bitmap.c 52.5 KB
Newer Older
Richard Kenner committed
1
/* Functions to support general ended bitmaps.
2
   Copyright (C) 1997-2017 Free Software Foundation, Inc.
Richard Kenner committed
3

4
This file is part of GCC.
Richard Kenner committed
5

6 7
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
8
Software Foundation; either version 3, or (at your option) any later
9
version.
Richard Kenner committed
10

11 12 13 14
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Kenner committed
15 16

You should have received a copy of the GNU General Public License
17 18
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
Richard Kenner committed
19 20

#include "config.h"
21
#include "system.h"
22
#include "coretypes.h"
23
#include "bitmap.h"
David Malcolm committed
24
#include "selftest.h"
25

26 27
/* Memory allocation statistics purpose instance.  */
mem_alloc_description<bitmap_usage> bitmap_mem_desc;
28 29 30 31 32

/* Register new bitmap.  */
void
bitmap_register (bitmap b MEM_STAT_DECL)
{
33 34
  bitmap_mem_desc.register_descriptor (b, BITMAP_ORIGIN, false
				       FINAL_PASS_MEM_STAT);
35 36 37 38
}

/* Account the overhead.  */
static void
39
register_overhead (bitmap b, size_t amount)
40
{
41 42
  if (bitmap_mem_desc.contains_descriptor_for_instance (b))
    bitmap_mem_desc.register_instance_overhead (amount, b);
43
}
Richard Kenner committed
44 45

/* Global data */
46 47
bitmap_element bitmap_zero_bits;  /* An element of all zero bits.  */
bitmap_obstack bitmap_default_obstack;    /* The default bitmap obstack.  */
48
static int bitmap_default_obstack_depth;
49 50
static GTY((deletable)) bitmap_element *bitmap_ggc_free; /* Freelist of
							    GC'd elements.  */
Richard Kenner committed
51

52 53 54
static void bitmap_elem_to_freelist (bitmap, bitmap_element *);
static void bitmap_element_free (bitmap, bitmap_element *);
static bitmap_element *bitmap_element_allocate (bitmap);
55
static int bitmap_element_zerop (const bitmap_element *);
56
static void bitmap_element_link (bitmap, bitmap_element *);
57
static bitmap_element *bitmap_elt_insert_after (bitmap, bitmap_element *, unsigned int);
58
static void bitmap_elt_clear_from (bitmap, bitmap_element *);
59
static bitmap_element *bitmap_find_bit (bitmap, unsigned int);
Richard Kenner committed
60

61

62
/* Add ELEM to the appropriate freelist.  */
63
static inline void
64
bitmap_elem_to_freelist (bitmap head, bitmap_element *elt)
65
{
66
  bitmap_obstack *bit_obstack = head->obstack;
Mike Stump committed
67

68
  elt->next = NULL;
69
  elt->indx = -1;
70
  if (bit_obstack)
71
    {
72
      elt->prev = bit_obstack->elements;
73
      bit_obstack->elements = elt;
74 75 76
    }
  else
    {
77
      elt->prev = bitmap_ggc_free;
78 79 80 81
      bitmap_ggc_free = elt;
    }
}

82 83
/* Free a bitmap element.  Since these are allocated off the
   bitmap_obstack, "free" actually means "put onto the freelist".  */
Richard Kenner committed
84

85
static inline void
86
bitmap_element_free (bitmap head, bitmap_element *elt)
Richard Kenner committed
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
{
  bitmap_element *next = elt->next;
  bitmap_element *prev = elt->prev;

  if (prev)
    prev->next = next;

  if (next)
    next->prev = prev;

  if (head->first == elt)
    head->first = next;

  /* Since the first thing we try is to insert before current,
     make current the next entry in preference to the previous.  */
  if (head->current == elt)
103 104 105 106
    {
      head->current = next != 0 ? next : prev;
      if (head->current)
	head->indx = head->current->indx;
Mike Stump committed
107
      else
108
	head->indx = 0;
109
    }
110 111 112 113

  if (GATHER_STATISTICS)
    register_overhead (head, -((int)sizeof (bitmap_element)));

114
  bitmap_elem_to_freelist (head, elt);
Richard Kenner committed
115 116 117 118
}

/* Allocate a bitmap element.  The bits are cleared, but nothing else is.  */

119
static inline bitmap_element *
120
bitmap_element_allocate (bitmap head)
Richard Kenner committed
121 122
{
  bitmap_element *element;
123
  bitmap_obstack *bit_obstack = head->obstack;
Mike Stump committed
124

125
  if (bit_obstack)
126
    {
127
      element = bit_obstack->elements;
Mike Stump committed
128

129
      if (element)
130 131 132 133 134 135 136 137 138 139
	/* Use up the inner list first before looking at the next
	   element of the outer list.  */
	if (element->next)
	  {
	    bit_obstack->elements = element->next;
	    bit_obstack->elements->prev = element->prev;
	  }
	else
	  /*  Inner list was just a singleton.  */
	  bit_obstack->elements = element->prev;
140
      else
141
	element = XOBNEW (&bit_obstack->obstack, bitmap_element);
142 143 144
    }
  else
    {
145 146
      element = bitmap_ggc_free;
      if (element)
147 148 149 150 151 152 153 154 155 156
	/* Use up the inner list first before looking at the next
	   element of the outer list.  */
	if (element->next)
	  {
	    bitmap_ggc_free = element->next;
	    bitmap_ggc_free->prev = element->prev;
	  }
	else
	  /*  Inner list was just a singleton.  */
	  bitmap_ggc_free = element->prev;
157
      else
158
	element = ggc_alloc<bitmap_element> ();
159
    }
Richard Kenner committed
160

161 162 163
  if (GATHER_STATISTICS)
    register_overhead (head, sizeof (bitmap_element));

164
  memset (element->bits, 0, sizeof (element->bits));
Richard Kenner committed
165 166 167 168

  return element;
}

169
/* Remove ELT and all following elements from bitmap HEAD.  */
170 171

void
172 173
bitmap_elt_clear_from (bitmap head, bitmap_element *elt)
{
174 175 176 177
  bitmap_element *prev;
  bitmap_obstack *bit_obstack = head->obstack;

  if (!elt) return;
178 179 180 181 182 183 184 185

  if (GATHER_STATISTICS)
    {
      int n = 0;
      for (prev = elt; prev; prev = prev->next)
	n++;
      register_overhead (head, -sizeof (bitmap_element) * n);
    }
186

187 188 189 190 191 192 193 194 195
  prev = elt->prev;
  if (prev)
    {
      prev->next = NULL;
      if (head->current->indx > prev->indx)
	{
	  head->current = prev;
	  head->indx = prev->indx;
	}
Mike Stump committed
196
    }
197 198 199 200 201 202 203
  else
    {
      head->first = NULL;
      head->current = NULL;
      head->indx = 0;
    }

Mike Stump committed
204
  /* Put the entire list onto the free list in one operation. */
205
  if (bit_obstack)
206
    {
Mike Stump committed
207
      elt->prev = bit_obstack->elements;
208 209 210 211 212 213
      bit_obstack->elements = elt;
    }
  else
    {
      elt->prev = bitmap_ggc_free;
      bitmap_ggc_free = elt;
214 215 216 217 218
    }
}

/* Clear a bitmap by freeing the linked list.  */

219
void
220
bitmap_clear (bitmap head)
221
{
222 223
  if (head->first)
    bitmap_elt_clear_from (head, head->first);
224 225 226 227 228 229 230 231 232
}

/* Initialize a bitmap obstack.  If BIT_OBSTACK is NULL, initialize
   the default bitmap obstack.  */

void
bitmap_obstack_initialize (bitmap_obstack *bit_obstack)
{
  if (!bit_obstack)
233 234 235 236 237
    {
      if (bitmap_default_obstack_depth++)
	return;
      bit_obstack = &bitmap_default_obstack;
    }
238 239 240 241 242 243 244 245 246 247 248

#if !defined(__GNUC__) || (__GNUC__ < 2)
#define __alignof__(type) 0
#endif

  bit_obstack->elements = NULL;
  bit_obstack->heads = NULL;
  obstack_specify_allocation (&bit_obstack->obstack, OBSTACK_CHUNK_SIZE,
			      __alignof__ (bitmap_element),
			      obstack_chunk_alloc,
			      obstack_chunk_free);
249 250
}

251 252 253 254 255 256 257
/* Release the memory from a bitmap obstack.  If BIT_OBSTACK is NULL,
   release the default bitmap obstack.  */

void
bitmap_obstack_release (bitmap_obstack *bit_obstack)
{
  if (!bit_obstack)
258 259 260 261 262 263 264 265
    {
      if (--bitmap_default_obstack_depth)
	{
	  gcc_assert (bitmap_default_obstack_depth > 0);
	  return;
	}
      bit_obstack = &bitmap_default_obstack;
    }
Mike Stump committed
266

267 268 269 270 271 272 273 274 275
  bit_obstack->elements = NULL;
  bit_obstack->heads = NULL;
  obstack_free (&bit_obstack->obstack, NULL);
}

/* Create a new bitmap on an obstack.  If BIT_OBSTACK is NULL, create
   it on the default bitmap obstack.  */

bitmap
276
bitmap_alloc (bitmap_obstack *bit_obstack MEM_STAT_DECL)
277 278 279 280 281 282 283
{
  bitmap map;

  if (!bit_obstack)
    bit_obstack = &bitmap_default_obstack;
  map = bit_obstack->heads;
  if (map)
284
    bit_obstack->heads = (struct bitmap_head *) map->first;
285 286
  else
    map = XOBNEW (&bit_obstack->obstack, bitmap_head);
287
  bitmap_initialize (map, bit_obstack PASS_MEM_STAT);
288 289 290

  if (GATHER_STATISTICS)
    register_overhead (map, sizeof (bitmap_head));
291 292 293 294 295 296 297

  return map;
}

/* Create a new GCd bitmap.  */

bitmap
298
bitmap_gc_alloc (ALONE_MEM_STAT_DECL)
299 300 301
{
  bitmap map;

302
  map = ggc_alloc<bitmap_head> ();
303
  bitmap_initialize (map, NULL PASS_MEM_STAT);
304 305 306

  if (GATHER_STATISTICS)
    register_overhead (map, sizeof (bitmap_head));
307 308 309 310 311 312 313 314 315

  return map;
}

/* Release an obstack allocated bitmap.  */

void
bitmap_obstack_free (bitmap map)
{
316 317 318
  if (map)
    {
      bitmap_clear (map);
319
      map->first = (bitmap_element *) map->obstack->heads;
320 321 322 323

      if (GATHER_STATISTICS)
	register_overhead (map, -((int)sizeof (bitmap_head)));

324 325
      map->obstack->heads = map;
    }
326 327 328
}


Richard Kenner committed
329 330
/* Return nonzero if all bits in an element are zero.  */

331
static inline int
332
bitmap_element_zerop (const bitmap_element *element)
Richard Kenner committed
333 334 335 336
{
#if BITMAP_ELEMENT_WORDS == 2
  return (element->bits[0] | element->bits[1]) == 0;
#else
337
  unsigned i;
Richard Kenner committed
338 339 340 341 342 343 344 345 346 347 348

  for (i = 0; i < BITMAP_ELEMENT_WORDS; i++)
    if (element->bits[i] != 0)
      return 0;

  return 1;
#endif
}

/* Link the bitmap element into the current bitmap linked list.  */

349
static inline void
350
bitmap_element_link (bitmap head, bitmap_element *element)
Richard Kenner committed
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
{
  unsigned int indx = element->indx;
  bitmap_element *ptr;

  /* If this is the first and only element, set it in.  */
  if (head->first == 0)
    {
      element->next = element->prev = 0;
      head->first = element;
    }

  /* If this index is less than that of the current element, it goes someplace
     before the current element.  */
  else if (indx < head->indx)
    {
      for (ptr = head->current;
	   ptr->prev != 0 && ptr->prev->indx > indx;
	   ptr = ptr->prev)
	;

      if (ptr->prev)
	ptr->prev->next = element;
      else
	head->first = element;

      element->prev = ptr->prev;
      element->next = ptr;
      ptr->prev = element;
    }

  /* Otherwise, it must go someplace after the current element.  */
  else
    {
      for (ptr = head->current;
	   ptr->next != 0 && ptr->next->indx < indx;
	   ptr = ptr->next)
	;

      if (ptr->next)
	ptr->next->prev = element;

      element->next = ptr->next;
      element->prev = ptr;
      ptr->next = element;
    }

  /* Set up so this is the first element searched.  */
  head->current = element;
  head->indx = indx;
}
401 402 403 404 405 406

/* Insert a new uninitialized element into bitmap HEAD after element
   ELT.  If ELT is NULL, insert the element at the start.  Return the
   new element.  */

static bitmap_element *
407
bitmap_elt_insert_after (bitmap head, bitmap_element *elt, unsigned int indx)
408 409
{
  bitmap_element *node = bitmap_element_allocate (head);
410
  node->indx = indx;
411 412 413 414

  if (!elt)
    {
      if (!head->current)
415 416 417 418
	{
	  head->current = node;
	  head->indx = indx;
	}
419 420 421 422 423 424 425 426
      node->next = head->first;
      if (node->next)
	node->next->prev = node;
      head->first = node;
      node->prev = NULL;
    }
  else
    {
427
      gcc_checking_assert (head->current);
428 429 430 431 432 433 434 435
      node->next = elt->next;
      if (node->next)
	node->next->prev = node;
      elt->next = node;
      node->prev = elt;
    }
  return node;
}
Richard Kenner committed
436

437
/* Copy a bitmap to another bitmap.  */
Richard Kenner committed
438 439

void
440
bitmap_copy (bitmap to, const_bitmap from)
Richard Kenner committed
441
{
442 443
  const bitmap_element *from_ptr;
  bitmap_element *to_ptr = 0;
Richard Kenner committed
444 445 446

  bitmap_clear (to);

447
  /* Copy elements in forward direction one at a time.  */
Richard Kenner committed
448 449
  for (from_ptr = from->first; from_ptr; from_ptr = from_ptr->next)
    {
450
      bitmap_element *to_elt = bitmap_element_allocate (to);
Richard Kenner committed
451 452

      to_elt->indx = from_ptr->indx;
453
      memcpy (to_elt->bits, from_ptr->bits, sizeof (to_elt->bits));
Richard Kenner committed
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

      /* Here we have a special case of bitmap_element_link, for the case
	 where we know the links are being entered in sequence.  */
      if (to_ptr == 0)
	{
	  to->first = to->current = to_elt;
	  to->indx = from_ptr->indx;
	  to_elt->next = to_elt->prev = 0;
	}
      else
	{
	  to_elt->prev = to_ptr;
	  to_elt->next = 0;
	  to_ptr->next = to_elt;
	}

      to_ptr = to_elt;
    }
}
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

/* Move a bitmap to another bitmap.  */

void
bitmap_move (bitmap to, bitmap from)
{
  gcc_assert (to->obstack == from->obstack);

  bitmap_clear (to);

  *to = *from;

  if (GATHER_STATISTICS)
    {
      size_t sz = 0;
      for (bitmap_element *e = to->first; e; e = e->next)
	sz += sizeof (bitmap_element);
      register_overhead (to, sz);
      register_overhead (from, -sz);
    }
}
Richard Kenner committed
494 495 496 497 498 499

/* Find a bitmap element that would hold a bitmap's bit.
   Update the `current' field even if we can't find an element that
   would hold the bitmap's bit to make eventual allocation
   faster.  */

500
static inline bitmap_element *
501
bitmap_find_bit (bitmap head, unsigned int bit)
Richard Kenner committed
502 503
{
  bitmap_element *element;
504
  unsigned int indx = bit / BITMAP_ELEMENT_ALL_BITS;
Richard Kenner committed
505

506
  if (head->current == NULL
507 508
      || head->indx == indx)
    return head->current;
509 510 511
  if (head->current == head->first
      && head->first->next == NULL)
    return NULL;
512

513 514 515 516 517
  /* Usage can be NULL due to allocated bitmaps for which we do not
     call initialize function.  */
  bitmap_usage *usage = NULL;
  if (GATHER_STATISTICS)
    usage = bitmap_mem_desc.get_descriptor_for_instance (head);
518

519 520
  /* This bitmap has more than one element, and we're going to look
     through the elements list.  Count that as a search.  */
521 522
  if (GATHER_STATISTICS && usage)
    usage->m_nsearches++;
Richard Kenner committed
523

524 525 526 527 528 529
  if (head->indx < indx)
    /* INDX is beyond head->indx.  Search from head->current
       forward.  */
    for (element = head->current;
	 element->next != 0 && element->indx < indx;
	 element = element->next)
530
      {
531 532
	if (GATHER_STATISTICS && usage)
	  usage->m_search_iter++;
533
      }
534 535 536 537

  else if (head->indx / 2 < indx)
    /* INDX is less than head->indx and closer to head->indx than to
       0.  Search from head->current backward.  */
Richard Kenner committed
538 539 540
    for (element = head->current;
	 element->prev != 0 && element->indx > indx;
	 element = element->prev)
541
      {
542 543
	if (GATHER_STATISTICS && usage)
	  usage->m_search_iter++;
544
      }
Richard Kenner committed
545 546

  else
547 548 549
    /* INDX is less than head->indx and closer to 0 than to
       head->indx.  Search from head->first forward.  */
    for (element = head->first;
Richard Kenner committed
550 551
	 element->next != 0 && element->indx < indx;
	 element = element->next)
552
      if (GATHER_STATISTICS && usage)
553
	{
554
	  usage->m_search_iter++;
555
	}
Richard Kenner committed
556 557 558 559 560

  /* `element' is the nearest to the one we want.  If it's not the one we
     want, the one we want doesn't exist.  */
  head->current = element;
  head->indx = element->indx;
561
  if (element->indx != indx)
Richard Kenner committed
562 563 564 565 566
    element = 0;

  return element;
}

567
/* Clear a single bit in a bitmap.  Return true if the bit changed.  */
Richard Kenner committed
568

569
bool
570
bitmap_clear_bit (bitmap head, int bit)
Richard Kenner committed
571
{
572
  bitmap_element *const ptr = bitmap_find_bit (head, bit);
Richard Kenner committed
573 574 575

  if (ptr != 0)
    {
576 577
      unsigned bit_num  = bit % BITMAP_WORD_BITS;
      unsigned word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
578 579 580
      BITMAP_WORD bit_val = ((BITMAP_WORD) 1) << bit_num;
      bool res = (ptr->bits[word_num] & bit_val) != 0;
      if (res)
581 582 583 584 585 586 587
	{
	  ptr->bits[word_num] &= ~bit_val;
	  /* If we cleared the entire word, free up the element.  */
	  if (!ptr->bits[word_num]
	      && bitmap_element_zerop (ptr))
	    bitmap_element_free (head, ptr);
	}
588 589

      return res;
Richard Kenner committed
590
    }
591 592

  return false;
Richard Kenner committed
593 594
}

595
/* Set a single bit in a bitmap.  Return true if the bit changed.  */
Richard Kenner committed
596

597
bool
598
bitmap_set_bit (bitmap head, int bit)
Richard Kenner committed
599 600
{
  bitmap_element *ptr = bitmap_find_bit (head, bit);
601 602 603
  unsigned word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
  unsigned bit_num  = bit % BITMAP_WORD_BITS;
  BITMAP_WORD bit_val = ((BITMAP_WORD) 1) << bit_num;
Richard Kenner committed
604 605 606

  if (ptr == 0)
    {
607
      ptr = bitmap_element_allocate (head);
Richard Kenner committed
608 609 610
      ptr->indx = bit / BITMAP_ELEMENT_ALL_BITS;
      ptr->bits[word_num] = bit_val;
      bitmap_element_link (head, ptr);
611
      return true;
Richard Kenner committed
612 613
    }
  else
614 615 616 617 618 619
    {
      bool res = (ptr->bits[word_num] & bit_val) == 0;
      if (res)
	ptr->bits[word_num] |= bit_val;
      return res;
    }
Richard Kenner committed
620
}
621

Richard Kenner committed
622 623 624
/* Return whether a bit is set within a bitmap.  */

int
625
bitmap_bit_p (bitmap head, int bit)
Richard Kenner committed
626 627 628 629 630 631 632 633 634
{
  bitmap_element *ptr;
  unsigned bit_num;
  unsigned word_num;

  ptr = bitmap_find_bit (head, bit);
  if (ptr == 0)
    return 0;

635 636
  bit_num = bit % BITMAP_WORD_BITS;
  word_num = bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
Richard Kenner committed
637

638
  return (ptr->bits[word_num] >> bit_num) & 1;
Richard Kenner committed
639 640
}

641 642
#if GCC_VERSION < 3400
/* Table of number of set bits in a character, indexed by value of char.  */
643
static const unsigned char popcount_table[] =
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
{
    0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
    3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8,
};

static unsigned long
bitmap_popcount (BITMAP_WORD a)
{
  unsigned long ret = 0;
  unsigned i;

  /* Just do this the table way for now  */
  for (i = 0; i < BITMAP_WORD_BITS; i+= 8)
    ret += popcount_table[(a >> i) & 0xff];
  return ret;
}
#endif
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

/* Count and return the number of bits set in the bitmap word BITS.  */
static unsigned long
bitmap_count_bits_in_word (const BITMAP_WORD *bits)
{
  unsigned long count = 0;

  for (unsigned ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++)
    {
#if GCC_VERSION >= 3400
      /* Note that popcountl matches BITMAP_WORD in type, so the actual size
	 of BITMAP_WORD is not material.  */
      count += __builtin_popcountl (bits[ix]);
#else
      count += bitmap_popcount (bits[ix]);
#endif
    }
  return count;
}

687 688 689
/* Count the number of bits set in the bitmap, and return it.  */

unsigned long
690
bitmap_count_bits (const_bitmap a)
691 692
{
  unsigned long count = 0;
693
  const bitmap_element *elt;
694 695

  for (elt = a->first; elt; elt = elt->next)
696 697 698 699 700 701 702 703 704 705 706 707 708 709
    count += bitmap_count_bits_in_word (elt->bits);

  return count;
}

/* Count the number of unique bits set in A and B and return it.  */

unsigned long
bitmap_count_unique_bits (const_bitmap a, const_bitmap b)
{
  unsigned long count = 0;
  const bitmap_element *elt_a, *elt_b;

  for (elt_a = a->first, elt_b = b->first; elt_a && elt_b; )
710
    {
711 712 713 714
      /* If we're at different indices, then count all the bits
	 in the lower element.  If we're at the same index, then
	 count the bits in the IOR of the two elements.  */
      if (elt_a->indx < elt_b->indx)
715
	{
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	  count += bitmap_count_bits_in_word (elt_a->bits);
	  elt_a = elt_a->next;
	}
      else if (elt_b->indx < elt_a->indx)
	{
	  count += bitmap_count_bits_in_word (elt_b->bits);
	  elt_b = elt_b->next;
	}
      else
	{
	  BITMAP_WORD bits[BITMAP_ELEMENT_WORDS];
	  for (unsigned ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++)
	    bits[ix] = elt_a->bits[ix] | elt_b->bits[ix];
	  count += bitmap_count_bits_in_word (bits);
	  elt_a = elt_a->next;
	  elt_b = elt_b->next;
732 733 734 735
	}
    }
  return count;
}
Mike Stump committed
736

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
/* Return true if the bitmap has a single bit set.  Otherwise return
   false.  */

bool
bitmap_single_bit_set_p (const_bitmap a)
{
  unsigned long count = 0;
  const bitmap_element *elt;
  unsigned ix;

  if (bitmap_empty_p (a))
    return false;

  elt = a->first;
  /* As there are no completely empty bitmap elements, a second one
     means we have more than one bit set.  */
  if (elt->next != NULL)
    return false;

  for (ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++)
    {
#if GCC_VERSION >= 3400
      /* Note that popcountl matches BITMAP_WORD in type, so the actual size
	 of BITMAP_WORD is not material.  */
      count += __builtin_popcountl (elt->bits[ix]);
#else
      count += bitmap_popcount (elt->bits[ix]);
#endif
      if (count > 1)
	return false;
    }

  return count == 1;
}
771 772


773 774
/* Return the bit number of the first set bit in the bitmap.  The
   bitmap must be non-empty.  */
775

776
unsigned
777
bitmap_first_set_bit (const_bitmap a)
778
{
779
  const bitmap_element *elt = a->first;
780
  unsigned bit_no;
781
  BITMAP_WORD word;
782
  unsigned ix;
Mike Stump committed
783

784
  gcc_checking_assert (elt);
785 786 787 788 789 790 791
  bit_no = elt->indx * BITMAP_ELEMENT_ALL_BITS;
  for (ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++)
    {
      word = elt->bits[ix];
      if (word)
	goto found_bit;
    }
792
  gcc_unreachable ();
793 794
 found_bit:
  bit_no += ix * BITMAP_WORD_BITS;
795

796
#if GCC_VERSION >= 3004
797
  gcc_assert (sizeof (long) == sizeof (word));
798
  bit_no += __builtin_ctzl (word);
799
#else
800 801 802
  /* Binary search for the first set bit.  */
#if BITMAP_WORD_BITS > 64
#error "Fill out the table."
803
#endif
804 805 806
#if BITMAP_WORD_BITS > 32
  if (!(word & 0xffffffff))
    word >>= 32, bit_no += 32;
807
#endif
808 809 810 811 812 813 814 815 816 817
  if (!(word & 0xffff))
    word >>= 16, bit_no += 16;
  if (!(word & 0xff))
    word >>= 8, bit_no += 8;
  if (!(word & 0xf))
    word >>= 4, bit_no += 4;
  if (!(word & 0x3))
    word >>= 2, bit_no += 2;
  if (!(word & 0x1))
    word >>= 1, bit_no += 1;
Mike Stump committed
818

819
 gcc_checking_assert (word & 1);
820
#endif
821
 return bit_no;
822
}
823 824 825 826 827 828 829 830 831 832 833 834

/* Return the bit number of the first set bit in the bitmap.  The
   bitmap must be non-empty.  */

unsigned
bitmap_last_set_bit (const_bitmap a)
{
  const bitmap_element *elt = a->current ? a->current : a->first;
  unsigned bit_no;
  BITMAP_WORD word;
  int ix;

835
  gcc_checking_assert (elt);
836 837 838 839 840 841 842 843 844 845 846 847 848
  while (elt->next)
    elt = elt->next;
  bit_no = elt->indx * BITMAP_ELEMENT_ALL_BITS;
  for (ix = BITMAP_ELEMENT_WORDS - 1; ix >= 0; ix--)
    {
      word = elt->bits[ix];
      if (word)
	goto found_bit;
    }
  gcc_unreachable ();
 found_bit:
  bit_no += ix * BITMAP_WORD_BITS;
#if GCC_VERSION >= 3004
849
  gcc_assert (sizeof (long) == sizeof (word));
850
  bit_no += BITMAP_WORD_BITS - __builtin_clzl (word) - 1;
851
#else
852 853 854 855 856 857 858
  /* Hopefully this is a twos-complement host...  */
  BITMAP_WORD x = word;
  x |= (x >> 1);
  x |= (x >> 2);
  x |= (x >> 4);
  x |= (x >> 8);
  x |= (x >> 16);
859
#if BITMAP_WORD_BITS > 32
860
  x |= (x >> 32);
861
#endif
862
  bit_no += bitmap_popcount (x) - 1;
863 864
#endif

865
  return bit_no;
866
}
867

Richard Kenner committed
868

869
/* DST = A & B.  */
870 871

void
872
bitmap_and (bitmap dst, const_bitmap a, const_bitmap b)
Richard Kenner committed
873
{
874
  bitmap_element *dst_elt = dst->first;
875 876
  const bitmap_element *a_elt = a->first;
  const bitmap_element *b_elt = b->first;
877
  bitmap_element *dst_prev = NULL;
878

879 880 881 882 883 884 885 886
  gcc_assert (dst != a && dst != b);

  if (a == b)
    {
      bitmap_copy (dst, a);
      return;
    }

887 888 889 890 891 892 893 894 895 896 897 898 899
  while (a_elt && b_elt)
    {
      if (a_elt->indx < b_elt->indx)
	a_elt = a_elt->next;
      else if (b_elt->indx < a_elt->indx)
	b_elt = b_elt->next;
      else
	{
	  /* Matching elts, generate A & B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;

	  if (!dst_elt)
900
	    dst_elt = bitmap_elt_insert_after (dst, dst_prev, a_elt->indx);
Mike Stump committed
901
	  else
902
	    dst_elt->indx = a_elt->indx;
903
	  for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
904 905
	    {
	      BITMAP_WORD r = a_elt->bits[ix] & b_elt->bits[ix];
Richard Kenner committed
906

907 908 909 910 911 912 913 914 915 916 917 918
	      dst_elt->bits[ix] = r;
	      ior |= r;
	    }
	  if (ior)
	    {
	      dst_prev = dst_elt;
	      dst_elt = dst_elt->next;
	    }
	  a_elt = a_elt->next;
	  b_elt = b_elt->next;
	}
    }
919 920
  /* Ensure that dst->current is valid.  */
  dst->current = dst->first;
921
  bitmap_elt_clear_from (dst, dst_elt);
922
  gcc_checking_assert (!dst->current == !dst->first);
923 924 925 926
  if (dst->current)
    dst->indx = dst->current->indx;
}

927
/* A &= B.  Return true if A changed.  */
928

929
bool
930
bitmap_and_into (bitmap a, const_bitmap b)
931 932
{
  bitmap_element *a_elt = a->first;
933
  const bitmap_element *b_elt = b->first;
934
  bitmap_element *next;
935
  bool changed = false;
Richard Kenner committed
936

Mike Stump committed
937
  if (a == b)
938
    return false;
939

940
  while (a_elt && b_elt)
Richard Kenner committed
941
    {
942 943 944 945 946
      if (a_elt->indx < b_elt->indx)
	{
	  next = a_elt->next;
	  bitmap_element_free (a, a_elt);
	  a_elt = next;
947
	  changed = true;
948 949 950 951
	}
      else if (b_elt->indx < a_elt->indx)
	b_elt = b_elt->next;
      else
Richard Kenner committed
952
	{
953 954 955 956
	  /* Matching elts, generate A &= B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;

957
	  for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
958 959
	    {
	      BITMAP_WORD r = a_elt->bits[ix] & b_elt->bits[ix];
960 961
	      if (a_elt->bits[ix] != r)
		changed = true;
962 963 964 965 966 967 968 969
	      a_elt->bits[ix] = r;
	      ior |= r;
	    }
	  next = a_elt->next;
	  if (!ior)
	    bitmap_element_free (a, a_elt);
	  a_elt = next;
	  b_elt = b_elt->next;
Richard Kenner committed
970
	}
971
    }
972 973 974 975 976 977 978

  if (a_elt)
    {
      changed = true;
      bitmap_elt_clear_from (a, a_elt);
    }

979 980
  gcc_checking_assert (!a->current == !a->first
		       && (!a->current || a->indx == a->current->indx));
981 982

  return changed;
983 984
}

985 986 987 988 989 990 991

/* Insert an element equal to SRC_ELT after DST_PREV, overwriting DST_ELT
   if non-NULL.  CHANGED is true if the destination bitmap had already been
   changed; the new value of CHANGED is returned.  */

static inline bool
bitmap_elt_copy (bitmap dst, bitmap_element *dst_elt, bitmap_element *dst_prev,
992
		 const bitmap_element *src_elt, bool changed)
993 994 995 996 997
{
  if (!changed && dst_elt && dst_elt->indx == src_elt->indx)
    {
      unsigned ix;

998
      for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	if (src_elt->bits[ix] != dst_elt->bits[ix])
	  {
	    dst_elt->bits[ix] = src_elt->bits[ix];
	    changed = true;
	  }
    }
  else
    {
      changed = true;
      if (!dst_elt)
	dst_elt = bitmap_elt_insert_after (dst, dst_prev, src_elt->indx);
      else
	dst_elt->indx = src_elt->indx;
      memcpy (dst_elt->bits, src_elt->bits, sizeof (dst_elt->bits));
    }
  return changed;
}



1019 1020
/* DST = A & ~B  */

1021
bool
1022
bitmap_and_compl (bitmap dst, const_bitmap a, const_bitmap b)
1023 1024
{
  bitmap_element *dst_elt = dst->first;
1025 1026
  const bitmap_element *a_elt = a->first;
  const bitmap_element *b_elt = b->first;
1027
  bitmap_element *dst_prev = NULL;
1028 1029
  bitmap_element **dst_prev_pnext = &dst->first;
  bool changed = false;
1030

1031
  gcc_assert (dst != a && dst != b);
Mike Stump committed
1032

1033 1034
  if (a == b)
    {
1035
      changed = !bitmap_empty_p (dst);
1036
      bitmap_clear (dst);
1037
      return changed;
1038 1039
    }

1040 1041
  while (a_elt)
    {
1042 1043 1044 1045
      while (b_elt && b_elt->indx < a_elt->indx)
	b_elt = b_elt->next;

      if (!b_elt || b_elt->indx > a_elt->indx)
Richard Kenner committed
1046
	{
1047 1048 1049 1050
	  changed = bitmap_elt_copy (dst, dst_elt, dst_prev, a_elt, changed);
	  dst_prev = *dst_prev_pnext;
	  dst_prev_pnext = &dst_prev->next;
	  dst_elt = *dst_prev_pnext;
1051
	  a_elt = a_elt->next;
Richard Kenner committed
1052
	}
1053

Richard Kenner committed
1054 1055
      else
	{
1056 1057 1058 1059
	  /* Matching elts, generate A & ~B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;

1060 1061
	  if (!changed && dst_elt && dst_elt->indx == a_elt->indx)
	    {
1062
	      for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		{
		  BITMAP_WORD r = a_elt->bits[ix] & ~b_elt->bits[ix];

		  if (dst_elt->bits[ix] != r)
		    {
		      changed = true;
		      dst_elt->bits[ix] = r;
		    }
		  ior |= r;
		}
	    }
Mike Stump committed
1074
	  else
1075
	    {
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	      bool new_element;
	      if (!dst_elt || dst_elt->indx > a_elt->indx)
		{
		  dst_elt = bitmap_elt_insert_after (dst, dst_prev, a_elt->indx);
		  new_element = true;
		}
	      else
		{
		  dst_elt->indx = a_elt->indx;
		  new_element = false;
		}
1087

1088
	      for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		{
		  BITMAP_WORD r = a_elt->bits[ix] & ~b_elt->bits[ix];

		  dst_elt->bits[ix] = r;
		  ior |= r;
		}

	      if (ior)
	        changed = true;
	      else
	        {
	          changed |= !new_element;
		  bitmap_element_free (dst, dst_elt);
		  dst_elt = *dst_prev_pnext;
		}
1104
	    }
1105

1106 1107
	  if (ior)
	    {
1108 1109 1110
	      dst_prev = *dst_prev_pnext;
	      dst_prev_pnext = &dst_prev->next;
	      dst_elt = *dst_prev_pnext;
1111 1112 1113
	    }
	  a_elt = a_elt->next;
	  b_elt = b_elt->next;
Richard Kenner committed
1114
	}
1115
    }
1116

1117 1118
  /* Ensure that dst->current is valid.  */
  dst->current = dst->first;
1119 1120 1121 1122 1123 1124

  if (dst_elt)
    {
      changed = true;
      bitmap_elt_clear_from (dst, dst_elt);
    }
1125
  gcc_checking_assert (!dst->current == !dst->first);
1126 1127
  if (dst->current)
    dst->indx = dst->current->indx;
1128 1129

  return changed;
1130 1131
}

1132
/* A &= ~B. Returns true if A changes */
Richard Kenner committed
1133

1134
bool
1135
bitmap_and_compl_into (bitmap a, const_bitmap b)
1136 1137
{
  bitmap_element *a_elt = a->first;
1138
  const bitmap_element *b_elt = b->first;
1139
  bitmap_element *next;
1140
  BITMAP_WORD changed = 0;
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
  if (a == b)
    {
      if (bitmap_empty_p (a))
	return false;
      else
	{
	  bitmap_clear (a);
	  return true;
	}
    }

1153 1154 1155 1156 1157 1158 1159
  while (a_elt && b_elt)
    {
      if (a_elt->indx < b_elt->indx)
	a_elt = a_elt->next;
      else if (b_elt->indx < a_elt->indx)
	b_elt = b_elt->next;
      else
1160
	{
1161 1162 1163 1164
	  /* Matching elts, generate A &= ~B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;

1165
	  for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
1166
	    {
1167 1168
	      BITMAP_WORD cleared = a_elt->bits[ix] & b_elt->bits[ix];
	      BITMAP_WORD r = a_elt->bits[ix] ^ cleared;
1169 1170

	      a_elt->bits[ix] = r;
1171
	      changed |= cleared;
1172 1173 1174 1175 1176 1177 1178
	      ior |= r;
	    }
	  next = a_elt->next;
	  if (!ior)
	    bitmap_element_free (a, a_elt);
	  a_elt = next;
	  b_elt = b_elt->next;
1179
	}
1180
    }
1181 1182
  gcc_checking_assert (!a->current == !a->first
		       && (!a->current || a->indx == a->current->indx));
1183
  return changed != 0;
1184 1185
}

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/* Set COUNT bits from START in HEAD.  */
void
bitmap_set_range (bitmap head, unsigned int start, unsigned int count)
{
  unsigned int first_index, end_bit_plus1, last_index;
  bitmap_element *elt, *elt_prev;
  unsigned int i;

  if (!count)
    return;

1197 1198 1199 1200 1201 1202
  if (count == 1)
    {
      bitmap_set_bit (head, start);
      return;
    }

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
  first_index = start / BITMAP_ELEMENT_ALL_BITS;
  end_bit_plus1 = start + count;
  last_index = (end_bit_plus1 - 1) / BITMAP_ELEMENT_ALL_BITS;
  elt = bitmap_find_bit (head, start);

  /* If bitmap_find_bit returns zero, the current is the closest block
     to the result.  Otherwise, just use bitmap_element_allocate to
     ensure ELT is set; in the loop below, ELT == NULL means "insert
     at the end of the bitmap".  */
  if (!elt)
    {
      elt = bitmap_element_allocate (head);
      elt->indx = first_index;
      bitmap_element_link (head, elt);
    }

1219
  gcc_checking_assert (elt->indx == first_index);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
  elt_prev = elt->prev;
  for (i = first_index; i <= last_index; i++)
    {
      unsigned elt_start_bit = i * BITMAP_ELEMENT_ALL_BITS;
      unsigned elt_end_bit_plus1 = elt_start_bit + BITMAP_ELEMENT_ALL_BITS;

      unsigned int first_word_to_mod;
      BITMAP_WORD first_mask;
      unsigned int last_word_to_mod;
      BITMAP_WORD last_mask;
      unsigned int ix;

      if (!elt || elt->indx != i)
	elt = bitmap_elt_insert_after (head, elt_prev, i);

      if (elt_start_bit <= start)
	{
	  /* The first bit to turn on is somewhere inside this
	     elt.  */
	  first_word_to_mod = (start - elt_start_bit) / BITMAP_WORD_BITS;

	  /* This mask should have 1s in all bits >= start position. */
	  first_mask =
	    (((BITMAP_WORD) 1) << ((start % BITMAP_WORD_BITS))) - 1;
	  first_mask = ~first_mask;
	}
      else
	{
	  /* The first bit to turn on is below this start of this elt.  */
	  first_word_to_mod = 0;
	  first_mask = ~(BITMAP_WORD) 0;
	}

      if (elt_end_bit_plus1 <= end_bit_plus1)
	{
	  /* The last bit to turn on is beyond this elt.  */
	  last_word_to_mod = BITMAP_ELEMENT_WORDS - 1;
	  last_mask = ~(BITMAP_WORD) 0;
	}
      else
	{
	  /* The last bit to turn on is inside to this elt.  */
	  last_word_to_mod =
	    (end_bit_plus1 - elt_start_bit) / BITMAP_WORD_BITS;

	  /* The last mask should have 1s below the end bit.  */
	  last_mask =
	    (((BITMAP_WORD) 1) << ((end_bit_plus1 % BITMAP_WORD_BITS))) - 1;
	}

      if (first_word_to_mod == last_word_to_mod)
	{
	  BITMAP_WORD mask = first_mask & last_mask;
	  elt->bits[first_word_to_mod] |= mask;
	}
      else
	{
	  elt->bits[first_word_to_mod] |= first_mask;
	  if (BITMAP_ELEMENT_WORDS > 2)
	    for (ix = first_word_to_mod + 1; ix < last_word_to_mod; ix++)
	      elt->bits[ix] = ~(BITMAP_WORD) 0;
	  elt->bits[last_word_to_mod] |= last_mask;
	}

      elt_prev = elt;
      elt = elt->next;
    }

  head->current = elt ? elt : elt_prev;
  head->indx = head->current->indx;
}

1292 1293 1294 1295
/* Clear COUNT bits from START in HEAD.  */
void
bitmap_clear_range (bitmap head, unsigned int start, unsigned int count)
{
1296 1297 1298 1299 1300 1301
  unsigned int first_index, end_bit_plus1, last_index;
  bitmap_element *elt;

  if (!count)
    return;

1302 1303 1304 1305 1306 1307
  if (count == 1)
    {
      bitmap_clear_bit (head, start);
      return;
    }

1308 1309 1310 1311
  first_index = start / BITMAP_ELEMENT_ALL_BITS;
  end_bit_plus1 = start + count;
  last_index = (end_bit_plus1 - 1) / BITMAP_ELEMENT_ALL_BITS;
  elt = bitmap_find_bit (head, start);
1312 1313 1314 1315 1316

  /* If bitmap_find_bit returns zero, the current is the closest block
     to the result.  If the current is less than first index, find the
     next one.  Otherwise, just set elt to be current.  */
  if (!elt)
Mike Stump committed
1317
    {
1318 1319 1320 1321 1322 1323 1324 1325
      if (head->current)
	{
	  if (head->indx < first_index)
	    {
	      elt = head->current->next;
	      if (!elt)
		return;
	    }
Mike Stump committed
1326
	  else
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	    elt = head->current;
	}
      else
	return;
    }

  while (elt && (elt->indx <= last_index))
    {
      bitmap_element * next_elt = elt->next;
      unsigned elt_start_bit = (elt->indx) * BITMAP_ELEMENT_ALL_BITS;
      unsigned elt_end_bit_plus1 = elt_start_bit + BITMAP_ELEMENT_ALL_BITS;


      if (elt_start_bit >= start && elt_end_bit_plus1 <= end_bit_plus1)
	/* Get rid of the entire elt and go to the next one.  */
	bitmap_element_free (head, elt);
Mike Stump committed
1343
      else
1344 1345
	{
	  /* Going to have to knock out some bits in this elt.  */
Mike Stump committed
1346 1347
	  unsigned int first_word_to_mod;
	  BITMAP_WORD first_mask;
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	  unsigned int last_word_to_mod;
	  BITMAP_WORD last_mask;
	  unsigned int i;
	  bool clear = true;

	  if (elt_start_bit <= start)
	    {
	      /* The first bit to turn off is somewhere inside this
		 elt.  */
	      first_word_to_mod = (start - elt_start_bit) / BITMAP_WORD_BITS;

	      /* This mask should have 1s in all bits >= start position. */
Mike Stump committed
1360
	      first_mask =
1361 1362 1363 1364 1365 1366 1367 1368 1369
		(((BITMAP_WORD) 1) << ((start % BITMAP_WORD_BITS))) - 1;
	      first_mask = ~first_mask;
	    }
	  else
	    {
	      /* The first bit to turn off is below this start of this elt.  */
	      first_word_to_mod = 0;
	      first_mask = 0;
	      first_mask = ~first_mask;
Mike Stump committed
1370 1371
	    }

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	  if (elt_end_bit_plus1 <= end_bit_plus1)
	    {
	      /* The last bit to turn off is beyond this elt.  */
	      last_word_to_mod = BITMAP_ELEMENT_WORDS - 1;
	      last_mask = 0;
	      last_mask = ~last_mask;
	    }
	  else
	    {
	      /* The last bit to turn off is inside to this elt.  */
Mike Stump committed
1382
	      last_word_to_mod =
1383 1384 1385
		(end_bit_plus1 - elt_start_bit) / BITMAP_WORD_BITS;

	      /* The last mask should have 1s below the end bit.  */
Mike Stump committed
1386
	      last_mask =
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		(((BITMAP_WORD) 1) << (((end_bit_plus1) % BITMAP_WORD_BITS))) - 1;
	    }


	  if (first_word_to_mod == last_word_to_mod)
	    {
	      BITMAP_WORD mask = first_mask & last_mask;
	      elt->bits[first_word_to_mod] &= ~mask;
	    }
	  else
	    {
	      elt->bits[first_word_to_mod] &= ~first_mask;
1399 1400 1401
	      if (BITMAP_ELEMENT_WORDS > 2)
	        for (i = first_word_to_mod + 1; i < last_word_to_mod; i++)
		  elt->bits[i] = 0;
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	      elt->bits[last_word_to_mod] &= ~last_mask;
	    }
	  for (i = 0; i < BITMAP_ELEMENT_WORDS; i++)
	    if (elt->bits[i])
	      {
		clear = false;
		break;
	      }
	  /* Check to see if there are any bits left.  */
	  if (clear)
	    bitmap_element_free (head, elt);
	}
      elt = next_elt;
    }
Mike Stump committed
1416

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
  if (elt)
    {
      head->current = elt;
      head->indx = head->current->indx;
    }
}

/* A = ~A & B. */

void
1427
bitmap_compl_and_into (bitmap a, const_bitmap b)
1428 1429
{
  bitmap_element *a_elt = a->first;
1430
  const bitmap_element *b_elt = b->first;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
  bitmap_element *a_prev = NULL;
  bitmap_element *next;

  gcc_assert (a != b);

  if (bitmap_empty_p (a))
    {
      bitmap_copy (a, b);
      return;
    }
  if (bitmap_empty_p (b))
    {
      bitmap_clear (a);
      return;
    }

  while (a_elt || b_elt)
    {
      if (!b_elt || (a_elt && a_elt->indx < b_elt->indx))
	{
	  /* A is before B.  Remove A */
	  next = a_elt->next;
	  a_prev = a_elt->prev;
	  bitmap_element_free (a, a_elt);
	  a_elt = next;
	}
      else if (!a_elt || b_elt->indx < a_elt->indx)
	{
	  /* B is before A.  Copy B. */
	  next = bitmap_elt_insert_after (a, a_prev, b_elt->indx);
	  memcpy (next->bits, b_elt->bits, sizeof (next->bits));
	  a_prev = next;
	  b_elt = b_elt->next;
	}
      else
	{
	  /* Matching elts, generate A = ~A & B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;

1471
	  for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	    {
	      BITMAP_WORD cleared = a_elt->bits[ix] & b_elt->bits[ix];
	      BITMAP_WORD r = b_elt->bits[ix] ^ cleared;

	      a_elt->bits[ix] = r;
	      ior |= r;
	    }
	  next = a_elt->next;
	  if (!ior)
	    bitmap_element_free (a, a_elt);
	  else
	    a_prev = a_elt;
	  a_elt = next;
	  b_elt = b_elt->next;
	}
    }
1488 1489
  gcc_checking_assert (!a->current == !a->first
		       && (!a->current || a->indx == a->current->indx));
1490 1491 1492
  return;
}

1493 1494 1495 1496 1497 1498 1499

/* Insert an element corresponding to A_ELT | B_ELT after DST_PREV,
   overwriting DST_ELT if non-NULL.  CHANGED is true if the destination bitmap
   had already been changed; the new value of CHANGED is returned.  */

static inline bool
bitmap_elt_ior (bitmap dst, bitmap_element *dst_elt, bitmap_element *dst_prev,
1500
		const bitmap_element *a_elt, const bitmap_element *b_elt,
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		bool changed)
{
  gcc_assert (a_elt || b_elt);

  if (a_elt && b_elt && a_elt->indx == b_elt->indx)
    {
      /* Matching elts, generate A | B.  */
      unsigned ix;

      if (!changed && dst_elt && dst_elt->indx == a_elt->indx)
	{
1512
	  for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	    {
	      BITMAP_WORD r = a_elt->bits[ix] | b_elt->bits[ix];
	      if (r != dst_elt->bits[ix])
		{
		  dst_elt->bits[ix] = r;
		  changed = true;
		}
	    }
	}
      else
	{
	  changed = true;
	  if (!dst_elt)
	    dst_elt = bitmap_elt_insert_after (dst, dst_prev, a_elt->indx);
	  else
	    dst_elt->indx = a_elt->indx;
1529
	  for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
1530 1531 1532 1533 1534 1535 1536 1537 1538
	    {
	      BITMAP_WORD r = a_elt->bits[ix] | b_elt->bits[ix];
	      dst_elt->bits[ix] = r;
	    }
	}
    }
  else
    {
      /* Copy a single element.  */
1539
      const bitmap_element *src;
1540 1541 1542 1543 1544 1545

      if (!b_elt || (a_elt && a_elt->indx < b_elt->indx))
	src = a_elt;
      else
	src = b_elt;

1546
      gcc_checking_assert (src);
1547 1548 1549 1550 1551 1552
      changed = bitmap_elt_copy (dst, dst_elt, dst_prev, src, changed);
    }
  return changed;
}


1553 1554 1555
/* DST = A | B.  Return true if DST changes.  */

bool
1556
bitmap_ior (bitmap dst, const_bitmap a, const_bitmap b)
1557 1558
{
  bitmap_element *dst_elt = dst->first;
1559 1560
  const bitmap_element *a_elt = a->first;
  const bitmap_element *b_elt = b->first;
1561
  bitmap_element *dst_prev = NULL;
1562
  bitmap_element **dst_prev_pnext = &dst->first;
Mike Stump committed
1563
  bool changed = false;
1564

1565 1566
  gcc_assert (dst != a && dst != b);

1567 1568
  while (a_elt || b_elt)
    {
1569 1570
      changed = bitmap_elt_ior (dst, dst_elt, dst_prev, a_elt, b_elt, changed);

1571
      if (a_elt && b_elt && a_elt->indx == b_elt->indx)
1572
	{
1573 1574
	  a_elt = a_elt->next;
	  b_elt = b_elt->next;
1575 1576
	}
      else
Richard Kenner committed
1577
	{
1578 1579 1580 1581
	  if (a_elt && (!b_elt || a_elt->indx <= b_elt->indx))
            a_elt = a_elt->next;
          else if (b_elt && (!a_elt || b_elt->indx <= a_elt->indx))
            b_elt = b_elt->next;
Richard Kenner committed
1582
	}
1583 1584 1585 1586

      dst_prev = *dst_prev_pnext;
      dst_prev_pnext = &dst_prev->next;
      dst_elt = *dst_prev_pnext;
1587 1588 1589 1590 1591
    }

  if (dst_elt)
    {
      changed = true;
1592 1593
      /* Ensure that dst->current is valid.  */
      dst->current = dst->first;
1594 1595
      bitmap_elt_clear_from (dst, dst_elt);
    }
1596
  gcc_checking_assert (!dst->current == !dst->first);
1597 1598 1599 1600
  if (dst->current)
    dst->indx = dst->current->indx;
  return changed;
}
Richard Kenner committed
1601

1602 1603 1604
/* A |= B.  Return true if A changes.  */

bool
1605
bitmap_ior_into (bitmap a, const_bitmap b)
1606 1607
{
  bitmap_element *a_elt = a->first;
1608
  const bitmap_element *b_elt = b->first;
1609
  bitmap_element *a_prev = NULL;
1610
  bitmap_element **a_prev_pnext = &a->first;
1611 1612
  bool changed = false;

1613 1614 1615
  if (a == b)
    return false;

1616 1617
  while (b_elt)
    {
1618 1619
      /* If A lags behind B, just advance it.  */
      if (!a_elt || a_elt->indx == b_elt->indx)
1620
	{
1621
	  changed = bitmap_elt_ior (a, a_elt, a_prev, a_elt, b_elt, changed);
1622
	  b_elt = b_elt->next;
1623
	}
1624
      else if (a_elt->indx > b_elt->indx)
1625
	{
1626
          changed = bitmap_elt_copy (a, NULL, a_prev, b_elt, changed);
1627
	  b_elt = b_elt->next;
Richard Kenner committed
1628
	}
1629 1630 1631 1632

      a_prev = *a_prev_pnext;
      a_prev_pnext = &a_prev->next;
      a_elt = *a_prev_pnext;
Richard Kenner committed
1633
    }
1634

1635
  gcc_checking_assert (!a->current == !a->first);
1636 1637 1638 1639 1640 1641
  if (a->current)
    a->indx = a->current->indx;
  return changed;
}

/* DST = A ^ B  */
Richard Kenner committed
1642

1643
void
1644
bitmap_xor (bitmap dst, const_bitmap a, const_bitmap b)
1645 1646
{
  bitmap_element *dst_elt = dst->first;
1647 1648
  const bitmap_element *a_elt = a->first;
  const bitmap_element *b_elt = b->first;
1649 1650
  bitmap_element *dst_prev = NULL;

1651 1652 1653 1654 1655 1656 1657
  gcc_assert (dst != a && dst != b);
  if (a == b)
    {
      bitmap_clear (dst);
      return;
    }

1658
  while (a_elt || b_elt)
Richard Kenner committed
1659
    {
1660
      if (a_elt && b_elt && a_elt->indx == b_elt->indx)
1661
	{
1662 1663 1664 1665 1666
	  /* Matching elts, generate A ^ B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;

	  if (!dst_elt)
1667 1668 1669
	    dst_elt = bitmap_elt_insert_after (dst, dst_prev, a_elt->indx);
	  else
	    dst_elt->indx = a_elt->indx;
1670
	  for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	    {
	      BITMAP_WORD r = a_elt->bits[ix] ^ b_elt->bits[ix];

	      ior |= r;
	      dst_elt->bits[ix] = r;
	    }
	  a_elt = a_elt->next;
	  b_elt = b_elt->next;
	  if (ior)
	    {
	      dst_prev = dst_elt;
	      dst_elt = dst_elt->next;
	    }
1684 1685 1686
	}
      else
	{
1687
	  /* Copy a single element.  */
1688
	  const bitmap_element *src;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

	  if (!b_elt || (a_elt && a_elt->indx < b_elt->indx))
	    {
	      src = a_elt;
	      a_elt = a_elt->next;
	    }
	  else
	    {
	      src = b_elt;
	      b_elt = b_elt->next;
	    }

	  if (!dst_elt)
1702
	    dst_elt = bitmap_elt_insert_after (dst, dst_prev, src->indx);
Mike Stump committed
1703
	  else
1704
	    dst_elt->indx = src->indx;
1705 1706 1707
	  memcpy (dst_elt->bits, src->bits, sizeof (dst_elt->bits));
	  dst_prev = dst_elt;
	  dst_elt = dst_elt->next;
1708
	}
Richard Kenner committed
1709
    }
1710 1711
  /* Ensure that dst->current is valid.  */
  dst->current = dst->first;
1712
  bitmap_elt_clear_from (dst, dst_elt);
1713
  gcc_checking_assert (!dst->current == !dst->first);
1714 1715 1716
  if (dst->current)
    dst->indx = dst->current->indx;
}
Richard Kenner committed
1717

1718
/* A ^= B */
1719

1720
void
1721
bitmap_xor_into (bitmap a, const_bitmap b)
1722 1723
{
  bitmap_element *a_elt = a->first;
1724
  const bitmap_element *b_elt = b->first;
1725 1726
  bitmap_element *a_prev = NULL;

1727 1728 1729 1730 1731 1732
  if (a == b)
    {
      bitmap_clear (a);
      return;
    }

1733 1734 1735 1736 1737
  while (b_elt)
    {
      if (!a_elt || b_elt->indx < a_elt->indx)
	{
	  /* Copy b_elt.  */
1738
	  bitmap_element *dst = bitmap_elt_insert_after (a, a_prev, b_elt->indx);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	  memcpy (dst->bits, b_elt->bits, sizeof (dst->bits));
	  a_prev = dst;
	  b_elt = b_elt->next;
	}
      else if (a_elt->indx < b_elt->indx)
	{
	  a_prev = a_elt;
	  a_elt = a_elt->next;
	}
      else
	{
	  /* Matching elts, generate A ^= B.  */
	  unsigned ix;
	  BITMAP_WORD ior = 0;
	  bitmap_element *next = a_elt->next;

1755
	  for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	    {
	      BITMAP_WORD r = a_elt->bits[ix] ^ b_elt->bits[ix];

	      ior |= r;
	      a_elt->bits[ix] = r;
	    }
	  b_elt = b_elt->next;
	  if (ior)
	    a_prev = a_elt;
	  else
	    bitmap_element_free (a, a_elt);
	  a_elt = next;
	}
    }
1770
  gcc_checking_assert (!a->current == !a->first);
1771 1772
  if (a->current)
    a->indx = a->current->indx;
1773 1774
}

1775 1776 1777
/* Return true if two bitmaps are identical.
   We do not bother with a check for pointer equality, as that never
   occurs in practice.  */
1778

1779
bool
1780
bitmap_equal_p (const_bitmap a, const_bitmap b)
1781
{
1782 1783
  const bitmap_element *a_elt;
  const bitmap_element *b_elt;
1784
  unsigned ix;
Mike Stump committed
1785

1786 1787 1788 1789 1790 1791
  for (a_elt = a->first, b_elt = b->first;
       a_elt && b_elt;
       a_elt = a_elt->next, b_elt = b_elt->next)
    {
      if (a_elt->indx != b_elt->indx)
	return false;
1792
      for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
1793 1794 1795 1796 1797 1798 1799 1800 1801
	if (a_elt->bits[ix] != b_elt->bits[ix])
	  return false;
    }
  return !a_elt && !b_elt;
}

/* Return true if A AND B is not empty.  */

bool
1802
bitmap_intersect_p (const_bitmap a, const_bitmap b)
1803
{
1804 1805
  const bitmap_element *a_elt;
  const bitmap_element *b_elt;
1806
  unsigned ix;
Mike Stump committed
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816
  for (a_elt = a->first, b_elt = b->first;
       a_elt && b_elt;)
    {
      if (a_elt->indx < b_elt->indx)
	a_elt = a_elt->next;
      else if (b_elt->indx < a_elt->indx)
	b_elt = b_elt->next;
      else
	{
1817
	  for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
1818 1819 1820 1821 1822 1823 1824 1825
	    if (a_elt->bits[ix] & b_elt->bits[ix])
	      return true;
	  a_elt = a_elt->next;
	  b_elt = b_elt->next;
	}
    }
  return false;
}
1826

1827
/* Return true if A AND NOT B is not empty.  */
1828

1829
bool
1830
bitmap_intersect_compl_p (const_bitmap a, const_bitmap b)
1831
{
1832 1833
  const bitmap_element *a_elt;
  const bitmap_element *b_elt;
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
  unsigned ix;
  for (a_elt = a->first, b_elt = b->first;
       a_elt && b_elt;)
    {
      if (a_elt->indx < b_elt->indx)
	return true;
      else if (b_elt->indx < a_elt->indx)
	b_elt = b_elt->next;
      else
	{
1844
	  for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
1845 1846 1847 1848 1849 1850 1851
	    if (a_elt->bits[ix] & ~b_elt->bits[ix])
	      return true;
	  a_elt = a_elt->next;
	  b_elt = b_elt->next;
	}
    }
  return a_elt != NULL;
Richard Kenner committed
1852
}
1853

Richard Kenner committed
1854

1855
/* DST = A | (FROM1 & ~FROM2).  Return true if DST changes.  */
Richard Kenner committed
1856

1857
bool
1858
bitmap_ior_and_compl (bitmap dst, const_bitmap a, const_bitmap b, const_bitmap kill)
Richard Kenner committed
1859
{
1860
  bool changed = false;
1861

1862
  bitmap_element *dst_elt = dst->first;
1863 1864 1865
  const bitmap_element *a_elt = a->first;
  const bitmap_element *b_elt = b->first;
  const bitmap_element *kill_elt = kill->first;
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
  bitmap_element *dst_prev = NULL;
  bitmap_element **dst_prev_pnext = &dst->first;

  gcc_assert (dst != a && dst != b && dst != kill);

  /* Special cases.  We don't bother checking for bitmap_equal_p (b, kill).  */
  if (b == kill || bitmap_empty_p (b))
    {
      changed = !bitmap_equal_p (dst, a);
      if (changed)
	bitmap_copy (dst, a);
      return changed;
    }
  if (bitmap_empty_p (kill))
    return bitmap_ior (dst, a, b);
  if (bitmap_empty_p (a))
    return bitmap_and_compl (dst, b, kill);

  while (a_elt || b_elt)
    {
      bool new_element = false;

      if (b_elt)
	while (kill_elt && kill_elt->indx < b_elt->indx)
	  kill_elt = kill_elt->next;

      if (b_elt && kill_elt && kill_elt->indx == b_elt->indx
	  && (!a_elt || a_elt->indx >= b_elt->indx))
        {
	  bitmap_element tmp_elt;
	  unsigned ix;

	  BITMAP_WORD ior = 0;
	  tmp_elt.indx = b_elt->indx;
1900
	  for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
            {
              BITMAP_WORD r = b_elt->bits[ix] & ~kill_elt->bits[ix];
              ior |= r;
              tmp_elt.bits[ix] = r;
            }

	  if (ior)
	    {
	      changed = bitmap_elt_ior (dst, dst_elt, dst_prev,
				        a_elt, &tmp_elt, changed);
	      new_element = true;
	      if (a_elt && a_elt->indx == b_elt->indx)
                a_elt = a_elt->next;
	    }

	  b_elt = b_elt->next;
	  kill_elt = kill_elt->next;
	}
      else
	{
	  changed = bitmap_elt_ior (dst, dst_elt, dst_prev,
				    a_elt, b_elt, changed);
	  new_element = true;

          if (a_elt && b_elt && a_elt->indx == b_elt->indx)
	    {
	      a_elt = a_elt->next;
	      b_elt = b_elt->next;
	    }
          else
	    {
	      if (a_elt && (!b_elt || a_elt->indx <= b_elt->indx))
                a_elt = a_elt->next;
              else if (b_elt && (!a_elt || b_elt->indx <= a_elt->indx))
                b_elt = b_elt->next;
	    }
	}

      if (new_element)
	{
	  dst_prev = *dst_prev_pnext;
	  dst_prev_pnext = &dst_prev->next;
	  dst_elt = *dst_prev_pnext;
	}
    }

  if (dst_elt)
    {
      changed = true;
1950 1951
      /* Ensure that dst->current is valid.  */
      dst->current = dst->first;
1952 1953
      bitmap_elt_clear_from (dst, dst_elt);
    }
1954
  gcc_checking_assert (!dst->current == !dst->first);
1955 1956
  if (dst->current)
    dst->indx = dst->current->indx;
1957

1958
  return changed;
Richard Kenner committed
1959
}
1960

1961
/* A |= (FROM1 & ~FROM2).  Return true if A changes.  */
1962 1963

bool
1964
bitmap_ior_and_compl_into (bitmap a, const_bitmap from1, const_bitmap from2)
1965 1966
{
  bitmap_head tmp;
1967
  bool changed;
Mike Stump committed
1968

1969
  bitmap_initialize (&tmp, &bitmap_default_obstack);
1970 1971
  bitmap_and_compl (&tmp, from1, from2);
  changed = bitmap_ior_into (a, &tmp);
1972 1973 1974 1975
  bitmap_clear (&tmp);

  return changed;
}
1976

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
/* A |= (B & C).  Return true if A changes.  */

bool
bitmap_ior_and_into (bitmap a, const_bitmap b, const_bitmap c)
{
  bitmap_element *a_elt = a->first;
  const bitmap_element *b_elt = b->first;
  const bitmap_element *c_elt = c->first;
  bitmap_element and_elt;
  bitmap_element *a_prev = NULL;
  bitmap_element **a_prev_pnext = &a->first;
  bool changed = false;
  unsigned ix;

  if (b == c)
    return bitmap_ior_into (a, b);
  if (bitmap_empty_p (b) || bitmap_empty_p (c))
    return false;

  and_elt.indx = -1;
  while (b_elt && c_elt)
    {
      BITMAP_WORD overall;

      /* Find a common item of B and C.  */
      while (b_elt->indx != c_elt->indx)
	{
          if (b_elt->indx < c_elt->indx)
	    {
	      b_elt = b_elt->next;
	      if (!b_elt)
		goto done;
	    }
          else
	    {
	      c_elt = c_elt->next;
	      if (!c_elt)
		goto done;
	    }
	}

      overall = 0;
      and_elt.indx = b_elt->indx;
2020
      for (ix = 0; ix < BITMAP_ELEMENT_WORDS; ix++)
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	{
	  and_elt.bits[ix] = b_elt->bits[ix] & c_elt->bits[ix];
	  overall |= and_elt.bits[ix];
	}

      b_elt = b_elt->next;
      c_elt = c_elt->next;
      if (!overall)
	continue;

      /* Now find a place to insert AND_ELT.  */
      do
	{
	  ix = a_elt ? a_elt->indx : and_elt.indx;
          if (ix == and_elt.indx)
	    changed = bitmap_elt_ior (a, a_elt, a_prev, a_elt, &and_elt, changed);
          else if (ix > and_elt.indx)
	    changed = bitmap_elt_copy (a, NULL, a_prev, &and_elt, changed);

          a_prev = *a_prev_pnext;
          a_prev_pnext = &a_prev->next;
          a_elt = *a_prev_pnext;

          /* If A lagged behind B/C, we advanced it so loop once more.  */
	}
      while (ix < and_elt.indx);
    }

 done:
2050
  gcc_checking_assert (!a->current == !a->first);
2051 2052 2053 2054
  if (a->current)
    a->indx = a->current->indx;
  return changed;
}
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

/* Compute hash of bitmap (for purposes of hashing).  */
hashval_t
bitmap_hash (const_bitmap head)
{
  const bitmap_element *ptr;
  BITMAP_WORD hash = 0;
  int ix;

  for (ptr = head->first; ptr; ptr = ptr->next)
    {
      hash ^= ptr->indx;
      for (ix = 0; ix != BITMAP_ELEMENT_WORDS; ix++)
	hash ^= ptr->bits[ix];
    }
  return (hashval_t)hash;
}

Richard Kenner committed
2073 2074 2075

/* Debugging function to print out the contents of a bitmap.  */

2076
DEBUG_FUNCTION void
2077
debug_bitmap_file (FILE *file, const_bitmap head)
Richard Kenner committed
2078
{
2079
  const bitmap_element *ptr;
Richard Kenner committed
2080

2081 2082
  fprintf (file, "\nfirst = " HOST_PTR_PRINTF
	   " current = " HOST_PTR_PRINTF " indx = %u\n",
2083
	   (void *) head->first, (void *) head->current, head->indx);
Richard Kenner committed
2084 2085 2086

  for (ptr = head->first; ptr; ptr = ptr->next)
    {
2087
      unsigned int i, j, col = 26;
Richard Kenner committed
2088

2089 2090
      fprintf (file, "\t" HOST_PTR_PRINTF " next = " HOST_PTR_PRINTF
	       " prev = " HOST_PTR_PRINTF " indx = %u\n\t\tbits = {",
2091 2092
	       (const void*) ptr, (const void*) ptr->next,
	       (const void*) ptr->prev, ptr->indx);
Richard Kenner committed
2093 2094

      for (i = 0; i < BITMAP_ELEMENT_WORDS; i++)
2095
	for (j = 0; j < BITMAP_WORD_BITS; j++)
2096
	  if ((ptr->bits[i] >> j) & 1)
Richard Kenner committed
2097 2098 2099 2100 2101 2102 2103 2104
	    {
	      if (col > 70)
		{
		  fprintf (file, "\n\t\t\t");
		  col = 24;
		}

	      fprintf (file, " %u", (ptr->indx * BITMAP_ELEMENT_ALL_BITS
2105
				     + i * BITMAP_WORD_BITS + j));
Richard Kenner committed
2106 2107 2108 2109 2110 2111
	      col += 4;
	    }

      fprintf (file, " }\n");
    }
}
2112

Richard Kenner committed
2113 2114 2115
/* Function to be called from the debugger to print the contents
   of a bitmap.  */

2116
DEBUG_FUNCTION void
2117
debug_bitmap (const_bitmap head)
Richard Kenner committed
2118
{
2119
  debug_bitmap_file (stderr, head);
Richard Kenner committed
2120
}
2121

2122
/* Function to print out the contents of a bitmap.  Unlike debug_bitmap_file,
2123 2124
   it does not print anything but the bits.  */

2125
DEBUG_FUNCTION void
2126 2127
bitmap_print (FILE *file, const_bitmap head, const char *prefix,
	      const char *suffix)
2128
{
2129
  const char *comma = "";
2130
  unsigned i;
2131
  bitmap_iterator bi;
2132 2133

  fputs (prefix, file);
2134 2135 2136 2137 2138
  EXECUTE_IF_SET_IN_BITMAP (head, 0, i, bi)
    {
      fprintf (file, "%s%d", comma, i);
      comma = ", ";
    }
2139 2140
  fputs (suffix, file);
}
2141 2142 2143 2144 2145

/* Output per-bitmap memory usage statistics.  */
void
dump_bitmap_statistics (void)
{
2146
  if (!GATHER_STATISTICS)
2147 2148
    return;

2149
  bitmap_mem_desc.dump (BITMAP_ORIGIN);
2150 2151
}

2152
DEBUG_FUNCTION void
2153
debug (const bitmap_head &ref)
2154 2155 2156 2157 2158
{
  dump_bitmap (stderr, &ref);
}

DEBUG_FUNCTION void
2159
debug (const bitmap_head *ptr)
2160 2161 2162 2163 2164 2165 2166
{
  if (ptr)
    debug (*ptr);
  else
    fprintf (stderr, "<nil>\n");
}

David Malcolm committed
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
#if CHECKING_P

namespace selftest {

/* Selftests for bitmaps.  */

/* Freshly-created bitmaps ought to be empty.  */

static void
test_gc_alloc ()
{
  bitmap b = bitmap_gc_alloc ();
  ASSERT_TRUE (bitmap_empty_p (b));
}

/* Verify bitmap_set_range.  */

static void
test_set_range ()
{
  bitmap b = bitmap_gc_alloc ();
  ASSERT_TRUE (bitmap_empty_p (b));

  bitmap_set_range (b, 7, 5);
  ASSERT_FALSE (bitmap_empty_p (b));
  ASSERT_EQ (5, bitmap_count_bits (b));

  /* Verify bitmap_bit_p at the boundaries.  */
  ASSERT_FALSE (bitmap_bit_p (b, 6));
  ASSERT_TRUE (bitmap_bit_p (b, 7));
  ASSERT_TRUE (bitmap_bit_p (b, 11));
  ASSERT_FALSE (bitmap_bit_p (b, 12));
}

/* Verify splitting a range into two pieces using bitmap_clear_bit.  */

static void
test_clear_bit_in_middle ()
{
  bitmap b = bitmap_gc_alloc ();

  /* Set b to [100..200].  */
  bitmap_set_range (b, 100, 100);
  ASSERT_EQ (100, bitmap_count_bits (b));

  /* Clear a bit in the middle.  */
  bool changed = bitmap_clear_bit (b, 150);
  ASSERT_TRUE (changed);
  ASSERT_EQ (99, bitmap_count_bits (b));
  ASSERT_TRUE (bitmap_bit_p (b, 149));
  ASSERT_FALSE (bitmap_bit_p (b, 150));
  ASSERT_TRUE (bitmap_bit_p (b, 151));
}

/* Verify bitmap_copy.  */

static void
test_copying ()
{
  bitmap src = bitmap_gc_alloc ();
  bitmap_set_range (src, 40, 10);

  bitmap dst = bitmap_gc_alloc ();
  ASSERT_FALSE (bitmap_equal_p (src, dst));
  bitmap_copy (dst, src);
  ASSERT_TRUE (bitmap_equal_p (src, dst));

  /* Verify that we can make them unequal again...  */
  bitmap_set_range (src, 70, 5);
  ASSERT_FALSE (bitmap_equal_p (src, dst));

  /* ...and that changing src after the copy didn't affect
     the other: */
  ASSERT_FALSE (bitmap_bit_p (dst, 70));
}

/* Verify bitmap_single_bit_set_p.  */

static void
test_bitmap_single_bit_set_p ()
{
  bitmap b = bitmap_gc_alloc ();

  ASSERT_FALSE (bitmap_single_bit_set_p (b));

  bitmap_set_range (b, 42, 1);
  ASSERT_TRUE (bitmap_single_bit_set_p (b));
  ASSERT_EQ (42, bitmap_first_set_bit (b));

  bitmap_set_range (b, 1066, 1);
  ASSERT_FALSE (bitmap_single_bit_set_p (b));
  ASSERT_EQ (42, bitmap_first_set_bit (b));

  bitmap_clear_range (b, 0, 100);
  ASSERT_TRUE (bitmap_single_bit_set_p (b));
  ASSERT_EQ (1066, bitmap_first_set_bit (b));
}

/* Run all of the selftests within this file.  */

void
bitmap_c_tests ()
{
  test_gc_alloc ();
  test_set_range ();
  test_clear_bit_in_middle ();
  test_copying ();
  test_bitmap_single_bit_set_p ();
}

} // namespace selftest
#endif /* CHECKING_P */
2279

2280
#include "gt-bitmap.h"