lcm.c 42.3 KB
Newer Older
1
/* Generic partial redundancy elimination with lazy code motion support.
2
   Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
Jeffrey A Law committed
3

4
This file is part of GCC.
Jeffrey A Law committed
5

6 7 8 9
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
Jeffrey A Law committed
10

11 12 13 14
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Jeffrey A Law committed
15 16

You should have received a copy of the GNU General Public License
17 18 19
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */
Jeffrey A Law committed
20 21

/* These routines are meant to be used by various optimization
22
   passes which can be modeled as lazy code motion problems.
Jeffrey A Law committed
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
   Including, but not limited to:

	* Traditional partial redundancy elimination.

	* Placement of caller/caller register save/restores.

	* Load/store motion.

	* Copy motion.

	* Conversion of flat register files to a stacked register
	model.

	* Dead load/store elimination.

  These routines accept as input:

	* Basic block information (number of blocks, lists of
	predecessors and successors).  Note the granularity
	does not need to be basic block, they could be statements
	or functions.

	* Bitmaps of local properties (computed, transparent and
	anticipatable expressions).

  The output of these routines is bitmap of redundant computations
  and a bitmap of optimal placement points.  */


#include "config.h"
#include "system.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"
62
#include "tm_p.h"
63

64 65 66
/* We want target macros for the mode switching code to be able to refer
   to instruction attribute values.  */
#include "insn-attr.h"
Jeffrey A Law committed
67

68
/* Edge based LCM routines.  */
69 70 71 72 73 74 75 76 77 78 79 80 81
static void compute_antinout_edge	PARAMS ((sbitmap *, sbitmap *,
						 sbitmap *, sbitmap *));
static void compute_earliest		PARAMS ((struct edge_list *, int,
						 sbitmap *, sbitmap *,
						 sbitmap *, sbitmap *,
						 sbitmap *));
static void compute_laterin		PARAMS ((struct edge_list *, sbitmap *,
						 sbitmap *, sbitmap *,
						 sbitmap *));
static void compute_insert_delete	PARAMS ((struct edge_list *edge_list,
						 sbitmap *, sbitmap *,
						 sbitmap *, sbitmap *,
						 sbitmap *));
82 83

/* Edge based LCM routines on a reverse flowgraph.  */
84 85 86 87 88 89 90 91 92 93 94
static void compute_farthest		PARAMS ((struct edge_list *, int,
						 sbitmap *, sbitmap *,
						 sbitmap*, sbitmap *,
						 sbitmap *));
static void compute_nearerout		PARAMS ((struct edge_list *, sbitmap *,
						 sbitmap *, sbitmap *,
						 sbitmap *));
static void compute_rev_insert_delete	PARAMS ((struct edge_list *edge_list,
						 sbitmap *, sbitmap *,
						 sbitmap *, sbitmap *,
						 sbitmap *));
95 96 97

/* Edge based lcm routines.  */

98 99
/* Compute expression anticipatability at entrance and exit of each block.
   This is done based on the flow graph, and not on the pred-succ lists.
100
   Other than that, its pretty much identical to compute_antinout.  */
Jeffrey A Law committed
101 102

static void
103
compute_antinout_edge (antloc, transp, antin, antout)
Jeffrey A Law committed
104 105 106 107 108
     sbitmap *antloc;
     sbitmap *transp;
     sbitmap *antin;
     sbitmap *antout;
{
109
  int bb;
110
  edge e;
111 112
  basic_block *worklist, *qin, *qout, *qend;
  unsigned int qlen;
Jeffrey A Law committed
113

114 115 116
  /* Allocate a worklist array/queue.  Entries are only added to the
     list if they were not already on the list.  So the size is
     bounded by the number of basic blocks.  */
117
  qin = qout = worklist
118
    = (basic_block *) xmalloc (sizeof (basic_block) * n_basic_blocks);
Jeffrey A Law committed
119

120 121 122
  /* We want a maximal solution, so make an optimistic initialization of
     ANTIN.  */
  sbitmap_vector_ones (antin, n_basic_blocks);
Jeffrey A Law committed
123

124 125
  /* Put every block on the worklist; this is necessary because of the
     optimistic initialization of ANTIN above.  */
126
  for (bb = n_basic_blocks - 1; bb >= 0; bb--)
Jeffrey A Law committed
127
    {
128
      *qin++ = BASIC_BLOCK (bb);
129
      BASIC_BLOCK (bb)->aux = BASIC_BLOCK (bb);
130
    }
131

132 133 134
  qin = worklist;
  qend = &worklist[n_basic_blocks];
  qlen = n_basic_blocks;
Jeffrey A Law committed
135

136 137 138 139 140
  /* Mark blocks which are predecessors of the exit block so that we
     can easily identify them below.  */
  for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
    e->src->aux = EXIT_BLOCK_PTR;

141
  /* Iterate until the worklist is empty.  */
142
  while (qlen)
143 144
    {
      /* Take the first entry off the worklist.  */
145
      basic_block b = *qout++;
146
      bb = b->index;
147 148 149 150
      qlen--;

      if (qout >= qend)
        qout = worklist;
Jeffrey A Law committed
151

152
      if (b->aux == EXIT_BLOCK_PTR)
153 154 155 156
	/* Do not clear the aux field for blocks which are predecessors of
	   the EXIT block.  That way we never add then to the worklist
	   again.  */
	sbitmap_zero (antout[bb]);
157 158 159 160 161 162 163
      else
	{
	  /* Clear the aux field of this block so that it can be added to
	     the worklist again if necessary.  */
	  b->aux = NULL;
	  sbitmap_intersection_of_succs (antout[bb], antin, bb);
	}
164

165
      if (sbitmap_a_or_b_and_c (antin[bb], antloc[bb], transp[bb], antout[bb]))
166 167 168 169 170
	/* If the in state of this block changed, then we need
	   to add the predecessors of this block to the worklist
	   if they are not already on the worklist.  */
	for (e = b->pred; e; e = e->pred_next)
	  if (!e->src->aux && e->src != ENTRY_BLOCK_PTR)
Jeffrey A Law committed
171
	    {
172
	      *qin++ = e->src;
173
	      e->src->aux = e;
174 175 176
	      qlen++;
	      if (qin >= qend)
	        qin = worklist;
Jeffrey A Law committed
177 178
	    }
    }
179

180 181
  clear_aux_for_edges ();
  clear_aux_for_blocks ();
182
  free (worklist);
Jeffrey A Law committed
183 184
}

185
/* Compute the earliest vector for edge based lcm.  */
186

Jeffrey A Law committed
187
static void
188 189
compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest)
     struct edge_list *edge_list;
Jeffrey A Law committed
190
     int n_exprs;
191
     sbitmap *antin, *antout, *avout, *kill, *earliest;
Jeffrey A Law committed
192
{
193
  sbitmap difference, temp_bitmap;
194
  int x, num_edges;
195
  basic_block pred, succ;
Jeffrey A Law committed
196

197
  num_edges = NUM_EDGES (edge_list);
Jeffrey A Law committed
198

199 200
  difference = sbitmap_alloc (n_exprs);
  temp_bitmap = sbitmap_alloc (n_exprs);
Jeffrey A Law committed
201

202
  for (x = 0; x < num_edges; x++)
Jeffrey A Law committed
203
    {
204 205 206 207 208 209
      pred = INDEX_EDGE_PRED_BB (edge_list, x);
      succ = INDEX_EDGE_SUCC_BB (edge_list, x);
      if (pred == ENTRY_BLOCK_PTR)
	sbitmap_copy (earliest[x], antin[succ->index]);
      else
        {
210 211 212 213 214
	  /* We refer to the EXIT_BLOCK index, instead of testing for
	     EXIT_BLOCK_PTR, so that EXIT_BLOCK_PTR's index can be
	     changed so as to pretend it's a regular block, so that
	     its antin can be taken into account.  */
	  if (succ->index == EXIT_BLOCK)
215
	    sbitmap_zero (earliest[x]);
216
	  else
Jeffrey A Law committed
217
	    {
218 219
	      sbitmap_difference (difference, antin[succ->index],
				  avout[pred->index]);
220
	      sbitmap_not (temp_bitmap, antout[pred->index]);
221 222
	      sbitmap_a_and_b_or_c (earliest[x], difference,
				    kill[pred->index], temp_bitmap);
Jeffrey A Law committed
223 224 225
	    }
	}
    }
226

Jeffrey A Law committed
227
  free (temp_bitmap);
228
  free (difference);
Jeffrey A Law committed
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/* later(p,s) is dependent on the calculation of laterin(p).
   laterin(p) is dependent on the calculation of later(p2,p).

     laterin(ENTRY) is defined as all 0's
     later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
     laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).

   If we progress in this manner, starting with all basic blocks
   in the work list, anytime we change later(bb), we need to add
   succs(bb) to the worklist if they are not already on the worklist.

   Boundary conditions:

     We prime the worklist all the normal basic blocks.   The ENTRY block can
     never be added to the worklist since it is never the successor of any
     block.  We explicitly prevent the EXIT block from being added to the
     worklist.

     We optimistically initialize LATER.  That is the only time this routine
     will compute LATER for an edge out of the entry block since the entry
     block is never on the worklist.  Thus, LATERIN is neither used nor
     computed for the ENTRY block.

     Since the EXIT block is never added to the worklist, we will neither
     use nor compute LATERIN for the exit block.  Edges which reach the
     EXIT block are handled in the normal fashion inside the loop.  However,
     the insertion/deletion computation needs LATERIN(EXIT), so we have
     to compute it.  */
259

Jeffrey A Law committed
260
static void
261
compute_laterin (edge_list, earliest, antloc, later, laterin)
262 263
     struct edge_list *edge_list;
     sbitmap *earliest, *antloc, *later, *laterin;
Jeffrey A Law committed
264
{
265 266
  int bb, num_edges, i;
  edge e;
267 268
  basic_block *worklist, *qin, *qout, *qend;
  unsigned int qlen;
Jeffrey A Law committed
269

270
  num_edges = NUM_EDGES (edge_list);
Jeffrey A Law committed
271

272 273 274
  /* Allocate a worklist array/queue.  Entries are only added to the
     list if they were not already on the list.  So the size is
     bounded by the number of basic blocks.  */
275
  qin = qout = worklist
276
    = (basic_block *) xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
277 278 279

  /* Initialize a mapping from each edge to its index.  */
  for (i = 0; i < num_edges; i++)
280
    INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
281 282 283 284 285 286 287 288 289 290 291 292 293

  /* We want a maximal solution, so initially consider LATER true for
     all edges.  This allows propagation through a loop since the incoming
     loop edge will have LATER set, so if all the other incoming edges
     to the loop are set, then LATERIN will be set for the head of the
     loop.

     If the optimistic setting of LATER on that edge was incorrect (for
     example the expression is ANTLOC in a block within the loop) then
     this algorithm will detect it when we process the block at the head
     of the optimistic edge.  That will requeue the affected blocks.  */
  sbitmap_vector_ones (later, num_edges);

294 295 296 297 298
  /* Note that even though we want an optimistic setting of LATER, we
     do not want to be overly optimistic.  Consider an outgoing edge from
     the entry block.  That edge should always have a LATER value the
     same as EARLIEST for that edge.  */
  for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
299
    sbitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
300

301 302
  /* Add all the blocks to the worklist.  This prevents an early exit from
     the loop given our optimistic initialization of LATER above.  */
303
  for (bb = 0; bb < n_basic_blocks; bb++)
Jeffrey A Law committed
304
    {
305
      basic_block b = BASIC_BLOCK (bb);
306
      *qin++ = b;
307
      b->aux = b;
308
    }
309 310 311
  qin = worklist;
  /* Note that we do not use the last allocated element for our queue,
     as EXIT_BLOCK is never inserted into it. In fact the above allocation
312
     of n_basic_blocks + 1 elements is not encessary.  */
313 314
  qend = &worklist[n_basic_blocks];
  qlen = n_basic_blocks;
315

316
  /* Iterate until the worklist is empty.  */
317
  while (qlen)
318
    {
319
      /* Take the first entry off the worklist.  */
320
      basic_block b = *qout++;
321
      b->aux = NULL;
322 323 324
      qlen--;
      if (qout >= qend)
        qout = worklist;
325 326 327 328 329

      /* Compute the intersection of LATERIN for each incoming edge to B.  */
      bb = b->index;
      sbitmap_ones (laterin[bb]);
      for (e = b->pred; e != NULL; e = e->pred_next)
330
	sbitmap_a_and_b (laterin[bb], laterin[bb], later[(size_t)e->aux]);
331 332 333

      /* Calculate LATER for all outgoing edges.  */
      for (e = b->succ; e != NULL; e = e->succ_next)
334 335 336 337 338 339 340 341
	if (sbitmap_union_of_diff (later[(size_t) e->aux],
				   earliest[(size_t) e->aux],
				   laterin[e->src->index],
				   antloc[e->src->index])
	    /* If LATER for an outgoing edge was changed, then we need
	       to add the target of the outgoing edge to the worklist.  */
	    && e->dest != EXIT_BLOCK_PTR && e->dest->aux == 0)
	  {
342
	    *qin++ = e->dest;
343
	    e->dest->aux = e;
344 345 346
	    qlen++;
	    if (qin >= qend)
	      qin = worklist;
347
	  }
Jeffrey A Law committed
348 349
    }

350 351 352 353 354 355 356
  /* Computation of insertion and deletion points requires computing LATERIN
     for the EXIT block.  We allocated an extra entry in the LATERIN array
     for just this purpose.  */
  sbitmap_ones (laterin[n_basic_blocks]);
  for (e = EXIT_BLOCK_PTR->pred; e != NULL; e = e->pred_next)
    sbitmap_a_and_b (laterin[n_basic_blocks],
		     laterin[n_basic_blocks],
357
		     later[(size_t) e->aux]);
358

359
  clear_aux_for_edges ();
360
  free (worklist);
Jeffrey A Law committed
361 362
}

363
/* Compute the insertion and deletion points for edge based LCM.  */
364

365 366 367 368 369 370 371
static void
compute_insert_delete (edge_list, antloc, later, laterin,
		       insert, delete)
     struct edge_list *edge_list;
     sbitmap *antloc, *later, *laterin, *insert, *delete;
{
  int x;
Jeffrey A Law committed
372

373 374
  for (x = 0; x < n_basic_blocks; x++)
    sbitmap_difference (delete[x], antloc[x], laterin[x]);
375

376 377 378
  for (x = 0; x < NUM_EDGES (edge_list); x++)
    {
      basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
379

380 381 382 383 384 385
      if (b == EXIT_BLOCK_PTR)
	sbitmap_difference (insert[x], later[x], laterin[n_basic_blocks]);
      else
	sbitmap_difference (insert[x], later[x], laterin[b->index]);
    }
}
Jeffrey A Law committed
386

387 388 389
/* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and
   delete vectors for edge based LCM.  Returns an edgelist which is used to
   map the insert vector to what edge an expression should be inserted on.  */
Jeffrey A Law committed
390

391 392
struct edge_list *
pre_edge_lcm (file, n_exprs, transp, avloc, antloc, kill, insert, delete)
393
     FILE *file ATTRIBUTE_UNUSED;
Jeffrey A Law committed
394
     int n_exprs;
395 396
     sbitmap *transp;
     sbitmap *avloc;
Jeffrey A Law committed
397
     sbitmap *antloc;
398 399 400
     sbitmap *kill;
     sbitmap **insert;
     sbitmap **delete;
Jeffrey A Law committed
401
{
402 403 404 405 406
  sbitmap *antin, *antout, *earliest;
  sbitmap *avin, *avout;
  sbitmap *later, *laterin;
  struct edge_list *edge_list;
  int num_edges;
Jeffrey A Law committed
407

408 409
  edge_list = create_edge_list ();
  num_edges = NUM_EDGES (edge_list);
Jeffrey A Law committed
410

411 412
#ifdef LCM_DEBUG_INFO
  if (file)
Jeffrey A Law committed
413
    {
414 415 416 417 418 419 420
      fprintf (file, "Edge List:\n");
      verify_edge_list (file, edge_list);
      print_edge_list (file, edge_list);
      dump_sbitmap_vector (file, "transp", "", transp, n_basic_blocks);
      dump_sbitmap_vector (file, "antloc", "", antloc, n_basic_blocks);
      dump_sbitmap_vector (file, "avloc", "", avloc, n_basic_blocks);
      dump_sbitmap_vector (file, "kill", "", kill, n_basic_blocks);
Jeffrey A Law committed
421
    }
422
#endif
Jeffrey A Law committed
423

424 425 426 427
  /* Compute global availability.  */
  avin = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
  avout = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
  compute_available (avloc, kill, avout, avin);
428
  sbitmap_vector_free (avin);
Jeffrey A Law committed
429

430 431 432 433
  /* Compute global anticipatability.  */
  antin = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
  antout = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
  compute_antinout_edge (antloc, transp, antin, antout);
Jeffrey A Law committed
434

435 436
#ifdef LCM_DEBUG_INFO
  if (file)
Jeffrey A Law committed
437
    {
438 439
      dump_sbitmap_vector (file, "antin", "", antin, n_basic_blocks);
      dump_sbitmap_vector (file, "antout", "", antout, n_basic_blocks);
Jeffrey A Law committed
440
    }
441
#endif
Jeffrey A Law committed
442

443 444 445
  /* Compute earliestness.  */
  earliest = sbitmap_vector_alloc (num_edges, n_exprs);
  compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
Jeffrey A Law committed
446

447 448 449 450
#ifdef LCM_DEBUG_INFO
  if (file)
    dump_sbitmap_vector (file, "earliest", "", earliest, num_edges);
#endif
Jeffrey A Law committed
451

452 453 454
  sbitmap_vector_free (antout);
  sbitmap_vector_free (antin);
  sbitmap_vector_free (avout);
Jeffrey A Law committed
455

456
  later = sbitmap_vector_alloc (num_edges, n_exprs);
457

458 459
  /* Allocate an extra element for the exit block in the laterin vector.  */
  laterin = sbitmap_vector_alloc (n_basic_blocks + 1, n_exprs);
460 461
  compute_laterin (edge_list, earliest, antloc, later, laterin);

462 463 464 465 466 467 468
#ifdef LCM_DEBUG_INFO
  if (file)
    {
      dump_sbitmap_vector (file, "laterin", "", laterin, n_basic_blocks + 1);
      dump_sbitmap_vector (file, "later", "", later, num_edges);
    }
#endif
Jeffrey A Law committed
469

470
  sbitmap_vector_free (earliest);
471 472 473 474

  *insert = sbitmap_vector_alloc (num_edges, n_exprs);
  *delete = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
  compute_insert_delete (edge_list, antloc, later, laterin, *insert, *delete);
Jeffrey A Law committed
475

476 477
  sbitmap_vector_free (laterin);
  sbitmap_vector_free (later);
478 479 480

#ifdef LCM_DEBUG_INFO
  if (file)
Jeffrey A Law committed
481
    {
482
      dump_sbitmap_vector (file, "pre_insert_map", "", *insert, num_edges);
483 484
      dump_sbitmap_vector (file, "pre_delete_map", "", *delete,
			   n_basic_blocks);
Jeffrey A Law committed
485
    }
486
#endif
Jeffrey A Law committed
487

488 489
  return edge_list;
}
Jeffrey A Law committed
490

491 492
/* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
   Return the number of passes we performed to iterate to a solution.  */
493

494
void
495
compute_available (avloc, kill, avout, avin)
496
     sbitmap *avloc, *kill, *avout, *avin;
Jeffrey A Law committed
497
{
498 499
  int bb;
  edge e;
500 501
  basic_block *worklist, *qin, *qout, *qend;
  unsigned int qlen;
Jeffrey A Law committed
502

503 504 505
  /* Allocate a worklist array/queue.  Entries are only added to the
     list if they were not already on the list.  So the size is
     bounded by the number of basic blocks.  */
506
  qin = qout = worklist
507
    = (basic_block *) xmalloc (sizeof (basic_block) * n_basic_blocks);
Jeffrey A Law committed
508

509 510 511
  /* We want a maximal solution.  */
  sbitmap_vector_ones (avout, n_basic_blocks);

512 513
  /* Put every block on the worklist; this is necessary because of the
     optimistic initialization of AVOUT above.  */
514
  for (bb = 0; bb < n_basic_blocks; bb++)
Jeffrey A Law committed
515
    {
516
      *qin++ = BASIC_BLOCK (bb);
517
      BASIC_BLOCK (bb)->aux = BASIC_BLOCK (bb);
Jeffrey A Law committed
518
    }
519

520 521 522
  qin = worklist;
  qend = &worklist[n_basic_blocks];
  qlen = n_basic_blocks;
523

524 525 526 527 528
  /* Mark blocks which are successors of the entry block so that we
     can easily identify them below.  */
  for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
    e->dest->aux = ENTRY_BLOCK_PTR;

529
  /* Iterate until the worklist is empty.  */
530
  while (qlen)
531 532
    {
      /* Take the first entry off the worklist.  */
533
      basic_block b = *qout++;
534
      bb = b->index;
535 536 537 538
      qlen--;

      if (qout >= qend)
        qout = worklist;
539 540 541 542 543

      /* If one of the predecessor blocks is the ENTRY block, then the
	 intersection of avouts is the null set.  We can identify such blocks
	 by the special value in the AUX field in the block structure.  */
      if (b->aux == ENTRY_BLOCK_PTR)
544 545 546
	/* Do not clear the aux field for blocks which are successors of the
	   ENTRY block.  That way we never add then to the worklist again.  */
	sbitmap_zero (avin[bb]);
547 548 549 550 551 552 553 554 555
      else
	{
	  /* Clear the aux field of this block so that it can be added to
	     the worklist again if necessary.  */
	  b->aux = NULL;
	  sbitmap_intersection_of_preds (avin[bb], avout, bb);
	}

      if (sbitmap_union_of_diff (avout[bb], avloc[bb], avin[bb], kill[bb]))
556 557 558 559 560
	/* If the out state of this block changed, then we need
	   to add the successors of this block to the worklist
	   if they are not already on the worklist.  */
	for (e = b->succ; e; e = e->succ_next)
	  if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR)
561
	    {
562
	      *qin++ = e->dest;
563
	      e->dest->aux = e;
564 565 566 567
	      qlen++;

	      if (qin >= qend)
	        qin = worklist;
568 569
	    }
    }
570

571 572
  clear_aux_for_edges ();
  clear_aux_for_blocks ();
573
  free (worklist);
Jeffrey A Law committed
574 575
}

576
/* Compute the farthest vector for edge based lcm.  */
577

Jeffrey A Law committed
578
static void
579
compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
580 581
		  kill, farthest)
     struct edge_list *edge_list;
Jeffrey A Law committed
582
     int n_exprs;
583
     sbitmap *st_avout, *st_avin, *st_antin, *kill, *farthest;
Jeffrey A Law committed
584
{
585
  sbitmap difference, temp_bitmap;
586
  int x, num_edges;
587
  basic_block pred, succ;
Jeffrey A Law committed
588

589
  num_edges = NUM_EDGES (edge_list);
Jeffrey A Law committed
590

591 592
  difference = sbitmap_alloc (n_exprs);
  temp_bitmap = sbitmap_alloc (n_exprs);
Jeffrey A Law committed
593

594
  for (x = 0; x < num_edges; x++)
Jeffrey A Law committed
595
    {
596 597 598 599 600
      pred = INDEX_EDGE_PRED_BB (edge_list, x);
      succ = INDEX_EDGE_SUCC_BB (edge_list, x);
      if (succ == EXIT_BLOCK_PTR)
	sbitmap_copy (farthest[x], st_avout[pred->index]);
      else
Jeffrey A Law committed
601
	{
602
	  if (pred == ENTRY_BLOCK_PTR)
603
	    sbitmap_zero (farthest[x]);
604 605
	  else
	    {
606
	      sbitmap_difference (difference, st_avout[pred->index],
607 608
				  st_antin[succ->index]);
	      sbitmap_not (temp_bitmap, st_avin[succ->index]);
609
	      sbitmap_a_and_b_or_c (farthest[x], difference,
610 611
				    kill[succ->index], temp_bitmap);
	    }
Jeffrey A Law committed
612 613
	}
    }
614

Jeffrey A Law committed
615
  free (temp_bitmap);
616
  free (difference);
Jeffrey A Law committed
617 618
}

619 620 621 622 623
/* Compute nearer and nearerout vectors for edge based lcm.

   This is the mirror of compute_laterin, additional comments on the
   implementation can be found before compute_laterin.  */

Jeffrey A Law committed
624
static void
625
compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout)
626 627
     struct edge_list *edge_list;
     sbitmap *farthest, *st_avloc, *nearer, *nearerout;
Jeffrey A Law committed
628
{
629 630 631
  int bb, num_edges, i;
  edge e;
  basic_block *worklist, *tos;
Jeffrey A Law committed
632

633
  num_edges = NUM_EDGES (edge_list);
Jeffrey A Law committed
634

635 636 637
  /* Allocate a worklist array/queue.  Entries are only added to the
     list if they were not already on the list.  So the size is
     bounded by the number of basic blocks.  */
638 639
  tos = worklist
    = (basic_block *) xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
Jeffrey A Law committed
640

641 642 643
  /* Initialize NEARER for each edge and build a mapping from an edge to
     its index.  */
  for (i = 0; i < num_edges; i++)
644
    INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
645

646 647 648
  /* We want a maximal solution.  */
  sbitmap_vector_ones (nearer, num_edges);

649 650 651 652 653
  /* Note that even though we want an optimistic setting of NEARER, we
     do not want to be overly optimistic.  Consider an incoming edge to
     the exit block.  That edge should always have a NEARER value the
     same as FARTHEST for that edge.  */
  for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
654
    sbitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
655

656 657 658
  /* Add all the blocks to the worklist.  This prevents an early exit
     from the loop given our optimistic initialization of NEARER.  */
  for (bb = 0; bb < n_basic_blocks; bb++)
Jeffrey A Law committed
659
    {
660 661 662
      basic_block b = BASIC_BLOCK (bb);
      *tos++ = b;
      b->aux = b;
663
    }
664

665 666
  /* Iterate until the worklist is empty.  */
  while (tos != worklist)
667
    {
668 669 670 671 672 673 674 675
      /* Take the first entry off the worklist.  */
      basic_block b = *--tos;
      b->aux = NULL;

      /* Compute the intersection of NEARER for each outgoing edge from B.  */
      bb = b->index;
      sbitmap_ones (nearerout[bb]);
      for (e = b->succ; e != NULL; e = e->succ_next)
676 677
	sbitmap_a_and_b (nearerout[bb], nearerout[bb],
			 nearer[(size_t) e->aux]);
678 679 680

      /* Calculate NEARER for all incoming edges.  */
      for (e = b->pred; e != NULL; e = e->pred_next)
681 682 683 684 685 686 687 688 689 690 691
	if (sbitmap_union_of_diff (nearer[(size_t) e->aux],
				   farthest[(size_t) e->aux],
				   nearerout[e->dest->index],
				   st_avloc[e->dest->index])
	    /* If NEARER for an incoming edge was changed, then we need
	       to add the source of the incoming edge to the worklist.  */
	    && e->src != ENTRY_BLOCK_PTR && e->src->aux == 0)
	  {
	    *tos++ = e->src;
	    e->src->aux = e;
	  }
692
    }
Jeffrey A Law committed
693

694 695 696 697 698 699 700
  /* Computation of insertion and deletion points requires computing NEAREROUT
     for the ENTRY block.  We allocated an extra entry in the NEAREROUT array
     for just this purpose.  */
  sbitmap_ones (nearerout[n_basic_blocks]);
  for (e = ENTRY_BLOCK_PTR->succ; e != NULL; e = e->succ_next)
    sbitmap_a_and_b (nearerout[n_basic_blocks],
		     nearerout[n_basic_blocks],
701
		     nearer[(size_t) e->aux]);
702

703
  clear_aux_for_edges ();
704
  free (tos);
705
}
Jeffrey A Law committed
706

707
/* Compute the insertion and deletion points for edge based LCM.  */
708

Jeffrey A Law committed
709
static void
710 711 712 713
compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
			   insert, delete)
     struct edge_list *edge_list;
     sbitmap *st_avloc, *nearer, *nearerout, *insert, *delete;
Jeffrey A Law committed
714
{
715
  int x;
Jeffrey A Law committed
716

717 718
  for (x = 0; x < n_basic_blocks; x++)
    sbitmap_difference (delete[x], st_avloc[x], nearerout[x]);
719

720
  for (x = 0; x < NUM_EDGES (edge_list); x++)
Jeffrey A Law committed
721
    {
722 723 724
      basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
      if (b == ENTRY_BLOCK_PTR)
	sbitmap_difference (insert[x], nearer[x], nearerout[n_basic_blocks]);
Jeffrey A Law committed
725
      else
726
	sbitmap_difference (insert[x], nearer[x], nearerout[b->index]);
Jeffrey A Law committed
727 728 729
    }
}

730
/* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
731 732 733
   insert and delete vectors for edge based reverse LCM.  Returns an
   edgelist which is used to map the insert vector to what edge
   an expression should be inserted on.  */
Jeffrey A Law committed
734

735
struct edge_list *
736
pre_edge_rev_lcm (file, n_exprs, transp, st_avloc, st_antloc, kill,
737
		  insert, delete)
738
     FILE *file ATTRIBUTE_UNUSED;
739 740 741 742 743 744 745
     int n_exprs;
     sbitmap *transp;
     sbitmap *st_avloc;
     sbitmap *st_antloc;
     sbitmap *kill;
     sbitmap **insert;
     sbitmap **delete;
Jeffrey A Law committed
746
{
747 748 749 750
  sbitmap *st_antin, *st_antout;
  sbitmap *st_avout, *st_avin, *farthest;
  sbitmap *nearer, *nearerout;
  struct edge_list *edge_list;
751
  int num_edges;
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

  edge_list = create_edge_list ();
  num_edges = NUM_EDGES (edge_list);

  st_antin = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, n_exprs);
  st_antout = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, n_exprs);
  sbitmap_vector_zero (st_antin, n_basic_blocks);
  sbitmap_vector_zero (st_antout, n_basic_blocks);
  compute_antinout_edge (st_antloc, transp, st_antin, st_antout);

  /* Compute global anticipatability.  */
  st_avout = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
  st_avin = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
  compute_available (st_avloc, kill, st_avout, st_avin);

#ifdef LCM_DEBUG_INFO
  if (file)
    {
      fprintf (file, "Edge List:\n");
      verify_edge_list (file, edge_list);
      print_edge_list (file, edge_list);
      dump_sbitmap_vector (file, "transp", "", transp, n_basic_blocks);
      dump_sbitmap_vector (file, "st_avloc", "", st_avloc, n_basic_blocks);
      dump_sbitmap_vector (file, "st_antloc", "", st_antloc, n_basic_blocks);
      dump_sbitmap_vector (file, "st_antin", "", st_antin, n_basic_blocks);
      dump_sbitmap_vector (file, "st_antout", "", st_antout, n_basic_blocks);
      dump_sbitmap_vector (file, "st_kill", "", kill, n_basic_blocks);
    }
#endif
Jeffrey A Law committed
781

782 783 784 785 786 787 788
#ifdef LCM_DEBUG_INFO
  if (file)
    {
      dump_sbitmap_vector (file, "st_avout", "", st_avout, n_basic_blocks);
      dump_sbitmap_vector (file, "st_avin", "", st_avin, n_basic_blocks);
    }
#endif
Jeffrey A Law committed
789

790 791
  /* Compute farthestness.  */
  farthest = sbitmap_vector_alloc (num_edges, n_exprs);
792
  compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
793 794 795 796 797 798 799
		    kill, farthest);

#ifdef LCM_DEBUG_INFO
  if (file)
    dump_sbitmap_vector (file, "farthest", "", farthest, num_edges);
#endif

800 801 802 803 804
  sbitmap_vector_free (st_antin);
  sbitmap_vector_free (st_antout);

  sbitmap_vector_free (st_avin);
  sbitmap_vector_free (st_avout);
805 806

  nearer = sbitmap_vector_alloc (num_edges, n_exprs);
807

808 809
  /* Allocate an extra element for the entry block.  */
  nearerout = sbitmap_vector_alloc (n_basic_blocks + 1, n_exprs);
810
  compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
811 812 813

#ifdef LCM_DEBUG_INFO
  if (file)
Jeffrey A Law committed
814
    {
815
      dump_sbitmap_vector (file, "nearerout", "", nearerout,
816 817
			   n_basic_blocks + 1);
      dump_sbitmap_vector (file, "nearer", "", nearer, num_edges);
Jeffrey A Law committed
818
    }
819 820
#endif

821
  sbitmap_vector_free (farthest);
822 823 824

  *insert = sbitmap_vector_alloc (num_edges, n_exprs);
  *delete = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
825 826
  compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
			     *insert, *delete);
827

828 829
  sbitmap_vector_free (nearerout);
  sbitmap_vector_free (nearer);
830 831 832 833 834

#ifdef LCM_DEBUG_INFO
  if (file)
    {
      dump_sbitmap_vector (file, "pre_insert_map", "", *insert, num_edges);
835 836
      dump_sbitmap_vector (file, "pre_delete_map", "", *delete,
			   n_basic_blocks);
837 838 839
    }
#endif
  return edge_list;
Jeffrey A Law committed
840
}
841

842 843 844
/* Mode switching:

   The algorithm for setting the modes consists of scanning the insn list
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
   and finding all the insns which require a specific mode.  Each insn gets
   a unique struct seginfo element.  These structures are inserted into a list
   for each basic block.  For each entity, there is an array of bb_info over
   the flow graph basic blocks (local var 'bb_info'), and contains a list
   of all insns within that basic block, in the order they are encountered.

   For each entity, any basic block WITHOUT any insns requiring a specific
   mode are given a single entry, without a mode.  (Each basic block
   in the flow graph must have at least one entry in the segment table.)

   The LCM algorithm is then run over the flow graph to determine where to
   place the sets to the highest-priority value in respect of first the first
   insn in any one block.  Any adjustments required to the transparancy
   vectors are made, then the next iteration starts for the next-lower
   priority mode, till for each entity all modes are exhasted.

   More details are located in the code for optimize_mode_switching().  */

/* This structure contains the information for each insn which requires
864
   either single or double mode to be set.
865
   MODE is the mode this insn must be executed in.
866 867
   INSN_PTR is the insn to be executed (may be the note that marks the
   beginning of a basic block).
868 869
   BBNUM is the flow graph basic block this insn occurs in.
   NEXT is the next insn in the same basic block.  */
870
struct seginfo
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
{
  int mode;
  rtx insn_ptr;
  int bbnum;
  struct seginfo *next;
  HARD_REG_SET regs_live;
};

struct bb_info
{
  struct seginfo *seginfo;
  int computing;
};

/* These bitmaps are used for the LCM algorithm.  */

887
#ifdef OPTIMIZE_MODE_SWITCHING
888 889 890 891 892 893
static sbitmap *antic;
static sbitmap *transp;
static sbitmap *comp;
static sbitmap *delete;
static sbitmap *insert;

894
static struct seginfo * new_seginfo PARAMS ((int, rtx, int, HARD_REG_SET));
895 896 897
static void add_seginfo PARAMS ((struct bb_info *, struct seginfo *));
static void reg_dies PARAMS ((rtx, HARD_REG_SET));
static void reg_becomes_live PARAMS ((rtx, rtx, void *));
898 899 900 901
static void make_preds_opaque PARAMS ((basic_block, int));
#endif

#ifdef OPTIMIZE_MODE_SWITCHING
902 903

/* This function will allocate a new BBINFO structure, initialized
904
   with the MODE, INSN, and basic block BB parameters.  */
905

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static struct seginfo *
new_seginfo (mode, insn, bb, regs_live)
     int mode;
     rtx insn;
     int bb;
     HARD_REG_SET regs_live;
{
  struct seginfo *ptr;
  ptr = xmalloc (sizeof (struct seginfo));
  ptr->mode = mode;
  ptr->insn_ptr = insn;
  ptr->bbnum = bb;
  ptr->next = NULL;
  COPY_HARD_REG_SET (ptr->regs_live, regs_live);
  return ptr;
}

923
/* Add a seginfo element to the end of a list.
924 925
   HEAD is a pointer to the list beginning.
   INFO is the structure to be linked in.  */
926

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
static void
add_seginfo (head, info)
     struct bb_info *head;
     struct seginfo *info;
{
  struct seginfo *ptr;

  if (head->seginfo == NULL)
    head->seginfo = info;
  else
    {
      ptr = head->seginfo;
      while (ptr->next != NULL)
        ptr = ptr->next;
      ptr->next = info;
    }
}

/* Make all predecessors of basic block B opaque, recursively, till we hit
   some that are already non-transparent, or an edge where aux is set; that
   denotes that a mode set is to be done on that edge.
   J is the bit number in the bitmaps that corresponds to the entity that
   we are currently handling mode-switching for.  */
950

951 952 953 954 955 956 957 958 959 960
static void
make_preds_opaque (b, j)
     basic_block b;
     int j;
{
  edge e;

  for (e = b->pred; e; e = e->pred_next)
    {
      basic_block pb = e->src;
961

962 963
      if (e->aux || ! TEST_BIT (transp[pb->index], j))
	continue;
964

965 966 967 968 969 970
      RESET_BIT (transp[pb->index], j);
      make_preds_opaque (pb, j);
    }
}

/* Record in LIVE that register REG died.  */
971

972 973 974 975 976
static void
reg_dies (reg, live)
     rtx reg;
     HARD_REG_SET live;
{
977
  int regno, nregs;
978 979 980

  if (GET_CODE (reg) != REG)
    return;
981

982 983
  regno = REGNO (reg);
  if (regno < FIRST_PSEUDO_REGISTER)
984 985 986
    for (nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1; nregs >= 0;
	 nregs--)
      CLEAR_HARD_REG_BIT (live, regno + nregs);
987 988 989 990
}

/* Record in LIVE that register REG became live.
   This is called via note_stores.  */
991

992 993 994 995 996 997
static void
reg_becomes_live (reg, setter, live)
     rtx reg;
     rtx setter ATTRIBUTE_UNUSED;
     void *live;
{
998
  int regno, nregs;
999 1000 1001 1002 1003 1004 1005 1006 1007

  if (GET_CODE (reg) == SUBREG)
    reg = SUBREG_REG (reg);

  if (GET_CODE (reg) != REG)
    return;

  regno = REGNO (reg);
  if (regno < FIRST_PSEUDO_REGISTER)
1008 1009 1010
    for (nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1; nregs >= 0;
	 nregs--)
      SET_HARD_REG_BIT (* (HARD_REG_SET *) live, regno + nregs);
1011 1012
}

1013 1014
/* Find all insns that need a particular mode setting, and insert the
   necessary mode switches.  Return true if we did work.  */
1015

1016
int
1017
optimize_mode_switching (file)
1018
     FILE *file;
1019 1020 1021 1022 1023 1024
{
  rtx insn;
  int bb, e;
  int need_commit = 0;
  sbitmap *kill;
  struct edge_list *edge_list;
1025
  static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
1026 1027 1028 1029 1030 1031
#define N_ENTITIES (sizeof num_modes / sizeof (int))
  int entity_map[N_ENTITIES];
  struct bb_info *bb_info[N_ENTITIES];
  int i, j;
  int n_entities;
  int max_num_modes = 0;
1032
  bool emited = false;
1033

1034 1035 1036 1037 1038
#ifdef NORMAL_MODE
  /* Increment n_basic_blocks before allocating bb_info.  */
  n_basic_blocks++;
#endif

1039
  for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--)
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    if (OPTIMIZE_MODE_SWITCHING (e))
      {
	/* Create the list of segments within each basic block.  */
	bb_info[n_entities]
	  = (struct bb_info *) xcalloc (n_basic_blocks, sizeof **bb_info);
	entity_map[n_entities++] = e;
	if (num_modes[e] > max_num_modes)
	  max_num_modes = num_modes[e];
      }

1050 1051 1052 1053 1054
#ifdef NORMAL_MODE
  /* Decrement it back in case we return below.  */
  n_basic_blocks--;
#endif

1055
  if (! n_entities)
1056
    return 0;
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
#ifdef NORMAL_MODE
  /* We're going to pretend the EXIT_BLOCK is a regular basic block,
     so that switching back to normal mode when entering the
     EXIT_BLOCK isn't optimized away.  We do this by incrementing the
     basic block count, growing the VARRAY of basic_block_info and
     appending the EXIT_BLOCK_PTR to it.  */
  n_basic_blocks++;
  if (VARRAY_SIZE (basic_block_info) < n_basic_blocks)
    VARRAY_GROW (basic_block_info, n_basic_blocks);
  BASIC_BLOCK (n_basic_blocks - 1) = EXIT_BLOCK_PTR;
  EXIT_BLOCK_PTR->index = n_basic_blocks - 1;
#endif

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
  /* Create the bitmap vectors.  */

  antic = sbitmap_vector_alloc (n_basic_blocks, n_entities);
  transp = sbitmap_vector_alloc (n_basic_blocks, n_entities);
  comp = sbitmap_vector_alloc (n_basic_blocks, n_entities);

  sbitmap_vector_ones (transp, n_basic_blocks);

  for (j = n_entities - 1; j >= 0; j--)
    {
      int e = entity_map[j];
      int no_mode = num_modes[e];
      struct bb_info *info = bb_info[j];

      /* Determine what the first use (if any) need for a mode of entity E is.
1086
	 This will be the mode that is anticipatable for this block.
1087 1088 1089 1090 1091 1092 1093 1094 1095
	 Also compute the initial transparency settings.  */
      for (bb = 0 ; bb < n_basic_blocks; bb++)
	{
	  struct seginfo *ptr;
	  int last_mode = no_mode;
	  HARD_REG_SET live_now;

	  REG_SET_TO_HARD_REG_SET (live_now,
				   BASIC_BLOCK (bb)->global_live_at_start);
1096
	  for (insn = BLOCK_HEAD (bb);
1097 1098 1099
	       insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
	       insn = NEXT_INSN (insn))
	    {
1100
	      if (INSN_P (insn))
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		{
		  int mode = MODE_NEEDED (e, insn);
		  rtx link;

		  if (mode != no_mode && mode != last_mode)
		    {
		      last_mode = mode;
		      ptr = new_seginfo (mode, insn, bb, live_now);
		      add_seginfo (info + bb, ptr);
		      RESET_BIT (transp[bb], j);
		    }

		  /* Update LIVE_NOW.  */
		  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
		    if (REG_NOTE_KIND (link) == REG_DEAD)
		      reg_dies (XEXP (link, 0), live_now);
1117

1118 1119 1120 1121 1122 1123
		  note_stores (PATTERN (insn), reg_becomes_live, &live_now);
		  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
		    if (REG_NOTE_KIND (link) == REG_UNUSED)
		      reg_dies (XEXP (link, 0), live_now);
		}
	    }
1124

1125 1126 1127 1128 1129 1130 1131 1132
	  info[bb].computing = last_mode;
	  /* Check for blocks without ANY mode requirements.  */
	  if (last_mode == no_mode)
	    {
	      ptr = new_seginfo (no_mode, insn, bb, live_now);
	      add_seginfo (info + bb, ptr);
	    }
	}
1133
#ifdef NORMAL_MODE
1134
      {
1135
	int mode = NORMAL_MODE (e);
1136

1137 1138
	if (mode != no_mode)
	  {
1139 1140
	    edge eg;

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	    for (eg = ENTRY_BLOCK_PTR->succ; eg; eg = eg->succ_next)
	      {
		bb = eg->dest->index;

	        /* By always making this nontransparent, we save
		   an extra check in make_preds_opaque.  We also
		   need this to avoid confusing pre_edge_lcm when
		   antic is cleared but transp and comp are set.  */
		RESET_BIT (transp[bb], j);

		/* If the block already has MODE, pretend it
		   has none (because we don't need to set it),
		   but retain whatever mode it computes.  */
		if (info[bb].seginfo->mode == mode)
1155 1156 1157 1158 1159
		  info[bb].seginfo->mode = no_mode;

		/* Insert a fake computing definition of MODE into entry
		   blocks which compute no mode. This represents the mode on
		   entry.  */
1160 1161 1162 1163 1164 1165
		else if (info[bb].computing == no_mode)
		  {
		    info[bb].computing = mode;
		    info[bb].seginfo->mode = no_mode;
		  }
	      }
1166 1167 1168

	    bb = n_basic_blocks - 1;
	    info[bb].seginfo->mode = mode;
1169 1170
	  }
      }
1171
#endif /* NORMAL_MODE */
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    }

  kill = sbitmap_vector_alloc (n_basic_blocks, n_entities);
  for (i = 0; i < max_num_modes; i++)
    {
      int current_mode[N_ENTITIES];

      /* Set the anticipatable and computing arrays.  */
      sbitmap_vector_zero (antic, n_basic_blocks);
      sbitmap_vector_zero (comp, n_basic_blocks);
      for (j = n_entities - 1; j >= 0; j--)
	{
	  int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i);
	  struct bb_info *info = bb_info[j];
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
	  for (bb = 0 ; bb < n_basic_blocks; bb++)
	    {
	      if (info[bb].seginfo->mode == m)
		SET_BIT (antic[bb], j);

	      if (info[bb].computing == m)
		SET_BIT (comp[bb], j);
	    }
	}

      /* Calculate the optimal locations for the
	 placement mode switches to modes with priority I.  */

      for (bb = n_basic_blocks - 1; bb >= 0; bb--)
	sbitmap_not (kill[bb], transp[bb]);
      edge_list = pre_edge_lcm (file, 1, transp, comp, antic,
				kill, &insert, &delete);

1205
      for (j = n_entities - 1; j >= 0; j--)
1206 1207 1208
	{
	  /* Insert all mode sets that have been inserted by lcm.  */
	  int no_mode = num_modes[entity_map[j]];
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	  /* Wherever we have moved a mode setting upwards in the flow graph,
	     the blocks between the new setting site and the now redundant
	     computation ceases to be transparent for any lower-priority
	     mode of the same entity.  First set the aux field of each
	     insertion site edge non-transparent, then propagate the new
	     non-transparency from the redundant computation upwards till
	     we hit an insertion site or an already non-transparent block.  */
	  for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--)
	    {
	      edge eg = INDEX_EDGE (edge_list, e);
	      int mode;
	      basic_block src_bb;
	      HARD_REG_SET live_at_edge;
	      rtx mode_set;

	      eg->aux = 0;

	      if (! TEST_BIT (insert[e], j))
		continue;

	      eg->aux = (void *)1;

	      mode = current_mode[j];
	      src_bb = eg->src;

1235 1236 1237
	      REG_SET_TO_HARD_REG_SET (live_at_edge,
				       src_bb->global_live_at_end);

1238 1239 1240 1241 1242
	      start_sequence ();
	      EMIT_MODE_SET (entity_map[j], mode, live_at_edge);
	      mode_set = gen_sequence ();
	      end_sequence ();

1243 1244 1245 1246 1247
	      /* Do not bother to insert empty sequence.  */
	      if (GET_CODE (mode_set) == SEQUENCE
		  && !XVECLEN (mode_set, 0))
		continue;

1248 1249
	      /* If this is an abnormal edge, we'll insert at the end
		 of the previous block.  */
1250 1251
	      if (eg->flags & EDGE_ABNORMAL)
		{
1252
		  emited = true;
1253 1254
		  if (GET_CODE (src_bb->end) == JUMP_INSN)
		    emit_insn_before (mode_set, src_bb->end);
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		  /* It doesn't make sense to switch to normal mode
		     after a CALL_INSN, so we're going to abort if we
		     find one.  The cases in which a CALL_INSN may
		     have an abnormal edge are sibcalls and EH edges.
		     In the case of sibcalls, the dest basic-block is
		     the EXIT_BLOCK, that runs in normal mode; it is
		     assumed that a sibcall insn requires normal mode
		     itself, so no mode switch would be required after
		     the call (it wouldn't make sense, anyway).  In
		     the case of EH edges, EH entry points also start
		     in normal mode, so a similar reasoning applies.  */
		  else if (GET_CODE (src_bb->end) == INSN)
1267
		    emit_insn_after (mode_set, src_bb->end);
1268 1269
		  else
		    abort ();
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
		  bb_info[j][src_bb->index].computing = mode;
		  RESET_BIT (transp[src_bb->index], j);
		}
	      else
		{
		  need_commit = 1;
		  insert_insn_on_edge (mode_set, eg);
		}
	    }

	  for (bb = n_basic_blocks - 1; bb >= 0; bb--)
1281 1282 1283 1284 1285 1286
	    if (TEST_BIT (delete[bb], j))
	      {
		make_preds_opaque (BASIC_BLOCK (bb), j);
		/* Cancel the 'deleted' mode set.  */
		bb_info[j][bb].seginfo->mode = no_mode;
	      }
1287
	}
1288

1289
      clear_aux_for_edges ();
1290 1291 1292
      free_edge_list (edge_list);
    }

1293 1294 1295 1296 1297 1298
#ifdef NORMAL_MODE
  /* Restore the special status of EXIT_BLOCK.  */
  n_basic_blocks--;
  VARRAY_POP (basic_block_info);
  EXIT_BLOCK_PTR->index = EXIT_BLOCK;
#endif
1299

1300 1301 1302
  /* Now output the remaining mode sets in all the segments.  */
  for (j = n_entities - 1; j >= 0; j--)
    {
1303 1304
      int no_mode = num_modes[entity_map[j]];

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
#ifdef NORMAL_MODE
      if (bb_info[j][n_basic_blocks].seginfo->mode != no_mode)
	{
	  edge eg;
	  struct seginfo *ptr = bb_info[j][n_basic_blocks].seginfo;

	  for (eg = EXIT_BLOCK_PTR->pred; eg; eg = eg->pred_next)
	    {
	      rtx mode_set;

	      if (bb_info[j][eg->src->index].computing == ptr->mode)
		continue;

	      start_sequence ();
	      EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
	      mode_set = gen_sequence ();
	      end_sequence ();

1323 1324 1325 1326 1327
	      /* Do not bother to insert empty sequence.  */
	      if (GET_CODE (mode_set) == SEQUENCE
		  && !XVECLEN (mode_set, 0))
		continue;

1328 1329 1330 1331
	      /* If this is an abnormal edge, we'll insert at the end of the
		 previous block.  */
	      if (eg->flags & EDGE_ABNORMAL)
		{
1332
		  emited = true;
1333 1334 1335
		  if (GET_CODE (eg->src->end) == JUMP_INSN)
		    emit_insn_before (mode_set, eg->src->end);
		  else if (GET_CODE (eg->src->end) == INSN)
1336
		    emit_insn_after (mode_set, eg->src->end);
1337 1338 1339 1340 1341 1342 1343 1344 1345
		  else
		    abort ();
		}
	      else
		{
		  need_commit = 1;
		  insert_insn_on_edge (mode_set, eg);
		}
	    }
1346

1347 1348 1349
	}
#endif

1350 1351 1352 1353 1354 1355
      for (bb = n_basic_blocks - 1; bb >= 0; bb--)
	{
	  struct seginfo *ptr, *next;
	  for (ptr = bb_info[j][bb].seginfo; ptr; ptr = next)
	    {
	      next = ptr->next;
1356
	      if (ptr->mode != no_mode)
1357 1358 1359 1360 1361 1362 1363 1364
		{
		  rtx mode_set;

		  start_sequence ();
		  EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
		  mode_set = gen_sequence ();
		  end_sequence ();

1365 1366 1367 1368 1369 1370
		  /* Do not bother to insert empty sequence.  */
		  if (GET_CODE (mode_set) == SEQUENCE
		      && !XVECLEN (mode_set, 0))
		    continue;

		  emited = true;
1371 1372 1373
		  if (GET_CODE (ptr->insn_ptr) == NOTE
		      && (NOTE_LINE_NUMBER (ptr->insn_ptr)
			  == NOTE_INSN_BASIC_BLOCK))
1374
		    emit_insn_after (mode_set, ptr->insn_ptr);
1375
		  else
1376
		    emit_insn_before (mode_set, ptr->insn_ptr);
1377
		}
1378

1379 1380 1381
	      free (ptr);
	    }
	}
1382

1383 1384 1385 1386
      free (bb_info[j]);
    }

  /* Finished. Free up all the things we've allocated.  */
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396
  sbitmap_vector_free (kill);
  sbitmap_vector_free (antic);
  sbitmap_vector_free (transp);
  sbitmap_vector_free (comp);
  sbitmap_vector_free (delete);
  sbitmap_vector_free (insert);

  if (need_commit)
    commit_edge_insertions ();
1397

1398 1399 1400
  if (!need_commit && !emited)
    return 0;

1401 1402
  /* Ideally we'd figure out what blocks were affected and start from
     there, but this is enormously complicated by commit_edge_insertions,
1403
     which would screw up any indices we'd collected, and also need to
1404 1405 1406 1407 1408 1409 1410 1411 1412
     be involved in the update.  Bail and recompute global life info for
     everything.  */

  allocate_reg_life_data ();
  update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
		    (PROP_DEATH_NOTES | PROP_KILL_DEAD_CODE
		     | PROP_SCAN_DEAD_CODE | PROP_REG_INFO));

  return 1;
1413
}
1414
#endif /* OPTIMIZE_MODE_SWITCHING */