ddg.c 33 KB
Newer Older
1
/* DDG - Data Dependence Graph implementation.
2
   Copyright (C) 2004-2019 Free Software Foundation, Inc.
3 4 5 6 7 8
   Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10 11 12 13 14 15 16 17
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
18 19
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
20 21 22 23 24


#include "config.h"
#include "system.h"
#include "coretypes.h"
25
#include "backend.h"
26
#include "rtl.h"
27
#include "df.h"
28 29 30
#include "insn-attr.h"
#include "sched-int.h"
#include "ddg.h"
31
#include "rtl-iter.h"
32

33 34
#ifdef INSN_SCHEDULING

35 36 37 38 39 40 41
/* A flag indicating that a ddg edge belongs to an SCC or not.  */
enum edge_flag {NOT_IN_SCC = 0, IN_SCC};

/* Forward declarations.  */
static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
42 43
static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
                                                 ddg_node_ptr, dep_t);
44 45 46 47 48 49 50 51 52 53 54
static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
 				    dep_type, dep_data_type, int);
static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
				     dep_data_type, int, int);
static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);

/* Auxiliary variable for mem_read_insn_p/mem_write_insn_p.  */
static bool mem_ref_p;

/* Auxiliary function for mem_read_insn_p.  */
static void
55
mark_mem_use (rtx *x, void *)
56
{
57 58
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, *x, NONCONST)
59
    if (MEM_P (*iter))
60 61 62 63
      {
	mem_ref_p = true;
	break;
      }
64 65
}

66
/* Returns nonzero if INSN reads from memory.  */
67
static bool
David Malcolm committed
68
mem_read_insn_p (rtx_insn *insn)
69 70
{
  mem_ref_p = false;
71
  note_uses (&PATTERN (insn), mark_mem_use, NULL);
72 73 74 75
  return mem_ref_p;
}

static void
76
mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
77
{
78
  if (MEM_P (loc))
79 80 81
    mem_ref_p = true;
}

82
/* Returns nonzero if INSN writes to memory.  */
83
static bool
David Malcolm committed
84
mem_write_insn_p (rtx_insn *insn)
85 86 87 88 89 90
{
  mem_ref_p = false;
  note_stores (PATTERN (insn), mark_mem_store, NULL);
  return mem_ref_p;
}

91
/* Returns nonzero if X has access to memory.  */
92 93 94 95 96 97 98 99 100 101
static bool
rtx_mem_access_p (rtx x)
{
  int i, j;
  const char *fmt;
  enum rtx_code code;

  if (x == 0)
    return false;

102
  if (MEM_P (x))
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    return true;

  code = GET_CODE (x);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  if (rtx_mem_access_p (XEXP (x, i)))
            return true;
        }
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  {
	    if (rtx_mem_access_p (XVECEXP (x, i, j)))
              return true;
          }
    }
  return false;
}

124
/* Returns nonzero if INSN reads to or writes from memory.  */
125
static bool
David Malcolm committed
126
mem_access_insn_p (rtx_insn *insn)
127 128 129 130
{
  return rtx_mem_access_p (PATTERN (insn));
}

131 132 133 134 135 136 137 138 139
/* Return true if DEF_INSN contains address being auto-inc or auto-dec
   which is used in USE_INSN.  Otherwise return false.  The result is
   being used to decide whether to remove the edge between def_insn and
   use_insn when -fmodulo-sched-allow-regmoves is set.  This function
   doesn't need to consider the specific address register; no reg_moves
   will be allowed for any life range defined by def_insn and used
   by use_insn, if use_insn uses an address register auto-inc'ed by
   def_insn.  */
bool
David Malcolm committed
140
autoinc_var_is_used_p (rtx_insn *def_insn, rtx_insn *use_insn)
141 142 143 144 145 146 147 148 149 150 151
{
  rtx note;

  for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
    if (REG_NOTE_KIND (note) == REG_INC
	&& reg_referenced_p (XEXP (note, 0), PATTERN (use_insn)))
      return true;

  return false;
}

152 153 154
/* Return true if one of the definitions in INSN has MODE_CC.  Otherwise
   return false.  */
static bool
David Malcolm committed
155
def_has_ccmode_p (rtx_insn *insn)
156
{
157
  df_ref def;
158

159
  FOR_EACH_INSN_DEF (def, insn)
160
    {
161
      machine_mode mode = GET_MODE (DF_REF_REG (def));
162 163 164 165 166 167 168 169

      if (GET_MODE_CLASS (mode) == MODE_CC)
	return true;
    }

  return false;
}

170 171 172
/* Computes the dependence parameters (latency, distance etc.), creates
   a ddg_edge and adds it to the given DDG.  */
static void
173 174
create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
                                     ddg_node_ptr dest_node, dep_t link)
175 176 177 178 179 180 181
{
  ddg_edge_ptr e;
  int latency, distance = 0;
  dep_type t = TRUE_DEP;
  dep_data_type dt = (mem_access_insn_p (src_node->insn)
		      && mem_access_insn_p (dest_node->insn) ? MEM_DEP
							     : REG_DEP);
182
  gcc_assert (src_node->cuid < dest_node->cuid);
183
  gcc_assert (link);
184 185

  /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!!  */
186
  if (DEP_TYPE (link) == REG_DEP_ANTI)
187
    t = ANTI_DEP;
188
  else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
189 190
    t = OUTPUT_DEP;

191
  gcc_assert (!DEBUG_INSN_P (dest_node->insn) || t == ANTI_DEP);
192
  gcc_assert (!DEBUG_INSN_P (src_node->insn) || t == ANTI_DEP);
193

194 195 196 197
  /* We currently choose not to create certain anti-deps edges and
     compensate for that by generating reg-moves based on the life-range
     analysis.  The anti-deps that will be deleted are the ones which
     have true-deps edges in the opposite direction (in other words
198 199 200 201 202
     the kernel has only one def of the relevant register).
     If the address that is being auto-inc or auto-dec in DEST_NODE
     is used in SRC_NODE then do not remove the edge to make sure
     reg-moves will not be created for this address.  
     TODO: support the removal of all anti-deps edges, i.e. including those
203
     whose register has multiple defs in the loop.  */
204 205
  if (flag_modulo_sched_allow_regmoves 
      && (t == ANTI_DEP && dt == REG_DEP)
206
      && !def_has_ccmode_p (dest_node->insn)
207
      && !autoinc_var_is_used_p (dest_node->insn, src_node->insn))
208
    {
209 210 211
      rtx set;

      set = single_set (dest_node->insn);
212 213 214
      /* TODO: Handle registers that REG_P is not true for them, i.e.
         subregs and special registers.  */
      if (set && REG_P (SET_DEST (set)))
215 216
        {
          int regno = REGNO (SET_DEST (set));
217
          df_ref first_def;
218
          struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
219

220 221 222
          first_def = df_bb_regno_first_def_find (g->bb, regno);
          gcc_assert (first_def);

223
          if (bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def)))
224 225
            return;
        }
226
    }
227 228 229 230

   latency = dep_cost (link);
   e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
   add_edge_to_ddg (g, e);
231 232 233 234 235 236 237 238 239
}

/* The same as the above function, but it doesn't require a link parameter.  */
static void
create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
			dep_type d_t, dep_data_type d_dt, int distance)
{
  ddg_edge_ptr e;
  int l;
240 241
  enum reg_note dep_kind;
  struct _dep _dep, *dep = &_dep;
242

243
  gcc_assert (!DEBUG_INSN_P (to->insn) || d_t == ANTI_DEP);
244
  gcc_assert (!DEBUG_INSN_P (from->insn) || d_t == ANTI_DEP);
245

246
  if (d_t == ANTI_DEP)
247
    dep_kind = REG_DEP_ANTI;
248
  else if (d_t == OUTPUT_DEP)
249 250 251 252 253 254 255 256 257
    dep_kind = REG_DEP_OUTPUT;
  else
    {
      gcc_assert (d_t == TRUE_DEP);

      dep_kind = REG_DEP_TRUE;
    }

  init_dep (dep, from->insn, to->insn, dep_kind);
258

259
  l = dep_cost (dep);
260 261 262 263 264 265 266 267

  e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
  if (distance > 0)
    add_backarc_to_ddg (g, e);
  else
    add_edge_to_ddg (g, e);
}

268 269 270 271 272 273 274

/* Given a downwards exposed register def LAST_DEF (which is the last
   definition of that register in the bb), add inter-loop true dependences
   to all its uses in the next iteration, an output dependence to the
   first def of the same register (possibly itself) in the next iteration
   and anti-dependences from its uses in the current iteration to the
   first definition in the next iteration.  */
275
static void
276
add_cross_iteration_register_deps (ddg_ptr g, df_ref last_def)
277
{
278
  int regno = DF_REF_REGNO (last_def);
279
  struct df_link *r_use;
280
  int has_use_in_bb_p = false;
David Malcolm committed
281
  rtx_insn *def_insn = DF_REF_INSN (last_def);
282 283
  ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn);
  ddg_node_ptr use_node;
284
  df_ref first_def = df_bb_regno_first_def_find (g->bb, regno);
285

286 287 288
  gcc_assert (last_def_node);
  gcc_assert (first_def);

289 290 291 292 293
  if (flag_checking && DF_REF_ID (last_def) != DF_REF_ID (first_def))
    {
      struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
      gcc_assert (!bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def)));
    }
294

295 296
  /* Create inter-loop true dependences and anti dependences.  */
  for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
297
    {
298
      if (DF_REF_BB (r_use->ref) != g->bb)
299
	continue;
300

301 302 303 304 305
      gcc_assert (!DF_REF_IS_ARTIFICIAL (r_use->ref)
		  && DF_REF_INSN_INFO (r_use->ref) != NULL);

      rtx_insn *use_insn = DF_REF_INSN (r_use->ref);

306 307 308 309 310 311 312 313 314
      /* ??? Do not handle uses with DF_REF_IN_NOTE notes.  */
      use_node = get_node_of_insn (g, use_insn);
      gcc_assert (use_node);
      has_use_in_bb_p = true;
      if (use_node->cuid <= last_def_node->cuid)
	{
	  /* Add true deps from last_def to it's uses in the next
	     iteration.  Any such upwards exposed use appears before
	     the last_def def.  */
315 316
	  create_ddg_dep_no_link (g, last_def_node, use_node,
				  DEBUG_INSN_P (use_insn) ? ANTI_DEP : TRUE_DEP,
317 318
				  REG_DEP, 1);
	}
319
      else if (!DEBUG_INSN_P (use_insn))
320 321 322 323 324 325 326 327
	{
	  /* Add anti deps from last_def's uses in the current iteration
	     to the first def in the next iteration.  We do not add ANTI
	     dep when there is an intra-loop TRUE dep in the opposite
	     direction, but use regmoves to fix such disregarded ANTI
	     deps when broken.	If the first_def reaches the USE then
	     there is such a dep.  */
	  ddg_node_ptr first_def_node = get_node_of_insn (g,
328
							  DF_REF_INSN (first_def));
329 330 331

	  gcc_assert (first_def_node);

332
         /* Always create the edge if the use node is a branch in
333 334 335 336
            order to prevent the creation of reg-moves.  
            If the address that is being auto-inc or auto-dec in LAST_DEF
            is used in USE_INSN then do not remove the edge to make sure
            reg-moves will not be created for that address.  */
337
          if (DF_REF_ID (last_def) != DF_REF_ID (first_def)
338
              || !flag_modulo_sched_allow_regmoves
339
	      || JUMP_P (use_node->insn)
340 341
              || autoinc_var_is_used_p (DF_REF_INSN (last_def), use_insn)
	      || def_has_ccmode_p (DF_REF_INSN (last_def)))
342 343 344
            create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
                                    REG_DEP, 1);

345
	}
346
    }
347 348 349 350 351 352 353 354
  /* Create an inter-loop output dependence between LAST_DEF (which is the
     last def in its block, being downwards exposed) and the first def in
     its block.  Avoid creating a self output dependence.  Avoid creating
     an output dependence if there is a dependence path between the two
     defs starting with a true dependence to a use which can be in the
     next iteration; followed by an anti dependence of that use to the
     first def (i.e. if there is a use between the two defs.)  */
  if (!has_use_in_bb_p)
355 356 357
    {
      ddg_node_ptr dest_node;

358
      if (DF_REF_ID (last_def) == DF_REF_ID (first_def))
359 360
	return;

361
      dest_node = get_node_of_insn (g, DF_REF_INSN (first_def));
362 363 364
      gcc_assert (dest_node);
      create_ddg_dep_no_link (g, last_def_node, dest_node,
			      OUTPUT_DEP, REG_DEP, 1);
365 366 367 368
    }
}
/* Build inter-loop dependencies, by looking at DF analysis backwards.  */
static void
369
build_inter_loop_deps (ddg_ptr g)
370
{
371
  unsigned rd_num;
372
  struct df_rd_bb_info *rd_bb_info;
373
  bitmap_iterator bi;
374

375
  rd_bb_info = DF_RD_BB_INFO (g->bb);
376

377
  /* Find inter-loop register output, true and anti deps.  */
378
  EXECUTE_IF_SET_IN_BITMAP (&rd_bb_info->gen, 0, rd_num, bi)
379
  {
380
    df_ref rd = DF_DEFS_GET (rd_num);
381

382 383
    add_cross_iteration_register_deps (g, rd);
  }
384 385
}

386

387 388 389 390
/* Return true if two specified instructions have mem expr with conflict
   alias sets.  */
static bool
insns_may_alias_p (rtx_insn *insn1, rtx_insn *insn2)
391
{
392 393 394
  subrtx_iterator::array_type array1;
  subrtx_iterator::array_type array2;
  FOR_EACH_SUBRTX (iter1, array1, PATTERN (insn1), NONCONST)
395
    {
396 397 398 399 400 401 402 403
      const_rtx x1 = *iter1;
      if (MEM_P (x1))
	FOR_EACH_SUBRTX (iter2, array2, PATTERN (insn2), NONCONST)
	  {
	    const_rtx x2 = *iter2;
	    if (MEM_P (x2) && may_alias_p (x2, x1))
	      return true;
	  }
404
    }
405
  return false;
406 407
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
/* Given two nodes, analyze their RTL insns and add intra-loop mem deps
   to ddg G.  */
static void
add_intra_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
{

  if ((from->cuid == to->cuid)
      || !insns_may_alias_p (from->insn, to->insn))
    /* Do not create edge if memory references have disjoint alias sets
       or 'to' and 'from' are the same instruction.  */
    return;

  if (mem_write_insn_p (from->insn))
    {
      if (mem_read_insn_p (to->insn))
	create_ddg_dep_no_link (g, from, to,
				DEBUG_INSN_P (to->insn)
				? ANTI_DEP : TRUE_DEP, MEM_DEP, 0);
      else
	create_ddg_dep_no_link (g, from, to,
				DEBUG_INSN_P (to->insn)
				? ANTI_DEP : OUTPUT_DEP, MEM_DEP, 0);
    }
  else if (!mem_read_insn_p (to->insn))
    create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 0);
}

435 436 437 438 439
/* Given two nodes, analyze their RTL insns and add inter-loop mem deps
   to ddg G.  */
static void
add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
{
440
  if (!insns_may_alias_p (from->insn, to->insn))
441 442
    /* Do not create edge if memory references have disjoint alias sets.  */
    return;
H.J. Lu committed
443

444 445 446
  if (mem_write_insn_p (from->insn))
    {
      if (mem_read_insn_p (to->insn))
447 448 449
  	create_ddg_dep_no_link (g, from, to,
				DEBUG_INSN_P (to->insn)
				? ANTI_DEP : TRUE_DEP, MEM_DEP, 1);
450
      else if (from->cuid != to->cuid)
451 452 453
  	create_ddg_dep_no_link (g, from, to,
				DEBUG_INSN_P (to->insn)
				? ANTI_DEP : OUTPUT_DEP, MEM_DEP, 1);
454 455 456 457 458 459 460
    }
  else
    {
      if (mem_read_insn_p (to->insn))
	return;
      else if (from->cuid != to->cuid)
	{
461 462 463 464 465
	  create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
	  if (DEBUG_INSN_P (from->insn) || DEBUG_INSN_P (to->insn))
	    create_ddg_dep_no_link (g, to, from, ANTI_DEP, MEM_DEP, 1);
	  else
	    create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
466 467 468 469 470 471
	}
    }

}

/* Perform intra-block Data Dependency analysis and connect the nodes in
472
   the DDG.  We assume the loop has a single basic block.  */
473 474 475 476 477
static void
build_intra_loop_deps (ddg_ptr g)
{
  int i;
  /* Hold the dependency analysis state during dependency calculations.  */
478
  struct deps_desc tmp_deps;
479
  rtx_insn *head, *tail;
480 481 482

  /* Build the dependence information, using the sched_analyze function.  */
  init_deps_global ();
483
  init_deps (&tmp_deps, false);
484 485

  /* Do the intra-block data dependence analysis for the given block.  */
486
  get_ebb_head_tail (g->bb, g->bb, &head, &tail);
487 488
  sched_analyze (&tmp_deps, head, tail);

489
  /* Build intra-loop data dependencies using the scheduler dependency
490 491 492 493
     analysis.  */
  for (i = 0; i < g->num_nodes; i++)
    {
      ddg_node_ptr dest_node = &g->nodes[i];
494 495
      sd_iterator_def sd_it;
      dep_t dep;
496 497 498 499

      if (! INSN_P (dest_node->insn))
	continue;

500
      FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
501
	{
David Malcolm committed
502
	  rtx_insn *src_insn = DEP_PRO (dep);
503 504 505 506 507 508 509 510
	  ddg_node_ptr src_node;

	  /* Don't add dependencies on debug insns to non-debug insns
	     to avoid codegen differences between -g and -g0.  */
	  if (DEBUG_INSN_P (src_insn) && !DEBUG_INSN_P (dest_node->insn))
	    continue;

	  src_node = get_node_of_insn (g, src_insn);
511 512 513 514

	  if (!src_node)
	    continue;

515
	  create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
516 517 518 519 520 521 522 523 524 525 526
	}

      /* If this insn modifies memory, add an edge to all insns that access
	 memory.  */
      if (mem_access_insn_p (dest_node->insn))
	{
	  int j;

	  for (j = 0; j <= i; j++)
	    {
	      ddg_node_ptr j_node = &g->nodes[j];
527 528
	      if (DEBUG_INSN_P (j_node->insn))
		continue;
529
	      if (mem_access_insn_p (j_node->insn))
530 531 532
		{
		  /* Don't bother calculating inter-loop dep if an intra-loop dep
		     already exists.  */
533
	      	  if (! bitmap_bit_p (dest_node->successors, j))
534
		    add_inter_loop_mem_dep (g, dest_node, j_node);
535 536 537 538 539 540 541 542
		  /* If -fmodulo-sched-allow-regmoves
		     is set certain anti-dep edges are not created.
		     It might be that these anti-dep edges are on the
		     path from one memory instruction to another such that
		     removing these edges could cause a violation of the
		     memory dependencies.  Thus we add intra edges between
		     every two memory instructions in this case.  */
		  if (flag_modulo_sched_allow_regmoves
543
		      && !bitmap_bit_p (dest_node->predecessors, j))
544 545
		    add_intra_loop_mem_dep (g, j_node, dest_node);
		}
546 547 548 549 550 551 552
            }
        }
    }

  /* Free the INSN_LISTs.  */
  finish_deps_global ();
  free_deps (&tmp_deps);
553 554 555

  /* Free dependencies.  */
  sched_free_deps (head, tail, false);
556 557 558 559 560 561 562
}


/* Given a basic block, create its DDG and return a pointer to a variable
   of ddg type that represents it.
   Initialize the ddg structure fields to the appropriate values.  */
ddg_ptr
563
create_ddg (basic_block bb, int closing_branch_deps)
564 565
{
  ddg_ptr g;
David Malcolm committed
566
  rtx_insn *insn, *first_note;
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
  int i;
  int num_nodes = 0;

  g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));

  g->bb = bb;
  g->closing_branch_deps = closing_branch_deps;

  /* Count the number of insns in the BB.  */
  for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
       insn = NEXT_INSN (insn))
    {
      if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
	continue;

582 583 584 585 586 587 588 589 590
      if (DEBUG_INSN_P (insn))
	g->num_debug++;
      else
	{
	  if (mem_read_insn_p (insn))
	    g->num_loads++;
	  if (mem_write_insn_p (insn))
	    g->num_stores++;
	}
591 592 593 594
      num_nodes++;
    }

  /* There is nothing to do for this BB.  */
595
  if ((num_nodes - g->num_debug) <= 1)
596 597 598 599 600 601 602 603 604 605
    {
      free (g);
      return NULL;
    }

  /* Allocate the nodes array, and initialize the nodes.  */
  g->num_nodes = num_nodes;
  g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
  g->closing_branch = NULL;
  i = 0;
David Malcolm committed
606
  first_note = NULL;
607 608 609 610 611
  for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
       insn = NEXT_INSN (insn))
    {
      if (! INSN_P (insn))
	{
612
	  if (! first_note && NOTE_P (insn)
613
	      && NOTE_KIND (insn) !=  NOTE_INSN_BASIC_BLOCK)
614 615 616
	    first_note = insn;
	  continue;
	}
617
      if (JUMP_P (insn))
618
	{
619 620
	  gcc_assert (!g->closing_branch);
	  g->closing_branch = &g->nodes[i];
621 622 623 624 625 626 627 628 629 630
	}
      else if (GET_CODE (PATTERN (insn)) == USE)
	{
	  if (! first_note)
	    first_note = insn;
	  continue;
	}

      g->nodes[i].cuid = i;
      g->nodes[i].successors = sbitmap_alloc (num_nodes);
631
      bitmap_clear (g->nodes[i].successors);
632
      g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
633
      bitmap_clear (g->nodes[i].predecessors);
634 635
      g->nodes[i].first_note = (first_note ? first_note : insn);
      g->nodes[i++].insn = insn;
David Malcolm committed
636
      first_note = NULL;
637
    }
H.J. Lu committed
638

639 640
  /* We must have found a branch in DDG.  */
  gcc_assert (g->closing_branch);
H.J. Lu committed
641

642

643
  /* Build the data dependency graph.  */
644
  build_intra_loop_deps (g);
645
  build_inter_loop_deps (g);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
  return g;
}

/* Free all the memory allocated for the DDG.  */
void
free_ddg (ddg_ptr g)
{
  int i;

  if (!g)
    return;

  for (i = 0; i < g->num_nodes; i++)
    {
      ddg_edge_ptr e = g->nodes[i].out;

      while (e)
	{
	  ddg_edge_ptr next = e->next_out;

	  free (e);
	  e = next;
	}
      sbitmap_free (g->nodes[i].successors);
      sbitmap_free (g->nodes[i].predecessors);
    }
  if (g->num_backarcs > 0)
    free (g->backarcs);
  free (g->nodes);
  free (g);
}

void
679
print_ddg_edge (FILE *file, ddg_edge_ptr e)
680 681 682
{
  char dep_c;

683 684
  switch (e->type)
    {
685 686 687 688 689 690 691 692
    case OUTPUT_DEP :
      dep_c = 'O';
      break;
    case ANTI_DEP :
      dep_c = 'A';
      break;
    default:
      dep_c = 'T';
693
    }
694

695
  fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
696 697 698 699 700
	   dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
}

/* Print the DDG nodes with there in/out edges to the dump file.  */
void
701
print_ddg (FILE *file, ddg_ptr g)
702 703 704 705 706 707 708
{
  int i;

  for (i = 0; i < g->num_nodes; i++)
    {
      ddg_edge_ptr e;

709
      fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
710 711
      print_rtl_single (file, g->nodes[i].insn);
      fprintf (file, "OUT ARCS: ");
712
      for (e = g->nodes[i].out; e; e = e->next_out)
713
	print_ddg_edge (file, e);
714

715
      fprintf (file, "\nIN ARCS: ");
716
      for (e = g->nodes[i].in; e; e = e->next_in)
717
	print_ddg_edge (file, e);
718

719
      fprintf (file, "\n");
720 721 722 723
    }
}

/* Print the given DDG in VCG format.  */
724
DEBUG_FUNCTION void
725
vcg_print_ddg (FILE *file, ddg_ptr g)
726 727 728
{
  int src_cuid;

729
  fprintf (file, "graph: {\n");
730 731 732 733 734
  for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
    {
      ddg_edge_ptr e;
      int src_uid = INSN_UID (g->nodes[src_cuid].insn);

735 736 737
      fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
      print_rtl_single (file, g->nodes[src_cuid].insn);
      fprintf (file, "\"}\n");
738 739 740 741 742 743 744
      for (e = g->nodes[src_cuid].out; e; e = e->next_out)
	{
	  int dst_uid = INSN_UID (e->dest->insn);
	  int dst_cuid = e->dest->cuid;

	  /* Give the backarcs a different color.  */
	  if (e->distance > 0)
745
	    fprintf (file, "backedge: {color: red ");
746
	  else
747
	    fprintf (file, "edge: { ");
748

749 750 751
	  fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
	  fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
	  fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
752 753
	}
    }
754
  fprintf (file, "}\n");
755 756
}

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
/* Dump the sccs in SCCS.  */
void
print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
{
  unsigned int u = 0;
  sbitmap_iterator sbi;
  int i;

  if (!file)
    return;

  fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
  for (i = 0; i < sccs->num_sccs; i++)
    {
      fprintf (file, "SCC number: %d\n", i);
772
      EXECUTE_IF_SET_IN_BITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
773 774 775 776 777 778 779 780
      {
        fprintf (file, "insn num %d\n", u);
        print_rtl_single (file, g->nodes[u].insn);
      }
    }
  fprintf (file, "\n");
}

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/* Create an edge and initialize it with given values.  */
static ddg_edge_ptr
create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
		 dep_type t, dep_data_type dt, int l, int d)
{
  ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));

  e->src = src;
  e->dest = dest;
  e->type = t;
  e->data_type = dt;
  e->latency = l;
  e->distance = d;
  e->next_in = e->next_out = NULL;
  e->aux.info = 0;
  return e;
}

/* Add the given edge to the in/out linked lists of the DDG nodes.  */
static void
add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
{
  ddg_node_ptr src = e->src;
  ddg_node_ptr dest = e->dest;

806 807
  /* Should have allocated the sbitmaps.  */
  gcc_assert (src->successors && dest->predecessors);
808

809 810
  bitmap_set_bit (src->successors, dest->cuid);
  bitmap_set_bit (dest->predecessors, src->cuid);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
  e->next_in = dest->in;
  dest->in = e;
  e->next_out = src->out;
  src->out = e;
}



/* Algorithm for computing the recurrence_length of an scc.  We assume at
   for now that cycles in the data dependence graph contain a single backarc.
   This simplifies the algorithm, and can be generalized later.  */
static void
set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
{
  int j;
  int result = -1;

  for (j = 0; j < scc->num_backarcs; j++)
    {
      ddg_edge_ptr backarc = scc->backarcs[j];
      int length;
      int distance = backarc->distance;
      ddg_node_ptr src = backarc->dest;
      ddg_node_ptr dest = backarc->src;

      length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
      if (length < 0 )
	{
	  /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
	  continue;
	}
      length += backarc->latency;
      result = MAX (result, (length / distance));
    }
  scc->recurrence_length = result;
}

/* Create a new SCC given the set of its nodes.  Compute its recurrence_length
   and mark edges that belong to this scc as IN_SCC.  */
static ddg_scc_ptr
create_scc (ddg_ptr g, sbitmap nodes)
{
  ddg_scc_ptr scc;
854
  unsigned int u = 0;
855
  sbitmap_iterator sbi;
856 857 858 859 860

  scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
  scc->backarcs = NULL;
  scc->num_backarcs = 0;
  scc->nodes = sbitmap_alloc (g->num_nodes);
861
  bitmap_copy (scc->nodes, nodes);
862 863

  /* Mark the backarcs that belong to this SCC.  */
864
  EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
865 866 867 868 869
    {
      ddg_edge_ptr e;
      ddg_node_ptr n = &g->nodes[u];

      for (e = n->out; e; e = e->next_out)
870
	if (bitmap_bit_p (nodes, e->dest->cuid))
871 872 873 874 875
	  {
	    e->aux.count = IN_SCC;
	    if (e->distance > 0)
	      add_backarc_to_scc (scc, e);
	  }
876
    }
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928

  set_recurrence_length (scc, g);
  return scc;
}

/* Cleans the memory allocation of a given SCC.  */
static void
free_scc (ddg_scc_ptr scc)
{
  if (!scc)
    return;

  sbitmap_free (scc->nodes);
  if (scc->num_backarcs > 0)
    free (scc->backarcs);
  free (scc);
}


/* Add a given edge known to be a backarc to the given DDG.  */
static void
add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
{
  int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);

  add_edge_to_ddg (g, e);
  g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
  g->backarcs[g->num_backarcs++] = e;
}

/* Add backarc to an SCC.  */
static void
add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
{
  int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);

  scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
  scc->backarcs[scc->num_backarcs++] = e;
}

/* Add the given SCC to the DDG.  */
static void
add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
{
  int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);

  g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
  g->sccs[g->num_sccs++] = scc;
}

/* Given the instruction INSN return the node that represents it.  */
ddg_node_ptr
David Malcolm committed
929
get_node_of_insn (ddg_ptr g, rtx_insn *insn)
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
{
  int i;

  for (i = 0; i < g->num_nodes; i++)
    if (insn == g->nodes[i].insn)
      return &g->nodes[i];
  return NULL;
}

/* Given a set OPS of nodes in the DDG, find the set of their successors
   which are not in OPS, and set their bits in SUCC.  Bits corresponding to
   OPS are cleared from SUCC.  Leaves the other bits in SUCC unchanged.  */
void
find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
{
945
  unsigned int i = 0;
946
  sbitmap_iterator sbi;
947

948
  EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi)
949 950
    {
      const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
951
      bitmap_ior (succ, succ, node_succ);
952
    };
953 954

  /* We want those that are not in ops.  */
955
  bitmap_and_compl (succ, succ, ops);
956 957 958 959 960 961 962 963
}

/* Given a set OPS of nodes in the DDG, find the set of their predecessors
   which are not in OPS, and set their bits in PREDS.  Bits corresponding to
   OPS are cleared from PREDS.  Leaves the other bits in PREDS unchanged.  */
void
find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
{
964
  unsigned int i = 0;
965
  sbitmap_iterator sbi;
966

967
  EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi)
968 969
    {
      const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
970
      bitmap_ior (preds, preds, node_preds);
971
    };
972 973

  /* We want those that are not in ops.  */
974
  bitmap_and_compl (preds, preds, ops);
975 976 977 978 979 980 981 982
}


/* Compare function to be passed to qsort to order the backarcs in descending
   recMII order.  */
static int
compare_sccs (const void *s1, const void *s2)
{
983
  const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
H.J. Lu committed
984
  const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
985
  return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
H.J. Lu committed
986

987 988 989 990 991 992 993 994 995 996
}

/* Order the backarcs in descending recMII order using compare_sccs.  */
static void
order_sccs (ddg_all_sccs_ptr g)
{
  qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
	 (int (*) (const void *, const void *)) compare_sccs);
}

997 998 999 1000 1001 1002
/* Check that every node in SCCS belongs to exactly one strongly connected
   component and that no element of SCCS is empty.  */
static void
check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
{
  int i = 0;
1003
  auto_sbitmap tmp (num_nodes);
1004

1005
  bitmap_clear (tmp);
1006 1007
  for (i = 0; i < sccs->num_sccs; i++)
    {
1008
      gcc_assert (!bitmap_empty_p (sccs->sccs[i]->nodes));
1009 1010
      /* Verify that every node in sccs is in exactly one strongly
         connected component.  */
1011 1012
      gcc_assert (!bitmap_intersect_p (tmp, sccs->sccs[i]->nodes));
      bitmap_ior (tmp, tmp, sccs->sccs[i]->nodes);
1013 1014 1015
    }
}

1016 1017 1018 1019 1020 1021 1022
/* Perform the Strongly Connected Components decomposing algorithm on the
   DDG and return DDG_ALL_SCCS structure that contains them.  */
ddg_all_sccs_ptr
create_ddg_all_sccs (ddg_ptr g)
{
  int i;
  int num_nodes = g->num_nodes;
1023 1024 1025
  auto_sbitmap from (num_nodes);
  auto_sbitmap to (num_nodes);
  auto_sbitmap scc_nodes (num_nodes);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
  ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
			  xmalloc (sizeof (struct ddg_all_sccs));

  sccs->ddg = g;
  sccs->sccs = NULL;
  sccs->num_sccs = 0;

  for (i = 0; i < g->num_backarcs; i++)
    {
      ddg_scc_ptr  scc;
      ddg_edge_ptr backarc = g->backarcs[i];
      ddg_node_ptr src = backarc->src;
      ddg_node_ptr dest = backarc->dest;

      /* If the backarc already belongs to an SCC, continue.  */
      if (backarc->aux.count == IN_SCC)
	continue;

1044 1045 1046
      bitmap_clear (scc_nodes);
      bitmap_clear (from);
      bitmap_clear (to);
1047 1048
      bitmap_set_bit (from, dest->cuid);
      bitmap_set_bit (to, src->cuid);
1049 1050 1051 1052 1053 1054 1055 1056

      if (find_nodes_on_paths (scc_nodes, g, from, to))
	{
	  scc = create_scc (g, scc_nodes);
	  add_scc_to_ddg (sccs, scc);
	}
    }
  order_sccs (sccs);
1057 1058 1059 1060

  if (flag_checking)
    check_sccs (sccs, num_nodes);

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
  return sccs;
}

/* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG.  */
void
free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
{
  int i;

  if (!all_sccs)
    return;

  for (i = 0; i < all_sccs->num_sccs; i++)
    free_scc (all_sccs->sccs[i]);

Revital Eres committed
1076
  free (all_sccs->sccs);
1077 1078 1079 1080 1081 1082
  free (all_sccs);
}


/* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
   nodes - find all nodes that lie on paths from FROM to TO (not excluding
1083
   nodes from FROM and TO).  Return nonzero if nodes exist.  */
1084 1085 1086
int
find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
{
1087
  int change;
1088
  unsigned int u = 0;
1089
  int num_nodes = g->num_nodes;
1090 1091
  sbitmap_iterator sbi;

1092 1093 1094 1095
  auto_sbitmap workset (num_nodes);
  auto_sbitmap reachable_from (num_nodes);
  auto_sbitmap reach_to (num_nodes);
  auto_sbitmap tmp (num_nodes);
1096

1097 1098
  bitmap_copy (reachable_from, from);
  bitmap_copy (tmp, from);
1099 1100 1101 1102 1103

  change = 1;
  while (change)
    {
      change = 0;
1104 1105
      bitmap_copy (workset, tmp);
      bitmap_clear (tmp);
1106
      EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
1107 1108 1109 1110 1111 1112 1113 1114 1115
	{
	  ddg_edge_ptr e;
	  ddg_node_ptr u_node = &g->nodes[u];

	  for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
	    {
	      ddg_node_ptr v_node = e->dest;
	      int v = v_node->cuid;

1116
	      if (!bitmap_bit_p (reachable_from, v))
1117
		{
1118 1119
		  bitmap_set_bit (reachable_from, v);
		  bitmap_set_bit (tmp, v);
1120 1121 1122
		  change = 1;
		}
	    }
1123
	}
1124 1125
    }

1126 1127
  bitmap_copy (reach_to, to);
  bitmap_copy (tmp, to);
1128 1129 1130 1131 1132

  change = 1;
  while (change)
    {
      change = 0;
1133 1134
      bitmap_copy (workset, tmp);
      bitmap_clear (tmp);
1135
      EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
1136 1137 1138 1139 1140 1141 1142 1143 1144
	{
	  ddg_edge_ptr e;
	  ddg_node_ptr u_node = &g->nodes[u];

	  for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
	    {
	      ddg_node_ptr v_node = e->src;
	      int v = v_node->cuid;

1145
	      if (!bitmap_bit_p (reach_to, v))
1146
		{
1147 1148
		  bitmap_set_bit (reach_to, v);
		  bitmap_set_bit (tmp, v);
1149 1150 1151
		  change = 1;
		}
	    }
1152
	}
1153 1154
    }

1155
  return bitmap_and (result, reachable_from, reach_to);
1156 1157 1158 1159 1160 1161
}


/* Updates the counts of U_NODE's successors (that belong to NODES) to be
   at-least as large as the count of U_NODE plus the latency between them.
   Sets a bit in TMP for each successor whose count was changed (increased).
1162
   Returns nonzero if any count was changed.  */
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
static int
update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
{
  ddg_edge_ptr e;
  int result = 0;

  for (e = u_node->out; e; e = e->next_out)
    {
      ddg_node_ptr v_node = e->dest;
      int v = v_node->cuid;

1174
      if (bitmap_bit_p (nodes, v)
1175 1176 1177 1178
	  && (e->distance == 0)
	  && (v_node->aux.count < u_node->aux.count + e->latency))
	{
	  v_node->aux.count = u_node->aux.count + e->latency;
1179
	  bitmap_set_bit (tmp, v);
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	  result = 1;
	}
    }
  return result;
}


/* Find the length of a longest path from SRC to DEST in G,
   going only through NODES, and disregarding backarcs.  */
int
longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
{
1192
  int i;
1193
  unsigned int u = 0;
1194 1195
  int change = 1;
  int num_nodes = g->num_nodes;
1196 1197
  auto_sbitmap workset (num_nodes);
  auto_sbitmap tmp (num_nodes);
1198 1199 1200 1201 1202 1203 1204 1205


  /* Data will hold the distance of the longest path found so far from
     src to each node.  Initialize to -1 = less than minimum.  */
  for (i = 0; i < g->num_nodes; i++)
    g->nodes[i].aux.count = -1;
  g->nodes[src].aux.count = 0;

1206
  bitmap_clear (tmp);
1207
  bitmap_set_bit (tmp, src);
1208 1209 1210

  while (change)
    {
1211 1212
      sbitmap_iterator sbi;

1213
      change = 0;
1214 1215
      bitmap_copy (workset, tmp);
      bitmap_clear (tmp);
1216
      EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
1217 1218 1219 1220
	{
	  ddg_node_ptr u_node = &g->nodes[u];

	  change |= update_dist_to_successors (u_node, nodes, tmp);
1221
	}
1222
    }
1223
  return g->nodes[dest].aux.count;
1224
}
1225 1226

#endif /* INSN_SCHEDULING */