cfg.c 32.2 KB
Newer Older
1 2
/* Control flow graph manipulation code for GNU compiler.
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4
   Free Software Foundation, Inc.
5 6 7 8 9

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11 12 13 14 15 16 17 18
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
19 20
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
21

22
/* This file contains low level functions to manipulate the CFG and
23
   analyze it.  All other modules should not transform the data structure
24 25 26
   directly and use abstraction instead.  The file is supposed to be
   ordered bottom-up and should not contain any code dependent on a
   particular intermediate language (RTL or trees).
27 28 29 30

   Available functionality:
     - Initialization/deallocation
	 init_flow, clear_edges
31 32
     - Low level basic block manipulation
	 alloc_block, expunge_block
33
     - Edge manipulation
34
	 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 36
	 - Low level edge redirection (without updating instruction chain)
	     redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37
     - Dumping and debugging
38 39 40
	 dump_flow_info, debug_flow_info, dump_edge_info
     - Allocation of AUX fields for basic blocks
	 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41
     - clear_bb_flags
42 43 44 45
     - Consistency checking
	 verify_flow_info
     - Dumping and debugging
	 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
46 47 48 49
 */

#include "config.h"
#include "system.h"
50 51
#include "coretypes.h"
#include "tm.h"
52 53 54 55 56 57 58 59
#include "tree.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "function.h"
#include "except.h"
60
#include "diagnostic-core.h"
61
#include "toplev.h"
62
#include "tm_p.h"
63
#include "obstack.h"
64
#include "timevar.h"
65
#include "tree-pass.h"
66
#include "ggc.h"
67 68
#include "hashtab.h"
#include "alloc-pool.h"
69
#include "df.h"
70
#include "cfgloop.h"
71
#include "tree-flow.h"
72 73 74

/* The obstack on which the flow graph components are allocated.  */

75
struct bitmap_obstack reg_obstack;
76

77 78
void debug_flow_info (void);
static void free_edge (edge);
79

80 81
#define RDIV(X,Y) (((X) + (Y) / 2) / (Y))

82
/* Called once at initialization time.  */
83 84

void
Diego Novillo committed
85
init_flow (struct function *the_fun)
86
{
Diego Novillo committed
87
  if (!the_fun->cfg)
88
    the_fun->cfg = ggc_alloc_cleared_control_flow_graph ();
Diego Novillo committed
89 90
  n_edges_for_function (the_fun) = 0;
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)
91
    = ggc_alloc_cleared_basic_block_def ();
Diego Novillo committed
92 93
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = ENTRY_BLOCK;
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)
94
    = ggc_alloc_cleared_basic_block_def ();
Diego Novillo committed
95
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->index = EXIT_BLOCK;
H.J. Lu committed
96
  ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun)->next_bb
Diego Novillo committed
97
    = EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun);
H.J. Lu committed
98
  EXIT_BLOCK_PTR_FOR_FUNCTION (the_fun)->prev_bb
Diego Novillo committed
99
    = ENTRY_BLOCK_PTR_FOR_FUNCTION (the_fun);
100 101
}

102 103 104 105
/* Helper function for remove_edge and clear_edges.  Frees edge structure
   without actually unlinking it from the pred/succ lists.  */

static void
106
free_edge (edge e ATTRIBUTE_UNUSED)
107 108
{
  n_edges--;
109
  ggc_free (e);
110 111
}

112 113 114
/* Free the memory associated with the edge structures.  */

void
115
clear_edges (void)
116
{
117
  basic_block bb;
118
  edge e;
119
  edge_iterator ei;
120

121
  FOR_EACH_BB (bb)
122
    {
123 124 125 126
      FOR_EACH_EDGE (e, ei, bb->succs)
	free_edge (e);
      VEC_truncate (edge, bb->succs, 0);
      VEC_truncate (edge, bb->preds, 0);
127
    }
128

129 130 131 132
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
    free_edge (e);
  VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
  VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
133

134
  gcc_assert (!n_edges);
135 136
}

137
/* Allocate memory for basic_block.  */
138

139
basic_block
140
alloc_block (void)
141 142
{
  basic_block bb;
143
  bb = ggc_alloc_cleared_basic_block_def ();
144
  return bb;
145 146
}

147 148
/* Link block B to chain after AFTER.  */
void
149
link_block (basic_block b, basic_block after)
150 151 152 153 154 155
{
  b->next_bb = after->next_bb;
  b->prev_bb = after;
  after->next_bb = b;
  b->next_bb->prev_bb = b;
}
156

157 158
/* Unlink block B from chain.  */
void
159
unlink_block (basic_block b)
160 161 162
{
  b->next_bb->prev_bb = b->prev_bb;
  b->prev_bb->next_bb = b->next_bb;
163 164
  b->prev_bb = NULL;
  b->next_bb = NULL;
165
}
166

167 168
/* Sequentially order blocks and compact the arrays.  */
void
169
compact_blocks (void)
170 171
{
  int i;
172

173 174
  SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
  SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
H.J. Lu committed
175

176 177
  if (df)
    df_compact_blocks ();
H.J. Lu committed
178
  else
179
    {
180
      basic_block bb;
H.J. Lu committed
181

182 183 184 185 186 187 188 189
      i = NUM_FIXED_BLOCKS;
      FOR_EACH_BB (bb)
	{
	  SET_BASIC_BLOCK (i, bb);
	  bb->index = i;
	  i++;
	}
      gcc_assert (i == n_basic_blocks);
190

191 192 193
      for (; i < last_basic_block; i++)
	SET_BASIC_BLOCK (i, NULL);
    }
194 195 196 197
  last_basic_block = n_basic_blocks;
}

/* Remove block B from the basic block array.  */
198

199
void
200
expunge_block (basic_block b)
201
{
202
  unlink_block (b);
203
  SET_BASIC_BLOCK (b->index, NULL);
204
  n_basic_blocks--;
205 206 207 208 209
  /* We should be able to ggc_free here, but we are not.
     The dead SSA_NAMES are left pointing to dead statements that are pointing
     to dead basic blocks making garbage collector to die.
     We should be able to release all dead SSA_NAMES and at the same time we should
     clear out BB pointer of dead statements consistently.  */
210
}
211

212 213 214 215 216
/* Connect E to E->src.  */

static inline void
connect_src (edge e)
{
217
  VEC_safe_push (edge, gc, e->src->succs, e);
218
  df_mark_solutions_dirty ();
219 220 221 222 223 224 225 226
}

/* Connect E to E->dest.  */

static inline void
connect_dest (edge e)
{
  basic_block dest = e->dest;
227
  VEC_safe_push (edge, gc, dest->preds, e);
228
  e->dest_idx = EDGE_COUNT (dest->preds) - 1;
229
  df_mark_solutions_dirty ();
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
}

/* Disconnect edge E from E->src.  */

static inline void
disconnect_src (edge e)
{
  basic_block src = e->src;
  edge_iterator ei;
  edge tmp;

  for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
    {
      if (tmp == e)
	{
	  VEC_unordered_remove (edge, src->succs, ei.index);
	  return;
	}
      else
	ei_next (&ei);
    }

252
  df_mark_solutions_dirty ();
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  gcc_unreachable ();
}

/* Disconnect edge E from E->dest.  */

static inline void
disconnect_dest (edge e)
{
  basic_block dest = e->dest;
  unsigned int dest_idx = e->dest_idx;

  VEC_unordered_remove (edge, dest->preds, dest_idx);

  /* If we removed an edge in the middle of the edge vector, we need
     to update dest_idx of the edge that moved into the "hole".  */
  if (dest_idx < EDGE_COUNT (dest->preds))
    EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
270
  df_mark_solutions_dirty ();
271 272
}

273 274 275 276 277
/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
   created edge.  Use this only if you are sure that this edge can't
   possibly already exist.  */

edge
278
unchecked_make_edge (basic_block src, basic_block dst, int flags)
279 280
{
  edge e;
281
  e = ggc_alloc_cleared_edge_def ();
282 283 284 285 286
  n_edges++;

  e->src = src;
  e->dest = dst;
  e->flags = flags;
287 288 289

  connect_src (e);
  connect_dest (e);
290

291
  execute_on_growing_pred (e);
292 293 294
  return e;
}

295
/* Create an edge connecting SRC and DST with FLAGS optionally using
296
   edge cache CACHE.  Return the new edge, NULL if already exist.  */
297

298
edge
299
cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
300
{
301 302 303 304
  if (edge_cache == NULL
      || src == ENTRY_BLOCK_PTR
      || dst == EXIT_BLOCK_PTR)
    return make_edge (src, dst, flags);
305

306
  /* Does the requested edge already exist?  */
307
  if (! TEST_BIT (edge_cache, dst->index))
308
    {
309 310
      /* The edge does not exist.  Create one and update the
	 cache.  */
311
      SET_BIT (edge_cache, dst->index);
312
      return unchecked_make_edge (src, dst, flags);
313
    }
314

315 316 317 318 319 320 321
  /* At this point, we know that the requested edge exists.  Adjust
     flags if necessary.  */
  if (flags)
    {
      edge e = find_edge (src, dst);
      e->flags |= flags;
    }
322

323
  return NULL;
324 325 326 327 328 329
}

/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
   created edge or NULL if already exist.  */

edge
330
make_edge (basic_block src, basic_block dest, int flags)
331
{
332 333 334 335 336 337 338 339 340 341
  edge e = find_edge (src, dest);

  /* Make sure we don't add duplicate edges.  */
  if (e)
    {
      e->flags |= flags;
      return NULL;
    }

  return unchecked_make_edge (src, dest, flags);
342 343
}

344
/* Create an edge connecting SRC to DEST and set probability by knowing
345 346 347
   that it is the single edge leaving SRC.  */

edge
348
make_single_succ_edge (basic_block src, basic_block dest, int flags)
349 350 351 352 353 354
{
  edge e = make_edge (src, dest, flags);

  e->probability = REG_BR_PROB_BASE;
  e->count = src->count;
  return e;
355 356 357 358 359
}

/* This function will remove an edge from the flow graph.  */

void
360
remove_edge_raw (edge e)
361
{
362
  remove_predictions_associated_with_edge (e);
363 364
  execute_on_shrinking_pred (e);

365 366
  disconnect_src (e);
  disconnect_dest (e);
367

368 369 370
  /* This is probably not needed, but it doesn't hurt.  */
  redirect_edge_var_map_clear (e);

371
  free_edge (e);
372 373 374 375 376
}

/* Redirect an edge's successor from one block to another.  */

void
377
redirect_edge_succ (edge e, basic_block new_succ)
378
{
379 380
  execute_on_shrinking_pred (e);

381
  disconnect_dest (e);
382

383
  e->dest = new_succ;
384 385

  /* Reconnect the edge to the new successor block.  */
386 387
  connect_dest (e);

388
  execute_on_growing_pred (e);
389 390
}

391
/* Like previous but avoid possible duplicate edge.  */
392 393

edge
394
redirect_edge_succ_nodup (edge e, basic_block new_succ)
395 396
{
  edge s;
397

398 399
  s = find_edge (e->src, new_succ);
  if (s && s != e)
400 401 402
    {
      s->flags |= e->flags;
      s->probability += e->probability;
403 404
      if (s->probability > REG_BR_PROB_BASE)
	s->probability = REG_BR_PROB_BASE;
405 406
      s->count += e->count;
      remove_edge (e);
407
      redirect_edge_var_map_dup (s, e);
408 409 410 411
      e = s;
    }
  else
    redirect_edge_succ (e, new_succ);
412

413 414 415 416 417 418
  return e;
}

/* Redirect an edge's predecessor from one block to another.  */

void
419
redirect_edge_pred (edge e, basic_block new_pred)
420
{
421
  disconnect_src (e);
422

423
  e->src = new_pred;
424 425

  /* Reconnect the edge to the new predecessor block.  */
426
  connect_src (e);
427
}
428

429 430
/* Clear all basic block flags, with the exception of partitioning and
   setjmp_target.  */
431
void
432
clear_bb_flags (void)
433
{
434 435 436
  basic_block bb;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
H.J. Lu committed
437
    bb->flags = (BB_PARTITION (bb)
438
		 | (bb->flags & (BB_DISABLE_SCHEDULE + BB_RTL + BB_NON_LOCAL_GOTO_TARGET)));
439
}
440

441 442 443 444 445 446 447 448 449 450 451
/* Check the consistency of profile information.  We can't do that
   in verify_flow_info, as the counts may get invalid for incompletely
   solved graphs, later eliminating of conditionals or roundoff errors.
   It is still practical to have them reported for debugging of simple
   testcases.  */
void
check_bb_profile (basic_block bb, FILE * file)
{
  edge e;
  int sum = 0;
  gcov_type lsum;
452
  edge_iterator ei;
453 454 455 456 457 458

  if (profile_status == PROFILE_ABSENT)
    return;

  if (bb != EXIT_BLOCK_PTR)
    {
459
      FOR_EACH_EDGE (e, ei, bb->succs)
460
	sum += e->probability;
461
      if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
462 463 464
	fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
		 sum * 100.0 / REG_BR_PROB_BASE);
      lsum = 0;
465
      FOR_EACH_EDGE (e, ei, bb->succs)
466
	lsum += e->count;
467 468
      if (EDGE_COUNT (bb->succs)
	  && (lsum - bb->count > 100 || lsum - bb->count < -100))
469 470 471 472 473 474
	fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
		 (int) lsum, (int) bb->count);
    }
  if (bb != ENTRY_BLOCK_PTR)
    {
      sum = 0;
475
      FOR_EACH_EDGE (e, ei, bb->preds)
476 477 478
	sum += EDGE_FREQUENCY (e);
      if (abs (sum - bb->frequency) > 100)
	fprintf (file,
479
		 "Invalid sum of incoming frequencies %i, should be %i\n",
480 481
		 sum, bb->frequency);
      lsum = 0;
482
      FOR_EACH_EDGE (e, ei, bb->preds)
483 484
	lsum += e->count;
      if (lsum - bb->count > 100 || lsum - bb->count < -100)
485
	fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
486 487 488 489
		 (int) lsum, (int) bb->count);
    }
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
/* Write information about registers and basic blocks into FILE.
   This is part of making a debugging dump.  */

void
dump_regset (regset r, FILE *outf)
{
  unsigned i;
  reg_set_iterator rsi;

  if (r == NULL)
    {
      fputs (" (nil)", outf);
      return;
    }

  EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
    {
      fprintf (outf, " %d", i);
      if (i < FIRST_PSEUDO_REGISTER)
	fprintf (outf, " [%s]",
		 reg_names[i]);
    }
}

/* Print a human-readable representation of R on the standard error
   stream.  This function is designed to be used from within the
   debugger.  */

518
DEBUG_FUNCTION void
519 520 521 522 523 524
debug_regset (regset r)
{
  dump_regset (r, stderr);
  putc ('\n', stderr);
}

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
/* Emit basic block information for BB.  HEADER is true if the user wants
   the generic information and the predecessors, FOOTER is true if they want
   the successors.  FLAGS is the dump flags of interest; TDF_DETAILS emit
   global register liveness information.  PREFIX is put in front of every
   line.  The output is emitted to FILE.  */
void
dump_bb_info (basic_block bb, bool header, bool footer, int flags,
	      const char *prefix, FILE *file)
{
  edge e;
  edge_iterator ei;

  if (header)
    {
      fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
      if (bb->prev_bb)
        fprintf (file, ", prev %d", bb->prev_bb->index);
      if (bb->next_bb)
        fprintf (file, ", next %d", bb->next_bb->index);
      fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
      fprintf (file, ", freq %i", bb->frequency);
547
      /* Both maybe_hot_bb_p & probably_never_executed_bb_p functions
H.J. Lu committed
548
	 crash without cfun. */
549
      if (cfun && maybe_hot_bb_p (bb))
550
	fputs (", maybe hot", file);
551
      if (cfun && probably_never_executed_bb_p (bb))
552 553
	fputs (", probably never executed", file);
      fputs (".\n", file);
554 555 556 557

      fprintf (file, "%sPredecessors: ", prefix);
      FOR_EACH_EDGE (e, ei, bb->preds)
	dump_edge_info (file, e, 0);
558 559 560 561 562

      if ((flags & TDF_DETAILS)
	  && (bb->flags & BB_RTL)
	  && df)
	{
563
	  putc ('\n', file);
564 565
	  df_dump_top (bb, file);
	}
566 567 568 569 570 571 572 573
   }

  if (footer)
    {
      fprintf (file, "\n%sSuccessors: ", prefix);
      FOR_EACH_EDGE (e, ei, bb->succs)
	dump_edge_info (file, e, 1);

574 575 576
      if ((flags & TDF_DETAILS)
	  && (bb->flags & BB_RTL)
	  && df)
577
	{
578
	  putc ('\n', file);
579
	  df_dump_bottom (bb, file);
580 581 582 583 584 585
	}
   }

  putc ('\n', file);
}

586 587
/* Dump the register info to FILE.  */

H.J. Lu committed
588
void
589 590 591 592 593 594 595 596 597 598 599 600
dump_reg_info (FILE *file)
{
  unsigned int i, max = max_reg_num ();
  if (reload_completed)
    return;

  if (reg_info_p_size < max)
    max = reg_info_p_size;

  fprintf (file, "%d registers.\n", max);
  for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
    {
601
      enum reg_class rclass, altclass;
H.J. Lu committed
602

603 604 605 606 607 608
      if (regstat_n_sets_and_refs)
	fprintf (file, "\nRegister %d used %d times across %d insns",
		 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
      else if (df)
	fprintf (file, "\nRegister %d used %d times across %d insns",
		 i, DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i), REG_LIVE_LENGTH (i));
H.J. Lu committed
609

610 611 612 613 614 615 616 617 618
      if (REG_BASIC_BLOCK (i) >= NUM_FIXED_BLOCKS)
	fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
      if (regstat_n_sets_and_refs)
	fprintf (file, "; set %d time%s", REG_N_SETS (i),
		 (REG_N_SETS (i) == 1) ? "" : "s");
      else if (df)
	fprintf (file, "; set %d time%s", DF_REG_DEF_COUNT (i),
		 (DF_REG_DEF_COUNT (i) == 1) ? "" : "s");
      if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
619
	fputs ("; user var", file);
620 621 622
      if (REG_N_DEATHS (i) != 1)
	fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
      if (REG_N_CALLS_CROSSED (i) == 1)
623
	fputs ("; crosses 1 call", file);
624 625
      else if (REG_N_CALLS_CROSSED (i))
	fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
626 627
      if (REG_FREQ_CALLS_CROSSED (i))
	fprintf (file, "; crosses call with %d frequency", REG_FREQ_CALLS_CROSSED (i));
628 629 630
      if (regno_reg_rtx[i] != NULL
	  && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
	fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
H.J. Lu committed
631

632
      rclass = reg_preferred_class (i);
633
      altclass = reg_alternate_class (i);
634
      if (rclass != GENERAL_REGS || altclass != ALL_REGS)
635
	{
636 637
	  if (altclass == ALL_REGS || rclass == ALL_REGS)
	    fprintf (file, "; pref %s", reg_class_names[(int) rclass]);
638
	  else if (altclass == NO_REGS)
639
	    fprintf (file, "; %s or none", reg_class_names[(int) rclass]);
640 641
	  else
	    fprintf (file, "; pref %s, else %s",
642
		     reg_class_names[(int) rclass],
643 644
		     reg_class_names[(int) altclass]);
	}
H.J. Lu committed
645

646
      if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
647 648
	fputs ("; pointer", file);
      fputs (".\n", file);
649 650 651 652
    }
}


653
void
654
dump_flow_info (FILE *file, int flags)
655
{
656
  basic_block bb;
657

658
  /* There are no pseudo registers after reload.  Don't dump them.  */
659 660
  if (reg_info_p_size && (flags & TDF_DETAILS) != 0)
    dump_reg_info (file);
661

662
  fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
663
  FOR_ALL_BB (bb)
664
    {
665
      dump_bb_info (bb, true, true, flags, "", file);
666
      check_bb_profile (bb, file);
667 668
    }

669
  putc ('\n', file);
670 671
}

672
DEBUG_FUNCTION void
673
debug_flow_info (void)
674
{
675
  dump_flow_info (stderr, TDF_DETAILS);
676
}
677 678

void
679
dump_edge_info (FILE *file, edge e, int do_succ)
680
{
681
  basic_block side = (do_succ ? e->dest : e->src);
Basile Starynkevitch committed
682
  /* both ENTRY_BLOCK_PTR & EXIT_BLOCK_PTR depend upon cfun. */
683
  if (cfun && side == ENTRY_BLOCK_PTR)
684
    fputs (" ENTRY", file);
685
  else if (cfun && side == EXIT_BLOCK_PTR)
686 687
    fputs (" EXIT", file);
  else
688
    fprintf (file, " %d", side->index);
689 690 691

  if (e->probability)
    fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
692

693
  if (e->count)
694
    {
695
      fputs (" count:", file);
696
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
697 698
    }

699
  if (e->flags)
700
    {
701 702
      static const char * const bitnames[] = {
	"fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
703 704
	"can_fallthru", "irreducible", "sibcall", "loop_exit",
	"true", "false", "exec"
705
      };
706 707
      int comma = 0;
      int i, flags = e->flags;
708

709
      fputs (" (", file);
710 711 712 713 714 715 716 717 718 719 720 721 722
      for (i = 0; flags; i++)
	if (flags & (1 << i))
	  {
	    flags &= ~(1 << i);

	    if (comma)
	      fputc (',', file);
	    if (i < (int) ARRAY_SIZE (bitnames))
	      fputs (bitnames[i], file);
	    else
	      fprintf (file, "%d", i);
	    comma = 1;
	  }
723

724 725 726 727
      fputc (')', file);
    }
}

728
/* Simple routines to easily allocate AUX fields of basic blocks.  */
729

730 731 732 733
static struct obstack block_aux_obstack;
static void *first_block_aux_obj = 0;
static struct obstack edge_aux_obstack;
static void *first_edge_aux_obj = 0;
734

735
/* Allocate a memory block of SIZE as BB->aux.  The obstack must
736
   be first initialized by alloc_aux_for_blocks.  */
737

738
static void
739
alloc_aux_for_block (basic_block bb, int size)
740
{
741
  /* Verify that aux field is clear.  */
742
  gcc_assert (!bb->aux && first_block_aux_obj);
743 744
  bb->aux = obstack_alloc (&block_aux_obstack, size);
  memset (bb->aux, 0, size);
745 746
}

747 748
/* Initialize the block_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_block for each basic block.  */
749 750

void
751
alloc_aux_for_blocks (int size)
752
{
753
  static int initialized;
754

755
  if (!initialized)
756
    {
757 758
      gcc_obstack_init (&block_aux_obstack);
      initialized = 1;
759
    }
760 761 762
  else
    /* Check whether AUX data are still allocated.  */
    gcc_assert (!first_block_aux_obj);
Mike Stump committed
763

764
  first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
765
  if (size)
766
    {
767
      basic_block bb;
768

769
      FOR_ALL_BB (bb)
770
	alloc_aux_for_block (bb, size);
771 772
    }
}
773

774
/* Clear AUX pointers of all blocks.  */
775 776

void
777
clear_aux_for_blocks (void)
778
{
779
  basic_block bb;
780

781
  FOR_ALL_BB (bb)
782
    bb->aux = NULL;
783 784 785 786 787 788
}

/* Free data allocated in block_aux_obstack and clear AUX pointers
   of all blocks.  */

void
789
free_aux_for_blocks (void)
790
{
791
  gcc_assert (first_block_aux_obj);
792
  obstack_free (&block_aux_obstack, first_block_aux_obj);
793
  first_block_aux_obj = NULL;
794 795

  clear_aux_for_blocks ();
796
}
797

798
/* Allocate a memory edge of SIZE as BB->aux.  The obstack must
799
   be first initialized by alloc_aux_for_edges.  */
800

801
static void
802
alloc_aux_for_edge (edge e, int size)
803 804
{
  /* Verify that aux field is clear.  */
805
  gcc_assert (!e->aux && first_edge_aux_obj);
806 807 808
  e->aux = obstack_alloc (&edge_aux_obstack, size);
  memset (e->aux, 0, size);
}
809

810 811
/* Initialize the edge_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_edge for each basic edge.  */
812

813
void
814
alloc_aux_for_edges (int size)
815 816
{
  static int initialized;
817

818 819 820 821
  if (!initialized)
    {
      gcc_obstack_init (&edge_aux_obstack);
      initialized = 1;
822
    }
823 824 825
  else
    /* Check whether AUX data are still allocated.  */
    gcc_assert (!first_edge_aux_obj);
826

827
  first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
828
  if (size)
829
    {
830 831 832
      basic_block bb;

      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
833
	{
834
	  edge e;
835
	  edge_iterator ei;
836

837
	  FOR_EACH_EDGE (e, ei, bb->succs)
838
	    alloc_aux_for_edge (e, size);
839 840 841 842
	}
    }
}

843
/* Clear AUX pointers of all edges.  */
844 845

void
846
clear_aux_for_edges (void)
847
{
848 849
  basic_block bb;
  edge e;
850

851
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
852
    {
853 854
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, bb->succs)
855
	e->aux = NULL;
856
    }
857 858 859 860 861 862
}

/* Free data allocated in edge_aux_obstack and clear AUX pointers
   of all edges.  */

void
863
free_aux_for_edges (void)
864
{
865
  gcc_assert (first_edge_aux_obj);
866
  obstack_free (&edge_aux_obstack, first_edge_aux_obj);
867
  first_edge_aux_obj = NULL;
868 869

  clear_aux_for_edges ();
870
}
871

872
DEBUG_FUNCTION void
873
debug_bb (basic_block bb)
874
{
875
  dump_bb (bb, stderr, 0);
876 877
}

878
DEBUG_FUNCTION basic_block
879
debug_bb_n (int n)
880 881
{
  basic_block bb = BASIC_BLOCK (n);
882
  dump_bb (bb, stderr, 0);
883
  return bb;
884
}
885 886 887 888 889 890 891

/* Dumps cfg related information about basic block BB to FILE.  */

static void
dump_cfg_bb_info (FILE *file, basic_block bb)
{
  unsigned i;
892
  edge_iterator ei;
893 894 895
  bool first = true;
  static const char * const bb_bitnames[] =
    {
896 897 898
      "new", "reachable", "irreducible_loop", "superblock",
      "nosched", "hot", "cold", "dup", "xlabel", "rtl",
      "fwdr", "nothrd"
899 900 901 902 903 904 905 906 907
    };
  const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
  edge e;

  fprintf (file, "Basic block %d", bb->index);
  for (i = 0; i < n_bitnames; i++)
    if (bb->flags & (1 << i))
      {
	if (first)
908
	  fputs (" (", file);
909
	else
910
	  fputs (", ", file);
911
	first = false;
912
	fputs (bb_bitnames[i], file);
913 914
      }
  if (!first)
915 916
    putc (')', file);
  putc ('\n', file);
917

918
  fputs ("Predecessors: ", file);
919
  FOR_EACH_EDGE (e, ei, bb->preds)
920 921 922
    dump_edge_info (file, e, 0);

  fprintf (file, "\nSuccessors: ");
923
  FOR_EACH_EDGE (e, ei, bb->succs)
924
    dump_edge_info (file, e, 1);
925
  fputs ("\n\n", file);
926 927 928 929 930 931 932 933 934 935 936 937 938 939
}

/* Dumps a brief description of cfg to FILE.  */

void
brief_dump_cfg (FILE *file)
{
  basic_block bb;

  FOR_EACH_BB (bb)
    {
      dump_cfg_bb_info (file, bb);
    }
}
940 941 942

/* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
   leave the block by TAKEN_EDGE.  Update profile of BB such that edge E can be
Mike Stump committed
943
   redirected to destination of TAKEN_EDGE.
944 945 946

   This function may leave the profile inconsistent in the case TAKEN_EDGE
   frequency or count is believed to be lower than FREQUENCY or COUNT
947
   respectively.  */
948 949 950 951 952 953
void
update_bb_profile_for_threading (basic_block bb, int edge_frequency,
				 gcov_type count, edge taken_edge)
{
  edge c;
  int prob;
954
  edge_iterator ei;
955 956 957

  bb->count -= count;
  if (bb->count < 0)
958 959 960 961 962 963
    {
      if (dump_file)
	fprintf (dump_file, "bb %i count became negative after threading",
		 bb->index);
      bb->count = 0;
    }
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992

  /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
     Watch for overflows.  */
  if (bb->frequency)
    prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
  else
    prob = 0;
  if (prob > taken_edge->probability)
    {
      if (dump_file)
	fprintf (dump_file, "Jump threading proved probability of edge "
		 "%i->%i too small (it is %i, should be %i).\n",
		 taken_edge->src->index, taken_edge->dest->index,
		 taken_edge->probability, prob);
      prob = taken_edge->probability;
    }

  /* Now rescale the probabilities.  */
  taken_edge->probability -= prob;
  prob = REG_BR_PROB_BASE - prob;
  bb->frequency -= edge_frequency;
  if (bb->frequency < 0)
    bb->frequency = 0;
  if (prob <= 0)
    {
      if (dump_file)
	fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
		 "frequency of block should end up being 0, it is %i\n",
		 bb->index, bb->frequency);
993 994 995 996
      EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
      ei = ei_start (bb->succs);
      ei_next (&ei);
      for (; (c = ei_safe_edge (ei)); ei_next (&ei))
997 998
	c->probability = 0;
    }
999 1000
  else if (prob != REG_BR_PROB_BASE)
    {
1001
      int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
1002 1003

      FOR_EACH_EDGE (c, ei, bb->succs)
1004
	{
1005 1006
	  /* Protect from overflow due to additional scaling.  */
	  if (c->probability > prob)
1007
	    c->probability = REG_BR_PROB_BASE;
1008 1009 1010 1011 1012 1013
	  else
	    {
	      c->probability = RDIV (c->probability * scale, 65536);
	      if (c->probability > REG_BR_PROB_BASE)
		c->probability = REG_BR_PROB_BASE;
	    }
1014
	}
1015
    }
1016

1017
  gcc_assert (bb == taken_edge->src);
1018 1019
  taken_edge->count -= count;
  if (taken_edge->count < 0)
1020 1021 1022 1023 1024 1025
    {
      if (dump_file)
	fprintf (dump_file, "edge %i->%i count became negative after threading",
		 taken_edge->src->index, taken_edge->dest->index);
      taken_edge->count = 0;
    }
1026
}
1027 1028 1029 1030 1031 1032 1033 1034

/* Multiply all frequencies of basic blocks in array BBS of length NBBS
   by NUM/DEN, in int arithmetic.  May lose some accuracy.  */
void
scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
{
  int i;
  edge e;
1035 1036
  if (num < 0)
    num = 0;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049

  /* Scale NUM and DEN to avoid overflows.  Frequencies are in order of
     10^4, if we make DEN <= 10^3, we can afford to upscale by 100
     and still safely fit in int during calculations.  */
  if (den > 1000)
    {
      if (num > 1000000)
	return;

      num = RDIV (1000 * num, den);
      den = 1000;
    }
  if (num > 100 * den)
1050
    return;
1051

1052 1053 1054
  for (i = 0; i < nbbs; i++)
    {
      edge_iterator ei;
1055
      bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1056 1057 1058
      /* Make sure the frequencies do not grow over BB_FREQ_MAX.  */
      if (bbs[i]->frequency > BB_FREQ_MAX)
	bbs[i]->frequency = BB_FREQ_MAX;
1059 1060
      bbs[i]->count = RDIV (bbs[i]->count * num, den);
      FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1061
	e->count = RDIV (e->count * num, den);
1062 1063 1064
    }
}

1065 1066 1067 1068
/* numbers smaller than this value are safe to multiply without getting
   64bit overflow.  */
#define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))

1069 1070 1071 1072
/* Multiply all frequencies of basic blocks in array BBS of length NBBS
   by NUM/DEN, in gcov_type arithmetic.  More accurate than previous
   function but considerably slower.  */
void
Mike Stump committed
1073 1074
scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
				 gcov_type den)
1075 1076 1077
{
  int i;
  edge e;
1078
  gcov_type fraction = RDIV (num * 65536, den);
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
  gcc_assert (fraction >= 0);

  if (num < MAX_SAFE_MULTIPLIER)
    for (i = 0; i < nbbs; i++)
      {
	edge_iterator ei;
	bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
	if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
	  bbs[i]->count = RDIV (bbs[i]->count * num, den);
	else
	  bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
	FOR_EACH_EDGE (e, ei, bbs[i]->succs)
	  if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
	    e->count = RDIV (e->count * num, den);
	  else
	    e->count = RDIV (e->count * fraction, 65536);
      }
   else
    for (i = 0; i < nbbs; i++)
      {
	edge_iterator ei;
	if (sizeof (gcov_type) > sizeof (int))
	  bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
	else
	  bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
	bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
	FOR_EACH_EDGE (e, ei, bbs[i]->succs)
	  e->count = RDIV (e->count * fraction, 65536);
      }
1109
}
1110

1111 1112
/* Data structures used to maintain mapping between basic blocks and
   copies.  */
1113 1114
static htab_t bb_original;
static htab_t bb_copy;
1115 1116 1117

/* And between loops and copies.  */
static htab_t loop_copy;
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static alloc_pool original_copy_bb_pool;

struct htab_bb_copy_original_entry
{
  /* Block we are attaching info to.  */
  int index1;
  /* Index of original or copy (depending on the hashtable) */
  int index2;
};

static hashval_t
bb_copy_original_hash (const void *p)
{
1131 1132
  const struct htab_bb_copy_original_entry *data
    = ((const struct htab_bb_copy_original_entry *)p);
1133 1134 1135 1136 1137 1138

  return data->index1;
}
static int
bb_copy_original_eq (const void *p, const void *q)
{
1139 1140 1141 1142
  const struct htab_bb_copy_original_entry *data
    = ((const struct htab_bb_copy_original_entry *)p);
  const struct htab_bb_copy_original_entry *data2
    = ((const struct htab_bb_copy_original_entry *)q);
1143 1144 1145 1146

  return data->index1 == data2->index1;
}

1147 1148
/* Initialize the data structures to maintain mapping between blocks
   and its copies.  */
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
void
initialize_original_copy_tables (void)
{
  gcc_assert (!original_copy_bb_pool);
  original_copy_bb_pool
    = create_alloc_pool ("original_copy",
			 sizeof (struct htab_bb_copy_original_entry), 10);
  bb_original = htab_create (10, bb_copy_original_hash,
			     bb_copy_original_eq, NULL);
  bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1159
  loop_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1160 1161
}

1162 1163
/* Free the data structures to maintain mapping between blocks and
   its copies.  */
1164 1165 1166 1167 1168 1169
void
free_original_copy_tables (void)
{
  gcc_assert (original_copy_bb_pool);
  htab_delete (bb_copy);
  htab_delete (bb_original);
1170
  htab_delete (loop_copy);
1171 1172 1173
  free_alloc_pool (original_copy_bb_pool);
  bb_copy = NULL;
  bb_original = NULL;
1174
  loop_copy = NULL;
1175 1176 1177
  original_copy_bb_pool = NULL;
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/* Removes the value associated with OBJ from table TAB.  */

static void
copy_original_table_clear (htab_t tab, unsigned obj)
{
  void **slot;
  struct htab_bb_copy_original_entry key, *elt;

  if (!original_copy_bb_pool)
    return;

  key.index1 = obj;
  slot = htab_find_slot (tab, &key, NO_INSERT);
  if (!slot)
    return;

1194
  elt = (struct htab_bb_copy_original_entry *) *slot;
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
  htab_clear_slot (tab, slot);
  pool_free (original_copy_bb_pool, elt);
}

/* Sets the value associated with OBJ in table TAB to VAL.
   Do nothing when data structures are not initialized.  */

static void
copy_original_table_set (htab_t tab, unsigned obj, unsigned val)
{
  struct htab_bb_copy_original_entry **slot;
  struct htab_bb_copy_original_entry key;

  if (!original_copy_bb_pool)
    return;

  key.index1 = obj;
  slot = (struct htab_bb_copy_original_entry **)
		htab_find_slot (tab, &key, INSERT);
  if (!*slot)
    {
1216 1217
      *slot = (struct htab_bb_copy_original_entry *)
		pool_alloc (original_copy_bb_pool);
1218 1219 1220 1221 1222
      (*slot)->index1 = obj;
    }
  (*slot)->index2 = val;
}

1223 1224
/* Set original for basic block.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */
1225 1226 1227
void
set_bb_original (basic_block bb, basic_block original)
{
1228
  copy_original_table_set (bb_original, bb->index, original->index);
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
}

/* Get the original basic block.  */
basic_block
get_bb_original (basic_block bb)
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;

  gcc_assert (original_copy_bb_pool);

  key.index1 = bb->index;
  entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
  if (entry)
    return BASIC_BLOCK (entry->index2);
  else
    return NULL;
}

1248 1249
/* Set copy for basic block.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */
1250 1251 1252
void
set_bb_copy (basic_block bb, basic_block copy)
{
1253
  copy_original_table_set (bb_copy, bb->index, copy->index);
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
}

/* Get the copy of basic block.  */
basic_block
get_bb_copy (basic_block bb)
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;

  gcc_assert (original_copy_bb_pool);

  key.index1 = bb->index;
  entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
  if (entry)
    return BASIC_BLOCK (entry->index2);
  else
    return NULL;
}
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

/* Set copy for LOOP to COPY.  Do nothing when data structures are not
   initialized so passes not needing this don't need to care.  */

void
set_loop_copy (struct loop *loop, struct loop *copy)
{
  if (!copy)
    copy_original_table_clear (loop_copy, loop->num);
  else
    copy_original_table_set (loop_copy, loop->num, copy->num);
}

/* Get the copy of LOOP.  */

struct loop *
get_loop_copy (struct loop *loop)
{
  struct htab_bb_copy_original_entry *entry;
  struct htab_bb_copy_original_entry key;

  gcc_assert (original_copy_bb_pool);

  key.index1 = loop->num;
  entry = (struct htab_bb_copy_original_entry *) htab_find (loop_copy, &key);
  if (entry)
    return get_loop (entry->index2);
  else
    return NULL;
}