cfg.c 32.7 KB
Newer Older
1 2
/* Control flow graph manipulation code for GNU compiler.
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4
   Free Software Foundation, Inc.
5 6 7 8 9

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11 12 13 14 15 16 17 18
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
21

22
/* This file contains low level functions to manipulate the CFG and
23
   analyze it.  All other modules should not transform the data structure
24 25 26
   directly and use abstraction instead.  The file is supposed to be
   ordered bottom-up and should not contain any code dependent on a
   particular intermediate language (RTL or trees).
27 28 29 30

   Available functionality:
     - Initialization/deallocation
	 init_flow, clear_edges
31 32
     - Low level basic block manipulation
	 alloc_block, expunge_block
33
     - Edge manipulation
34
	 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 36
	 - Low level edge redirection (without updating instruction chain)
	     redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37
     - Dumping and debugging
38 39 40
	 dump_flow_info, debug_flow_info, dump_edge_info
     - Allocation of AUX fields for basic blocks
	 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41
     - clear_bb_flags
42 43 44 45
     - Consistency checking
	 verify_flow_info
     - Dumping and debugging
	 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
46 47 48 49
 */

#include "config.h"
#include "system.h"
50 51
#include "coretypes.h"
#include "tm.h"
52 53 54 55 56 57 58 59
#include "tree.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "function.h"
#include "except.h"
60
#include "diagnostic-core.h"
61
#include "tm_p.h"
62
#include "obstack.h"
63
#include "timevar.h"
64
#include "tree-pass.h"
65
#include "ggc.h"
66 67
#include "hashtab.h"
#include "alloc-pool.h"
68
#include "df.h"
69
#include "cfgloop.h"
70
#include "tree-flow.h"
71 72 73

/* The obstack on which the flow graph components are allocated.  */

74
struct bitmap_obstack reg_obstack;
75

76 77
void debug_flow_info (void);
static void free_edge (edge);
78

79 80
#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))

81
/* Called once at initialization time.  */
82 83

void
Diego Novillo committed
84
init_flow (struct function *the_fun)
85
{
Diego Novillo committed
86
  if (!the_fun->cfg)
87
    the_fun->cfg = ggc_alloc_cleared_control_flow_graph ();
Diego Novillo committed
88 89
  n_edges_for_function (the_fun) = 0;
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)
90
    = ggc_alloc_cleared_basic_block_def ();
Diego Novillo committed
91 92
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = ENTRY_BLOCK;
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)
93
    = ggc_alloc_cleared_basic_block_def ();
Diego Novillo committed
94
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = EXIT_BLOCK;
H.J. Lu committed
95
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->next_bb
Diego Novillo committed
96
    = EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun);
H.J. Lu committed
97
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->prev_bb
Diego Novillo committed
98
    = ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun);
99 100
}

101 102 103 104
/* Helper function for remove_edge and clear_edges.  Frees edge structure
   without actually unlinking it from the pred/succ lists.  */

static void
105
free_edge (edge e ATTRIBUTE_UNUSED)
106 107
{
  n_edges--;
108
  ggc_free (e);
109 110
}

111 112 113
/* Free the memory associated with the edge structures.  */

void
114
clear_edges (void)
115
{
116
  basic_block bb;
117
  edge e;
118
  edge_iterator ei;
119

120
  FOR_EACH_BB (bb)
121
    {
122 123 124 125
      FOR_EACH_EDGE (e, ei, bb->succs)
	free_edge (e);
      VEC_truncate (edge, bb->succs, 0);
      VEC_truncate (edge, bb->preds, 0);
126
    }
127

128 129 130 131
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
    free_edge (e);
  VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
  VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
132

133
  gcc_assert (!n_edges);
134 135
}

136
/* Allocate memory for basic_block.  */
137

138
basic_block
139
alloc_block (void)
140 141
{
  basic_block bb;
142
  bb = ggc_alloc_cleared_basic_block_def ();
143
  return bb;
144 145
}

146 147
/* Link block B to chain after AFTER.  */
void
148
link_block (basic_block b, basic_block after)
149 150 151 152 153 154
{
  b->next_bb = after->next_bb;
  b->prev_bb = after;
  after->next_bb = b;
  b->next_bb->prev_bb = b;
}
155

156 157
/* Unlink block B from chain.  */
void
158
unlink_block (basic_block b)
159 160 161
{
  b->next_bb->prev_bb = b->prev_bb;
  b->prev_bb->next_bb = b->next_bb;
162 163
  b->prev_bb = NULL;
  b->next_bb = NULL;
164
}
165

166 167
/* Sequentially order blocks and compact the arrays.  */
void
168
compact_blocks (void)
169 170
{
  int i;
171

172 173
  SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
  SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
H.J. Lu committed
174

175 176
  if (df)
    df_compact_blocks ();
H.J. Lu committed
177
  else
178
    {
179
      basic_block bb;
H.J. Lu committed
180

181 182 183 184 185 186 187 188
      i = NUM_FIXED_BLOCKS;
      FOR_EACH_BB (bb)
	{
	  SET_BASIC_BLOCK (i, bb);
	  bb->index = i;
	  i++;
	}
      gcc_assert (i == n_basic_blocks);
189

190 191 192
      for (; i < last_basic_block; i++)
	SET_BASIC_BLOCK (i, NULL);
    }
193 194 195 196
  last_basic_block = n_basic_blocks;
}

/* Remove block B from the basic block array.  */
197

198
void
199
expunge_block (basic_block b)
200
{
201
  unlink_block (b);
202
  SET_BASIC_BLOCK (b->index, NULL);
203
  n_basic_blocks--;
204 205 206 207 208
  /* We should be able to ggc_free here, but we are not.
     The dead SSA_NAMES are left pointing to dead statements that are pointing
     to dead basic blocks making garbage collector to die.
     We should be able to release all dead SSA_NAMES and at the same time we should
     clear out BB pointer of dead statements consistently.  */
209
}
210

211 212 213 214 215
/* Connect E to E->src.  */

static inline void
connect_src (edge e)
{
216
  VEC_safe_push (edge, gc, e->src->succs, e);
217
  df_mark_solutions_dirty ();
218 219 220 221 222 223 224 225
}

/* Connect E to E->dest.  */

static inline void
connect_dest (edge e)
{
  basic_block dest = e->dest;
226
  VEC_safe_push (edge, gc, dest->preds, e);
227
  e->dest_idx = EDGE_COUNT (dest->preds) - 1;
228
  df_mark_solutions_dirty ();
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
}

/* Disconnect edge E from E->src.  */

static inline void
disconnect_src (edge e)
{
  basic_block src = e->src;
  edge_iterator ei;
  edge tmp;

  for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
    {
      if (tmp == e)
	{
	  VEC_unordered_remove (edge, src->succs, ei.index);
	  return;
	}
      else
	ei_next (&ei);
    }

251
  df_mark_solutions_dirty ();
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
  gcc_unreachable ();
}

/* Disconnect edge E from E->dest.  */

static inline void
disconnect_dest (edge e)
{
  basic_block dest = e->dest;
  unsigned int dest_idx = e->dest_idx;

  VEC_unordered_remove (edge, dest->preds, dest_idx);

  /* If we removed an edge in the middle of the edge vector, we need
     to update dest_idx of the edge that moved into the "hole".  */
  if (dest_idx < EDGE_COUNT (dest->preds))
    EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
269
  df_mark_solutions_dirty ();
270 271
}

272 273 274 275 276
/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
   created edge.  Use this only if you are sure that this edge can't
   possibly already exist.  */

edge
277
unchecked_make_edge (basic_block src, basic_block dst, int flags)
278 279
{
  edge e;
280
  e = ggc_alloc_cleared_edge_def ();
281 282 283 284 285
  n_edges++;

  e->src = src;
  e->dest = dst;
  e->flags = flags;
286 287 288

  connect_src (e);
  connect_dest (e);
289

290
  execute_on_growing_pred (e);
291 292 293
  return e;
}

294
/* Create an edge connecting SRC and DST with FLAGS optionally using
295
   edge cache CACHE.  Return the new edge, NULL if already exist.  */
296

297
edge
298
cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
299
{
300 301 302 303
  if (edge_cache == NULL
      || src == ENTRY_BLOCK_PTR
      || dst == EXIT_BLOCK_PTR)
    return make_edge (src, dst, flags);
304

305
  /* Does the requested edge already exist?  */
306
  if (! TEST_BIT (edge_cache, dst->index))
307
    {
308 309
      /* The edge does not exist.  Create one and update the
	 cache.  */
310
      SET_BIT (edge_cache, dst->index);
311
      return unchecked_make_edge (src, dst, flags);
312
    }
313

314 315 316 317 318 319 320
  /* At this point, we know that the requested edge exists.  Adjust
     flags if necessary.  */
  if (flags)
    {
      edge e = find_edge (src, dst);
      e->flags |= flags;
    }
321

322
  return NULL;
323 324 325 326 327 328
}

/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
   created edge or NULL if already exist.  */

edge
329
make_edge (basic_block src, basic_block dest, int flags)
330
{
331 332 333 334 335 336 337 338 339 340
  edge e = find_edge (src, dest);

  /* Make sure we don't add duplicate edges.  */
  if (e)
    {
      e->flags |= flags;
      return NULL;
    }

  return unchecked_make_edge (src, dest, flags);
341 342
}

343
/* Create an edge connecting SRC to DEST and set probability by knowing
344 345 346
   that it is the single edge leaving SRC.  */

edge
347
make_single_succ_edge (basic_block src, basic_block dest, int flags)
348 349 350 351 352 353
{
  edge e = make_edge (src, dest, flags);

  e->probability = REG_BR_PROB_BASE;
  e->count = src->count;
  return e;
354 355 356 357 358
}

/* This function will remove an edge from the flow graph.  */

void
359
remove_edge_raw (edge e)
360
{
361
  remove_predictions_associated_with_edge (e);
362 363
  execute_on_shrinking_pred (e);

364 365
  disconnect_src (e);
  disconnect_dest (e);
366

367 368 369
  /* This is probably not needed, but it doesn't hurt.  */
  redirect_edge_var_map_clear (e);

370
  free_edge (e);
371 372 373 374 375
}

/* Redirect an edge's successor from one block to another.  */

void
376
redirect_edge_succ (edge e, basic_block new_succ)
377
{
378 379
  execute_on_shrinking_pred (e);

380
  disconnect_dest (e);
381

382
  e->dest = new_succ;
383 384

  /* Reconnect the edge to the new successor block.  */
385 386
  connect_dest (e);

387
  execute_on_growing_pred (e);
388 389
}

390
/* Like previous but avoid possible duplicate edge.  */
391 392

edge
393
redirect_edge_succ_nodup (edge e, basic_block new_succ)
394 395
{
  edge s;
396

397 398
  s = find_edge (e->src, new_succ);
  if (s && s != e)
399 400 401
    {
      s->flags |= e->flags;
      s->probability += e->probability;
402 403
      if (s->probability > REG_BR_PROB_BASE)
	s->probability = REG_BR_PROB_BASE;
404
      s->count += e->count;
405
      redirect_edge_var_map_dup (s, e);
406
      remove_edge (e);
407 408 409 410
      e = s;
    }
  else
    redirect_edge_succ (e, new_succ);
411

412 413 414 415 416 417
  return e;
}

/* Redirect an edge's predecessor from one block to another.  */

void
418
redirect_edge_pred (edge e, basic_block new_pred)
419
{
420
  disconnect_src (e);
421

422
  e->src = new_pred;
423 424

  /* Reconnect the edge to the new predecessor block.  */
425
  connect_src (e);
426
}
427

428 429
/* Clear all basic block flags, with the exception of partitioning and
   setjmp_target.  */
430
void
431
clear_bb_flags (void)
432
{
433 434 435
  basic_block bb;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
H.J. Lu committed
436
    bb->flags = (BB_PARTITION (bb)
437
		 | (bb->flags & (BB_DISABLE_SCHEDULE + BB_RTL + BB_NON_LOCAL_GOTO_TARGET)));
438
}
439

440 441 442 443 444 445 446 447 448 449 450
/* Check the consistency of profile information.  We can't do that
   in verify_flow_info, as the counts may get invalid for incompletely
   solved graphs, later eliminating of conditionals or roundoff errors.
   It is still practical to have them reported for debugging of simple
   testcases.  */
void
check_bb_profile (basic_block bb, FILE * file)
{
  edge e;
  int sum = 0;
  gcov_type lsum;
451
  edge_iterator ei;
452 453 454 455 456 457

  if (profile_status == PROFILE_ABSENT)
    return;

  if (bb != EXIT_BLOCK_PTR)
    {
458
      FOR_EACH_EDGE (e, ei, bb->succs)
459
	sum += e->probability;
460
      if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
461 462 463
	fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
		 sum * 100.0 / REG_BR_PROB_BASE);
      lsum = 0;
464
      FOR_EACH_EDGE (e, ei, bb->succs)
465
	lsum += e->count;
466 467
      if (EDGE_COUNT (bb->succs)
	  && (lsum - bb->count > 100 || lsum - bb->count < -100))
468 469 470 471 472 473
	fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
		 (int) lsum, (int) bb->count);
    }
  if (bb != ENTRY_BLOCK_PTR)
    {
      sum = 0;
474
      FOR_EACH_EDGE (e, ei, bb->preds)
475 476 477
	sum += EDGE_FREQUENCY (e);
      if (abs (sum - bb->frequency) > 100)
	fprintf (file,
478
		 "Invalid sum of incoming frequencies %i, should be %i\n",
479 480
		 sum, bb->frequency);
      lsum = 0;
481
      FOR_EACH_EDGE (e, ei, bb->preds)
482 483
	lsum += e->count;
      if (lsum - bb->count > 100 || lsum - bb->count < -100)
484
	fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
485 486 487 488
		 (int) lsum, (int) bb->count);
    }
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
/* Write information about registers and basic blocks into FILE.
   This is part of making a debugging dump.  */

void
dump_regset (regset r, FILE *outf)
{
  unsigned i;
  reg_set_iterator rsi;

  if (r == NULL)
    {
      fputs (" (nil)", outf);
      return;
    }

  EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
    {
      fprintf (outf, " %d", i);
      if (i < FIRST_PSEUDO_REGISTER)
	fprintf (outf, " [%s]",
		 reg_names[i]);
    }
}

/* Print a human-readable representation of R on the standard error
   stream.  This function is designed to be used from within the
   debugger.  */

517
DEBUG_FUNCTION void
518 519 520 521 522 523
debug_regset (regset r)
{
  dump_regset (r, stderr);
  putc ('\n', stderr);
}

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
/* Emit basic block information for BB.  HEADER is true if the user wants
   the generic information and the predecessors, FOOTER is true if they want
   the successors.  FLAGS is the dump flags of interest; TDF_DETAILS emit
   global register liveness information.  PREFIX is put in front of every
   line.  The output is emitted to FILE.  */
void
dump_bb_info (basic_block bb, bool header, bool footer, int flags,
	      const char *prefix, FILE *file)
{
  edge e;
  edge_iterator ei;

  if (header)
    {
      fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
      if (bb->prev_bb)
        fprintf (file, ", prev %d", bb->prev_bb->index);
      if (bb->next_bb)
        fprintf (file, ", next %d", bb->next_bb->index);
      fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
      fprintf (file, ", freq %i", bb->frequency);
546
      /* Both maybe_hot_bb_p & probably_never_executed_bb_p functions
H.J. Lu committed
547
	 crash without cfun. */
548
      if (cfun && maybe_hot_bb_p (bb))
549
	fputs (", maybe hot", file);
550
      if (cfun && probably_never_executed_bb_p (bb))
551
	fputs (", probably never executed", file);
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
      if (bb->flags)
	{
	  static const char * const bits[] = {
	    "new", "reachable", "irr_loop", "superblock", "disable_sched",
	    "hot_partition", "cold_partition", "duplicated",
	    "non_local_goto_target", "rtl", "forwarder", "nonthreadable",
	    "modified"
	  };
	  unsigned int flags;

	  fputs (", flags:", file);
	  for (flags = bb->flags; flags ; flags &= flags - 1)
	    {
	      unsigned i = ctz_hwi (flags);
	      if (i < ARRAY_SIZE (bits))
		fprintf (file, " %s", bits[i]);
	      else
		fprintf (file, " <%d>", i);
	    }
	}
572
      fputs (".\n", file);
573 574 575 576

      fprintf (file, "%sPredecessors: ", prefix);
      FOR_EACH_EDGE (e, ei, bb->preds)
	dump_edge_info (file, e, 0);
577 578 579 580 581

      if ((flags & TDF_DETAILS)
	  && (bb->flags & BB_RTL)
	  && df)
	{
582
	  putc ('\n', file);
583 584
	  df_dump_top (bb, file);
	}
585 586 587 588 589 590 591 592
   }

  if (footer)
    {
      fprintf (file, "\n%sSuccessors: ", prefix);
      FOR_EACH_EDGE (e, ei, bb->succs)
	dump_edge_info (file, e, 1);

593 594 595
      if ((flags & TDF_DETAILS)
	  && (bb->flags & BB_RTL)
	  && df)
596
	{
597
	  putc ('\n', file);
598
	  df_dump_bottom (bb, file);
599 600 601 602 603 604
	}
   }

  putc ('\n', file);
}

605 606
/* Dump the register info to FILE.  */

H.J. Lu committed
607
void
608 609 610 611 612 613 614 615 616 617 618 619
dump_reg_info (FILE *file)
{
  unsigned int i, max = max_reg_num ();
  if (reload_completed)
    return;

  if (reg_info_p_size < max)
    max = reg_info_p_size;

  fprintf (file, "%d registers.\n", max);
  for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
    {
620
      enum reg_class rclass, altclass;
H.J. Lu committed
621

622 623 624 625 626 627
      if (regstat_n_sets_and_refs)
	fprintf (file, "\nRegister %d used %d times across %d insns",
		 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
      else if (df)
	fprintf (file, "\nRegister %d used %d times across %d insns",
		 i, DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i), REG_LIVE_LENGTH (i));
H.J. Lu committed
628

629 630 631 632 633 634 635 636 637
      if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS)
	fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
      if (regstat_n_sets_and_refs)
	fprintf (file, "; set %d time%s", REG_N_SETS (i),
		 (REG_N_SETS (i) == 1) ? "" : "s");
      else if (df)
	fprintf (file, "; set %d time%s", DF_REG_DEF_COUNT (i),
		 (DF_REG_DEF_COUNT (i) == 1) ? "" : "s");
      if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
638
	fputs ("; user var", file);
639 640 641
      if (REG_N_DEATHS (i) != 1)
	fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
      if (REG_N_CALLS_CROSSED (i) == 1)
642
	fputs ("; crosses 1 call", file);
643 644
      else if (REG_N_CALLS_CROSSED (i))
	fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
645 646
      if (REG_FREQ_CALLS_CROSSED (i))
	fprintf (file, "; crosses call with %d frequency", REG_FREQ_CALLS_CROSSED (i));
647 648 649
      if (regno_reg_rtx[i] != NULL
	  && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
	fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
H.J. Lu committed
650

651
      rclass = reg_preferred_class (i);
652
      altclass = reg_alternate_class (i);
653
      if (rclass != GENERAL_REGS || altclass != ALL_REGS)
654
	{
655 656
	  if (altclass == ALL_REGS || rclass == ALL_REGS)
	    fprintf (file, "; pref %s", reg_class_names[(int) rclass]);
657
	  else if (altclass == NO_REGS)
658
	    fprintf (file, "; %s or none", reg_class_names[(int) rclass]);
659 660
	  else
	    fprintf (file, "; pref %s, else %s",
661
		     reg_class_names[(int) rclass],
662 663
		     reg_class_names[(int) altclass]);
	}
H.J. Lu committed
664

665
      if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
666 667
	fputs ("; pointer", file);
      fputs (".\n", file);
668 669 670 671
    }
}


672
void
673
dump_flow_info (FILE *file, int flags)
674
{
675
  basic_block bb;
676

677
  /* There are no pseudo registers after reload.  Don't dump them.  */
678 679
  if (reg_info_p_size && (flags & TDF_DETAILS) != 0)
    dump_reg_info (file);
680

681
  fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
682
  FOR_ALL_BB (bb)
683
    {
684
      dump_bb_info (bb, true, true, flags, "", file);
685
      check_bb_profile (bb, file);
686 687
    }

688
  putc ('\n', file);
689 690
}

691
DEBUG_FUNCTION void
692
debug_flow_info (void)
693
{
694
  dump_flow_info (stderr, TDF_DETAILS);
695
}
696 697

void
698
dump_edge_info (FILE *file, edge e, int do_succ)
699
{
700
  basic_block side = (do_succ ? e->dest : e->src);
Basile Starynkevitch committed
701
  /* both ENTRY_BLOCK_PTR & EXIT_BLOCK_PTR depend upon cfun. */
702
  if (cfun && side == ENTRY_BLOCK_PTR)
703
    fputs (" ENTRY", file);
704
  else if (cfun && side == EXIT_BLOCK_PTR)
705 706
    fputs (" EXIT", file);
  else
707
    fprintf (file, " %d", side->index);
708 709 710

  if (e->probability)
    fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
711

712
  if (e->count)
713
    {
714
      fputs (" count:", file);
715
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
716 717
    }

718
  if (e->flags)
719
    {
720 721
      static const char * const bitnames[] = {
	"fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
722
	"can_fallthru", "irreducible", "sibcall", "loop_exit",
723
	"true", "false", "exec", "crossing", "preserve"
724
      };
725 726
      int comma = 0;
      int i, flags = e->flags;
727

728
      fputs (" (", file);
729 730 731 732 733 734 735 736 737 738 739 740 741
      for (i = 0; flags; i++)
	if (flags & (1 << i))
	  {
	    flags &= ~(1 << i);

	    if (comma)
	      fputc (',', file);
	    if (i < (int) ARRAY_SIZE (bitnames))
	      fputs (bitnames[i], file);
	    else
	      fprintf (file, "%d", i);
	    comma = 1;
	  }
742

743 744 745 746
      fputc (')', file);
    }
}

747
/* Simple routines to easily allocate AUX fields of basic blocks.  */
748

749 750 751 752
static struct obstack block_aux_obstack;
static void *first_block_aux_obj = 0;
static struct obstack edge_aux_obstack;
static void *first_edge_aux_obj = 0;
753

754
/* Allocate a memory block of SIZE as BB->aux.  The obstack must
755
   be first initialized by alloc_aux_for_blocks.  */
756

757
static void
758
alloc_aux_for_block (basic_block bb, int size)
759
{
760
  /* Verify that aux field is clear.  */
761
  gcc_assert (!bb->aux && first_block_aux_obj);
762 763
  bb->aux = obstack_alloc (&block_aux_obstack, size);
  memset (bb->aux, 0, size);
764 765
}

766 767
/* Initialize the block_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_block for each basic block.  */
768 769

void
770
alloc_aux_for_blocks (int size)
771
{
772
  static int initialized;
773

774
  if (!initialized)
775
    {
776 777
      gcc_obstack_init (&block_aux_obstack);
      initialized = 1;
778
    }
779 780 781
  else
    /* Check whether AUX data are still allocated.  */
    gcc_assert (!first_block_aux_obj);
Mike Stump committed
782

783
  first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
784
  if (size)
785
    {
786
      basic_block bb;
787

788
      FOR_ALL_BB (bb)
789
	alloc_aux_for_block (bb, size);
790 791
    }
}
792

793
/* Clear AUX pointers of all blocks.  */
794 795

void
796
clear_aux_for_blocks (void)
797
{
798
  basic_block bb;
799

800
  FOR_ALL_BB (bb)
801
    bb->aux = NULL;
802 803 804 805 806 807
}

/* Free data allocated in block_aux_obstack and clear AUX pointers
   of all blocks.  */

void
808
free_aux_for_blocks (void)
809
{
810
  gcc_assert (first_block_aux_obj);
811
  obstack_free (&block_aux_obstack, first_block_aux_obj);
812
  first_block_aux_obj = NULL;
813 814

  clear_aux_for_blocks ();
815
}
816

817
/* Allocate a memory edge of SIZE as BB->aux.  The obstack must
818
   be first initialized by alloc_aux_for_edges.  */
819

820
static void
821
alloc_aux_for_edge (edge e, int size)
822 823
{
  /* Verify that aux field is clear.  */
824
  gcc_assert (!e->aux && first_edge_aux_obj);
825 826 827
  e->aux = obstack_alloc (&edge_aux_obstack, size);
  memset (e->aux, 0, size);
}
828

829 830
/* Initialize the edge_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_edge for each basic edge.  */
831

832
void
833
alloc_aux_for_edges (int size)
834 835
{
  static int initialized;
836

837 838 839 840
  if (!initialized)
    {
      gcc_obstack_init (&edge_aux_obstack);
      initialized = 1;
841
    }
842 843 844
  else
    /* Check whether AUX data are still allocated.  */
    gcc_assert (!first_edge_aux_obj);
845

846
  first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
847
  if (size)
848
    {
849 850 851
      basic_block bb;

      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
852
	{
853
	  edge e;
854
	  edge_iterator ei;
855

856
	  FOR_EACH_EDGE (e, ei, bb->succs)
857
	    alloc_aux_for_edge (e, size);
858 859 860 861
	}
    }
}

862
/* Clear AUX pointers of all edges.  */
863 864

void
865
clear_aux_for_edges (void)
866
{
867 868
  basic_block bb;
  edge e;
869

870
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
871
    {
872 873
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->succs)
874
	e->aux = NULL;
875
    }
876 877 878 879 880 881
}

/* Free data allocated in edge_aux_obstack and clear AUX pointers
   of all edges.  */

void
882
free_aux_for_edges (void)
883
{
884
  gcc_assert (first_edge_aux_obj);
885
  obstack_free (&edge_aux_obstack, first_edge_aux_obj);
886
  first_edge_aux_obj = NULL;
887 888

  clear_aux_for_edges ();
889
}
890

891
DEBUG_FUNCTION void
892
debug_bb (basic_block bb)
893
{
894
  dump_bb (bb, stderr, 0);
895 896
}

897
DEBUG_FUNCTION basic_block
898
debug_bb_n (int n)
899 900
{
  basic_block bb = BASIC_BLOCK (n);
901
  dump_bb (bb, stderr, 0);
902
  return bb;
903
}
904 905 906 907 908 909 910

/* Dumps cfg related information about basic block BB to FILE.  */

static void
dump_cfg_bb_info (FILE *file, basic_block bb)
{
  unsigned i;
911
  edge_iterator ei;
912 913 914
  bool first = true;
  static const char * const bb_bitnames[] =
    {
915 916 917
      "new", "reachable", "irreducible_loop", "superblock",
      "nosched", "hot", "cold", "dup", "xlabel", "rtl",
      "fwdr", "nothrd"
918 919 920 921 922 923 924 925 926
    };
  const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
  edge e;

  fprintf (file, "Basic block %d", bb->index);
  for (i = 0; i < n_bitnames; i++)
    if (bb->flags & (1 << i))
      {
	if (first)
927
	  fputs (" (", file);
928
	else
929
	  fputs (", ", file);
930
	first = false;
931
	fputs (bb_bitnames[i], file);
932 933
      }
  if (!first)
934 935
    putc (')', file);
  putc ('\n', file);
936

937
  fputs ("Predecessors: ", file);
938
  FOR_EACH_EDGE (e, ei, bb->preds)
939 940 941
    dump_edge_info (file, e, 0);

  fprintf (file, "\nSuccessors: ");
942
  FOR_EACH_EDGE (e, ei, bb->succs)
943
    dump_edge_info (file, e, 1);
944
  fputs ("\n\n", file);
945 946 947 948 949 950 951 952 953 954 955 956 957 958
}

/* Dumps a brief description of cfg to FILE.  */

void
brief_dump_cfg (FILE *file)
{
  basic_block bb;

  FOR_EACH_BB (bb)
    {
      dump_cfg_bb_info (file, bb);
    }
}
959 960 961

/* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
   leave the block by TAKEN_EDGE.  Update profile of BB such that edge E can be
Mike Stump committed
962
   redirected to destination of TAKEN_EDGE.
963 964 965

   This function may leave the profile inconsistent in the case TAKEN_EDGE
   frequency or count is believed to be lower than FREQUENCY or COUNT
966
   respectively.  */
967 968 969 970 971 972
void
update_bb_profile_for_threading (basic_block bb, int edge_frequency,
				 gcov_type count, edge taken_edge)
{
  edge c;
  int prob;
973
  edge_iterator ei;
974 975 976

  bb->count -= count;
  if (bb->count < 0)
977 978 979 980 981 982
    {
      if (dump_file)
	fprintf (dump_file, "bb %i count became negative after threading",
		 bb->index);
      bb->count = 0;
    }
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

  /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
     Watch for overflows.  */
  if (bb->frequency)
    prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
  else
    prob = 0;
  if (prob > taken_edge->probability)
    {
      if (dump_file)
	fprintf (dump_file, "Jump threading proved probability of edge "
		 "%i->%i too small (it is %i, should be %i).\n",
		 taken_edge->src->index, taken_edge->dest->index,
		 taken_edge->probability, prob);
      prob = taken_edge->probability;
    }

  /* Now rescale the probabilities.  */
  taken_edge->probability -= prob;
  prob = REG_BR_PROB_BASE - prob;
  bb->frequency -= edge_frequency;
  if (bb->frequency < 0)
    bb->frequency = 0;
  if (prob <= 0)
    {
      if (dump_file)
	fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
		 "frequency of block should end up being 0, it is %i\n",
		 bb->index, bb->frequency);
1012 1013 1014 1015
      EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
      ei = ei_start (bb->succs);
      ei_next (&ei);
      for (; (c = ei_safe_edge (ei)); ei_next (&ei))
1016 1017
	c->probability = 0;
    }
1018 1019
  else if (prob != REG_BR_PROB_BASE)
    {
1020
      int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
1021 1022

      FOR_EACH_EDGE (c, ei, bb->succs)
1023
	{
1024 1025
	  /* Protect from overflow due to additional scaling.  */
	  if (c->probability > prob)
1026
	    c->probability = REG_BR_PROB_BASE;
1027 1028 1029 1030 1031 1032
	  else
	    {
	      c->probability = RDIV (c->probability * scale, 65536);
	      if (c->probability > REG_BR_PROB_BASE)
		c->probability = REG_BR_PROB_BASE;
	    }
1033
	}
1034
    }
1035

1036
  gcc_assert (bb == taken_edge->src);
1037 1038
  taken_edge->count -= count;
  if (taken_edge->count < 0)
1039 1040 1041 1042 1043 1044
    {
      if (dump_file)
	fprintf (dump_file, "edge %i->%i count became negative after threading",
		 taken_edge->src->index, taken_edge->dest->index);
      taken_edge->count = 0;
    }
1045
}
1046 1047 1048 1049 1050 1051 1052 1053

/* Multiply all frequencies of basic blocks in array BBS of length NBBS
   by NUM/DEN, in int arithmetic.  May lose some accuracy.  */
void
scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
{
  int i;
  edge e;
1054 1055
  if (num < 0)
    num = 0;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

  /* Scale NUM and DEN to avoid overflows.  Frequencies are in order of
     10^4, if we make DEN <= 10^3, we can afford to upscale by 100
     and still safely fit in int during calculations.  */
  if (den > 1000)
    {
      if (num > 1000000)
	return;

      num = RDIV (1000 * num, den);
      den = 1000;
    }
  if (num > 100 * den)
1069
    return;
1070

1071 1072 1073
  for (i = 0; i < nbbs; i++)
    {
      edge_iterator ei;
1074
      bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1075 1076 1077
      /* Make sure the frequencies do not grow over BB_FREQ_MAX.  */
      if (bbs[i]->frequency > BB_FREQ_MAX)
	bbs[i]->frequency = BB_FREQ_MAX;
1078 1079
      bbs[i]->count = RDIV (bbs[i]->count * num, den);
      FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1080
	e->count = RDIV (e->count * num, den);
1081 1082 1083
    }
}

1084 1085 1086 1087
/* numbers smaller than this value are safe to multiply without getting
   64bit overflow.  */
#define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))

1088 1089 1090 1091
/* Multiply all frequencies of basic blocks in array BBS of length NBBS
   by NUM/DEN, in gcov_type arithmetic.  More accurate than previous
   function but considerably slower.  */
void
Mike Stump committed
1092 1093
scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
				 gcov_type den)
1094 1095 1096
{
  int i;
  edge e;
1097
  gcov_type fraction = RDIV (num * 65536, den);
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
  gcc_assert (fraction >= 0);

  if (num < MAX_SAFE_MULTIPLIER)
    for (i = 0; i < nbbs; i++)
      {
	edge_iterator ei;
	bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
	if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
	  bbs[i]->count = RDIV (bbs[i]->count * num, den);
	else
	  bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
	FOR_EACH_EDGE (e, ei, bbs[i]->succs)
	  if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
	    e->count = RDIV (e->count * num, den);
	  else
	    e->count = RDIV (e->count * fraction, 65536);
      }
   else
    for (i = 0; i < nbbs; i++)
      {
	edge_iterator ei;
	if (sizeof (gcov_type) > sizeof (int))
	  bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
	else
	  bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
	bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
	FOR_EACH_EDGE (e, ei, bbs[i]->succs)
	  e->count = RDIV (e->count * fraction, 65536);
      }
1128
}
1129

1130 1131
/* Data structures used to maintain mapping between basic blocks and
   copies.  */
1132 1133
static htab_t bb_original;
static htab_t bb_copy;
1134 1135 1136

/* And between loops and copies.  */
static htab_t loop_copy;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
static alloc_pool original_copy_bb_pool;

struct htab_bb_copy_original_entry
{
  /* Block we are attaching info to.  */
  int index1;
  /* Index of original or copy (depending on the hashtable) */
  int index2;
};

static hashval_t
bb_copy_original_hash (const void *p)
{
1150 1151
  const struct htab_bb_copy_original_entry *data
    = ((const struct htab_bb_copy_original_entry *)p);
1152 1153 1154 1155 1156 1157

  return data->index1;
}
static int
bb_copy_original_eq (const void *p, const void *q)
{
1158 1159 1160 1161
  const struct htab_bb_copy_original_entry *data
    = ((const struct htab_bb_copy_original_entry *)p);
  const struct htab_bb_copy_original_entry *data2
    = ((const struct htab_bb_copy_original_entry *)q);
1162 1163 1164 1165

  return data->index1 == data2->index1;
}

1166 1167
/* Initialize the data structures to maintain mapping between blocks
   and its copies.  */
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
void
initialize_original_copy_tables (void)
{
  gcc_assert (!original_copy_bb_pool);
  original_copy_bb_pool
    = create_alloc_pool ("original_copy",
			 sizeof (struct htab_bb_copy_original_entry), 10);
  bb_original = htab_create (10, bb_copy_original_hash,
			     bb_copy_original_eq, NULL);
  bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1178
  loop_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1179 1180
}

1181 1182
/* Free the data structures to maintain mapping between blocks and
   its copies.  */
1183 1184 1185 1186 1187 1188
void
free_original_copy_tables (void)
{
  gcc_assert (original_copy_bb_pool);
  htab_delete (bb_copy);
  htab_delete (bb_original);
1189
  htab_delete (loop_copy);
1190 1191 1192
  free_alloc_pool (original_copy_bb_pool);
  bb_copy = NULL;
  bb_original = NULL;
1193
  loop_copy = NULL;
1194 1195 1196
  original_copy_bb_pool = NULL;
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
/* Removes the value associated with OBJ from table TAB.  */

static void
copy_original_table_clear (htab_t tab, unsigned obj)
{
  void **slot;
  struct htab_bb_copy_original_entry key, *elt;

  if (!original_copy_bb_pool)
    return;

  key.index1 = obj;
  slot = htab_find_slot (tab, &key, NO_INSERT);
  if (!slot)
    return;

1213
  elt = (struct htab_bb_copy_original_entry *) *slot;
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
  htab_clear_slot (tab, slot);
  pool_free (original_copy_bb_pool, elt);
}

/* Sets the value associated with OBJ in table TAB to VAL.
   Do nothing when data structures are not initialized.  */

static void
copy_original_table_set (htab_t tab, unsigned obj, unsigned val)
{
  struct htab_bb_copy_original_entry **slot;
  struct htab_bb_copy_original_entry key;

  if (!original_copy_bb_pool)
    return;

  key.index1 = obj;
  slot = (struct htab_bb_copy_original_entry **)
		htab_find_slot (tab, &key, INSERT);
  if (!*slot)
    {
1235 1236
      *slot = (struct htab_bb_copy_original_entry *)
		pool_alloc (original_copy_bb_pool);
1237 1238 1239 1240 1241
      (*slot)->index1 = obj;
    }
  (*slot)->index2 = val;
}

1242 1243
/* Set original for basic block.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */
1244 1245 1246
void
set_bb_original (basic_block bb, basic_block original)
{
1247
  copy_original_table_set (bb_original, bb->index, original->index);
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
}

/* Get the original basic block.  */
basic_block
get_bb_original (basic_block bb)
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;

  gcc_assert (original_copy_bb_pool);

  key.index1 = bb->index;
  entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
  if (entry)
    return BASIC_BLOCK (entry->index2);
  else
    return NULL;
}

1267 1268
/* Set copy for basic block.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */
1269 1270 1271
void
set_bb_copy (basic_block bb, basic_block copy)
{
1272
  copy_original_table_set (bb_copy, bb->index, copy->index);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
}

/* Get the copy of basic block.  */
basic_block
get_bb_copy (basic_block bb)
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;

  gcc_assert (original_copy_bb_pool);

  key.index1 = bb->index;
  entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
  if (entry)
    return BASIC_BLOCK (entry->index2);
  else
    return NULL;
}
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

/* Set copy for LOOP to COPY.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */

void
set_loop_copy (struct loop *loop, struct loop *copy)
{
  if (!copy)
    copy_original_table_clear (loop_copy, loop->num);
  else
    copy_original_table_set (loop_copy, loop->num, copy->num);
}

/* Get the copy of LOOP.  */

struct loop *
get_loop_copy (struct loop *loop)
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;

  gcc_assert (original_copy_bb_pool);

  key.index1 = loop->num;
  entry = (struct htab_bb_copy_original_entry *) htab_find (loop_copy, &key);
  if (entry)
    return get_loop (entry->index2);
  else
    return NULL;
}