ddg.c 32.9 KB
Newer Older
1
/* DDG - Data Dependence Graph implementation.
2
   Copyright (C) 2004-2017 Free Software Foundation, Inc.
3 4 5 6 7 8
   Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10 11 12 13 14 15 16 17
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
18 19
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
20 21 22 23 24


#include "config.h"
#include "system.h"
#include "coretypes.h"
25
#include "backend.h"
26
#include "rtl.h"
27
#include "df.h"
28 29 30
#include "insn-attr.h"
#include "sched-int.h"
#include "ddg.h"
31
#include "rtl-iter.h"
32

33 34
#ifdef INSN_SCHEDULING

35 36 37 38 39 40 41
/* A flag indicating that a ddg edge belongs to an SCC or not.  */
enum edge_flag {NOT_IN_SCC = 0, IN_SCC};

/* Forward declarations.  */
static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
42 43
static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
                                                 ddg_node_ptr, dep_t);
44 45 46 47 48 49 50 51 52 53 54
static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
 				    dep_type, dep_data_type, int);
static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
				     dep_data_type, int, int);
static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);

/* Auxiliary variable for mem_read_insn_p/mem_write_insn_p.  */
static bool mem_ref_p;

/* Auxiliary function for mem_read_insn_p.  */
static void
55
mark_mem_use (rtx *x, void *)
56
{
57 58
  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, *x, NONCONST)
59
    if (MEM_P (*iter))
60 61 62 63
      {
	mem_ref_p = true;
	break;
      }
64 65
}

66
/* Returns nonzero if INSN reads from memory.  */
67
static bool
David Malcolm committed
68
mem_read_insn_p (rtx_insn *insn)
69 70
{
  mem_ref_p = false;
71
  note_uses (&PATTERN (insn), mark_mem_use, NULL);
72 73 74 75
  return mem_ref_p;
}

static void
76
mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
77
{
78
  if (MEM_P (loc))
79 80 81
    mem_ref_p = true;
}

82
/* Returns nonzero if INSN writes to memory.  */
83
static bool
David Malcolm committed
84
mem_write_insn_p (rtx_insn *insn)
85 86 87 88 89 90
{
  mem_ref_p = false;
  note_stores (PATTERN (insn), mark_mem_store, NULL);
  return mem_ref_p;
}

91
/* Returns nonzero if X has access to memory.  */
92 93 94 95 96 97 98 99 100 101
static bool
rtx_mem_access_p (rtx x)
{
  int i, j;
  const char *fmt;
  enum rtx_code code;

  if (x == 0)
    return false;

102
  if (MEM_P (x))
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    return true;

  code = GET_CODE (x);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  if (rtx_mem_access_p (XEXP (x, i)))
            return true;
        }
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  {
	    if (rtx_mem_access_p (XVECEXP (x, i, j)))
              return true;
          }
    }
  return false;
}

124
/* Returns nonzero if INSN reads to or writes from memory.  */
125
static bool
David Malcolm committed
126
mem_access_insn_p (rtx_insn *insn)
127 128 129 130
{
  return rtx_mem_access_p (PATTERN (insn));
}

131 132 133 134 135 136 137 138 139
/* Return true if DEF_INSN contains address being auto-inc or auto-dec
   which is used in USE_INSN.  Otherwise return false.  The result is
   being used to decide whether to remove the edge between def_insn and
   use_insn when -fmodulo-sched-allow-regmoves is set.  This function
   doesn't need to consider the specific address register; no reg_moves
   will be allowed for any life range defined by def_insn and used
   by use_insn, if use_insn uses an address register auto-inc'ed by
   def_insn.  */
bool
David Malcolm committed
140
autoinc_var_is_used_p (rtx_insn *def_insn, rtx_insn *use_insn)
141 142 143 144 145 146 147 148 149 150 151
{
  rtx note;

  for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
    if (REG_NOTE_KIND (note) == REG_INC
	&& reg_referenced_p (XEXP (note, 0), PATTERN (use_insn)))
      return true;

  return false;
}

152 153 154
/* Return true if one of the definitions in INSN has MODE_CC.  Otherwise
   return false.  */
static bool
David Malcolm committed
155
def_has_ccmode_p (rtx_insn *insn)
156
{
157
  df_ref def;
158

159
  FOR_EACH_INSN_DEF (def, insn)
160
    {
161
      machine_mode mode = GET_MODE (DF_REF_REG (def));
162 163 164 165 166 167 168 169

      if (GET_MODE_CLASS (mode) == MODE_CC)
	return true;
    }

  return false;
}

170 171 172
/* Computes the dependence parameters (latency, distance etc.), creates
   a ddg_edge and adds it to the given DDG.  */
static void
173 174
create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
                                     ddg_node_ptr dest_node, dep_t link)
175 176 177 178 179 180 181
{
  ddg_edge_ptr e;
  int latency, distance = 0;
  dep_type t = TRUE_DEP;
  dep_data_type dt = (mem_access_insn_p (src_node->insn)
		      && mem_access_insn_p (dest_node->insn) ? MEM_DEP
							     : REG_DEP);
182
  gcc_assert (src_node->cuid < dest_node->cuid);
183
  gcc_assert (link);
184 185

  /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!!  */
186
  if (DEP_TYPE (link) == REG_DEP_ANTI)
187
    t = ANTI_DEP;
188
  else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
189 190
    t = OUTPUT_DEP;

191
  gcc_assert (!DEBUG_INSN_P (dest_node->insn) || t == ANTI_DEP);
192
  gcc_assert (!DEBUG_INSN_P (src_node->insn) || t == ANTI_DEP);
193

194 195 196 197
  /* We currently choose not to create certain anti-deps edges and
     compensate for that by generating reg-moves based on the life-range
     analysis.  The anti-deps that will be deleted are the ones which
     have true-deps edges in the opposite direction (in other words
198 199 200 201 202
     the kernel has only one def of the relevant register).
     If the address that is being auto-inc or auto-dec in DEST_NODE
     is used in SRC_NODE then do not remove the edge to make sure
     reg-moves will not be created for this address.  
     TODO: support the removal of all anti-deps edges, i.e. including those
203
     whose register has multiple defs in the loop.  */
204 205
  if (flag_modulo_sched_allow_regmoves 
      && (t == ANTI_DEP && dt == REG_DEP)
206
      && !def_has_ccmode_p (dest_node->insn)
207
      && !autoinc_var_is_used_p (dest_node->insn, src_node->insn))
208
    {
209 210 211
      rtx set;

      set = single_set (dest_node->insn);
212 213 214
      /* TODO: Handle registers that REG_P is not true for them, i.e.
         subregs and special registers.  */
      if (set && REG_P (SET_DEST (set)))
215 216
        {
          int regno = REGNO (SET_DEST (set));
217
          df_ref first_def;
218
          struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
219

220 221 222
          first_def = df_bb_regno_first_def_find (g->bb, regno);
          gcc_assert (first_def);

223
          if (bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def)))
224 225
            return;
        }
226
    }
227 228 229 230

   latency = dep_cost (link);
   e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
   add_edge_to_ddg (g, e);
231 232 233 234 235 236 237 238 239
}

/* The same as the above function, but it doesn't require a link parameter.  */
static void
create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
			dep_type d_t, dep_data_type d_dt, int distance)
{
  ddg_edge_ptr e;
  int l;
240 241
  enum reg_note dep_kind;
  struct _dep _dep, *dep = &_dep;
242

243
  gcc_assert (!DEBUG_INSN_P (to->insn) || d_t == ANTI_DEP);
244
  gcc_assert (!DEBUG_INSN_P (from->insn) || d_t == ANTI_DEP);
245

246
  if (d_t == ANTI_DEP)
247
    dep_kind = REG_DEP_ANTI;
248
  else if (d_t == OUTPUT_DEP)
249 250 251 252 253 254 255 256 257
    dep_kind = REG_DEP_OUTPUT;
  else
    {
      gcc_assert (d_t == TRUE_DEP);

      dep_kind = REG_DEP_TRUE;
    }

  init_dep (dep, from->insn, to->insn, dep_kind);
258

259
  l = dep_cost (dep);
260 261 262 263 264 265 266 267

  e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
  if (distance > 0)
    add_backarc_to_ddg (g, e);
  else
    add_edge_to_ddg (g, e);
}

268 269 270 271 272 273 274

/* Given a downwards exposed register def LAST_DEF (which is the last
   definition of that register in the bb), add inter-loop true dependences
   to all its uses in the next iteration, an output dependence to the
   first def of the same register (possibly itself) in the next iteration
   and anti-dependences from its uses in the current iteration to the
   first definition in the next iteration.  */
275
static void
276
add_cross_iteration_register_deps (ddg_ptr g, df_ref last_def)
277
{
278
  int regno = DF_REF_REGNO (last_def);
279
  struct df_link *r_use;
280
  int has_use_in_bb_p = false;
David Malcolm committed
281
  rtx_insn *def_insn = DF_REF_INSN (last_def);
282 283
  ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn);
  ddg_node_ptr use_node;
284
  df_ref first_def = df_bb_regno_first_def_find (g->bb, regno);
285

286 287 288
  gcc_assert (last_def_node);
  gcc_assert (first_def);

289 290 291 292 293
  if (flag_checking && DF_REF_ID (last_def) != DF_REF_ID (first_def))
    {
      struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
      gcc_assert (!bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def)));
    }
294

295 296
  /* Create inter-loop true dependences and anti dependences.  */
  for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
297
    {
David Malcolm committed
298
      rtx_insn *use_insn = DF_REF_INSN (r_use->ref);
299

300 301
      if (BLOCK_FOR_INSN (use_insn) != g->bb)
	continue;
302

303 304 305 306 307 308 309 310 311
      /* ??? Do not handle uses with DF_REF_IN_NOTE notes.  */
      use_node = get_node_of_insn (g, use_insn);
      gcc_assert (use_node);
      has_use_in_bb_p = true;
      if (use_node->cuid <= last_def_node->cuid)
	{
	  /* Add true deps from last_def to it's uses in the next
	     iteration.  Any such upwards exposed use appears before
	     the last_def def.  */
312 313
	  create_ddg_dep_no_link (g, last_def_node, use_node,
				  DEBUG_INSN_P (use_insn) ? ANTI_DEP : TRUE_DEP,
314 315
				  REG_DEP, 1);
	}
316
      else if (!DEBUG_INSN_P (use_insn))
317 318 319 320 321 322 323 324
	{
	  /* Add anti deps from last_def's uses in the current iteration
	     to the first def in the next iteration.  We do not add ANTI
	     dep when there is an intra-loop TRUE dep in the opposite
	     direction, but use regmoves to fix such disregarded ANTI
	     deps when broken.	If the first_def reaches the USE then
	     there is such a dep.  */
	  ddg_node_ptr first_def_node = get_node_of_insn (g,
325
							  DF_REF_INSN (first_def));
326 327 328

	  gcc_assert (first_def_node);

329
         /* Always create the edge if the use node is a branch in
330 331 332 333
            order to prevent the creation of reg-moves.  
            If the address that is being auto-inc or auto-dec in LAST_DEF
            is used in USE_INSN then do not remove the edge to make sure
            reg-moves will not be created for that address.  */
334
          if (DF_REF_ID (last_def) != DF_REF_ID (first_def)
335
              || !flag_modulo_sched_allow_regmoves
336
	      || JUMP_P (use_node->insn)
337 338
              || autoinc_var_is_used_p (DF_REF_INSN (last_def), use_insn)
	      || def_has_ccmode_p (DF_REF_INSN (last_def)))
339 340 341
            create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
                                    REG_DEP, 1);

342
	}
343
    }
344 345 346 347 348 349 350 351
  /* Create an inter-loop output dependence between LAST_DEF (which is the
     last def in its block, being downwards exposed) and the first def in
     its block.  Avoid creating a self output dependence.  Avoid creating
     an output dependence if there is a dependence path between the two
     defs starting with a true dependence to a use which can be in the
     next iteration; followed by an anti dependence of that use to the
     first def (i.e. if there is a use between the two defs.)  */
  if (!has_use_in_bb_p)
352 353 354
    {
      ddg_node_ptr dest_node;

355
      if (DF_REF_ID (last_def) == DF_REF_ID (first_def))
356 357
	return;

358
      dest_node = get_node_of_insn (g, DF_REF_INSN (first_def));
359 360 361
      gcc_assert (dest_node);
      create_ddg_dep_no_link (g, last_def_node, dest_node,
			      OUTPUT_DEP, REG_DEP, 1);
362 363 364 365
    }
}
/* Build inter-loop dependencies, by looking at DF analysis backwards.  */
static void
366
build_inter_loop_deps (ddg_ptr g)
367
{
368
  unsigned rd_num;
369
  struct df_rd_bb_info *rd_bb_info;
370
  bitmap_iterator bi;
371

372
  rd_bb_info = DF_RD_BB_INFO (g->bb);
373

374
  /* Find inter-loop register output, true and anti deps.  */
375
  EXECUTE_IF_SET_IN_BITMAP (&rd_bb_info->gen, 0, rd_num, bi)
376
  {
377
    df_ref rd = DF_DEFS_GET (rd_num);
378

379 380
    add_cross_iteration_register_deps (g, rd);
  }
381 382
}

383

384 385 386 387
/* Return true if two specified instructions have mem expr with conflict
   alias sets.  */
static bool
insns_may_alias_p (rtx_insn *insn1, rtx_insn *insn2)
388
{
389 390 391
  subrtx_iterator::array_type array1;
  subrtx_iterator::array_type array2;
  FOR_EACH_SUBRTX (iter1, array1, PATTERN (insn1), NONCONST)
392
    {
393 394 395 396 397 398 399 400
      const_rtx x1 = *iter1;
      if (MEM_P (x1))
	FOR_EACH_SUBRTX (iter2, array2, PATTERN (insn2), NONCONST)
	  {
	    const_rtx x2 = *iter2;
	    if (MEM_P (x2) && may_alias_p (x2, x1))
	      return true;
	  }
401
    }
402
  return false;
403 404
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
/* Given two nodes, analyze their RTL insns and add intra-loop mem deps
   to ddg G.  */
static void
add_intra_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
{

  if ((from->cuid == to->cuid)
      || !insns_may_alias_p (from->insn, to->insn))
    /* Do not create edge if memory references have disjoint alias sets
       or 'to' and 'from' are the same instruction.  */
    return;

  if (mem_write_insn_p (from->insn))
    {
      if (mem_read_insn_p (to->insn))
	create_ddg_dep_no_link (g, from, to,
				DEBUG_INSN_P (to->insn)
				? ANTI_DEP : TRUE_DEP, MEM_DEP, 0);
      else
	create_ddg_dep_no_link (g, from, to,
				DEBUG_INSN_P (to->insn)
				? ANTI_DEP : OUTPUT_DEP, MEM_DEP, 0);
    }
  else if (!mem_read_insn_p (to->insn))
    create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 0);
}

432 433 434 435 436
/* Given two nodes, analyze their RTL insns and add inter-loop mem deps
   to ddg G.  */
static void
add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
{
437
  if (!insns_may_alias_p (from->insn, to->insn))
438 439
    /* Do not create edge if memory references have disjoint alias sets.  */
    return;
H.J. Lu committed
440

441 442 443
  if (mem_write_insn_p (from->insn))
    {
      if (mem_read_insn_p (to->insn))
444 445 446
  	create_ddg_dep_no_link (g, from, to,
				DEBUG_INSN_P (to->insn)
				? ANTI_DEP : TRUE_DEP, MEM_DEP, 1);
447
      else if (from->cuid != to->cuid)
448 449 450
  	create_ddg_dep_no_link (g, from, to,
				DEBUG_INSN_P (to->insn)
				? ANTI_DEP : OUTPUT_DEP, MEM_DEP, 1);
451 452 453 454 455 456 457
    }
  else
    {
      if (mem_read_insn_p (to->insn))
	return;
      else if (from->cuid != to->cuid)
	{
458 459 460 461 462
	  create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
	  if (DEBUG_INSN_P (from->insn) || DEBUG_INSN_P (to->insn))
	    create_ddg_dep_no_link (g, to, from, ANTI_DEP, MEM_DEP, 1);
	  else
	    create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
463 464 465 466 467 468
	}
    }

}

/* Perform intra-block Data Dependency analysis and connect the nodes in
469
   the DDG.  We assume the loop has a single basic block.  */
470 471 472 473 474
static void
build_intra_loop_deps (ddg_ptr g)
{
  int i;
  /* Hold the dependency analysis state during dependency calculations.  */
475
  struct deps_desc tmp_deps;
476
  rtx_insn *head, *tail;
477 478 479

  /* Build the dependence information, using the sched_analyze function.  */
  init_deps_global ();
480
  init_deps (&tmp_deps, false);
481 482

  /* Do the intra-block data dependence analysis for the given block.  */
483
  get_ebb_head_tail (g->bb, g->bb, &head, &tail);
484 485
  sched_analyze (&tmp_deps, head, tail);

486
  /* Build intra-loop data dependencies using the scheduler dependency
487 488 489 490
     analysis.  */
  for (i = 0; i < g->num_nodes; i++)
    {
      ddg_node_ptr dest_node = &g->nodes[i];
491 492
      sd_iterator_def sd_it;
      dep_t dep;
493 494 495 496

      if (! INSN_P (dest_node->insn))
	continue;

497
      FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
498
	{
David Malcolm committed
499
	  rtx_insn *src_insn = DEP_PRO (dep);
500 501 502 503 504 505 506 507
	  ddg_node_ptr src_node;

	  /* Don't add dependencies on debug insns to non-debug insns
	     to avoid codegen differences between -g and -g0.  */
	  if (DEBUG_INSN_P (src_insn) && !DEBUG_INSN_P (dest_node->insn))
	    continue;

	  src_node = get_node_of_insn (g, src_insn);
508 509 510 511

	  if (!src_node)
	    continue;

512
	  create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
513 514 515 516 517 518 519 520 521 522 523
	}

      /* If this insn modifies memory, add an edge to all insns that access
	 memory.  */
      if (mem_access_insn_p (dest_node->insn))
	{
	  int j;

	  for (j = 0; j <= i; j++)
	    {
	      ddg_node_ptr j_node = &g->nodes[j];
524 525
	      if (DEBUG_INSN_P (j_node->insn))
		continue;
526
	      if (mem_access_insn_p (j_node->insn))
527 528 529
		{
		  /* Don't bother calculating inter-loop dep if an intra-loop dep
		     already exists.  */
530
	      	  if (! bitmap_bit_p (dest_node->successors, j))
531
		    add_inter_loop_mem_dep (g, dest_node, j_node);
532 533 534 535 536 537 538 539
		  /* If -fmodulo-sched-allow-regmoves
		     is set certain anti-dep edges are not created.
		     It might be that these anti-dep edges are on the
		     path from one memory instruction to another such that
		     removing these edges could cause a violation of the
		     memory dependencies.  Thus we add intra edges between
		     every two memory instructions in this case.  */
		  if (flag_modulo_sched_allow_regmoves
540
		      && !bitmap_bit_p (dest_node->predecessors, j))
541 542
		    add_intra_loop_mem_dep (g, j_node, dest_node);
		}
543 544 545 546 547 548 549
            }
        }
    }

  /* Free the INSN_LISTs.  */
  finish_deps_global ();
  free_deps (&tmp_deps);
550 551 552

  /* Free dependencies.  */
  sched_free_deps (head, tail, false);
553 554 555 556 557 558 559
}


/* Given a basic block, create its DDG and return a pointer to a variable
   of ddg type that represents it.
   Initialize the ddg structure fields to the appropriate values.  */
ddg_ptr
560
create_ddg (basic_block bb, int closing_branch_deps)
561 562
{
  ddg_ptr g;
David Malcolm committed
563
  rtx_insn *insn, *first_note;
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
  int i;
  int num_nodes = 0;

  g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));

  g->bb = bb;
  g->closing_branch_deps = closing_branch_deps;

  /* Count the number of insns in the BB.  */
  for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
       insn = NEXT_INSN (insn))
    {
      if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
	continue;

579 580 581 582 583 584 585 586 587
      if (DEBUG_INSN_P (insn))
	g->num_debug++;
      else
	{
	  if (mem_read_insn_p (insn))
	    g->num_loads++;
	  if (mem_write_insn_p (insn))
	    g->num_stores++;
	}
588 589 590 591
      num_nodes++;
    }

  /* There is nothing to do for this BB.  */
592
  if ((num_nodes - g->num_debug) <= 1)
593 594 595 596 597 598 599 600 601 602
    {
      free (g);
      return NULL;
    }

  /* Allocate the nodes array, and initialize the nodes.  */
  g->num_nodes = num_nodes;
  g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
  g->closing_branch = NULL;
  i = 0;
David Malcolm committed
603
  first_note = NULL;
604 605 606 607 608
  for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
       insn = NEXT_INSN (insn))
    {
      if (! INSN_P (insn))
	{
609
	  if (! first_note && NOTE_P (insn)
610
	      && NOTE_KIND (insn) !=  NOTE_INSN_BASIC_BLOCK)
611 612 613
	    first_note = insn;
	  continue;
	}
614
      if (JUMP_P (insn))
615
	{
616 617
	  gcc_assert (!g->closing_branch);
	  g->closing_branch = &g->nodes[i];
618 619 620 621 622 623 624 625 626 627
	}
      else if (GET_CODE (PATTERN (insn)) == USE)
	{
	  if (! first_note)
	    first_note = insn;
	  continue;
	}

      g->nodes[i].cuid = i;
      g->nodes[i].successors = sbitmap_alloc (num_nodes);
628
      bitmap_clear (g->nodes[i].successors);
629
      g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
630
      bitmap_clear (g->nodes[i].predecessors);
631 632
      g->nodes[i].first_note = (first_note ? first_note : insn);
      g->nodes[i++].insn = insn;
David Malcolm committed
633
      first_note = NULL;
634
    }
H.J. Lu committed
635

636 637
  /* We must have found a branch in DDG.  */
  gcc_assert (g->closing_branch);
H.J. Lu committed
638

639

640
  /* Build the data dependency graph.  */
641
  build_intra_loop_deps (g);
642
  build_inter_loop_deps (g);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
  return g;
}

/* Free all the memory allocated for the DDG.  */
void
free_ddg (ddg_ptr g)
{
  int i;

  if (!g)
    return;

  for (i = 0; i < g->num_nodes; i++)
    {
      ddg_edge_ptr e = g->nodes[i].out;

      while (e)
	{
	  ddg_edge_ptr next = e->next_out;

	  free (e);
	  e = next;
	}
      sbitmap_free (g->nodes[i].successors);
      sbitmap_free (g->nodes[i].predecessors);
    }
  if (g->num_backarcs > 0)
    free (g->backarcs);
  free (g->nodes);
  free (g);
}

void
676
print_ddg_edge (FILE *file, ddg_edge_ptr e)
677 678 679
{
  char dep_c;

680 681
  switch (e->type)
    {
682 683 684 685 686 687 688 689
    case OUTPUT_DEP :
      dep_c = 'O';
      break;
    case ANTI_DEP :
      dep_c = 'A';
      break;
    default:
      dep_c = 'T';
690
    }
691

692
  fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
693 694 695 696 697
	   dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
}

/* Print the DDG nodes with there in/out edges to the dump file.  */
void
698
print_ddg (FILE *file, ddg_ptr g)
699 700 701 702 703 704 705
{
  int i;

  for (i = 0; i < g->num_nodes; i++)
    {
      ddg_edge_ptr e;

706
      fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
707 708
      print_rtl_single (file, g->nodes[i].insn);
      fprintf (file, "OUT ARCS: ");
709
      for (e = g->nodes[i].out; e; e = e->next_out)
710
	print_ddg_edge (file, e);
711

712
      fprintf (file, "\nIN ARCS: ");
713
      for (e = g->nodes[i].in; e; e = e->next_in)
714
	print_ddg_edge (file, e);
715

716
      fprintf (file, "\n");
717 718 719 720
    }
}

/* Print the given DDG in VCG format.  */
721
DEBUG_FUNCTION void
722
vcg_print_ddg (FILE *file, ddg_ptr g)
723 724 725
{
  int src_cuid;

726
  fprintf (file, "graph: {\n");
727 728 729 730 731
  for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
    {
      ddg_edge_ptr e;
      int src_uid = INSN_UID (g->nodes[src_cuid].insn);

732 733 734
      fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
      print_rtl_single (file, g->nodes[src_cuid].insn);
      fprintf (file, "\"}\n");
735 736 737 738 739 740 741
      for (e = g->nodes[src_cuid].out; e; e = e->next_out)
	{
	  int dst_uid = INSN_UID (e->dest->insn);
	  int dst_cuid = e->dest->cuid;

	  /* Give the backarcs a different color.  */
	  if (e->distance > 0)
742
	    fprintf (file, "backedge: {color: red ");
743
	  else
744
	    fprintf (file, "edge: { ");
745

746 747 748
	  fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
	  fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
	  fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
749 750
	}
    }
751
  fprintf (file, "}\n");
752 753
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
/* Dump the sccs in SCCS.  */
void
print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
{
  unsigned int u = 0;
  sbitmap_iterator sbi;
  int i;

  if (!file)
    return;

  fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
  for (i = 0; i < sccs->num_sccs; i++)
    {
      fprintf (file, "SCC number: %d\n", i);
769
      EXECUTE_IF_SET_IN_BITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
770 771 772 773 774 775 776 777
      {
        fprintf (file, "insn num %d\n", u);
        print_rtl_single (file, g->nodes[u].insn);
      }
    }
  fprintf (file, "\n");
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
/* Create an edge and initialize it with given values.  */
static ddg_edge_ptr
create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
		 dep_type t, dep_data_type dt, int l, int d)
{
  ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));

  e->src = src;
  e->dest = dest;
  e->type = t;
  e->data_type = dt;
  e->latency = l;
  e->distance = d;
  e->next_in = e->next_out = NULL;
  e->aux.info = 0;
  return e;
}

/* Add the given edge to the in/out linked lists of the DDG nodes.  */
static void
add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
{
  ddg_node_ptr src = e->src;
  ddg_node_ptr dest = e->dest;

803 804
  /* Should have allocated the sbitmaps.  */
  gcc_assert (src->successors && dest->predecessors);
805

806 807
  bitmap_set_bit (src->successors, dest->cuid);
  bitmap_set_bit (dest->predecessors, src->cuid);
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
  e->next_in = dest->in;
  dest->in = e;
  e->next_out = src->out;
  src->out = e;
}



/* Algorithm for computing the recurrence_length of an scc.  We assume at
   for now that cycles in the data dependence graph contain a single backarc.
   This simplifies the algorithm, and can be generalized later.  */
static void
set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
{
  int j;
  int result = -1;

  for (j = 0; j < scc->num_backarcs; j++)
    {
      ddg_edge_ptr backarc = scc->backarcs[j];
      int length;
      int distance = backarc->distance;
      ddg_node_ptr src = backarc->dest;
      ddg_node_ptr dest = backarc->src;

      length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
      if (length < 0 )
	{
	  /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
	  continue;
	}
      length += backarc->latency;
      result = MAX (result, (length / distance));
    }
  scc->recurrence_length = result;
}

/* Create a new SCC given the set of its nodes.  Compute its recurrence_length
   and mark edges that belong to this scc as IN_SCC.  */
static ddg_scc_ptr
create_scc (ddg_ptr g, sbitmap nodes)
{
  ddg_scc_ptr scc;
851
  unsigned int u = 0;
852
  sbitmap_iterator sbi;
853 854 855 856 857

  scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
  scc->backarcs = NULL;
  scc->num_backarcs = 0;
  scc->nodes = sbitmap_alloc (g->num_nodes);
858
  bitmap_copy (scc->nodes, nodes);
859 860

  /* Mark the backarcs that belong to this SCC.  */
861
  EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
862 863 864 865 866
    {
      ddg_edge_ptr e;
      ddg_node_ptr n = &g->nodes[u];

      for (e = n->out; e; e = e->next_out)
867
	if (bitmap_bit_p (nodes, e->dest->cuid))
868 869 870 871 872
	  {
	    e->aux.count = IN_SCC;
	    if (e->distance > 0)
	      add_backarc_to_scc (scc, e);
	  }
873
    }
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

  set_recurrence_length (scc, g);
  return scc;
}

/* Cleans the memory allocation of a given SCC.  */
static void
free_scc (ddg_scc_ptr scc)
{
  if (!scc)
    return;

  sbitmap_free (scc->nodes);
  if (scc->num_backarcs > 0)
    free (scc->backarcs);
  free (scc);
}


/* Add a given edge known to be a backarc to the given DDG.  */
static void
add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
{
  int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);

  add_edge_to_ddg (g, e);
  g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
  g->backarcs[g->num_backarcs++] = e;
}

/* Add backarc to an SCC.  */
static void
add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
{
  int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);

  scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
  scc->backarcs[scc->num_backarcs++] = e;
}

/* Add the given SCC to the DDG.  */
static void
add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
{
  int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);

  g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
  g->sccs[g->num_sccs++] = scc;
}

/* Given the instruction INSN return the node that represents it.  */
ddg_node_ptr
David Malcolm committed
926
get_node_of_insn (ddg_ptr g, rtx_insn *insn)
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
{
  int i;

  for (i = 0; i < g->num_nodes; i++)
    if (insn == g->nodes[i].insn)
      return &g->nodes[i];
  return NULL;
}

/* Given a set OPS of nodes in the DDG, find the set of their successors
   which are not in OPS, and set their bits in SUCC.  Bits corresponding to
   OPS are cleared from SUCC.  Leaves the other bits in SUCC unchanged.  */
void
find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
{
942
  unsigned int i = 0;
943
  sbitmap_iterator sbi;
944

945
  EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi)
946 947
    {
      const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
948
      bitmap_ior (succ, succ, node_succ);
949
    };
950 951

  /* We want those that are not in ops.  */
952
  bitmap_and_compl (succ, succ, ops);
953 954 955 956 957 958 959 960
}

/* Given a set OPS of nodes in the DDG, find the set of their predecessors
   which are not in OPS, and set their bits in PREDS.  Bits corresponding to
   OPS are cleared from PREDS.  Leaves the other bits in PREDS unchanged.  */
void
find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
{
961
  unsigned int i = 0;
962
  sbitmap_iterator sbi;
963

964
  EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi)
965 966
    {
      const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
967
      bitmap_ior (preds, preds, node_preds);
968
    };
969 970

  /* We want those that are not in ops.  */
971
  bitmap_and_compl (preds, preds, ops);
972 973 974 975 976 977 978 979
}


/* Compare function to be passed to qsort to order the backarcs in descending
   recMII order.  */
static int
compare_sccs (const void *s1, const void *s2)
{
980
  const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
H.J. Lu committed
981
  const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
982
  return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
H.J. Lu committed
983

984 985 986 987 988 989 990 991 992 993
}

/* Order the backarcs in descending recMII order using compare_sccs.  */
static void
order_sccs (ddg_all_sccs_ptr g)
{
  qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
	 (int (*) (const void *, const void *)) compare_sccs);
}

994 995 996 997 998 999
/* Check that every node in SCCS belongs to exactly one strongly connected
   component and that no element of SCCS is empty.  */
static void
check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
{
  int i = 0;
1000
  auto_sbitmap tmp (num_nodes);
1001

1002
  bitmap_clear (tmp);
1003 1004
  for (i = 0; i < sccs->num_sccs; i++)
    {
1005
      gcc_assert (!bitmap_empty_p (sccs->sccs[i]->nodes));
1006 1007
      /* Verify that every node in sccs is in exactly one strongly
         connected component.  */
1008 1009
      gcc_assert (!bitmap_intersect_p (tmp, sccs->sccs[i]->nodes));
      bitmap_ior (tmp, tmp, sccs->sccs[i]->nodes);
1010 1011 1012
    }
}

1013 1014 1015 1016 1017 1018 1019
/* Perform the Strongly Connected Components decomposing algorithm on the
   DDG and return DDG_ALL_SCCS structure that contains them.  */
ddg_all_sccs_ptr
create_ddg_all_sccs (ddg_ptr g)
{
  int i;
  int num_nodes = g->num_nodes;
1020 1021 1022
  auto_sbitmap from (num_nodes);
  auto_sbitmap to (num_nodes);
  auto_sbitmap scc_nodes (num_nodes);
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
  ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
			  xmalloc (sizeof (struct ddg_all_sccs));

  sccs->ddg = g;
  sccs->sccs = NULL;
  sccs->num_sccs = 0;

  for (i = 0; i < g->num_backarcs; i++)
    {
      ddg_scc_ptr  scc;
      ddg_edge_ptr backarc = g->backarcs[i];
      ddg_node_ptr src = backarc->src;
      ddg_node_ptr dest = backarc->dest;

      /* If the backarc already belongs to an SCC, continue.  */
      if (backarc->aux.count == IN_SCC)
	continue;

1041 1042 1043
      bitmap_clear (scc_nodes);
      bitmap_clear (from);
      bitmap_clear (to);
1044 1045
      bitmap_set_bit (from, dest->cuid);
      bitmap_set_bit (to, src->cuid);
1046 1047 1048 1049 1050 1051 1052 1053

      if (find_nodes_on_paths (scc_nodes, g, from, to))
	{
	  scc = create_scc (g, scc_nodes);
	  add_scc_to_ddg (sccs, scc);
	}
    }
  order_sccs (sccs);
1054 1055 1056 1057

  if (flag_checking)
    check_sccs (sccs, num_nodes);

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
  return sccs;
}

/* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG.  */
void
free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
{
  int i;

  if (!all_sccs)
    return;

  for (i = 0; i < all_sccs->num_sccs; i++)
    free_scc (all_sccs->sccs[i]);

Revital Eres committed
1073
  free (all_sccs->sccs);
1074 1075 1076 1077 1078 1079
  free (all_sccs);
}


/* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
   nodes - find all nodes that lie on paths from FROM to TO (not excluding
1080
   nodes from FROM and TO).  Return nonzero if nodes exist.  */
1081 1082 1083
int
find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
{
1084
  int change;
1085
  unsigned int u = 0;
1086
  int num_nodes = g->num_nodes;
1087 1088
  sbitmap_iterator sbi;

1089 1090 1091 1092
  auto_sbitmap workset (num_nodes);
  auto_sbitmap reachable_from (num_nodes);
  auto_sbitmap reach_to (num_nodes);
  auto_sbitmap tmp (num_nodes);
1093

1094 1095
  bitmap_copy (reachable_from, from);
  bitmap_copy (tmp, from);
1096 1097 1098 1099 1100

  change = 1;
  while (change)
    {
      change = 0;
1101 1102
      bitmap_copy (workset, tmp);
      bitmap_clear (tmp);
1103
      EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
1104 1105 1106 1107 1108 1109 1110 1111 1112
	{
	  ddg_edge_ptr e;
	  ddg_node_ptr u_node = &g->nodes[u];

	  for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
	    {
	      ddg_node_ptr v_node = e->dest;
	      int v = v_node->cuid;

1113
	      if (!bitmap_bit_p (reachable_from, v))
1114
		{
1115 1116
		  bitmap_set_bit (reachable_from, v);
		  bitmap_set_bit (tmp, v);
1117 1118 1119
		  change = 1;
		}
	    }
1120
	}
1121 1122
    }

1123 1124
  bitmap_copy (reach_to, to);
  bitmap_copy (tmp, to);
1125 1126 1127 1128 1129

  change = 1;
  while (change)
    {
      change = 0;
1130 1131
      bitmap_copy (workset, tmp);
      bitmap_clear (tmp);
1132
      EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
1133 1134 1135 1136 1137 1138 1139 1140 1141
	{
	  ddg_edge_ptr e;
	  ddg_node_ptr u_node = &g->nodes[u];

	  for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
	    {
	      ddg_node_ptr v_node = e->src;
	      int v = v_node->cuid;

1142
	      if (!bitmap_bit_p (reach_to, v))
1143
		{
1144 1145
		  bitmap_set_bit (reach_to, v);
		  bitmap_set_bit (tmp, v);
1146 1147 1148
		  change = 1;
		}
	    }
1149
	}
1150 1151
    }

1152
  return bitmap_and (result, reachable_from, reach_to);
1153 1154 1155 1156 1157 1158
}


/* Updates the counts of U_NODE's successors (that belong to NODES) to be
   at-least as large as the count of U_NODE plus the latency between them.
   Sets a bit in TMP for each successor whose count was changed (increased).
1159
   Returns nonzero if any count was changed.  */
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static int
update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
{
  ddg_edge_ptr e;
  int result = 0;

  for (e = u_node->out; e; e = e->next_out)
    {
      ddg_node_ptr v_node = e->dest;
      int v = v_node->cuid;

1171
      if (bitmap_bit_p (nodes, v)
1172 1173 1174 1175
	  && (e->distance == 0)
	  && (v_node->aux.count < u_node->aux.count + e->latency))
	{
	  v_node->aux.count = u_node->aux.count + e->latency;
1176
	  bitmap_set_bit (tmp, v);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	  result = 1;
	}
    }
  return result;
}


/* Find the length of a longest path from SRC to DEST in G,
   going only through NODES, and disregarding backarcs.  */
int
longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
{
1189
  int i;
1190
  unsigned int u = 0;
1191 1192
  int change = 1;
  int num_nodes = g->num_nodes;
1193 1194
  auto_sbitmap workset (num_nodes);
  auto_sbitmap tmp (num_nodes);
1195 1196 1197 1198 1199 1200 1201 1202


  /* Data will hold the distance of the longest path found so far from
     src to each node.  Initialize to -1 = less than minimum.  */
  for (i = 0; i < g->num_nodes; i++)
    g->nodes[i].aux.count = -1;
  g->nodes[src].aux.count = 0;

1203
  bitmap_clear (tmp);
1204
  bitmap_set_bit (tmp, src);
1205 1206 1207

  while (change)
    {
1208 1209
      sbitmap_iterator sbi;

1210
      change = 0;
1211 1212
      bitmap_copy (workset, tmp);
      bitmap_clear (tmp);
1213
      EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
1214 1215 1216 1217
	{
	  ddg_node_ptr u_node = &g->nodes[u];

	  change |= update_dist_to_successors (u_node, nodes, tmp);
1218
	}
1219
    }
1220
  return g->nodes[dest].aux.count;
1221
}
1222 1223

#endif /* INSN_SCHEDULING */