values can be recorded for bitfields.  */
	      sets[i].src_elt = 0;
	      sets[i].src_volatile = 1;
	      src_eqv = 0;
	      src_eqv_elt = 0;
	    }
	}

      /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
	 the insn.  */
      else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
	{
5789
	  /* One less use of the label this insn used to jump to.  */
5790
	  delete_insn (insn);
Richard Kenner committed
5791 5792 5793 5794 5795 5796
	  cse_jumps_altered = 1;
	  /* No more processing for this set.  */
	  sets[i].rtl = 0;
	}

      /* If this SET is now setting PC to a label, we know it used to
5797
	 be a conditional or computed branch.  */
Richard Kenner committed
5798 5799
      else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
	{
5800 5801 5802 5803 5804
	  /* Now emit a BARRIER after the unconditional jump.  */
	  if (NEXT_INSN (insn) == 0
	      || GET_CODE (NEXT_INSN (insn)) != BARRIER)
	    emit_barrier_after (insn);

5805 5806 5807 5808 5809 5810 5811 5812
	  /* We reemit the jump in as many cases as possible just in
	     case the form of an unconditional jump is significantly
	     different than a computed jump or conditional jump.

	     If this insn has multiple sets, then reemitting the
	     jump is nontrivial.  So instead we just force rerecognition
	     and hope for the best.  */
	  if (n_sets == 1)
Richard Kenner committed
5813
	    {
5814
	      rtx new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
5815

Richard Kenner committed
5816 5817
	      JUMP_LABEL (new) = XEXP (src, 0);
	      LABEL_NUSES (XEXP (src, 0))++;
5818
	      delete_insn (insn);
Richard Kenner committed
5819
	      insn = new;
5820 5821 5822 5823 5824

	      /* Now emit a BARRIER after the unconditional jump.  */
	      if (NEXT_INSN (insn) == 0
		  || GET_CODE (NEXT_INSN (insn)) != BARRIER)
		emit_barrier_after (insn);
Richard Kenner committed
5825
	    }
5826 5827
	  else
	    INSN_CODE (insn) = -1;
Richard Kenner committed
5828

5829
	  never_reached_warning (insn, NULL);
5830

5831 5832
	  /* Do not bother deleting any unreachable code,
	     let jump/flow do that.  */
Richard Kenner committed
5833 5834 5835 5836 5837

	  cse_jumps_altered = 1;
	  sets[i].rtl = 0;
	}

5838 5839
      /* If destination is volatile, invalidate it and then do no further
	 processing for this assignment.  */
Richard Kenner committed
5840 5841

      else if (do_not_record)
5842
	{
5843
	  if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
5844
	    invalidate (dest, VOIDmode);
5845 5846 5847 5848 5849 5850 5851
	  else if (GET_CODE (dest) == MEM)
	    {
	      /* Outgoing arguments for a libcall don't
		 affect any recorded expressions.  */
	      if (! libcall_insn || insn == libcall_insn)
		invalidate (dest, VOIDmode);
	    }
5852 5853
	  else if (GET_CODE (dest) == STRICT_LOW_PART
		   || GET_CODE (dest) == ZERO_EXTRACT)
5854
	    invalidate (XEXP (dest, 0), GET_MODE (dest));
5855 5856
	  sets[i].rtl = 0;
	}
Richard Kenner committed
5857 5858

      if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
Richard Kenner committed
5859
	sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
Richard Kenner committed
5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871

#ifdef HAVE_cc0
      /* If setting CC0, record what it was set to, or a constant, if it
	 is equivalent to a constant.  If it is being set to a floating-point
	 value, make a COMPARE with the appropriate constant of 0.  If we
	 don't do this, later code can interpret this as a test against
	 const0_rtx, which can cause problems if we try to put it into an
	 insn as a floating-point operand.  */
      if (dest == cc0_rtx)
	{
	  this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
	  this_insn_cc0_mode = mode;
5872
	  if (FLOAT_MODE_P (mode))
5873 5874
	    this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
					     CONST0_RTX (mode));
Richard Kenner committed
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
	}
#endif
    }

  /* Now enter all non-volatile source expressions in the hash table
     if they are not already present.
     Record their equivalence classes in src_elt.
     This way we can insert the corresponding destinations into
     the same classes even if the actual sources are no longer in them
     (having been invalidated).  */

  if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
      && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
    {
5889 5890
      struct table_elt *elt;
      struct table_elt *classp = sets[0].src_elt;
Richard Kenner committed
5891 5892 5893 5894 5895 5896 5897 5898 5899
      rtx dest = SET_DEST (sets[0].rtl);
      enum machine_mode eqvmode = GET_MODE (dest);

      if (GET_CODE (dest) == STRICT_LOW_PART)
	{
	  eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  classp = 0;
	}
      if (insert_regs (src_eqv, classp, 0))
5900 5901 5902 5903
	{
	  rehash_using_reg (src_eqv);
	  src_eqv_hash = HASH (src_eqv, eqvmode);
	}
Richard Kenner committed
5904
      elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
Richard Kenner committed
5905 5906
      elt->in_memory = src_eqv_in_memory;
      src_eqv_elt = elt;
5907 5908 5909 5910 5911

      /* Check to see if src_eqv_elt is the same as a set source which
	 does not yet have an elt, and if so set the elt of the set source
	 to src_eqv_elt.  */
      for (i = 0; i < n_sets; i++)
5912 5913
	if (sets[i].rtl && sets[i].src_elt == 0
	    && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5914
	  sets[i].src_elt = src_eqv_elt;
Richard Kenner committed
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
    }

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl && ! sets[i].src_volatile
	&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
      {
	if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
	  {
	    /* REG_EQUAL in setting a STRICT_LOW_PART
	       gives an equivalent for the entire destination register,
	       not just for the subreg being stored in now.
	       This is a more interesting equivalence, so we arrange later
	       to treat the entire reg as the destination.  */
	    sets[i].src_elt = src_eqv_elt;
Richard Kenner committed
5929
	    sets[i].src_hash = src_eqv_hash;
Richard Kenner committed
5930 5931 5932 5933 5934
	  }
	else
	  {
	    /* Insert source and constant equivalent into hash table, if not
	       already present.  */
5935 5936 5937
	    struct table_elt *classp = src_eqv_elt;
	    rtx src = sets[i].src;
	    rtx dest = SET_DEST (sets[i].rtl);
Richard Kenner committed
5938 5939 5940
	    enum machine_mode mode
	      = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);

5941
	    if (sets[i].src_elt == 0)
Richard Kenner committed
5942
	      {
5943 5944 5945
		/* Don't put a hard register source into the table if this is
		   the last insn of a libcall.  In this case, we only need
		   to put src_eqv_elt in src_elt.  */
5946
		if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5947
		  {
5948
		    struct table_elt *elt;
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960

		    /* Note that these insert_regs calls cannot remove
		       any of the src_elt's, because they would have failed to
		       match if not still valid.  */
		    if (insert_regs (src, classp, 0))
		      {
			rehash_using_reg (src);
			sets[i].src_hash = HASH (src, mode);
		      }
		    elt = insert (src, classp, sets[i].src_hash, mode);
		    elt->in_memory = sets[i].src_in_memory;
		    sets[i].src_elt = classp = elt;
5961
		  }
5962 5963
		else
		  sets[i].src_elt = classp;
Richard Kenner committed
5964 5965 5966 5967 5968
	      }
	    if (sets[i].src_const && sets[i].src_const_elt == 0
		&& src != sets[i].src_const
		&& ! rtx_equal_p (sets[i].src_const, src))
	      sets[i].src_elt = insert (sets[i].src_const, classp,
Richard Kenner committed
5969
					sets[i].src_const_hash, mode);
Richard Kenner committed
5970 5971 5972 5973 5974 5975 5976 5977
	  }
      }
    else if (sets[i].src_elt == 0)
      /* If we did not insert the source into the hash table (e.g., it was
	 volatile), note the equivalence class for the REG_EQUAL value, if any,
	 so that the destination goes into that class.  */
      sets[i].src_elt = src_eqv_elt;

5978
  invalidate_from_clobbers (x);
5979

5980
  /* Some registers are invalidated by subroutine calls.  Memory is
5981 5982
     invalidated by non-constant calls.  */

Richard Kenner committed
5983 5984
  if (GET_CODE (insn) == CALL_INSN)
    {
5985
      if (! CONST_OR_PURE_CALL_P (insn))
5986
	invalidate_memory ();
Richard Kenner committed
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
      invalidate_for_call ();
    }

  /* Now invalidate everything set by this instruction.
     If a SUBREG or other funny destination is being set,
     sets[i].rtl is still nonzero, so here we invalidate the reg
     a part of which is being set.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
5998 5999
	/* We can't use the inner dest, because the mode associated with
	   a ZERO_EXTRACT is significant.  */
6000
	rtx dest = SET_DEST (sets[i].rtl);
Richard Kenner committed
6001 6002 6003 6004 6005

	/* Needed for registers to remove the register from its
	   previous quantity's chain.
	   Needed for memory if this is a nonvarying address, unless
	   we have just done an invalidate_memory that covers even those.  */
6006
	if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
6007
	  invalidate (dest, VOIDmode);
6008 6009 6010 6011 6012 6013 6014
	else if (GET_CODE (dest) == MEM)
	  {
	    /* Outgoing arguments for a libcall don't
	       affect any recorded expressions.  */
	    if (! libcall_insn || insn == libcall_insn)
	      invalidate (dest, VOIDmode);
	  }
6015 6016
	else if (GET_CODE (dest) == STRICT_LOW_PART
		 || GET_CODE (dest) == ZERO_EXTRACT)
6017
	  invalidate (XEXP (dest, 0), GET_MODE (dest));
Richard Kenner committed
6018 6019
      }

6020 6021 6022 6023 6024 6025
  /* A volatile ASM invalidates everything.  */
  if (GET_CODE (insn) == INSN
      && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
      && MEM_VOLATILE_P (PATTERN (insn)))
    flush_hash_table ();

Richard Kenner committed
6026 6027 6028 6029 6030 6031 6032 6033 6034
  /* Make sure registers mentioned in destinations
     are safe for use in an expression to be inserted.
     This removes from the hash table
     any invalid entry that refers to one of these registers.

     We don't care about the return value from mention_regs because
     we are going to hash the SET_DEST values unconditionally.  */

  for (i = 0; i < n_sets; i++)
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
    {
      if (sets[i].rtl)
	{
	  rtx x = SET_DEST (sets[i].rtl);

	  if (GET_CODE (x) != REG)
	    mention_regs (x);
	  else
	    {
	      /* We used to rely on all references to a register becoming
		 inaccessible when a register changes to a new quantity,
		 since that changes the hash code.  However, that is not
6047
		 safe, since after HASH_SIZE new quantities we get a
6048 6049 6050 6051 6052 6053 6054 6055
		 hash 'collision' of a register with its own invalid
		 entries.  And since SUBREGs have been changed not to
		 change their hash code with the hash code of the register,
		 it wouldn't work any longer at all.  So we have to check
		 for any invalid references lying around now.
		 This code is similar to the REG case in mention_regs,
		 but it knows that reg_tick has been incremented, and
		 it leaves reg_in_table as -1 .  */
6056 6057
	      unsigned int regno = REGNO (x);
	      unsigned int endregno
6058 6059
		= regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
			   : HARD_REGNO_NREGS (regno, GET_MODE (x)));
6060
	      unsigned int i;
6061 6062 6063

	      for (i = regno; i < endregno; i++)
		{
6064
		  if (REG_IN_TABLE (i) >= 0)
6065 6066
		    {
		      remove_invalid_refs (i);
6067
		      REG_IN_TABLE (i) = -1;
6068 6069 6070 6071 6072
		    }
		}
	    }
	}
    }
Richard Kenner committed
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083

  /* We may have just removed some of the src_elt's from the hash table.
     So replace each one with the current head of the same class.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
	if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
	  /* If elt was removed, find current head of same class,
	     or 0 if nothing remains of that class.  */
	  {
6084
	    struct table_elt *elt = sets[i].src_elt;
Richard Kenner committed
6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099

	    while (elt && elt->prev_same_value)
	      elt = elt->prev_same_value;

	    while (elt && elt->first_same_value == 0)
	      elt = elt->next_same_value;
	    sets[i].src_elt = elt ? elt->first_same_value : 0;
	  }
      }

  /* Now insert the destinations into their equivalence classes.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
6100
	rtx dest = SET_DEST (sets[i].rtl);
6101
	rtx inner_dest = sets[i].inner_dest;
6102
	struct table_elt *elt;
Richard Kenner committed
6103 6104 6105 6106 6107 6108

	/* Don't record value if we are not supposed to risk allocating
	   floating-point values in registers that might be wider than
	   memory.  */
	if ((flag_float_store
	     && GET_CODE (dest) == MEM
6109
	     && FLOAT_MODE_P (GET_MODE (dest)))
6110 6111 6112 6113
	    /* Don't record BLKmode values, because we don't know the
	       size of it, and can't be sure that other BLKmode values
	       have the same or smaller size.  */
	    || GET_MODE (dest) == BLKmode
Richard Kenner committed
6114 6115 6116 6117
	    /* Don't record values of destinations set inside a libcall block
	       since we might delete the libcall.  Things should have been set
	       up so we won't want to reuse such a value, but we play it safe
	       here.  */
6118
	    || libcall_insn
Richard Kenner committed
6119 6120
	    /* If we didn't put a REG_EQUAL value or a source into the hash
	       table, there is no point is recording DEST.  */
6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
	    || sets[i].src_elt == 0
	    /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
	       or SIGN_EXTEND, don't record DEST since it can cause
	       some tracking to be wrong.

	       ??? Think about this more later.  */
	    || (GET_CODE (dest) == SUBREG
		&& (GET_MODE_SIZE (GET_MODE (dest))
		    > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
		&& (GET_CODE (sets[i].src) == SIGN_EXTEND
		    || GET_CODE (sets[i].src) == ZERO_EXTEND)))
Richard Kenner committed
6132 6133 6134 6135 6136 6137 6138 6139
	  continue;

	/* STRICT_LOW_PART isn't part of the value BEING set,
	   and neither is the SUBREG inside it.
	   Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT.  */
	if (GET_CODE (dest) == STRICT_LOW_PART)
	  dest = SUBREG_REG (XEXP (dest, 0));

6140
	if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
Richard Kenner committed
6141 6142
	  /* Registers must also be inserted into chains for quantities.  */
	  if (insert_regs (dest, sets[i].src_elt, 1))
6143 6144 6145 6146 6147 6148
	    {
	      /* If `insert_regs' changes something, the hash code must be
		 recalculated.  */
	      rehash_using_reg (dest);
	      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
	    }
Richard Kenner committed
6149

6150 6151 6152
	if (GET_CODE (inner_dest) == MEM
	    && GET_CODE (XEXP (inner_dest, 0)) == ADDRESSOF)
	  /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
6153
	     that (MEM (ADDRESSOF (X))) is equivalent to Y.
6154 6155 6156 6157 6158 6159 6160 6161
	     Consider the case in which the address of the MEM is
	     passed to a function, which alters the MEM.  Then, if we
	     later use Y instead of the MEM we'll miss the update.  */
	  elt = insert (dest, 0, sets[i].dest_hash, GET_MODE (dest));
	else
	  elt = insert (dest, sets[i].src_elt,
			sets[i].dest_hash, GET_MODE (dest));

6162
	elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
6163 6164 6165
			  && (! RTX_UNCHANGING_P (sets[i].inner_dest)
			      || FIXED_BASE_PLUS_P (XEXP (sets[i].inner_dest,
							  0))));
6166

6167 6168 6169 6170
	/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
	   narrower than M2, and both M1 and M2 are the same number of words,
	   we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
	   make that equivalence as well.
Richard Kenner committed
6171 6172 6173 6174

	   However, BAR may have equivalences for which gen_lowpart_if_possible
	   will produce a simpler value than gen_lowpart_if_possible applied to
	   BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6175
	   BAR's equivalences.  If we don't get a simplified form, make
Richard Kenner committed
6176 6177 6178 6179 6180 6181 6182
	   the SUBREG.  It will not be used in an equivalence, but will
	   cause two similar assignments to be detected.

	   Note the loop below will find SUBREG_REG (DEST) since we have
	   already entered SRC and DEST of the SET in the table.  */

	if (GET_CODE (dest) == SUBREG
6183 6184
	    && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
		 / UNITS_PER_WORD)
6185
		== (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
Richard Kenner committed
6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
	    && (GET_MODE_SIZE (GET_MODE (dest))
		>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
	    && sets[i].src_elt != 0)
	  {
	    enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
	    struct table_elt *elt, *classp = 0;

	    for (elt = sets[i].src_elt->first_same_value; elt;
		 elt = elt->next_same_value)
	      {
		rtx new_src = 0;
Richard Kenner committed
6197
		unsigned src_hash;
Richard Kenner committed
6198
		struct table_elt *src_elt;
6199
		int byte = 0;
Richard Kenner committed
6200 6201 6202 6203 6204 6205

		/* Ignore invalid entries.  */
		if (GET_CODE (elt->exp) != REG
		    && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
		  continue;

6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
		/* Calculate big endian correction for the SUBREG_BYTE
		   (or equivalent).  We have already checked that M1
		   ( GET_MODE (dest) ) is not narrower than M2 (new_mode).  */
		if (BYTES_BIG_ENDIAN)
		  byte = (GET_MODE_SIZE (GET_MODE (dest))
			  - GET_MODE_SIZE (new_mode));
		new_src = simplify_gen_subreg (new_mode, elt->exp,
					       GET_MODE (dest), byte);
		/* The call to simplify_gen_subreg fails if the value
		   is VOIDmode, yet we can't do any simplification, e.g.
		   for EXPR_LISTs denoting function call results.
		   It is invalid to construct a SUBREG with a VOIDmode
		   SUBREG_REG, hence a zero new_src means we can't do
		   this substitution.  */
		if (! new_src)
		  continue;
Richard Kenner committed
6222 6223 6224 6225 6226 6227 6228 6229 6230

		src_hash = HASH (new_src, new_mode);
		src_elt = lookup (new_src, src_hash, new_mode);

		/* Put the new source in the hash table is if isn't
		   already.  */
		if (src_elt == 0)
		  {
		    if (insert_regs (new_src, classp, 0))
6231 6232 6233 6234
		      {
			rehash_using_reg (new_src);
			src_hash = HASH (new_src, new_mode);
		      }
Richard Kenner committed
6235 6236 6237 6238
		    src_elt = insert (new_src, classp, src_hash, new_mode);
		    src_elt->in_memory = elt->in_memory;
		  }
		else if (classp && classp != src_elt->first_same_value)
6239
		  /* Show that two things that we've seen before are
Richard Kenner committed
6240 6241 6242 6243
		     actually the same.  */
		  merge_equiv_classes (src_elt, classp);

		classp = src_elt->first_same_value;
6244 6245 6246 6247 6248
		/* Ignore invalid entries.  */
		while (classp
		       && GET_CODE (classp->exp) != REG
		       && ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
		  classp = classp->next_same_value;
Richard Kenner committed
6249 6250 6251 6252
	      }
	  }
      }

6253 6254 6255 6256 6257 6258
  /* Special handling for (set REG0 REG1) where REG0 is the
     "cheapest", cheaper than REG1.  After cse, REG1 will probably not
     be used in the sequel, so (if easily done) change this insn to
     (set REG1 REG0) and replace REG1 with REG0 in the previous insn
     that computed their value.  Then REG1 will become a dead store
     and won't cloud the situation for later optimizations.
Richard Kenner committed
6259 6260 6261 6262 6263

     Do not make this change if REG1 is a hard register, because it will
     then be used in the sequel and we may be changing a two-operand insn
     into a three-operand insn.

6264 6265 6266 6267 6268
     Also do not do this if we are operating on a copy of INSN.

     Also don't do this if INSN ends a libcall; this would cause an unrelated
     register to be set in the middle of a libcall, and we then get bad code
     if the libcall is deleted.  */
Richard Kenner committed
6269 6270 6271 6272 6273

  if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
      && NEXT_INSN (PREV_INSN (insn)) == insn
      && GET_CODE (SET_SRC (sets[0].rtl)) == REG
      && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6274
      && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
Richard Kenner committed
6275
    {
6276 6277
      int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
      struct qty_table_elem *src_ent = &qty_table[src_q];
Richard Kenner committed
6278

6279 6280
      if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
	  && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
Richard Kenner committed
6281
	{
6282
	  rtx prev = prev_nonnote_insn (insn);
Richard Kenner committed
6283

6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
	  /* Do not swap the registers around if the previous instruction
	     attaches a REG_EQUIV note to REG1.

	     ??? It's not entirely clear whether we can transfer a REG_EQUIV
	     from the pseudo that originally shadowed an incoming argument
	     to another register.  Some uses of REG_EQUIV might rely on it
	     being attached to REG1 rather than REG2.

	     This section previously turned the REG_EQUIV into a REG_EQUAL
	     note.  We cannot do that because REG_EQUIV may provide an
6294
	     uninitialised stack slot when REG_PARM_STACK_SPACE is used.  */
6295

6296 6297
	  if (prev != 0 && GET_CODE (prev) == INSN
	      && GET_CODE (PATTERN (prev)) == SET
6298 6299
	      && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
	      && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6300 6301
	    {
	      rtx dest = SET_DEST (sets[0].rtl);
6302
	      rtx src = SET_SRC (sets[0].rtl);
6303
	      rtx note;
Richard Kenner committed
6304

6305 6306 6307
	      validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
	      validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
	      validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6308
	      apply_change_group ();
Richard Kenner committed
6309

6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
	      /* If there was a REG_WAS_0 note on PREV, remove it.  Move
		 any REG_WAS_0 note on INSN to PREV.  */
	      note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
	      if (note)
		remove_note (prev, note);

	      note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
	      if (note)
		{
		  remove_note (insn, note);
		  XEXP (note, 1) = REG_NOTES (prev);
		  REG_NOTES (prev) = note;
		}
6323

6324 6325 6326 6327
	      /* If INSN has a REG_EQUAL note, and this note mentions
		 REG0, then we must delete it, because the value in
		 REG0 has changed.  If the note's value is REG1, we must
		 also delete it because that is now this insn's dest.  */
6328
	      note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6329 6330 6331
	      if (note != 0
		  && (reg_mentioned_p (dest, XEXP (note, 0))
		      || rtx_equal_p (src, XEXP (note, 0))))
6332 6333
		remove_note (insn, note);
	    }
Richard Kenner committed
6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
	}
    }

  /* If this is a conditional jump insn, record any known equivalences due to
     the condition being tested.  */

  last_jump_equiv_class = 0;
  if (GET_CODE (insn) == JUMP_INSN
      && n_sets == 1 && GET_CODE (x) == SET
      && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
    record_jump_equiv (insn, 0);

#ifdef HAVE_cc0
  /* If the previous insn set CC0 and this insn no longer references CC0,
     delete the previous insn.  Here we use the fact that nothing expects CC0
     to be valid over an insn, which is true until the final pass.  */
  if (prev_insn && GET_CODE (prev_insn) == INSN
      && (tem = single_set (prev_insn)) != 0
      && SET_DEST (tem) == cc0_rtx
      && ! reg_mentioned_p (cc0_rtx, x))
6354
    delete_insn (prev_insn);
Richard Kenner committed
6355 6356 6357 6358 6359 6360 6361 6362

  prev_insn_cc0 = this_insn_cc0;
  prev_insn_cc0_mode = this_insn_cc0_mode;
#endif

  prev_insn = insn;
}

6363
/* Remove from the hash table all expressions that reference memory.  */
Richard Kenner committed
6364

Richard Kenner committed
6365
static void
6366
invalidate_memory ()
Richard Kenner committed
6367
{
6368 6369
  int i;
  struct table_elt *p, *next;
Richard Kenner committed
6370

6371
  for (i = 0; i < HASH_SIZE; i++)
6372 6373 6374 6375 6376 6377 6378 6379
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (p->in_memory)
	  remove_from_table (p, i);
      }
}

Richard Kenner committed
6380 6381 6382
/* If ADDR is an address that implicitly affects the stack pointer, return
   1 and update the register tables to show the effect.  Else, return 0.  */

6383
static int
Richard Kenner committed
6384
addr_affects_sp_p (addr)
6385
     rtx addr;
6386
{
6387
  if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
6388 6389
      && GET_CODE (XEXP (addr, 0)) == REG
      && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
Richard Kenner committed
6390
    {
6391 6392
      if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
	REG_TICK (STACK_POINTER_REGNUM)++;
6393 6394 6395 6396

      /* This should be *very* rare.  */
      if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
	invalidate (stack_pointer_rtx, VOIDmode);
Richard Kenner committed
6397

6398
      return 1;
Richard Kenner committed
6399
    }
Richard Kenner committed
6400

6401
  return 0;
Richard Kenner committed
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
}

/* Perform invalidation on the basis of everything about an insn
   except for invalidating the actual places that are SET in it.
   This includes the places CLOBBERed, and anything that might
   alias with something that is SET or CLOBBERed.

   X is the pattern of the insn.  */

static void
6412
invalidate_from_clobbers (x)
Richard Kenner committed
6413 6414 6415 6416 6417
     rtx x;
{
  if (GET_CODE (x) == CLOBBER)
    {
      rtx ref = XEXP (x, 0);
6418 6419 6420 6421 6422 6423 6424 6425 6426
      if (ref)
	{
	  if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
	      || GET_CODE (ref) == MEM)
	    invalidate (ref, VOIDmode);
	  else if (GET_CODE (ref) == STRICT_LOW_PART
		   || GET_CODE (ref) == ZERO_EXTRACT)
	    invalidate (XEXP (ref, 0), GET_MODE (ref));
	}
Richard Kenner committed
6427 6428 6429
    }
  else if (GET_CODE (x) == PARALLEL)
    {
6430
      int i;
Richard Kenner committed
6431 6432
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
6433
	  rtx y = XVECEXP (x, 0, i);
Richard Kenner committed
6434 6435 6436
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx ref = XEXP (y, 0);
6437 6438 6439 6440 6441 6442
	      if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
		  || GET_CODE (ref) == MEM)
		invalidate (ref, VOIDmode);
	      else if (GET_CODE (ref) == STRICT_LOW_PART
		       || GET_CODE (ref) == ZERO_EXTRACT)
		invalidate (XEXP (ref, 0), GET_MODE (ref));
Richard Kenner committed
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462
	    }
	}
    }
}

/* Process X, part of the REG_NOTES of an insn.  Look at any REG_EQUAL notes
   and replace any registers in them with either an equivalent constant
   or the canonical form of the register.  If we are inside an address,
   only do this if the address remains valid.

   OBJECT is 0 except when within a MEM in which case it is the MEM.

   Return the replacement for X.  */

static rtx
cse_process_notes (x, object)
     rtx x;
     rtx object;
{
  enum rtx_code code = GET_CODE (x);
6463
  const char *fmt = GET_RTX_FORMAT (code);
Richard Kenner committed
6464 6465 6466 6467 6468 6469 6470 6471 6472
  int i;

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
6473
    case CONST_VECTOR:
Richard Kenner committed
6474 6475 6476 6477 6478 6479
    case PC:
    case CC0:
    case LO_SUM:
      return x;

    case MEM:
6480 6481
      validate_change (x, &XEXP (x, 0),
		       cse_process_notes (XEXP (x, 0), x), 0);
Richard Kenner committed
6482 6483 6484 6485 6486
      return x;

    case EXPR_LIST:
    case INSN_LIST:
      if (REG_NOTE_KIND (x) == REG_EQUAL)
6487
	XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
6488
      if (XEXP (x, 1))
6489
	XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
Richard Kenner committed
6490 6491
      return x;

6492 6493
    case SIGN_EXTEND:
    case ZERO_EXTEND:
6494
    case SUBREG:
6495 6496 6497 6498 6499 6500 6501 6502 6503
      {
	rtx new = cse_process_notes (XEXP (x, 0), object);
	/* We don't substitute VOIDmode constants into these rtx,
	   since they would impede folding.  */
	if (GET_MODE (new) != VOIDmode)
	  validate_change (object, &XEXP (x, 0), new, 0);
	return x;
      }

Richard Kenner committed
6504
    case REG:
6505
      i = REG_QTY (REGNO (x));
Richard Kenner committed
6506 6507

      /* Return a constant or a constant register.  */
6508
      if (REGNO_QTY_VALID_P (REGNO (x)))
Richard Kenner committed
6509
	{
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
	  struct qty_table_elem *ent = &qty_table[i];

	  if (ent->const_rtx != NULL_RTX
	      && (CONSTANT_P (ent->const_rtx)
		  || GET_CODE (ent->const_rtx) == REG))
	    {
	      rtx new = gen_lowpart_if_possible (GET_MODE (x), ent->const_rtx);
	      if (new)
		return new;
	    }
Richard Kenner committed
6520 6521 6522
	}

      /* Otherwise, canonicalize this register.  */
6523
      return canon_reg (x, NULL_RTX);
6524

6525 6526
    default:
      break;
Richard Kenner committed
6527 6528 6529 6530 6531
    }

  for (i = 0; i < GET_RTX_LENGTH (code); i++)
    if (fmt[i] == 'e')
      validate_change (object, &XEXP (x, i),
6532
		       cse_process_notes (XEXP (x, i), object), 0);
Richard Kenner committed
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572

  return x;
}

/* Find common subexpressions between the end test of a loop and the beginning
   of the loop.  LOOP_START is the CODE_LABEL at the start of a loop.

   Often we have a loop where an expression in the exit test is used
   in the body of the loop.  For example "while (*p) *q++ = *p++;".
   Because of the way we duplicate the loop exit test in front of the loop,
   however, we don't detect that common subexpression.  This will be caught
   when global cse is implemented, but this is a quite common case.

   This function handles the most common cases of these common expressions.
   It is called after we have processed the basic block ending with the
   NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
   jumps to a label used only once.  */

static void
cse_around_loop (loop_start)
     rtx loop_start;
{
  rtx insn;
  int i;
  struct table_elt *p;

  /* If the jump at the end of the loop doesn't go to the start, we don't
     do anything.  */
  for (insn = PREV_INSN (loop_start);
       insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
       insn = PREV_INSN (insn))
    ;

  if (insn == 0
      || GET_CODE (insn) != NOTE
      || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
    return;

  /* If the last insn of the loop (the end test) was an NE comparison,
     we will interpret it as an EQ comparison, since we fell through
6573
     the loop.  Any equivalences resulting from that comparison are
Richard Kenner committed
6574 6575 6576 6577
     therefore not valid and must be invalidated.  */
  if (last_jump_equiv_class)
    for (p = last_jump_equiv_class->first_same_value; p;
	 p = p->next_same_value)
Kaveh R. Ghazi committed
6578
      {
6579
	if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
Kaveh R. Ghazi committed
6580
	    || (GET_CODE (p->exp) == SUBREG
6581
		&& GET_CODE (SUBREG_REG (p->exp)) == REG))
Kaveh R. Ghazi committed
6582
	  invalidate (p->exp, VOIDmode);
6583 6584
	else if (GET_CODE (p->exp) == STRICT_LOW_PART
		 || GET_CODE (p->exp) == ZERO_EXTRACT)
Kaveh R. Ghazi committed
6585 6586
	  invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
      }
Richard Kenner committed
6587 6588 6589 6590 6591 6592

  /* Process insns starting after LOOP_START until we hit a CALL_INSN or
     a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).

     The only thing we do with SET_DEST is invalidate entries, so we
     can safely process each SET in order.  It is slightly less efficient
6593 6594 6595 6596 6597 6598
     to do so, but we only want to handle the most common cases.

     The gen_move_insn call in cse_set_around_loop may create new pseudos.
     These pseudos won't have valid entries in any of the tables indexed
     by register number, such as reg_qty.  We avoid out-of-range array
     accesses by not processing any instructions created after cse started.  */
Richard Kenner committed
6599 6600 6601

  for (insn = NEXT_INSN (loop_start);
       GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
6602
       && INSN_UID (insn) < max_insn_uid
Richard Kenner committed
6603 6604 6605 6606
       && ! (GET_CODE (insn) == NOTE
	     && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
       insn = NEXT_INSN (insn))
    {
6607
      if (INSN_P (insn)
Richard Kenner committed
6608 6609 6610
	  && (GET_CODE (PATTERN (insn)) == SET
	      || GET_CODE (PATTERN (insn)) == CLOBBER))
	cse_set_around_loop (PATTERN (insn), insn, loop_start);
6611
      else if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == PARALLEL)
Richard Kenner committed
6612 6613 6614 6615 6616 6617 6618 6619
	for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	  if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
	      || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
	    cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
				 loop_start);
    }
}

6620 6621 6622 6623
/* Process one SET of an insn that was skipped.  We ignore CLOBBERs
   since they are done elsewhere.  This function is called via note_stores.  */

static void
6624
invalidate_skipped_set (dest, set, data)
6625 6626
     rtx set;
     rtx dest;
6627
     void *data ATTRIBUTE_UNUSED;
6628
{
6629 6630 6631
  enum rtx_code code = GET_CODE (dest);

  if (code == MEM
Kazu Hirata committed
6632
      && ! addr_affects_sp_p (dest)	/* If this is not a stack push ...  */
6633 6634 6635 6636 6637 6638
      /* There are times when an address can appear varying and be a PLUS
	 during this scan when it would be a fixed address were we to know
	 the proper equivalences.  So invalidate all memory if there is
	 a BLKmode or nonscalar memory reference or a reference to a
	 variable address.  */
      && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6639
	  || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6640 6641 6642 6643
    {
      invalidate_memory ();
      return;
    }
6644

6645 6646 6647 6648 6649 6650 6651
  if (GET_CODE (set) == CLOBBER
#ifdef HAVE_cc0
      || dest == cc0_rtx
#endif
      || dest == pc_rtx)
    return;

6652
  if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6653
    invalidate (XEXP (dest, 0), GET_MODE (dest));
6654 6655
  else if (code == REG || code == SUBREG || code == MEM)
    invalidate (dest, VOIDmode);
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
}

/* Invalidate all insns from START up to the end of the function or the
   next label.  This called when we wish to CSE around a block that is
   conditionally executed.  */

static void
invalidate_skipped_block (start)
     rtx start;
{
  rtx insn;

  for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
       insn = NEXT_INSN (insn))
    {
6671
      if (! INSN_P (insn))
6672 6673 6674 6675
	continue;

      if (GET_CODE (insn) == CALL_INSN)
	{
6676
	  if (! CONST_OR_PURE_CALL_P (insn))
6677
	    invalidate_memory ();
6678 6679 6680
	  invalidate_for_call ();
	}

6681
      invalidate_from_clobbers (PATTERN (insn));
6682
      note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6683 6684 6685
    }
}

6686 6687 6688
/* If modifying X will modify the value in *DATA (which is really an
   `rtx *'), indicate that fact by setting the pointed to value to
   NULL_RTX.  */
Richard Kenner committed
6689 6690

static void
6691
cse_check_loop_start (x, set, data)
Richard Kenner committed
6692
     rtx x;
Kaveh R. Ghazi committed
6693
     rtx set ATTRIBUTE_UNUSED;
6694
     void *data;
Richard Kenner committed
6695
{
6696 6697 6698
  rtx *cse_check_loop_start_value = (rtx *) data;

  if (*cse_check_loop_start_value == NULL_RTX
Richard Kenner committed
6699 6700 6701
      || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
    return;

6702 6703 6704
  if ((GET_CODE (x) == MEM && GET_CODE (*cse_check_loop_start_value) == MEM)
      || reg_overlap_mentioned_p (x, *cse_check_loop_start_value))
    *cse_check_loop_start_value = NULL_RTX;
Richard Kenner committed
6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
}

/* X is a SET or CLOBBER contained in INSN that was found near the start of
   a loop that starts with the label at LOOP_START.

   If X is a SET, we see if its SET_SRC is currently in our hash table.
   If so, we see if it has a value equal to some register used only in the
   loop exit code (as marked by jump.c).

   If those two conditions are true, we search backwards from the start of
   the loop to see if that same value was loaded into a register that still
   retains its value at the start of the loop.

   If so, we insert an insn after the load to copy the destination of that
   load into the equivalent register and (try to) replace our SET_SRC with that
   register.

   In any event, we invalidate whatever this SET or CLOBBER modifies.  */

static void
cse_set_around_loop (x, insn, loop_start)
     rtx x;
     rtx insn;
     rtx loop_start;
{
  struct table_elt *src_elt;

  /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
     are setting PC or CC0 or whose SET_SRC is already a register.  */
  if (GET_CODE (x) == SET
      && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
      && GET_CODE (SET_SRC (x)) != REG)
    {
      src_elt = lookup (SET_SRC (x),
			HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
			GET_MODE (SET_DEST (x)));

      if (src_elt)
	for (src_elt = src_elt->first_same_value; src_elt;
	     src_elt = src_elt->next_same_value)
	  if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
	      && COST (src_elt->exp) < COST (SET_SRC (x)))
	    {
	      rtx p, set;

	      /* Look for an insn in front of LOOP_START that sets
		 something in the desired mode to SET_SRC (x) before we hit
		 a label or CALL_INSN.  */

	      for (p = prev_nonnote_insn (loop_start);
		   p && GET_CODE (p) != CALL_INSN
		   && GET_CODE (p) != CODE_LABEL;
		   p = prev_nonnote_insn  (p))
		if ((set = single_set (p)) != 0
		    && GET_CODE (SET_DEST (set)) == REG
		    && GET_MODE (SET_DEST (set)) == src_elt->mode
		    && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
		  {
		    /* We now have to ensure that nothing between P
		       and LOOP_START modified anything referenced in
		       SET_SRC (x).  We know that nothing within the loop
		       can modify it, or we would have invalidated it in
		       the hash table.  */
		    rtx q;
6769
		    rtx cse_check_loop_start_value = SET_SRC (x);
Richard Kenner committed
6770
		    for (q = p; q != loop_start; q = NEXT_INSN (q))
6771
		      if (INSN_P (q))
6772 6773 6774
			note_stores (PATTERN (q),
				     cse_check_loop_start,
				     &cse_check_loop_start_value);
Richard Kenner committed
6775 6776 6777 6778 6779 6780 6781

		    /* If nothing was changed and we can replace our
		       SET_SRC, add an insn after P to copy its destination
		       to what we will be replacing SET_SRC with.  */
		    if (cse_check_loop_start_value
			&& validate_change (insn, &SET_SRC (x),
					    src_elt->exp, 0))
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
		      {
			/* If this creates new pseudos, this is unsafe,
			   because the regno of new pseudo is unsuitable
			   to index into reg_qty when cse_insn processes
			   the new insn.  Therefore, if a new pseudo was
			   created, discard this optimization.  */
			int nregs = max_reg_num ();
			rtx move
			  = gen_move_insn (src_elt->exp, SET_DEST (set));
			if (nregs != max_reg_num ())
			  {
			    if (! validate_change (insn, &SET_SRC (x),
						   SET_SRC (set), 0))
			      abort ();
			  }
			else
			  emit_insn_after (move, p);
		      }
Richard Kenner committed
6800 6801 6802 6803 6804
		    break;
		  }
	    }
    }

Richard Kenner committed
6805 6806
  /* Deal with the destination of X affecting the stack pointer.  */
  addr_affects_sp_p (SET_DEST (x));
Richard Kenner committed
6807

Richard Kenner committed
6808 6809
  /* See comment on similar code in cse_insn for explanation of these
     tests.  */
Richard Kenner committed
6810
  if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
6811
      || GET_CODE (SET_DEST (x)) == MEM)
6812
    invalidate (SET_DEST (x), VOIDmode);
6813 6814
  else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
	   || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
6815
    invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
Richard Kenner committed
6816 6817 6818 6819 6820 6821 6822 6823 6824
}

/* Find the end of INSN's basic block and return its range,
   the total number of SETs in all the insns of the block, the last insn of the
   block, and the branch path.

   The branch path indicates which branches should be followed.  If a non-zero
   path size is specified, the block should be rescanned and a different set
   of branches will be taken.  The branch path is only used if
6825
   FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
Richard Kenner committed
6826 6827 6828 6829 6830 6831 6832

   DATA is a pointer to a struct cse_basic_block_data, defined below, that is
   used to describe the block.  It is filled in with the information about
   the current block.  The incoming structure's branch path, if any, is used
   to construct the output branch path.  */

void
6833
cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
Richard Kenner committed
6834 6835 6836 6837
     rtx insn;
     struct cse_basic_block_data *data;
     int follow_jumps;
     int after_loop;
6838
     int skip_blocks;
Richard Kenner committed
6839 6840 6841 6842
{
  rtx p = insn, q;
  int nsets = 0;
  int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6843
  rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
Richard Kenner committed
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
  int path_size = data->path_size;
  int path_entry = 0;
  int i;

  /* Update the previous branch path, if any.  If the last branch was
     previously TAKEN, mark it NOT_TAKEN.  If it was previously NOT_TAKEN,
     shorten the path by one and look at the previous branch.  We know that
     at least one branch must have been taken if PATH_SIZE is non-zero.  */
  while (path_size > 0)
    {
6854
      if (data->path[path_size - 1].status != NOT_TAKEN)
Richard Kenner committed
6855 6856 6857 6858 6859 6860 6861 6862
	{
	  data->path[path_size - 1].status = NOT_TAKEN;
	  break;
	}
      else
	path_size--;
    }

6863 6864 6865 6866 6867 6868 6869 6870 6871
  /* If the first instruction is marked with QImode, that means we've
     already processed this block.  Our caller will look at DATA->LAST
     to figure out where to go next.  We want to return the next block
     in the instruction stream, not some branched-to block somewhere
     else.  We accomplish this by pretending our called forbid us to
     follow jumps, or skip blocks.  */
  if (GET_MODE (insn) == QImode)
    follow_jumps = skip_blocks = 0;

Richard Kenner committed
6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
  /* Scan to end of this basic block.  */
  while (p && GET_CODE (p) != CODE_LABEL)
    {
      /* Don't cse out the end of a loop.  This makes a difference
	 only for the unusual loops that always execute at least once;
	 all other loops have labels there so we will stop in any case.
	 Cse'ing out the end of the loop is dangerous because it
	 might cause an invariant expression inside the loop
	 to be reused after the end of the loop.  This would make it
	 hard to move the expression out of the loop in loop.c,
	 especially if it is one of several equivalent expressions
	 and loop.c would like to eliminate it.

	 If we are running after loop.c has finished, we can ignore
	 the NOTE_INSN_LOOP_END.  */

      if (! after_loop && GET_CODE (p) == NOTE
	  && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
	break;

6892
      /* Don't cse over a call to setjmp; on some machines (eg VAX)
Richard Kenner committed
6893 6894
	 the regs restored by the longjmp come from
	 a later time than the setjmp.  */
6895 6896
      if (PREV_INSN (p) && GET_CODE (PREV_INSN (p)) == CALL_INSN
	  && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
Richard Kenner committed
6897 6898 6899 6900
	break;

      /* A PARALLEL can have lots of SETs in it,
	 especially if it is really an ASM_OPERANDS.  */
6901
      if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
Richard Kenner committed
6902 6903 6904
	nsets += XVECLEN (PATTERN (p), 0);
      else if (GET_CODE (p) != NOTE)
	nsets += 1;
6905

6906 6907 6908 6909
      /* Ignore insns made by CSE; they cannot affect the boundaries of
	 the basic block.  */

      if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6910
	high_cuid = INSN_CUID (p);
6911 6912
      if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
	low_cuid = INSN_CUID (p);
Richard Kenner committed
6913 6914 6915 6916 6917

      /* See if this insn is in our branch path.  If it is and we are to
	 take it, do so.  */
      if (path_entry < path_size && data->path[path_entry].branch == p)
	{
6918
	  if (data->path[path_entry].status != NOT_TAKEN)
Richard Kenner committed
6919
	    p = JUMP_LABEL (p);
6920

Richard Kenner committed
6921 6922 6923 6924 6925 6926 6927
	  /* Point to next entry in path, if any.  */
	  path_entry++;
	}

      /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
	 was specified, we haven't reached our maximum path length, there are
	 insns following the target of the jump, this is the only use of the
6928 6929 6930 6931 6932 6933 6934 6935
	 jump label, and the target label is preceded by a BARRIER.

	 Alternatively, we can follow the jump if it branches around a
	 block of code and there are no other branches into the block.
	 In this case invalidate_skipped_block will be called to invalidate any
	 registers set in the block when following the jump.  */

      else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
Richard Kenner committed
6936
	       && GET_CODE (p) == JUMP_INSN
6937
	       && GET_CODE (PATTERN (p)) == SET
Richard Kenner committed
6938
	       && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6939
	       && JUMP_LABEL (p) != 0
Richard Kenner committed
6940 6941 6942 6943 6944
	       && LABEL_NUSES (JUMP_LABEL (p)) == 1
	       && NEXT_INSN (JUMP_LABEL (p)) != 0)
	{
	  for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
	    if ((GET_CODE (q) != NOTE
6945
		 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
6946 6947
		 || (PREV_INSN (q) && GET_CODE (PREV_INSN (q)) == CALL_INSN
		     && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6948
		&& (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
Richard Kenner committed
6949 6950 6951 6952
	      break;

	  /* If we ran into a BARRIER, this code is an extension of the
	     basic block when the branch is taken.  */
6953
	  if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
Richard Kenner committed
6954 6955 6956
	    {
	      /* Don't allow ourself to keep walking around an
		 always-executed loop.  */
6957 6958 6959 6960 6961
	      if (next_real_insn (q) == next)
		{
		  p = NEXT_INSN (p);
		  continue;
		}
Richard Kenner committed
6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983

	      /* Similarly, don't put a branch in our path more than once.  */
	      for (i = 0; i < path_entry; i++)
		if (data->path[i].branch == p)
		  break;

	      if (i != path_entry)
		break;

	      data->path[path_entry].branch = p;
	      data->path[path_entry++].status = TAKEN;

	      /* This branch now ends our path.  It was possible that we
		 didn't see this branch the last time around (when the
		 insn in front of the target was a JUMP_INSN that was
		 turned into a no-op).  */
	      path_size = path_entry;

	      p = JUMP_LABEL (p);
	      /* Mark block so we won't scan it again later.  */
	      PUT_MODE (NEXT_INSN (p), QImode);
	    }
6984 6985 6986
	  /* Detect a branch around a block of code.  */
	  else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
	    {
6987
	      rtx tmp;
6988

6989 6990 6991 6992 6993
	      if (next_real_insn (q) == next)
		{
		  p = NEXT_INSN (p);
		  continue;
		}
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006

	      for (i = 0; i < path_entry; i++)
		if (data->path[i].branch == p)
		  break;

	      if (i != path_entry)
		break;

	      /* This is no_labels_between_p (p, q) with an added check for
		 reaching the end of a function (in case Q precedes P).  */
	      for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
		if (GET_CODE (tmp) == CODE_LABEL)
		  break;
7007

7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019
	      if (tmp == q)
		{
		  data->path[path_entry].branch = p;
		  data->path[path_entry++].status = AROUND;

		  path_size = path_entry;

		  p = JUMP_LABEL (p);
		  /* Mark block so we won't scan it again later.  */
		  PUT_MODE (NEXT_INSN (p), QImode);
		}
	    }
Richard Kenner committed
7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031
	}
      p = NEXT_INSN (p);
    }

  data->low_cuid = low_cuid;
  data->high_cuid = high_cuid;
  data->nsets = nsets;
  data->last = p;

  /* If all jumps in the path are not taken, set our path length to zero
     so a rescan won't be done.  */
  for (i = path_size - 1; i >= 0; i--)
7032
    if (data->path[i].status != NOT_TAKEN)
Richard Kenner committed
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061
      break;

  if (i == -1)
    data->path_size = 0;
  else
    data->path_size = path_size;

  /* End the current branch path.  */
  data->path[path_size].branch = 0;
}

/* Perform cse on the instructions of a function.
   F is the first instruction.
   NREGS is one plus the highest pseudo-reg number used in the instruction.

   AFTER_LOOP is 1 if this is the cse call done after loop optimization
   (only if -frerun-cse-after-loop).

   Returns 1 if jump_optimize should be redone due to simplifications
   in conditional jump instructions.  */

int
cse_main (f, nregs, after_loop, file)
     rtx f;
     int nregs;
     int after_loop;
     FILE *file;
{
  struct cse_basic_block_data val;
7062 7063
  rtx insn = f;
  int i;
Richard Kenner committed
7064 7065

  cse_jumps_altered = 0;
7066
  recorded_label_ref = 0;
Richard Kenner committed
7067 7068 7069 7070
  constant_pool_entries_cost = 0;
  val.path_size = 0;

  init_recog ();
7071
  init_alias_analysis ();
Richard Kenner committed
7072 7073 7074

  max_reg = nregs;

7075 7076
  max_insn_uid = get_max_uid ();

7077
  reg_eqv_table = (struct reg_eqv_elem *)
7078
    xmalloc (nregs * sizeof (struct reg_eqv_elem));
Richard Kenner committed
7079

7080 7081 7082 7083
#ifdef LOAD_EXTEND_OP

  /* Allocate scratch rtl here.  cse_insn will fill in the memory reference
     and change the code and mode as appropriate.  */
7084
  memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
7085 7086
#endif

Mark Mitchell committed
7087 7088
  /* Reset the counter indicating how many elements have been made
     thus far.  */
Richard Kenner committed
7089 7090 7091 7092
  n_elements_made = 0;

  /* Find the largest uid.  */

7093
  max_uid = get_max_uid ();
7094
  uid_cuid = (int *) xcalloc (max_uid + 1, sizeof (int));
Richard Kenner committed
7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111

  /* Compute the mapping from uids to cuids.
     CUIDs are numbers assigned to insns, like uids,
     except that cuids increase monotonically through the code.
     Don't assign cuids to line-number NOTEs, so that the distance in cuids
     between two insns is not affected by -g.  */

  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) != NOTE
	  || NOTE_LINE_NUMBER (insn) < 0)
	INSN_CUID (insn) = ++i;
      else
	/* Give a line number note the same cuid as preceding insn.  */
	INSN_CUID (insn) = i;
    }

Mark Mitchell committed
7112
  ggc_push_context ();
7113

Richard Kenner committed
7114 7115 7116 7117 7118 7119
  /* Loop over basic blocks.
     Compute the maximum number of qty's needed for each basic block
     (which is 2 for each SET).  */
  insn = f;
  while (insn)
    {
7120
      cse_altered = 0;
7121 7122
      cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
			      flag_cse_skip_blocks);
Richard Kenner committed
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135

      /* If this basic block was already processed or has no sets, skip it.  */
      if (val.nsets == 0 || GET_MODE (insn) == QImode)
	{
	  PUT_MODE (insn, VOIDmode);
	  insn = (val.last ? NEXT_INSN (val.last) : 0);
	  val.path_size = 0;
	  continue;
	}

      cse_basic_block_start = val.low_cuid;
      cse_basic_block_end = val.high_cuid;
      max_qty = val.nsets * 2;
7136

Richard Kenner committed
7137
      if (file)
7138
	fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
Richard Kenner committed
7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152
		 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
		 val.nsets);

      /* Make MAX_QTY bigger to give us room to optimize
	 past the end of this basic block, if that should prove useful.  */
      if (max_qty < 500)
	max_qty = 500;

      max_qty += max_reg;

      /* If this basic block is being extended by following certain jumps,
         (see `cse_end_of_basic_block'), we reprocess the code from the start.
         Otherwise, we start after this basic block.  */
      if (val.path_size > 0)
7153
	cse_basic_block (insn, val.last, val.path, 0);
Richard Kenner committed
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
      else
	{
	  int old_cse_jumps_altered = cse_jumps_altered;
	  rtx temp;

	  /* When cse changes a conditional jump to an unconditional
	     jump, we want to reprocess the block, since it will give
	     us a new branch path to investigate.  */
	  cse_jumps_altered = 0;
	  temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
7164 7165
	  if (cse_jumps_altered == 0
	      || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
Richard Kenner committed
7166 7167 7168 7169 7170
	    insn = temp;

	  cse_jumps_altered |= old_cse_jumps_altered;
	}

Mark Mitchell committed
7171
      if (cse_altered)
7172 7173
	ggc_collect ();

Richard Kenner committed
7174 7175 7176 7177 7178
#ifdef USE_C_ALLOCA
      alloca (0);
#endif
    }

Mark Mitchell committed
7179
  ggc_pop_context ();
7180

Richard Kenner committed
7181 7182 7183
  if (max_elements_made < n_elements_made)
    max_elements_made = n_elements_made;

7184 7185
  /* Clean up.  */
  end_alias_analysis ();
7186
  free (uid_cuid);
7187
  free (reg_eqv_table);
7188

7189
  return cse_jumps_altered || recorded_label_ref;
Richard Kenner committed
7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
}

/* Process a single basic block.  FROM and TO and the limits of the basic
   block.  NEXT_BRANCH points to the branch path when following jumps or
   a null path when not following jumps.

   AROUND_LOOP is non-zero if we are to try to cse around to the start of a
   loop.  This is true when we are being called for the last time on a
   block and this CSE pass is before loop.c.  */

static rtx
cse_basic_block (from, to, next_branch, around_loop)
7202
     rtx from, to;
Richard Kenner committed
7203 7204 7205
     struct branch_path *next_branch;
     int around_loop;
{
7206
  rtx insn;
Richard Kenner committed
7207
  int to_usage = 0;
7208
  rtx libcall_insn = NULL_RTX;
7209
  int num_insns = 0;
Richard Kenner committed
7210

7211 7212 7213
  /* This array is undefined before max_reg, so only allocate
     the space actually needed and adjust the start.  */

7214 7215
  qty_table
    = (struct qty_table_elem *) xmalloc ((max_qty - max_reg)
7216
					 * sizeof (struct qty_table_elem));
7217
  qty_table -= max_reg;
Richard Kenner committed
7218 7219 7220 7221 7222 7223 7224 7225 7226

  new_basic_block ();

  /* TO might be a label.  If so, protect it from being deleted.  */
  if (to != 0 && GET_CODE (to) == CODE_LABEL)
    ++LABEL_NUSES (to);

  for (insn = from; insn != to; insn = NEXT_INSN (insn))
    {
7227
      enum rtx_code code = GET_CODE (insn);
7228

7229 7230
      /* If we have processed 1,000 insns, flush the hash table to
	 avoid extreme quadratic behavior.  We must not include NOTEs
7231
	 in the count since there may be more of them when generating
7232 7233 7234
	 debugging information.  If we clear the table at different
	 times, code generated with -g -O might be different than code
	 generated with -O but not -g.
7235 7236 7237

	 ??? This is a real kludge and needs to be done some other way.
	 Perhaps for 2.9.  */
7238
      if (code != NOTE && num_insns++ > 1000)
7239
	{
7240
	  flush_hash_table ();
7241 7242
	  num_insns = 0;
	}
Richard Kenner committed
7243 7244 7245 7246 7247

      /* See if this is a branch that is part of the path.  If so, and it is
	 to be taken, do so.  */
      if (next_branch->branch == insn)
	{
7248 7249
	  enum taken status = next_branch++->status;
	  if (status != NOT_TAKEN)
Richard Kenner committed
7250
	    {
7251 7252 7253 7254 7255
	      if (status == TAKEN)
		record_jump_equiv (insn, 1);
	      else
		invalidate_skipped_block (NEXT_INSN (insn));

Richard Kenner committed
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
	      /* Set the last insn as the jump insn; it doesn't affect cc0.
		 Then follow this branch.  */
#ifdef HAVE_cc0
	      prev_insn_cc0 = 0;
#endif
	      prev_insn = insn;
	      insn = JUMP_LABEL (insn);
	      continue;
	    }
	}
7266

Richard Kenner committed
7267 7268 7269 7270 7271
      if (GET_MODE (insn) == QImode)
	PUT_MODE (insn, VOIDmode);

      if (GET_RTX_CLASS (code) == 'i')
	{
7272 7273
	  rtx p;

Richard Kenner committed
7274 7275 7276 7277
	  /* Process notes first so we have all notes in canonical forms when
	     looking for duplicate operations.  */

	  if (REG_NOTES (insn))
7278
	    REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
Richard Kenner committed
7279 7280 7281 7282

	  /* Track when we are inside in LIBCALL block.  Inside such a block,
	     we do not want to record destinations.  The last insn of a
	     LIBCALL block is not considered to be part of the block, since
7283
	     its destination is the result of the block and hence should be
Richard Kenner committed
7284 7285
	     recorded.  */

7286 7287 7288 7289 7290 7291 7292
	  if (REG_NOTES (insn) != 0)
	    {
	      if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
		libcall_insn = XEXP (p, 0);
	      else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
		libcall_insn = 0;
	    }
Richard Kenner committed
7293

7294
	  cse_insn (insn, libcall_insn);
7295

7296 7297 7298 7299 7300
	  /* If we haven't already found an insn where we added a LABEL_REF,
	     check this one.  */
	  if (GET_CODE (insn) == INSN && ! recorded_label_ref
	      && for_each_rtx (&PATTERN (insn), check_for_label_ref,
			       (void *) insn))
7301
	    recorded_label_ref = 1;
Richard Kenner committed
7302 7303 7304 7305 7306 7307 7308
	}

      /* If INSN is now an unconditional jump, skip to the end of our
	 basic block by pretending that we just did the last insn in the
	 basic block.  If we are jumping to the end of our block, show
	 that we can have one usage of TO.  */

7309
      if (any_uncondjump_p (insn))
Richard Kenner committed
7310 7311
	{
	  if (to == 0)
7312 7313 7314 7315
	    {
	      free (qty_table + max_reg);
	      return 0;
	    }
Richard Kenner committed
7316 7317 7318 7319

	  if (JUMP_LABEL (insn) == to)
	    to_usage = 1;

7320 7321 7322
	  /* Maybe TO was deleted because the jump is unconditional.
	     If so, there is nothing left in this basic block.  */
	  /* ??? Perhaps it would be smarter to set TO
7323
	     to whatever follows this insn,
7324 7325 7326 7327
	     and pretend the basic block had always ended here.  */
	  if (INSN_DELETED_P (to))
	    break;

Richard Kenner committed
7328 7329 7330 7331 7332
	  insn = PREV_INSN (to);
	}

      /* See if it is ok to keep on going past the label
	 which used to end our basic block.  Remember that we incremented
7333
	 the count of that label, so we decrement it here.  If we made
Richard Kenner committed
7334 7335 7336 7337 7338 7339 7340
	 a jump unconditional, TO_USAGE will be one; in that case, we don't
	 want to count the use in that jump.  */

      if (to != 0 && NEXT_INSN (insn) == to
	  && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
	{
	  struct cse_basic_block_data val;
7341
	  rtx prev;
Richard Kenner committed
7342 7343 7344

	  insn = NEXT_INSN (to);

7345 7346
	  /* If TO was the last insn in the function, we are done.  */
	  if (insn == 0)
7347 7348 7349 7350
	    {
	      free (qty_table + max_reg);
	      return 0;
	    }
Richard Kenner committed
7351

7352 7353 7354 7355
	  /* If TO was preceded by a BARRIER we are done with this block
	     because it has no continuation.  */
	  prev = prev_nonnote_insn (to);
	  if (prev && GET_CODE (prev) == BARRIER)
7356 7357 7358 7359
	    {
	      free (qty_table + max_reg);
	      return insn;
	    }
7360 7361 7362

	  /* Find the end of the following block.  Note that we won't be
	     following branches in this case.  */
Richard Kenner committed
7363 7364
	  to_usage = 0;
	  val.path_size = 0;
7365
	  cse_end_of_basic_block (insn, &val, 0, 0, 0);
Richard Kenner committed
7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394

	  /* If the tables we allocated have enough space left
	     to handle all the SETs in the next basic block,
	     continue through it.  Otherwise, return,
	     and that block will be scanned individually.  */
	  if (val.nsets * 2 + next_qty > max_qty)
	    break;

	  cse_basic_block_start = val.low_cuid;
	  cse_basic_block_end = val.high_cuid;
	  to = val.last;

	  /* Prevent TO from being deleted if it is a label.  */
	  if (to != 0 && GET_CODE (to) == CODE_LABEL)
	    ++LABEL_NUSES (to);

	  /* Back up so we process the first insn in the extension.  */
	  insn = PREV_INSN (insn);
	}
    }

  if (next_qty > max_qty)
    abort ();

  /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
     the previous insn is the only insn that branches to the head of a loop,
     we can cse into the loop.  Don't do this if we changed the jump
     structure of a loop unless we aren't going to be following jumps.  */

Kazu Hirata committed
7395
  insn = prev_nonnote_insn (to);
7396 7397
  if ((cse_jumps_altered == 0
       || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
Richard Kenner committed
7398 7399
      && around_loop && to != 0
      && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
7400 7401 7402 7403
      && GET_CODE (insn) == JUMP_INSN
      && JUMP_LABEL (insn) != 0
      && LABEL_NUSES (JUMP_LABEL (insn)) == 1)
    cse_around_loop (JUMP_LABEL (insn));
Richard Kenner committed
7404

7405
  free (qty_table + max_reg);
7406

Richard Kenner committed
7407 7408 7409
  return to ? NEXT_INSN (to) : 0;
}

7410
/* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7411
   there isn't a REG_LABEL note.  Return one if so.  DATA is the insn.  */
7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422

static int
check_for_label_ref (rtl, data)
     rtx *rtl;
     void *data;
{
  rtx insn = (rtx) data;

  /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
     we must rerun jump since it needs to place the note.  If this is a
     LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7423
     since no REG_LABEL will be added.  */
7424
  return (GET_CODE (*rtl) == LABEL_REF
7425
	  && ! LABEL_REF_NONLOCAL_P (*rtl)
7426
	  && LABEL_P (XEXP (*rtl, 0))
7427 7428 7429 7430
	  && INSN_UID (XEXP (*rtl, 0)) != 0
	  && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
}

Richard Kenner committed
7431 7432
/* Count the number of times registers are used (not set) in X.
   COUNTS is an array in which we accumulate the count, INCR is how much
7433
   we count each register usage.
7434

7435
   Don't count a usage of DEST, which is the SET_DEST of a SET which
7436 7437
   contains X in its SET_SRC.  This is because such a SET does not
   modify the liveness of DEST.  */
Richard Kenner committed
7438 7439

static void
7440
count_reg_usage (x, counts, dest, incr)
Richard Kenner committed
7441 7442
     rtx x;
     int *counts;
7443
     rtx dest;
Richard Kenner committed
7444 7445
     int incr;
{
7446
  enum rtx_code code;
7447
  const char *fmt;
Richard Kenner committed
7448 7449
  int i, j;

7450 7451 7452 7453
  if (x == 0)
    return;

  switch (code = GET_CODE (x))
Richard Kenner committed
7454 7455
    {
    case REG:
7456 7457
      if (x != dest)
	counts[REGNO (x)] += incr;
Richard Kenner committed
7458 7459 7460 7461 7462 7463 7464
      return;

    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
7465
    case CONST_VECTOR:
Richard Kenner committed
7466 7467
    case SYMBOL_REF:
    case LABEL_REF:
7468 7469
      return;

7470
    case CLOBBER:
7471 7472 7473 7474
      /* If we are clobbering a MEM, mark any registers inside the address
         as being used.  */
      if (GET_CODE (XEXP (x, 0)) == MEM)
	count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
Richard Kenner committed
7475 7476 7477 7478 7479
      return;

    case SET:
      /* Unless we are setting a REG, count everything in SET_DEST.  */
      if (GET_CODE (SET_DEST (x)) != REG)
7480
	count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
7481 7482 7483 7484 7485 7486 7487 7488 7489 7490

      /* If SRC has side-effects, then we can't delete this insn, so the
	 usage of SET_DEST inside SRC counts.

	 ??? Strictly-speaking, we might be preserving this insn
	 because some other SET has side-effects, but that's hard
	 to do and can't happen now.  */
      count_reg_usage (SET_SRC (x), counts,
		       side_effects_p (SET_SRC (x)) ? NULL_RTX : SET_DEST (x),
		       incr);
Richard Kenner committed
7491 7492
      return;

7493 7494
    case CALL_INSN:
      count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);
Kazu Hirata committed
7495
      /* Fall through.  */
7496

Richard Kenner committed
7497 7498
    case INSN:
    case JUMP_INSN:
7499
      count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);
Richard Kenner committed
7500 7501 7502 7503

      /* Things used in a REG_EQUAL note aren't dead since loop may try to
	 use them.  */

7504
      count_reg_usage (REG_NOTES (x), counts, NULL_RTX, incr);
Richard Kenner committed
7505 7506 7507 7508
      return;

    case EXPR_LIST:
    case INSN_LIST:
7509
      if (REG_NOTE_KIND (x) == REG_EQUAL
7510
	  || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE))
7511
	count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
7512
      count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
Richard Kenner committed
7513
      return;
7514

7515 7516
    default:
      break;
Richard Kenner committed
7517 7518 7519 7520 7521 7522
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
7523
	count_reg_usage (XEXP (x, i), counts, dest, incr);
Richard Kenner committed
7524 7525
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7526
	  count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
Richard Kenner committed
7527 7528 7529
    }
}

7530 7531
/* Return true if set is live.  */
static bool
7532
set_live_p (set, insn, counts)
7533
     rtx set;
7534
     rtx insn ATTRIBUTE_UNUSED;	/* Only used with HAVE_cc0.  */
7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573
     int *counts;
{
#ifdef HAVE_cc0
  rtx tem;
#endif

  if (set_noop_p (set))
    ;

#ifdef HAVE_cc0
  else if (GET_CODE (SET_DEST (set)) == CC0
	   && !side_effects_p (SET_SRC (set))
	   && ((tem = next_nonnote_insn (insn)) == 0
	       || !INSN_P (tem)
	       || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
    return false;
#endif
  else if (GET_CODE (SET_DEST (set)) != REG
	   || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
	   || counts[REGNO (SET_DEST (set))] != 0
	   || side_effects_p (SET_SRC (set))
	   /* An ADDRESSOF expression can turn into a use of the
	      internal arg pointer, so always consider the
	      internal arg pointer live.  If it is truly dead,
	      flow will delete the initializing insn.  */
	   || (SET_DEST (set) == current_function_internal_arg_pointer))
    return true;
  return false;
}

/* Return true if insn is live.  */

static bool
insn_live_p (insn, counts)
     rtx insn;
     int *counts;
{
  int i;
  if (GET_CODE (PATTERN (insn)) == SET)
7574
    return set_live_p (PATTERN (insn), insn, counts);
7575
  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7576 7577 7578 7579
    {
      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	{
	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
7580

7581 7582 7583 7584 7585 7586 7587 7588 7589 7590
	  if (GET_CODE (elt) == SET)
	    {
	      if (set_live_p (elt, insn, counts))
		return true;
	    }
	  else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
	    return true;
	}
      return false;
    }
7591 7592 7593 7594 7595 7596 7597
  else
    return true;
}

/* Return true if libcall is dead as a whole.  */

static bool
7598
dead_libcall_p (insn, counts)
7599
     rtx insn;
7600
     int *counts;
7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616
{
  rtx note;
  /* See if there's a REG_EQUAL note on this insn and try to
     replace the source with the REG_EQUAL expression.

     We assume that insns with REG_RETVALs can only be reg->reg
     copies at this point.  */
  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
  if (note)
    {
      rtx set = single_set (insn);
      rtx new = simplify_rtx (XEXP (note, 0));

      if (!new)
	new = XEXP (note, 0);

7617 7618 7619
      /* While changing insn, we must update the counts accordingly.  */
      count_reg_usage (insn, counts, NULL_RTX, -1);

7620 7621
      if (set && validate_change (insn, &SET_SRC (set), new, 0))
	{
7622
          count_reg_usage (insn, counts, NULL_RTX, 1);
7623
	  remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7624
	  remove_note (insn, note);
7625 7626
	  return true;
	}
7627
       count_reg_usage (insn, counts, NULL_RTX, 1);
7628 7629 7630 7631
    }
  return false;
}

Richard Kenner committed
7632 7633 7634
/* Scan all the insns and delete any that are dead; i.e., they store a register
   that is never used or they copy a register to itself.

7635 7636 7637 7638
   This is used to remove insns made obviously dead by cse, loop or other
   optimizations.  It improves the heuristics in loop since it won't try to
   move dead invariants out of loops or make givs for dead quantities.  The
   remaining passes of the compilation are also sped up.  */
Richard Kenner committed
7639

7640 7641
int
delete_trivially_dead_insns (insns, nreg)
Richard Kenner committed
7642 7643 7644
     rtx insns;
     int nreg;
{
7645
  int *counts;
7646
  rtx insn, prev;
7647
  int in_libcall = 0, dead_libcall = 0;
7648
  int ndead = 0, nlastdead, niterations = 0;
Richard Kenner committed
7649

7650
  timevar_push (TV_DELETE_TRIVIALLY_DEAD);
Richard Kenner committed
7651
  /* First count the number of times each register is used.  */
7652
  counts = (int *) xcalloc (nreg, sizeof (int));
Richard Kenner committed
7653
  for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
7654
    count_reg_usage (insn, counts, NULL_RTX, 1);
Richard Kenner committed
7655

7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669
  do
    {
      nlastdead = ndead;
      niterations++;
      /* Go from the last insn to the first and delete insns that only set unused
	 registers or copy a register to itself.  As we delete an insn, remove
	 usage counts for registers it uses.

	 The first jump optimization pass may leave a real insn as the last
	 insn in the function.   We must not skip that insn or we may end
	 up deleting code that is not really dead.  */
      insn = get_last_insn ();
      if (! INSN_P (insn))
	insn = prev_real_insn (insn);
7670

7671
      for (; insn; insn = prev)
Richard Kenner committed
7672
	{
7673
	  int live_insn = 0;
Richard Kenner committed
7674

7675
	  prev = prev_real_insn (insn);
Richard Kenner committed
7676

7677 7678
	  /* Don't delete any insns that are part of a libcall block unless
	     we can delete the whole libcall block.
Richard Kenner committed
7679

7680 7681 7682 7683 7684
	     Flow or loop might get confused if we did that.  Remember
	     that we are scanning backwards.  */
	  if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
	    {
	      in_libcall = 1;
7685
	      live_insn = 1;
7686
	      dead_libcall = dead_libcall_p (insn, counts);
7687 7688 7689 7690 7691
	    }
	  else if (in_libcall)
	    live_insn = ! dead_libcall;
	  else
	    live_insn = insn_live_p (insn, counts);
Richard Kenner committed
7692

7693 7694
	  /* If this is a dead insn, delete it and show registers in it aren't
	     being used.  */
Richard Kenner committed
7695

7696 7697 7698
	  if (! live_insn)
	    {
	      count_reg_usage (insn, counts, NULL_RTX, -1);
7699 7700
	      delete_insn_and_edges (insn);
	      ndead++;
7701
	    }
7702

7703 7704 7705 7706 7707
	  if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
	    {
	      in_libcall = 0;
	      dead_libcall = 0;
	    }
7708
	}
Kazu Hirata committed
7709 7710
    }
  while (ndead != nlastdead);
7711

7712 7713 7714
  if (rtl_dump_file && ndead)
    fprintf (rtl_dump_file, "Deleted %i trivially dead insns; %i iterations\n",
	     ndead, niterations);
7715 7716
  /* Clean up.  */
  free (counts);
7717 7718
  timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
  return ndead;
Richard Kenner committed
7719
}