cse.c 236 KB
Newer Older
Richard Kenner committed
1
/* Common subexpression elimination for GNU compiler.
Jeff Law committed
2 3
   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
   1999, 2000 Free Software Foundation, Inc.
Richard Kenner committed
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
Richard Kenner committed
19 20
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */
Richard Kenner committed
21 22

#include "config.h"
23 24
/* stdio.h must precede rtl.h for FFS.  */
#include "system.h"
Kaveh R. Ghazi committed
25
#include <setjmp.h>
26

Richard Kenner committed
27
#include "rtl.h"
28
#include "tm_p.h"
Richard Kenner committed
29 30
#include "regs.h"
#include "hard-reg-set.h"
31
#include "basic-block.h"
Richard Kenner committed
32 33 34 35
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
36
#include "function.h"
Jeff Law committed
37
#include "expr.h"
Kaveh R. Ghazi committed
38 39
#include "toplev.h"
#include "output.h"
40
#include "ggc.h"
Richard Kenner committed
41 42 43 44 45 46 47

/* The basic idea of common subexpression elimination is to go
   through the code, keeping a record of expressions that would
   have the same value at the current scan point, and replacing
   expressions encountered with the cheapest equivalent expression.

   It is too complicated to keep track of the different possibilities
Jeffrey A Law committed
48 49 50 51 52 53 54 55
   when control paths merge in this code; so, at each label, we forget all
   that is known and start fresh.  This can be described as processing each
   extended basic block separately.  We have a separate pass to perform
   global CSE.

   Note CSE can turn a conditional or computed jump into a nop or
   an unconditional jump.  When this occurs we arrange to run the jump
   optimizer after CSE to delete the unreachable code.
Richard Kenner committed
56 57

   We use two data structures to record the equivalent expressions:
58 59
   a hash table for most expressions, and a vector of "quantity
   numbers" to record equivalent (pseudo) registers.
Richard Kenner committed
60 61 62 63 64 65 66 67 68 69 70

   The use of the special data structure for registers is desirable
   because it is faster.  It is possible because registers references
   contain a fairly small number, the register number, taken from
   a contiguously allocated series, and two register references are
   identical if they have the same number.  General expressions
   do not have any such thing, so the only way to retrieve the
   information recorded on an expression other than a register
   is to keep it in a hash table.

Registers and "quantity numbers":
71

Richard Kenner committed
72 73 74 75 76 77 78 79 80 81 82 83
   At the start of each basic block, all of the (hardware and pseudo)
   registers used in the function are given distinct quantity
   numbers to indicate their contents.  During scan, when the code
   copies one register into another, we copy the quantity number.
   When a register is loaded in any other way, we allocate a new
   quantity number to describe the value generated by this operation.
   `reg_qty' records what quantity a register is currently thought
   of as containing.

   All real quantity numbers are greater than or equal to `max_reg'.
   If register N has not been assigned a quantity, reg_qty[N] will equal N.

84 85
   Quantity numbers below `max_reg' do not exist and none of the `qty_table'
   entries should be referenced with an index below `max_reg'.
Richard Kenner committed
86 87

   We also maintain a bidirectional chain of registers for each
88 89
   quantity number.  The `qty_table` members `first_reg' and `last_reg',
   and `reg_eqv_table' members `next' and `prev' hold these chains.
Richard Kenner committed
90 91 92 93 94 95

   The first register in a chain is the one whose lifespan is least local.
   Among equals, it is the one that was seen first.
   We replace any equivalent register with that one.

   If two registers have the same quantity number, it must be true that
96
   REG expressions with qty_table `mode' must be in the hash table for both
Richard Kenner committed
97 98 99 100 101 102
   registers and must be in the same class.

   The converse is not true.  Since hard registers may be referenced in
   any mode, two REG expressions might be equivalent in the hash table
   but not have the same quantity number if the quantity number of one
   of the registers is not the same mode as those expressions.
103

Richard Kenner committed
104 105 106
Constants and quantity numbers

   When a quantity has a known constant value, that value is stored
107
   in the appropriate qty_table `const_rtx'.  This is in addition to
Richard Kenner committed
108 109
   putting the constant in the hash table as is usual for non-regs.

110
   Whether a reg or a constant is preferred is determined by the configuration
Richard Kenner committed
111 112 113 114
   macro CONST_COSTS and will often depend on the constant value.  In any
   event, expressions containing constants can be simplified, by fold_rtx.

   When a quantity has a known nearly constant value (such as an address
115 116
   of a stack slot), that value is stored in the appropriate qty_table
   `const_rtx'.
Richard Kenner committed
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

   Integer constants don't have a machine mode.  However, cse
   determines the intended machine mode from the destination
   of the instruction that moves the constant.  The machine mode
   is recorded in the hash table along with the actual RTL
   constant expression so that different modes are kept separate.

Other expressions:

   To record known equivalences among expressions in general
   we use a hash table called `table'.  It has a fixed number of buckets
   that contain chains of `struct table_elt' elements for expressions.
   These chains connect the elements whose expressions have the same
   hash codes.

   Other chains through the same elements connect the elements which
   currently have equivalent values.

   Register references in an expression are canonicalized before hashing
136
   the expression.  This is done using `reg_qty' and qty_table `first_reg'.
Richard Kenner committed
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
   The hash code of a register reference is computed using the quantity
   number, not the register number.

   When the value of an expression changes, it is necessary to remove from the
   hash table not just that expression but all expressions whose values
   could be different as a result.

     1. If the value changing is in memory, except in special cases
     ANYTHING referring to memory could be changed.  That is because
     nobody knows where a pointer does not point.
     The function `invalidate_memory' removes what is necessary.

     The special cases are when the address is constant or is
     a constant plus a fixed register such as the frame pointer
     or a static chain pointer.  When such addresses are stored in,
     we can tell exactly which other such addresses must be invalidated
     due to overlap.  `invalidate' does this.
     All expressions that refer to non-constant
     memory addresses are also invalidated.  `invalidate_memory' does this.

     2. If the value changing is a register, all expressions
     containing references to that register, and only those,
     must be removed.

   Because searching the entire hash table for expressions that contain
   a register is very slow, we try to figure out when it isn't necessary.
   Precisely, this is necessary only when expressions have been
   entered in the hash table using this register, and then the value has
   changed, and then another expression wants to be added to refer to
   the register's new value.  This sequence of circumstances is rare
   within any one basic block.

   The vectors `reg_tick' and `reg_in_table' are used to detect this case.
   reg_tick[i] is incremented whenever a value is stored in register i.
   reg_in_table[i] holds -1 if no references to register i have been
   entered in the table; otherwise, it contains the value reg_tick[i] had
   when the references were entered.  If we want to enter a reference
   and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
   Until we want to enter a new entry, the mere fact that the two vectors
   don't match makes the entries be ignored if anyone tries to match them.

   Registers themselves are entered in the hash table as well as in
   the equivalent-register chains.  However, the vectors `reg_tick'
   and `reg_in_table' do not apply to expressions which are simple
   register references.  These expressions are removed from the table
   immediately when they become invalid, and this can be done even if
   we do not immediately search for all the expressions that refer to
   the register.

   A CLOBBER rtx in an instruction invalidates its operand for further
   reuse.  A CLOBBER or SET rtx whose operand is a MEM:BLK
   invalidates everything that resides in memory.

Related expressions:

   Constant expressions that differ only by an additive integer
   are called related.  When a constant expression is put in
   the table, the related expression with no constant term
   is also entered.  These are made to point at each other
   so that it is possible to find out if there exists any
   register equivalent to an expression related to a given expression.  */
198

Richard Kenner committed
199 200 201 202
/* One plus largest register number used in this function.  */

static int max_reg;

203 204 205 206 207
/* One plus largest instruction UID used in this function at time of
   cse_main call.  */

static int max_insn_uid;

208 209
/* Length of qty_table vector.  We know in advance we will not need
   a quantity number this big.  */
Richard Kenner committed
210 211 212 213 214 215 216 217

static int max_qty;

/* Next quantity number to be allocated.
   This is 1 + the largest number needed so far.  */

static int next_qty;

218
/* Per-qty information tracking.
Richard Kenner committed
219

220 221
   `first_reg' and `last_reg' track the head and tail of the
   chain of registers which currently contain this quantity.
Richard Kenner committed
222

223
   `mode' contains the machine mode of this quantity.
Richard Kenner committed
224

225 226 227 228 229
   `const_rtx' holds the rtx of the constant value of this
   quantity, if known.  A summations of the frame/arg pointer
   and a constant can also be entered here.  When this holds
   a known value, `const_insn' is the insn which stored the
   constant value.
Richard Kenner committed
230

231 232 233 234 235 236 237 238 239 240 241
   `comparison_{code,const,qty}' are used to track when a
   comparison between a quantity and some constant or register has
   been passed.  In such a case, we know the results of the comparison
   in case we see it again.  These members record a comparison that
   is known to be true.  `comparison_code' holds the rtx code of such
   a comparison, else it is set to UNKNOWN and the other two
   comparison members are undefined.  `comparison_const' holds
   the constant being compared against, or zero if the comparison
   is not against a constant.  `comparison_qty' holds the quantity
   being compared against when the result is known.  If the comparison
   is not with a register, `comparison_qty' is -1.  */
Richard Kenner committed
242

243 244 245 246 247 248
struct qty_table_elem
{
  rtx const_rtx;
  rtx const_insn;
  rtx comparison_const;
  int comparison_qty;
249
  unsigned int first_reg, last_reg;
250 251 252
  enum machine_mode mode;
  enum rtx_code comparison_code;
};
Richard Kenner committed
253

254 255
/* The table of all qtys, indexed by qty number.  */
static struct qty_table_elem *qty_table;
Richard Kenner committed
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

#ifdef HAVE_cc0
/* For machines that have a CC0, we do not record its value in the hash
   table since its use is guaranteed to be the insn immediately following
   its definition and any other insn is presumed to invalidate it.

   Instead, we store below the value last assigned to CC0.  If it should
   happen to be a constant, it is stored in preference to the actual
   assigned value.  In case it is a constant, we store the mode in which
   the constant should be interpreted.  */

static rtx prev_insn_cc0;
static enum machine_mode prev_insn_cc0_mode;
#endif

/* Previous actual insn.  0 if at first insn of basic block.  */

static rtx prev_insn;

/* Insn being scanned.  */

static rtx this_insn;

279 280
/* Index by register number, gives the number of the next (or
   previous) register in the chain of registers sharing the same
Richard Kenner committed
281 282 283 284
   value.

   Or -1 if this register is at the end of the chain.

285 286 287 288 289 290 291
   If reg_qty[N] == N, reg_eqv_table[N].next is undefined.  */

/* Per-register equivalence chain.  */
struct reg_eqv_elem
{
  int next, prev;
};
Richard Kenner committed
292

293 294
/* The table of all register equivalence chains.  */
static struct reg_eqv_elem *reg_eqv_table;
Richard Kenner committed
295

Richard Kenner committed
296 297
struct cse_reg_info
{
298 299
  /* Next in hash chain.  */
  struct cse_reg_info *hash_next;
300 301

  /* The next cse_reg_info structure in the free or used list.  */
Richard Kenner committed
302
  struct cse_reg_info *next;
303

304
  /* Search key */
305
  unsigned int regno;
306 307 308 309 310 311 312 313

  /* The quantity number of the register's current contents.  */
  int reg_qty;

  /* The number of times the register has been altered in the current
     basic block.  */
  int reg_tick;

314 315 316 317 318 319
  /* The REG_TICK value at which rtx's containing this register are
     valid in the hash table.  If this does not equal the current
     reg_tick value, such expressions existing in the hash table are
     invalid.  */
  int reg_in_table;
};
Richard Kenner committed
320

321 322
/* A free list of cse_reg_info entries.  */
static struct cse_reg_info *cse_reg_info_free_list;
Richard Kenner committed
323

324 325 326 327
/* A used list of cse_reg_info entries.  */
static struct cse_reg_info *cse_reg_info_used_list;
static struct cse_reg_info *cse_reg_info_used_list_end;

328
/* A mapping from registers to cse_reg_info data structures.  */
329 330 331 332 333 334 335
#define REGHASH_SHIFT	7
#define REGHASH_SIZE	(1 << REGHASH_SHIFT)
#define REGHASH_MASK	(REGHASH_SIZE - 1)
static struct cse_reg_info *reg_hash[REGHASH_SIZE];

#define REGHASH_FN(REGNO)	\
	(((REGNO) ^ ((REGNO) >> REGHASH_SHIFT)) & REGHASH_MASK)
Richard Kenner committed
336

337 338
/* The last lookup we did into the cse_reg_info_tree.  This allows us
   to cache repeated lookups.  */
339
static unsigned int cached_regno;
340
static struct cse_reg_info *cached_cse_reg_info;
Richard Kenner committed
341

342
/* A HARD_REG_SET containing all the hard registers for which there is
Richard Kenner committed
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
   currently a REG expression in the hash table.  Note the difference
   from the above variables, which indicate if the REG is mentioned in some
   expression in the table.  */

static HARD_REG_SET hard_regs_in_table;

/* A HARD_REG_SET containing all the hard registers that are invalidated
   by a CALL_INSN.  */

static HARD_REG_SET regs_invalidated_by_call;

/* CUID of insn that starts the basic block currently being cse-processed.  */

static int cse_basic_block_start;

/* CUID of insn that ends the basic block currently being cse-processed.  */

static int cse_basic_block_end;

/* Vector mapping INSN_UIDs to cuids.
363
   The cuids are like uids but increase monotonically always.
Richard Kenner committed
364 365
   We use them to see whether a reg is used outside a given basic block.  */

366
static int *uid_cuid;
Richard Kenner committed
367

368 369 370
/* Highest UID in UID_CUID.  */
static int max_uid;

Richard Kenner committed
371 372 373 374
/* Get the cuid of an insn.  */

#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])

375 376 377 378 379
/* Nonzero if this pass has made changes, and therefore it's
   worthwhile to run the garbage collector.  */

static int cse_altered;

Richard Kenner committed
380 381 382 383 384
/* Nonzero if cse has altered conditional jump insns
   in such a way that jump optimization should be redone.  */

static int cse_jumps_altered;

385 386 387 388 389
/* Nonzero if we put a LABEL_REF into the hash table.  Since we may have put
   it into an INSN without a REG_LABEL, we have to rerun jump after CSE
   to put in the note.  */
static int recorded_label_ref;

Richard Kenner committed
390 391 392 393 394 395
/* canon_hash stores 1 in do_not_record
   if it notices a reference to CC0, PC, or some other volatile
   subexpression.  */

static int do_not_record;

396 397 398 399 400 401
#ifdef LOAD_EXTEND_OP

/* Scratch rtl used when looking for load-extended copy of a MEM.  */
static rtx memory_extend_rtx;
#endif

Richard Kenner committed
402 403 404 405 406 407 408 409 410
/* canon_hash stores 1 in hash_arg_in_memory
   if it notices a reference to memory within the expression being hashed.  */

static int hash_arg_in_memory;

/* The hash table contains buckets which are chains of `struct table_elt's,
   each recording one expression's information.
   That expression is in the `exp' field.

411 412 413
   The canon_exp field contains a canonical (from the point of view of
   alias analysis) version of the `exp' field.

Richard Kenner committed
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
   Those elements with the same hash code are chained in both directions
   through the `next_same_hash' and `prev_same_hash' fields.

   Each set of expressions with equivalent values
   are on a two-way chain through the `next_same_value'
   and `prev_same_value' fields, and all point with
   the `first_same_value' field at the first element in
   that chain.  The chain is in order of increasing cost.
   Each element's cost value is in its `cost' field.

   The `in_memory' field is nonzero for elements that
   involve any reference to memory.  These elements are removed
   whenever a write is done to an unidentified location in memory.
   To be safe, we assume that a memory address is unidentified unless
   the address is either a symbol constant or a constant plus
   the frame pointer or argument pointer.

   The `related_value' field is used to connect related expressions
   (that differ by adding an integer).
   The related expressions are chained in a circular fashion.
   `related_value' is zero for expressions for which this
   chain is not useful.

   The `cost' field stores the cost of this element's expression.
438 439
   The `regcost' field stores the value returned by approx_reg_cost for
   this element's expression.
Richard Kenner committed
440 441 442 443 444 445 446 447 448 449 450 451 452 453

   The `is_const' flag is set if the element is a constant (including
   a fixed address).

   The `flag' field is used as a temporary during some search routines.

   The `mode' field is usually the same as GET_MODE (`exp'), but
   if `exp' is a CONST_INT and has no machine mode then the `mode'
   field is the mode it was being used as.  Each constant is
   recorded separately for each mode it is used with.  */

struct table_elt
{
  rtx exp;
454
  rtx canon_exp;
Richard Kenner committed
455 456 457 458 459 460 461
  struct table_elt *next_same_hash;
  struct table_elt *prev_same_hash;
  struct table_elt *next_same_value;
  struct table_elt *prev_same_value;
  struct table_elt *first_same_value;
  struct table_elt *related_value;
  int cost;
462
  int regcost;
Richard Kenner committed
463 464 465 466 467 468 469 470 471
  enum machine_mode mode;
  char in_memory;
  char is_const;
  char flag;
};

/* We don't want a lot of buckets, because we rarely have very many
   things stored in the hash table, and a lot of buckets slows
   down a lot of loops that happen frequently.  */
472 473 474
#define HASH_SHIFT	5
#define HASH_SIZE	(1 << HASH_SHIFT)
#define HASH_MASK	(HASH_SIZE - 1)
Richard Kenner committed
475 476 477 478 479

/* Compute hash code of X in mode M.  Special-case case where X is a pseudo
   register (hard registers may require `do_not_record' to be set).  */

#define HASH(X, M)	\
480 481 482
 ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
  ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X)))	\
  : canon_hash (X, M)) & HASH_MASK)
Richard Kenner committed
483

484 485
/* Determine whether register number N is considered a fixed register for the
   purpose of approximating register costs.
Richard Kenner committed
486 487
   It is desirable to replace other regs with fixed regs, to reduce need for
   non-fixed hard regs.
Bernd Schmidt committed
488
   A reg wins if it is either the frame pointer or designated as fixed.  */
Richard Kenner committed
489
#define FIXED_REGNO_P(N)  \
490
  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
491
   || fixed_regs[N] || global_regs[N])
Richard Kenner committed
492 493

/* Compute cost of X, as stored in the `cost' field of a table_elt.  Fixed
494 495 496 497
   hard registers and pointers into the frame are the cheapest with a cost
   of 0.  Next come pseudos with a cost of one and other hard registers with
   a cost of 2.  Aside from these special cases, call `rtx_cost'.  */

498
#define CHEAP_REGNO(N) \
499 500 501 502
  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM 	\
   || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM	     	\
   || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) 	\
   || ((N) < FIRST_PSEUDO_REGISTER					\
503
       && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
Richard Kenner committed
504

505 506
#define COST(X) (GET_CODE (X) == REG ? 0 : notreg_cost (X, SET))
#define COST_IN(X,OUTER) (GET_CODE (X) == REG ? 0 : notreg_cost (X, OUTER))
Richard Kenner committed
507

508 509 510 511 512 513 514 515 516
/* Get the info associated with register N.  */

#define GET_CSE_REG_INFO(N) 			\
  (((N) == cached_regno && cached_cse_reg_info)	\
   ? cached_cse_reg_info : get_cse_reg_info ((N)))

/* Get the number of times this register has been updated in this
   basic block.  */

517
#define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)
518 519 520 521 522 523 524 525 526

/* Get the point at which REG was recorded in the table.  */

#define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)

/* Get the quantity number for REG.  */

#define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)

Richard Kenner committed
527
/* Determine if the quantity number for register X represents a valid index
528
   into the qty_table.  */
Richard Kenner committed
529

530
#define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (int) (N))
Richard Kenner committed
531

532
static struct table_elt *table[HASH_SIZE];
Richard Kenner committed
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

/* Chain of `struct table_elt's made so far for this function
   but currently removed from the table.  */

static struct table_elt *free_element_chain;

/* Number of `struct table_elt' structures made so far for this function.  */

static int n_elements_made;

/* Maximum value `n_elements_made' has had so far in this compilation
   for functions previously processed.  */

static int max_elements_made;

548
/* Surviving equivalence class when two equivalence classes are merged
Richard Kenner committed
549 550 551 552 553 554 555 556 557 558 559 560
   by recording the effects of a jump in the last insn.  Zero if the
   last insn was not a conditional jump.  */

static struct table_elt *last_jump_equiv_class;

/* Set to the cost of a constant pool reference if one was found for a
   symbolic constant.  If this was found, it means we should try to
   convert constants into constant pool entries if they don't fit in
   the insn.  */

static int constant_pool_entries_cost;

561 562 563 564 565 566
/* Define maximum length of a branch path.  */

#define PATHLENGTH	10

/* This data describes a block that will be processed by cse_basic_block.  */

Richard Kenner committed
567 568
struct cse_basic_block_data
{
569 570 571 572 573 574 575 576 577 578 579
  /* Lowest CUID value of insns in block.  */
  int low_cuid;
  /* Highest CUID value of insns in block.  */
  int high_cuid;
  /* Total number of SETs in block.  */
  int nsets;
  /* Last insn in the block.  */
  rtx last;
  /* Size of current branch path, if any.  */
  int path_size;
  /* Current branch path, indicating which branches will be taken.  */
Richard Kenner committed
580 581 582 583 584 585
  struct branch_path
    {
      /* The branch insn.  */
      rtx branch;
      /* Whether it should be taken or not.  AROUND is the same as taken
	 except that it is used when the destination label is not preceded
586
       by a BARRIER.  */
Richard Kenner committed
587 588
      enum taken {TAKEN, NOT_TAKEN, AROUND} status;
    } path[PATHLENGTH];
589 590
};

Richard Kenner committed
591 592
/* Nonzero if X has the form (PLUS frame-pointer integer).  We check for
   virtual regs here because the simplify_*_operation routines are called
593
   by integrate.c, which is called before virtual register instantiation.
594 595 596 597 598

   ?!? FIXED_BASE_PLUS_P and NONZERO_BASE_PLUS_P need to move into
   a header file so that their definitions can be shared with the
   simplification routines in simplify-rtx.c.  Until then, do not
   change these macros without also changing the copy in simplify-rtx.c.  */
Richard Kenner committed
599 600

#define FIXED_BASE_PLUS_P(X)					\
601
  ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx	\
602
   || ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
Richard Kenner committed
603 604 605 606
   || (X) == virtual_stack_vars_rtx				\
   || (X) == virtual_incoming_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == frame_pointer_rtx			\
607
	   || XEXP (X, 0) == hard_frame_pointer_rtx		\
608 609
	   || ((X) == arg_pointer_rtx				\
	       && fixed_regs[ARG_POINTER_REGNUM])		\
Richard Kenner committed
610
	   || XEXP (X, 0) == virtual_stack_vars_rtx		\
611 612
	   || XEXP (X, 0) == virtual_incoming_args_rtx))	\
   || GET_CODE (X) == ADDRESSOF)
Richard Kenner committed
613

Jim Wilson committed
614 615 616 617 618
/* Similar, but also allows reference to the stack pointer.

   This used to include FIXED_BASE_PLUS_P, however, we can't assume that
   arg_pointer_rtx by itself is nonzero, because on at least one machine,
   the i960, the arg pointer is zero when it is unused.  */
Richard Kenner committed
619 620

#define NONZERO_BASE_PLUS_P(X)					\
621
  ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx	\
Jim Wilson committed
622 623 624 625
   || (X) == virtual_stack_vars_rtx				\
   || (X) == virtual_incoming_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == frame_pointer_rtx			\
626
	   || XEXP (X, 0) == hard_frame_pointer_rtx		\
627 628
	   || ((X) == arg_pointer_rtx				\
	       && fixed_regs[ARG_POINTER_REGNUM])		\
Jim Wilson committed
629 630
	   || XEXP (X, 0) == virtual_stack_vars_rtx		\
	   || XEXP (X, 0) == virtual_incoming_args_rtx))	\
Richard Kenner committed
631 632 633 634 635 636
   || (X) == stack_pointer_rtx					\
   || (X) == virtual_stack_dynamic_rtx				\
   || (X) == virtual_outgoing_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == stack_pointer_rtx			\
	   || XEXP (X, 0) == virtual_stack_dynamic_rtx		\
637 638
	   || XEXP (X, 0) == virtual_outgoing_args_rtx))	\
   || GET_CODE (X) == ADDRESSOF)
Richard Kenner committed
639

640
static int notreg_cost		PARAMS ((rtx, enum rtx_code));
641 642 643
static int approx_reg_cost_1	PARAMS ((rtx *, void *));
static int approx_reg_cost	PARAMS ((rtx));
static int preferrable		PARAMS ((int, int, int, int));
644
static void new_basic_block	PARAMS ((void));
645 646 647
static void make_new_qty	PARAMS ((unsigned int, enum machine_mode));
static void make_regs_eqv	PARAMS ((unsigned int, unsigned int));
static void delete_reg_equiv	PARAMS ((unsigned int));
648 649 650 651 652 653 654 655 656 657 658 659
static int mention_regs		PARAMS ((rtx));
static int insert_regs		PARAMS ((rtx, struct table_elt *, int));
static void remove_from_table	PARAMS ((struct table_elt *, unsigned));
static struct table_elt *lookup	PARAMS ((rtx, unsigned, enum machine_mode)),
       *lookup_for_remove PARAMS ((rtx, unsigned, enum machine_mode));
static rtx lookup_as_function	PARAMS ((rtx, enum rtx_code));
static struct table_elt *insert PARAMS ((rtx, struct table_elt *, unsigned,
					 enum machine_mode));
static void merge_equiv_classes PARAMS ((struct table_elt *,
					 struct table_elt *));
static void invalidate		PARAMS ((rtx, enum machine_mode));
static int cse_rtx_varies_p	PARAMS ((rtx));
660 661 662
static void remove_invalid_refs	PARAMS ((unsigned int));
static void remove_invalid_subreg_refs	PARAMS ((unsigned int, unsigned int,
						 enum machine_mode));
663 664 665 666 667
static void rehash_using_reg	PARAMS ((rtx));
static void invalidate_memory	PARAMS ((void));
static void invalidate_for_call	PARAMS ((void));
static rtx use_related_value	PARAMS ((rtx, struct table_elt *));
static unsigned canon_hash	PARAMS ((rtx, enum machine_mode));
668
static unsigned canon_hash_string PARAMS ((const char *));
669 670 671
static unsigned safe_hash	PARAMS ((rtx, enum machine_mode));
static int exp_equiv_p		PARAMS ((rtx, rtx, int, int));
static rtx canon_reg		PARAMS ((rtx, rtx));
672
static void find_best_addr	PARAMS ((rtx, rtx *, enum machine_mode));
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
static enum rtx_code find_comparison_args PARAMS ((enum rtx_code, rtx *, rtx *,
						   enum machine_mode *,
						   enum machine_mode *));
static rtx fold_rtx		PARAMS ((rtx, rtx));
static rtx equiv_constant	PARAMS ((rtx));
static void record_jump_equiv	PARAMS ((rtx, int));
static void record_jump_cond	PARAMS ((enum rtx_code, enum machine_mode,
					 rtx, rtx, int));
static void cse_insn		PARAMS ((rtx, rtx));
static int addr_affects_sp_p	PARAMS ((rtx));
static void invalidate_from_clobbers PARAMS ((rtx));
static rtx cse_process_notes	PARAMS ((rtx, rtx));
static void cse_around_loop	PARAMS ((rtx));
static void invalidate_skipped_set PARAMS ((rtx, rtx, void *));
static void invalidate_skipped_block PARAMS ((rtx));
static void cse_check_loop_start PARAMS ((rtx, rtx, void *));
static void cse_set_around_loop	PARAMS ((rtx, rtx, rtx));
static rtx cse_basic_block	PARAMS ((rtx, rtx, struct branch_path *, int));
static void count_reg_usage	PARAMS ((rtx, int *, rtx, int));
extern void dump_class          PARAMS ((struct table_elt*));
693
static struct cse_reg_info * get_cse_reg_info PARAMS ((unsigned int));
694
static int check_dependence	PARAMS ((rtx *, void *));
695 696

static void flush_hash_table	PARAMS ((void));
Richard Kenner committed
697

698 699
/* Dump the expressions in the equivalence class indicated by CLASSP.
   This function is used only for debugging.  */
700
void
701 702 703 704 705 706 707 708
dump_class (classp)
     struct table_elt *classp;
{
  struct table_elt *elt;

  fprintf (stderr, "Equivalence chain for ");
  print_rtl (stderr, classp->exp);
  fprintf (stderr, ": \n");
709

710 711 712 713 714 715 716
  for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
    {
      print_rtl (stderr, elt->exp);
      fprintf (stderr, "\n");
    }
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
/* Subroutine of approx_reg_cost; called through for_each_rtx.  */
static int
approx_reg_cost_1 (xp, data)
     rtx *xp;
     void *data;
{
  rtx x = *xp;
  regset set = (regset) data;

  if (x && GET_CODE (x) == REG)
    SET_REGNO_REG_SET (set, REGNO (x));
  return 0;
}

/* Return an estimate of the cost of the registers used in an rtx.
   This is mostly the number of different REG expressions in the rtx;
   however for some excecptions like fixed registers we use a cost of
734
   0.  If any other hard register reference occurs, return MAX_COST.  */
735 736 737 738 739 740 741 742

static int
approx_reg_cost (x)
     rtx x;
{
  regset_head set;
  int i;
  int cost = 0;
743
  int hardregs = 0;
744 745 746 747 748 749 750 751

  INIT_REG_SET (&set);
  for_each_rtx (&x, approx_reg_cost_1, (void *)&set);

  EXECUTE_IF_SET_IN_REG_SET
    (&set, 0, i,
     {
       if (! CHEAP_REGNO (i))
752 753 754 755 756 757
	 {
	   if (i < FIRST_PSEUDO_REGISTER)
	     hardregs++;

	   cost += i < FIRST_PSEUDO_REGISTER ? 2 : 1;
	 }
758 759 760
     });

  CLEAR_REG_SET (&set);
761
  return hardregs && SMALL_REGISTER_CLASSES ? MAX_COST : cost;
762 763 764 765 766 767 768 769 770 771
}

/* Return a negative value if an rtx A, whose costs are given by COST_A
   and REGCOST_A, is more desirable than an rtx B.
   Return a positive value if A is less desirable, or 0 if the two are
   equally good.  */
static int
preferrable (cost_a, regcost_a, cost_b, regcost_b)
     int cost_a, regcost_a, cost_b, regcost_b;
{
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
  /* First, get rid of a cases involving expressions that are entirely
     unwanted.  */
  if (cost_a != cost_b)
    {
      if (cost_a == MAX_COST)
	return 1;
      if (cost_b == MAX_COST)
	return -1;
    }

  /* Avoid extending lifetimes of hardregs.  */
  if (regcost_a != regcost_b)
    {
      if (regcost_a == MAX_COST)
	return 1;
      if (regcost_b == MAX_COST)
	return -1;
    }

  /* Normal operation costs take precedence.  */
792 793
  if (cost_a != cost_b)
    return cost_a - cost_b;
794
  /* Only if these are identical consider effects on register pressure.  */
795 796 797 798 799
  if (regcost_a != regcost_b)
    return regcost_a - regcost_b;
  return 0;
}

800 801 802 803
/* Internal function, to compute cost when X is not a register; called
   from COST macro to keep it simple.  */

static int
804
notreg_cost (x, outer)
805
     rtx x;
806
     enum rtx_code outer;
807 808 809 810 811 812 813 814 815 816
{
  return ((GET_CODE (x) == SUBREG
	   && GET_CODE (SUBREG_REG (x)) == REG
	   && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
	   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
	   && (GET_MODE_SIZE (GET_MODE (x))
	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
	   && subreg_lowpart_p (x)
	   && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
				     GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
817
	  ? 0
818
	  : rtx_cost (x, outer) * 2);
819 820
}

821 822 823 824 825
/* Return an estimate of the cost of computing rtx X.
   One use is in cse, to decide which expression to keep in the hash table.
   Another is in rtl generation, to pick the cheapest way to multiply.
   Other uses like the latter are expected in the future.  */

Richard Kenner committed
826
int
827
rtx_cost (x, outer_code)
Richard Kenner committed
828
     rtx x;
Kaveh R. Ghazi committed
829
     enum rtx_code outer_code ATTRIBUTE_UNUSED;
Richard Kenner committed
830 831 832
{
  register int i, j;
  register enum rtx_code code;
833
  register const char *fmt;
Richard Kenner committed
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
  register int total;

  if (x == 0)
    return 0;

  /* Compute the default costs of certain things.
     Note that RTX_COSTS can override the defaults.  */

  code = GET_CODE (x);
  switch (code)
    {
    case MULT:
      /* Count multiplication by 2**n as a shift,
	 because if we are considering it, we would output it as a shift.  */
      if (GET_CODE (XEXP (x, 1)) == CONST_INT
	  && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
	total = 2;
      else
	total = COSTS_N_INSNS (5);
      break;
    case DIV:
    case UDIV:
    case MOD:
    case UMOD:
      total = COSTS_N_INSNS (7);
      break;
    case USE:
      /* Used in loop.c and combine.c as a marker.  */
      total = 0;
      break;
    default:
865
      total = COSTS_N_INSNS (1);
Richard Kenner committed
866 867 868 869 870
    }

  switch (code)
    {
    case REG:
871
      return 0;
872

Richard Kenner committed
873
    case SUBREG:
874 875 876 877 878
      /* If we can't tie these modes, make this expensive.  The larger
	 the mode, the more expensive it is.  */
      if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
	return COSTS_N_INSNS (2
			      + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
879 880
      break;

Richard Kenner committed
881
#ifdef RTX_COSTS
882
      RTX_COSTS (x, code, outer_code);
883
#endif
884
#ifdef CONST_COSTS
885
      CONST_COSTS (x, code, outer_code);
886
#endif
887 888 889

    default:
#ifdef DEFAULT_RTX_COSTS
890
      DEFAULT_RTX_COSTS (x, code, outer_code);
891 892
#endif
      break;
Richard Kenner committed
893 894 895 896 897 898 899 900
    }

  /* Sum the costs of the sub-rtx's, plus cost of this operation,
     which is already in total.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
901
      total += rtx_cost (XEXP (x, i), code);
Richard Kenner committed
902 903
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
904
	total += rtx_cost (XVECEXP (x, i, j), code);
Richard Kenner committed
905 906 907 908

  return total;
}

909 910 911
/* Return cost of address expression X.
   Expect that X is propertly formed address reference.  */

912 913 914 915 916 917 918 919 920 921 922 923 924 925
int
address_cost (x, mode)
     rtx x;
     enum machine_mode mode;
{
  /* The ADDRESS_COST macro does not deal with ADDRESSOF nodes.  But,
     during CSE, such nodes are present.  Using an ADDRESSOF node which
     refers to the address of a REG is a good thing because we can then
     turn (MEM (ADDRESSSOF (REG))) into just plain REG.  */

  if (GET_CODE (x) == ADDRESSOF && REG_P (XEXP ((x), 0)))
    return -1;

  /* We may be asked for cost of various unusual addresses, such as operands
926
     of push instruction.  It is not worthwhile to complicate writing
927 928 929 930 931 932 933 934 935 936
     of ADDRESS_COST macro by such cases.  */

  if (!memory_address_p (mode, x))
    return 1000;
#ifdef ADDRESS_COST
  return ADDRESS_COST (x);
#else
  return rtx_cost (x, MEM);
#endif
}
937

938

939 940
static struct cse_reg_info *
get_cse_reg_info (regno)
941
     unsigned int regno;
942
{
943 944 945
  struct cse_reg_info **hash_head = &reg_hash[REGHASH_FN (regno)];
  struct cse_reg_info *p;

946
  for (p = *hash_head; p != NULL; p = p->hash_next)
947 948 949 950
    if (p->regno == regno)
      break;

  if (p == NULL)
951 952
    {
      /* Get a new cse_reg_info structure.  */
953
      if (cse_reg_info_free_list)
954
	{
955 956
	  p = cse_reg_info_free_list;
	  cse_reg_info_free_list = p->next;
957 958
	}
      else
959 960 961 962 963
	p = (struct cse_reg_info *) xmalloc (sizeof (struct cse_reg_info));

      /* Insert into hash table.  */
      p->hash_next = *hash_head;
      *hash_head = p;
964 965

      /* Initialize it.  */
966 967 968 969 970 971
      p->reg_tick = 1;
      p->reg_in_table = -1;
      p->reg_qty = regno;
      p->regno = regno;
      p->next = cse_reg_info_used_list;
      cse_reg_info_used_list = p;
972
      if (!cse_reg_info_used_list_end)
973
	cse_reg_info_used_list_end = p;
974 975 976 977 978
    }

  /* Cache this lookup; we tend to be looking up information about the
     same register several times in a row.  */
  cached_regno = regno;
979
  cached_cse_reg_info = p;
980

981
  return p;
982 983
}

Richard Kenner committed
984 985 986 987 988 989 990 991 992 993
/* Clear the hash table and initialize each register with its own quantity,
   for a new basic block.  */

static void
new_basic_block ()
{
  register int i;

  next_qty = max_reg;

994 995 996 997 998
  /* Clear out hash table state for this pass.  */

  bzero ((char *) reg_hash, sizeof reg_hash);

  if (cse_reg_info_used_list)
999
    {
1000 1001 1002
      cse_reg_info_used_list_end->next = cse_reg_info_free_list;
      cse_reg_info_free_list = cse_reg_info_used_list;
      cse_reg_info_used_list = cse_reg_info_used_list_end = 0;
1003
    }
1004
  cached_cse_reg_info = 0;
Richard Kenner committed
1005 1006 1007 1008 1009 1010

  CLEAR_HARD_REG_SET (hard_regs_in_table);

  /* The per-quantity values used to be initialized here, but it is
     much faster to initialize each as it is made in `make_new_qty'.  */

1011
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1012
    {
1013 1014 1015 1016
      struct table_elt *first;

      first = table[i];
      if (first != NULL)
Richard Kenner committed
1017
	{
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	  struct table_elt *last = first;

	  table[i] = NULL;

	  while (last->next_same_hash != NULL)
	    last = last->next_same_hash;

	  /* Now relink this hash entire chain into
	     the free element list.  */

	  last->next_same_hash = free_element_chain;
	  free_element_chain = first;
Richard Kenner committed
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	}
    }

  prev_insn = 0;

#ifdef HAVE_cc0
  prev_insn_cc0 = 0;
#endif
}

1040 1041
/* Say that register REG contains a quantity in mode MODE not in any
   register before and initialize that quantity.  */
Richard Kenner committed
1042 1043

static void
1044
make_new_qty (reg, mode)
1045 1046
     unsigned int reg;
     enum machine_mode mode;
Richard Kenner committed
1047 1048
{
  register int q;
1049 1050
  register struct qty_table_elem *ent;
  register struct reg_eqv_elem *eqv;
Richard Kenner committed
1051 1052 1053 1054

  if (next_qty >= max_qty)
    abort ();

1055
  q = REG_QTY (reg) = next_qty++;
1056 1057 1058 1059 1060 1061 1062 1063 1064
  ent = &qty_table[q];
  ent->first_reg = reg;
  ent->last_reg = reg;
  ent->mode = mode;
  ent->const_rtx = ent->const_insn = NULL_RTX;
  ent->comparison_code = UNKNOWN;

  eqv = &reg_eqv_table[reg];
  eqv->next = eqv->prev = -1;
Richard Kenner committed
1065 1066 1067 1068 1069 1070 1071
}

/* Make reg NEW equivalent to reg OLD.
   OLD is not changing; NEW is.  */

static void
make_regs_eqv (new, old)
1072
     unsigned int new, old;
Richard Kenner committed
1073
{
1074 1075 1076
  unsigned int lastr, firstr;
  int q = REG_QTY (old);
  struct qty_table_elem *ent;
1077 1078

  ent = &qty_table[q];
Richard Kenner committed
1079 1080 1081 1082 1083

  /* Nothing should become eqv until it has a "non-invalid" qty number.  */
  if (! REGNO_QTY_VALID_P (old))
    abort ();

1084
  REG_QTY (new) = q;
1085 1086
  firstr = ent->first_reg;
  lastr = ent->last_reg;
Richard Kenner committed
1087 1088 1089 1090 1091 1092 1093 1094

  /* Prefer fixed hard registers to anything.  Prefer pseudo regs to other
     hard regs.  Among pseudos, if NEW will live longer than any other reg
     of the same qty, and that is beyond the current basic block,
     make it the new canonical replacement for this qty.  */
  if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
      /* Certain fixed registers might be of the class NO_REGS.  This means
	 that not only can they not be allocated by the compiler, but
1095
	 they cannot be used in substitutions or canonicalizations
Richard Kenner committed
1096 1097 1098 1099 1100
	 either.  */
      && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
      && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
	  || (new >= FIRST_PSEUDO_REGISTER
	      && (firstr < FIRST_PSEUDO_REGISTER
1101 1102
		  || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
		       || (uid_cuid[REGNO_FIRST_UID (new)]
Richard Kenner committed
1103
			   < cse_basic_block_start))
1104 1105
		      && (uid_cuid[REGNO_LAST_UID (new)]
			  > uid_cuid[REGNO_LAST_UID (firstr)]))))))
Richard Kenner committed
1106
    {
1107 1108 1109 1110
      reg_eqv_table[firstr].prev = new;
      reg_eqv_table[new].next = firstr;
      reg_eqv_table[new].prev = -1;
      ent->first_reg = new;
Richard Kenner committed
1111 1112 1113 1114 1115 1116 1117
    }
  else
    {
      /* If NEW is a hard reg (known to be non-fixed), insert at end.
	 Otherwise, insert before any non-fixed hard regs that are at the
	 end.  Registers of class NO_REGS cannot be used as an
	 equivalent for anything.  */
1118
      while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
Richard Kenner committed
1119 1120
	     && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
	     && new >= FIRST_PSEUDO_REGISTER)
1121 1122 1123 1124
	lastr = reg_eqv_table[lastr].prev;
      reg_eqv_table[new].next = reg_eqv_table[lastr].next;
      if (reg_eqv_table[lastr].next >= 0)
	reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
Richard Kenner committed
1125
      else
1126 1127 1128
	qty_table[q].last_reg = new;
      reg_eqv_table[lastr].next = new;
      reg_eqv_table[new].prev = lastr;
Richard Kenner committed
1129 1130 1131 1132 1133 1134 1135
    }
}

/* Remove REG from its equivalence class.  */

static void
delete_reg_equiv (reg)
1136
     unsigned int reg;
Richard Kenner committed
1137
{
1138
  register struct qty_table_elem *ent;
1139
  register int q = REG_QTY (reg);
1140
  register int p, n;
Richard Kenner committed
1141

1142
  /* If invalid, do nothing.  */
1143
  if (q == (int) reg)
Richard Kenner committed
1144 1145
    return;

1146 1147 1148 1149
  ent = &qty_table[q];

  p = reg_eqv_table[reg].prev;
  n = reg_eqv_table[reg].next;
1150

Richard Kenner committed
1151
  if (n != -1)
1152
    reg_eqv_table[n].prev = p;
Richard Kenner committed
1153
  else
1154
    ent->last_reg = p;
Richard Kenner committed
1155
  if (p != -1)
1156
    reg_eqv_table[p].next = n;
Richard Kenner committed
1157
  else
1158
    ent->first_reg = n;
Richard Kenner committed
1159

1160
  REG_QTY (reg) = reg;
Richard Kenner committed
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
}

/* Remove any invalid expressions from the hash table
   that refer to any of the registers contained in expression X.

   Make sure that newly inserted references to those registers
   as subexpressions will be considered valid.

   mention_regs is not called when a register itself
   is being stored in the table.

   Return 1 if we have done something that may have changed the hash code
   of X.  */

static int
mention_regs (x)
     rtx x;
{
  register enum rtx_code code;
  register int i, j;
1181
  register const char *fmt;
Richard Kenner committed
1182 1183 1184
  register int changed = 0;

  if (x == 0)
1185
    return 0;
Richard Kenner committed
1186 1187 1188 1189

  code = GET_CODE (x);
  if (code == REG)
    {
1190 1191
      unsigned int regno = REGNO (x);
      unsigned int endregno
Richard Kenner committed
1192 1193
	= regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
		   : HARD_REGNO_NREGS (regno, GET_MODE (x)));
1194
      unsigned int i;
Richard Kenner committed
1195 1196 1197

      for (i = regno; i < endregno; i++)
	{
1198
	  if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
Richard Kenner committed
1199 1200
	    remove_invalid_refs (i);

1201
	  REG_IN_TABLE (i) = REG_TICK (i);
Richard Kenner committed
1202 1203 1204 1205 1206
	}

      return 0;
    }

1207 1208 1209 1210 1211 1212
  /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
     pseudo if they don't use overlapping words.  We handle only pseudos
     here for simplicity.  */
  if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
      && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
    {
1213
      unsigned int i = REGNO (SUBREG_REG (x));
1214

1215
      if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1216 1217 1218 1219 1220
	{
	  /* If reg_tick has been incremented more than once since
	     reg_in_table was last set, that means that the entire
	     register has been set before, so discard anything memorized
	     for the entrire register, including all SUBREG expressions.  */
1221
	  if (REG_IN_TABLE (i) != REG_TICK (i) - 1)
1222 1223 1224 1225 1226
	    remove_invalid_refs (i);
	  else
	    remove_invalid_subreg_refs (i, SUBREG_WORD (x), GET_MODE (x));
	}

1227
      REG_IN_TABLE (i) = REG_TICK (i);
1228 1229 1230
      return 0;
    }

Richard Kenner committed
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
  /* If X is a comparison or a COMPARE and either operand is a register
     that does not have a quantity, give it one.  This is so that a later
     call to record_jump_equiv won't cause X to be assigned a different
     hash code and not found in the table after that call.

     It is not necessary to do this here, since rehash_using_reg can
     fix up the table later, but doing this here eliminates the need to
     call that expensive function in the most common case where the only
     use of the register is in the comparison.  */

  if (code == COMPARE || GET_RTX_CLASS (code) == '<')
    {
      if (GET_CODE (XEXP (x, 0)) == REG
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1245
	if (insert_regs (XEXP (x, 0), NULL_PTR, 0))
Richard Kenner committed
1246 1247 1248 1249 1250 1251 1252
	  {
	    rehash_using_reg (XEXP (x, 0));
	    changed = 1;
	  }

      if (GET_CODE (XEXP (x, 1)) == REG
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1253
	if (insert_regs (XEXP (x, 1), NULL_PTR, 0))
Richard Kenner committed
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	  {
	    rehash_using_reg (XEXP (x, 1));
	    changed = 1;
	  }
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      changed |= mention_regs (XEXP (x, i));
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	changed |= mention_regs (XVECEXP (x, i, j));

  return changed;
}

/* Update the register quantities for inserting X into the hash table
   with a value equivalent to CLASSP.
   (If the class does not contain a REG, it is irrelevant.)
   If MODIFIED is nonzero, X is a destination; it is being modified.
   Note that delete_reg_equiv should be called on a register
   before insert_regs is done on that register with MODIFIED != 0.

   Nonzero value means that elements of reg_qty have changed
   so X's hash code may be different.  */

static int
insert_regs (x, classp, modified)
     rtx x;
     struct table_elt *classp;
     int modified;
{
  if (GET_CODE (x) == REG)
    {
1289 1290
      unsigned int regno = REGNO (x);
      int qty_valid;
Richard Kenner committed
1291

1292 1293 1294
      /* If REGNO is in the equivalence table already but is of the
	 wrong mode for that equivalence, don't do anything here.  */

1295 1296 1297 1298
      qty_valid = REGNO_QTY_VALID_P (regno);
      if (qty_valid)
	{
	  struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1299

1300 1301 1302 1303 1304
	  if (ent->mode != GET_MODE (x))
	    return 0;
	}

      if (modified || ! qty_valid)
Richard Kenner committed
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	{
	  if (classp)
	    for (classp = classp->first_same_value;
		 classp != 0;
		 classp = classp->next_same_value)
	      if (GET_CODE (classp->exp) == REG
		  && GET_MODE (classp->exp) == GET_MODE (x))
		{
		  make_regs_eqv (regno, REGNO (classp->exp));
		  return 1;
		}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	  /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
	     than REG_IN_TABLE to find out if there was only a single preceding
	     invalidation - for the SUBREG - or another one, which would be
	     for the full register.  However, if we find here that REG_TICK
	     indicates that the register is invalid, it means that it has
	     been invalidated in a separate operation.  The SUBREG might be used
	     now (then this is a recursive call), or we might use the full REG
	     now and a SUBREG of it later.  So bump up REG_TICK so that
	     mention_regs will do the right thing.  */
	  if (! modified
	      && REG_IN_TABLE (regno) >= 0
	      && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
	    REG_TICK (regno)++;
1330
	  make_new_qty (regno, GET_MODE (x));
Richard Kenner committed
1331 1332
	  return 1;
	}
1333 1334

      return 0;
Richard Kenner committed
1335
    }
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

  /* If X is a SUBREG, we will likely be inserting the inner register in the
     table.  If that register doesn't have an assigned quantity number at
     this point but does later, the insertion that we will be doing now will
     not be accessible because its hash code will have changed.  So assign
     a quantity number now.  */

  else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
	   && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
    {
1346
      insert_regs (SUBREG_REG (x), NULL_PTR, 0);
1347
      mention_regs (x);
1348 1349
      return 1;
    }
Richard Kenner committed
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
  else
    return mention_regs (x);
}

/* Look in or update the hash table.  */

/* Remove table element ELT from use in the table.
   HASH is its hash code, made using the HASH macro.
   It's an argument because often that is known in advance
   and we save much time not recomputing it.  */

static void
remove_from_table (elt, hash)
     register struct table_elt *elt;
Richard Kenner committed
1364
     unsigned hash;
Richard Kenner committed
1365 1366 1367 1368 1369 1370 1371 1372
{
  if (elt == 0)
    return;

  /* Mark this element as removed.  See cse_insn.  */
  elt->first_same_value = 0;

  /* Remove the table element from its equivalence class.  */
1373

Richard Kenner committed
1374 1375 1376 1377
  {
    register struct table_elt *prev = elt->prev_same_value;
    register struct table_elt *next = elt->next_same_value;

1378 1379
    if (next)
      next->prev_same_value = prev;
Richard Kenner committed
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399

    if (prev)
      prev->next_same_value = next;
    else
      {
	register struct table_elt *newfirst = next;
	while (next)
	  {
	    next->first_same_value = newfirst;
	    next = next->next_same_value;
	  }
      }
  }

  /* Remove the table element from its hash bucket.  */

  {
    register struct table_elt *prev = elt->prev_same_hash;
    register struct table_elt *next = elt->next_same_hash;

1400 1401
    if (next)
      next->prev_same_hash = prev;
Richard Kenner committed
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

    if (prev)
      prev->next_same_hash = next;
    else if (table[hash] == elt)
      table[hash] = next;
    else
      {
	/* This entry is not in the proper hash bucket.  This can happen
	   when two classes were merged by `merge_equiv_classes'.  Search
	   for the hash bucket that it heads.  This happens only very
	   rarely, so the cost is acceptable.  */
1413
	for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	  if (table[hash] == elt)
	    table[hash] = next;
      }
  }

  /* Remove the table element from its related-value circular chain.  */

  if (elt->related_value != 0 && elt->related_value != elt)
    {
      register struct table_elt *p = elt->related_value;
1424

Richard Kenner committed
1425 1426 1427 1428 1429 1430 1431
      while (p->related_value != elt)
	p = p->related_value;
      p->related_value = elt->related_value;
      if (p->related_value == p)
	p->related_value = 0;
    }

1432 1433 1434
  /* Now add it to the free element chain.  */
  elt->next_same_hash = free_element_chain;
  free_element_chain = elt;
Richard Kenner committed
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
}

/* Look up X in the hash table and return its table element,
   or 0 if X is not in the table.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   Here we are satisfied to find an expression whose tree structure
   looks like X.  */

static struct table_elt *
lookup (x, hash, mode)
     rtx x;
Richard Kenner committed
1449
     unsigned hash;
Richard Kenner committed
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
     enum machine_mode mode;
{
  register struct table_elt *p;

  for (p = table[hash]; p; p = p->next_same_hash)
    if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
			    || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
      return p;

  return 0;
}

/* Like `lookup' but don't care whether the table element uses invalid regs.
   Also ignore discrepancies in the machine mode of a register.  */

static struct table_elt *
lookup_for_remove (x, hash, mode)
     rtx x;
Richard Kenner committed
1468
     unsigned hash;
Richard Kenner committed
1469 1470 1471 1472 1473 1474
     enum machine_mode mode;
{
  register struct table_elt *p;

  if (GET_CODE (x) == REG)
    {
1475 1476
      unsigned int regno = REGNO (x);

Richard Kenner committed
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
      /* Don't check the machine mode when comparing registers;
	 invalidating (REG:SI 0) also invalidates (REG:DF 0).  */
      for (p = table[hash]; p; p = p->next_same_hash)
	if (GET_CODE (p->exp) == REG
	    && REGNO (p->exp) == regno)
	  return p;
    }
  else
    {
      for (p = table[hash]; p; p = p->next_same_hash)
	if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
	  return p;
    }

  return 0;
}

/* Look for an expression equivalent to X and with code CODE.
   If one is found, return that expression.  */

static rtx
lookup_as_function (x, code)
     rtx x;
     enum rtx_code code;
{
1502 1503 1504
  register struct table_elt *p
    = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, GET_MODE (x));

1505 1506 1507 1508 1509 1510 1511 1512
  /* If we are looking for a CONST_INT, the mode doesn't really matter, as
     long as we are narrowing.  So if we looked in vain for a mode narrower
     than word_mode before, look for word_mode now.  */
  if (p == 0 && code == CONST_INT
      && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
    {
      x = copy_rtx (x);
      PUT_MODE (x, word_mode);
1513
      p = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, word_mode);
1514 1515
    }

Richard Kenner committed
1516 1517 1518 1519
  if (p == 0)
    return 0;

  for (p = p->first_same_value; p; p = p->next_same_value)
1520 1521 1522 1523
    if (GET_CODE (p->exp) == code
	/* Make sure this is a valid entry in the table.  */
	&& exp_equiv_p (p->exp, p->exp, 1, 0))
      return p->exp;
1524

Richard Kenner committed
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
  return 0;
}

/* Insert X in the hash table, assuming HASH is its hash code
   and CLASSP is an element of the class it should go in
   (or 0 if a new class should be made).
   It is inserted at the proper position to keep the class in
   the order cheapest first.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   For elements of equal cheapness, the most recent one
   goes in front, except that the first element in the list
   remains first unless a cheaper element is added.  The order of
   pseudo-registers does not matter, as canon_reg will be called to
1541
   find the cheapest when a register is retrieved from the table.
Richard Kenner committed
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

   The in_memory field in the hash table element is set to 0.
   The caller must set it nonzero if appropriate.

   You should call insert_regs (X, CLASSP, MODIFY) before calling here,
   and if insert_regs returns a nonzero value
   you must then recompute its hash code before calling here.

   If necessary, update table showing constant values of quantities.  */

1552 1553
#define CHEAPER(X, Y) \
 (preferrable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
Richard Kenner committed
1554 1555 1556 1557 1558

static struct table_elt *
insert (x, classp, hash, mode)
     register rtx x;
     register struct table_elt *classp;
Richard Kenner committed
1559
     unsigned hash;
Richard Kenner committed
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
     enum machine_mode mode;
{
  register struct table_elt *elt;

  /* If X is a register and we haven't made a quantity for it,
     something is wrong.  */
  if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
    abort ();

  /* If X is a hard register, show it is being put in the table.  */
  if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
    {
1572 1573 1574
      unsigned int regno = REGNO (x);
      unsigned int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
      unsigned int i;
Richard Kenner committed
1575 1576

      for (i = regno; i < endregno; i++)
1577
	SET_HARD_REG_BIT (hard_regs_in_table, i);
Richard Kenner committed
1578 1579
    }

1580
  /* If X is a label, show we recorded it.  */
1581 1582 1583
  if (GET_CODE (x) == LABEL_REF
      || (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF))
1584
    recorded_label_ref = 1;
Richard Kenner committed
1585 1586 1587

  /* Put an element for X into the right hash bucket.  */

1588 1589
  elt = free_element_chain;
  if (elt)
1590
    free_element_chain = elt->next_same_hash;
1591 1592 1593
  else
    {
      n_elements_made++;
Mark Mitchell committed
1594
      elt = (struct table_elt *) xmalloc (sizeof (struct table_elt));
1595 1596
    }

Richard Kenner committed
1597
  elt->exp = x;
1598
  elt->canon_exp = NULL_RTX;
Richard Kenner committed
1599
  elt->cost = COST (x);
1600
  elt->regcost = approx_reg_cost (x);
Richard Kenner committed
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
  elt->next_same_value = 0;
  elt->prev_same_value = 0;
  elt->next_same_hash = table[hash];
  elt->prev_same_hash = 0;
  elt->related_value = 0;
  elt->in_memory = 0;
  elt->mode = mode;
  elt->is_const = (CONSTANT_P (x)
		   /* GNU C++ takes advantage of this for `this'
		      (and other const values).  */
		   || (RTX_UNCHANGING_P (x)
		       && GET_CODE (x) == REG
		       && REGNO (x) >= FIRST_PSEUDO_REGISTER)
		   || FIXED_BASE_PLUS_P (x));

  if (table[hash])
    table[hash]->prev_same_hash = elt;
  table[hash] = elt;

  /* Put it into the proper value-class.  */
  if (classp)
    {
      classp = classp->first_same_value;
      if (CHEAPER (elt, classp))
	/* Insert at the head of the class */
	{
	  register struct table_elt *p;
	  elt->next_same_value = classp;
	  classp->prev_same_value = elt;
	  elt->first_same_value = elt;

	  for (p = classp; p; p = p->next_same_value)
	    p->first_same_value = elt;
	}
      else
	{
	  /* Insert not at head of the class.  */
	  /* Put it after the last element cheaper than X.  */
	  register struct table_elt *p, *next;
1640

Richard Kenner committed
1641 1642
	  for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
	       p = next);
1643

Richard Kenner committed
1644 1645 1646 1647
	  /* Put it after P and before NEXT.  */
	  elt->next_same_value = next;
	  if (next)
	    next->prev_same_value = elt;
1648

Richard Kenner committed
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	  elt->prev_same_value = p;
	  p->next_same_value = elt;
	  elt->first_same_value = classp;
	}
    }
  else
    elt->first_same_value = elt;

  /* If this is a constant being set equivalent to a register or a register
     being set equivalent to a constant, note the constant equivalence.

     If this is a constant, it cannot be equivalent to a different constant,
     and a constant is the only thing that can be cheaper than a register.  So
     we know the register is the head of the class (before the constant was
     inserted).

     If this is a register that is not already known equivalent to a
     constant, we must check the entire class.

     If this is a register that is already known equivalent to an insn,
1669
     update the qtys `const_insn' to show that `this_insn' is the latest
Richard Kenner committed
1670 1671
     insn making that quantity equivalent to the constant.  */

1672 1673
  if (elt->is_const && classp && GET_CODE (classp->exp) == REG
      && GET_CODE (x) != REG)
Richard Kenner committed
1674
    {
1675 1676 1677 1678 1679
      int exp_q = REG_QTY (REGNO (classp->exp));
      struct qty_table_elem *exp_ent = &qty_table[exp_q];

      exp_ent->const_rtx = gen_lowpart_if_possible (exp_ent->mode, x);
      exp_ent->const_insn = this_insn;
Richard Kenner committed
1680 1681
    }

1682 1683 1684
  else if (GET_CODE (x) == REG
	   && classp
	   && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1685
	   && ! elt->is_const)
Richard Kenner committed
1686 1687 1688 1689 1690
    {
      register struct table_elt *p;

      for (p = classp; p != 0; p = p->next_same_value)
	{
1691
	  if (p->is_const && GET_CODE (p->exp) != REG)
Richard Kenner committed
1692
	    {
1693 1694 1695
	      int x_q = REG_QTY (REGNO (x));
	      struct qty_table_elem *x_ent = &qty_table[x_q];

1696 1697
	      x_ent->const_rtx
		= gen_lowpart_if_possible (GET_MODE (x), p->exp);
1698
	      x_ent->const_insn = this_insn;
Richard Kenner committed
1699 1700 1701 1702 1703
	      break;
	    }
	}
    }

1704 1705 1706 1707
  else if (GET_CODE (x) == REG
	   && qty_table[REG_QTY (REGNO (x))].const_rtx
	   && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
    qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
Richard Kenner committed
1708 1709 1710 1711 1712 1713 1714

  /* If this is a constant with symbolic value,
     and it has a term with an explicit integer value,
     link it up with related expressions.  */
  if (GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
Richard Kenner committed
1715
      unsigned subhash;
Richard Kenner committed
1716 1717 1718 1719 1720
      struct table_elt *subelt, *subelt_prev;

      if (subexp != 0)
	{
	  /* Get the integer-free subexpression in the hash table.  */
1721
	  subhash = safe_hash (subexp, mode) & HASH_MASK;
Richard Kenner committed
1722 1723
	  subelt = lookup (subexp, subhash, mode);
	  if (subelt == 0)
1724
	    subelt = insert (subexp, NULL_PTR, subhash, mode);
Richard Kenner committed
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	  /* Initialize SUBELT's circular chain if it has none.  */
	  if (subelt->related_value == 0)
	    subelt->related_value = subelt;
	  /* Find the element in the circular chain that precedes SUBELT.  */
	  subelt_prev = subelt;
	  while (subelt_prev->related_value != subelt)
	    subelt_prev = subelt_prev->related_value;
	  /* Put new ELT into SUBELT's circular chain just before SUBELT.
	     This way the element that follows SUBELT is the oldest one.  */
	  elt->related_value = subelt_prev->related_value;
	  subelt_prev->related_value = elt;
	}
    }

  return elt;
}

/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
   CLASS2 into CLASS1.  This is done when we have reached an insn which makes
   the two classes equivalent.

   CLASS1 will be the surviving class; CLASS2 should not be used after this
   call.

   Any invalid entries in CLASS2 will not be copied.  */

static void
merge_equiv_classes (class1, class2)
     struct table_elt *class1, *class2;
{
  struct table_elt *elt, *next, *new;

  /* Ensure we start with the head of the classes.  */
  class1 = class1->first_same_value;
  class2 = class2->first_same_value;

  /* If they were already equal, forget it.  */
  if (class1 == class2)
    return;

  for (elt = class2; elt; elt = next)
    {
1767
      unsigned int hash;
Richard Kenner committed
1768 1769 1770 1771 1772 1773 1774
      rtx exp = elt->exp;
      enum machine_mode mode = elt->mode;

      next = elt->next_same_value;

      /* Remove old entry, make a new one in CLASS1's class.
	 Don't do this for invalid entries as we cannot find their
Mike Stump committed
1775
	 hash code (it also isn't necessary).  */
Richard Kenner committed
1776 1777 1778 1779
      if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
	{
	  hash_arg_in_memory = 0;
	  hash = HASH (exp, mode);
1780

Richard Kenner committed
1781 1782
	  if (GET_CODE (exp) == REG)
	    delete_reg_equiv (REGNO (exp));
1783

Richard Kenner committed
1784 1785 1786
	  remove_from_table (elt, hash);

	  if (insert_regs (exp, class1, 0))
1787 1788 1789 1790
	    {
	      rehash_using_reg (exp);
	      hash = HASH (exp, mode);
	    }
Richard Kenner committed
1791 1792 1793 1794 1795 1796
	  new = insert (exp, class1, hash, mode);
	  new->in_memory = hash_arg_in_memory;
	}
    }
}

1797 1798 1799 1800 1801 1802 1803 1804
/* Flush the entire hash table.  */

static void
flush_hash_table ()
{
  int i;
  struct table_elt *p;

1805
  for (i = 0; i < HASH_SIZE; i++)
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
    for (p = table[i]; p; p = table[i])
      {
	/* Note that invalidate can remove elements
	   after P in the current hash chain.  */
	if (GET_CODE (p->exp) == REG)
	  invalidate (p->exp, p->mode);
	else
	  remove_from_table (p, i);
      }
}
Richard Kenner committed
1816

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
/* Function called for each rtx to check whether true dependence exist.  */
struct check_dependence_data
{
  enum machine_mode mode;
  rtx exp;
};
static int
check_dependence (x, data)
     rtx *x;
     void *data;
{
  struct check_dependence_data *d = (struct check_dependence_data *) data;
  if (*x && GET_CODE (*x) == MEM)
    return true_dependence (d->exp, d->mode, *x, cse_rtx_varies_p);
  else
    return 0;
}

Richard Kenner committed
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
/* Remove from the hash table, or mark as invalid, all expressions whose
   values could be altered by storing in X.  X is a register, a subreg, or
   a memory reference with nonvarying address (because, when a memory
   reference with a varying address is stored in, all memory references are
   removed by invalidate_memory so specific invalidation is superfluous).
   FULL_MODE, if not VOIDmode, indicates that this much should be
   invalidated instead of just the amount indicated by the mode of X.  This
   is only used for bitfield stores into memory.

   A nonvarying address may be just a register or just a symbol reference,
   or it may be either of those plus a numeric offset.  */
Richard Kenner committed
1846 1847

static void
1848
invalidate (x, full_mode)
Richard Kenner committed
1849
     rtx x;
1850
     enum machine_mode full_mode;
Richard Kenner committed
1851 1852 1853 1854
{
  register int i;
  register struct table_elt *p;

Richard Kenner committed
1855
  switch (GET_CODE (x))
Richard Kenner committed
1856
    {
Richard Kenner committed
1857 1858 1859 1860 1861 1862
    case REG:
      {
	/* If X is a register, dependencies on its contents are recorded
	   through the qty number mechanism.  Just change the qty number of
	   the register, mark it as invalid for expressions that refer to it,
	   and remove it itself.  */
1863 1864
	unsigned int regno = REGNO (x);
	unsigned int hash = HASH (x, GET_MODE (x));
Richard Kenner committed
1865

Richard Kenner committed
1866 1867 1868
	/* Remove REGNO from any quantity list it might be on and indicate
	   that its value might have changed.  If it is a pseudo, remove its
	   entry from the hash table.
Richard Kenner committed
1869

Richard Kenner committed
1870 1871 1872 1873
	   For a hard register, we do the first two actions above for any
	   additional hard registers corresponding to X.  Then, if any of these
	   registers are in the table, we must remove any REG entries that
	   overlap these registers.  */
Richard Kenner committed
1874

Richard Kenner committed
1875 1876
	delete_reg_equiv (regno);
	REG_TICK (regno)++;
1877

Richard Kenner committed
1878 1879 1880 1881 1882
	if (regno >= FIRST_PSEUDO_REGISTER)
	  {
	    /* Because a register can be referenced in more than one mode,
	       we might have to remove more than one table entry.  */
	    struct table_elt *elt;
1883

Richard Kenner committed
1884 1885 1886 1887 1888 1889 1890
	    while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
	      remove_from_table (elt, hash);
	  }
	else
	  {
	    HOST_WIDE_INT in_table
	      = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1891 1892 1893
	    unsigned int endregno
	      = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
	    unsigned int tregno, tendregno, rn;
Richard Kenner committed
1894
	    register struct table_elt *p, *next;
Richard Kenner committed
1895

Richard Kenner committed
1896
	    CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
Richard Kenner committed
1897

1898
	    for (rn = regno + 1; rn < endregno; rn++)
Richard Kenner committed
1899
	      {
1900 1901 1902 1903
		in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
		CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
		delete_reg_equiv (rn);
		REG_TICK (rn)++;
Richard Kenner committed
1904
	      }
Richard Kenner committed
1905

Richard Kenner committed
1906
	    if (in_table)
1907
	      for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
1908 1909 1910
		for (p = table[hash]; p; p = next)
		  {
		    next = p->next_same_hash;
Richard Kenner committed
1911

1912 1913 1914 1915
		    if (GET_CODE (p->exp) != REG
			|| REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
		      continue;

Richard Kenner committed
1916 1917 1918 1919 1920 1921 1922 1923
		    tregno = REGNO (p->exp);
		    tendregno
		      = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
		    if (tendregno > regno && tregno < endregno)
		      remove_from_table (p, hash);
		  }
	  }
      }
Richard Kenner committed
1924 1925
      return;

Richard Kenner committed
1926
    case SUBREG:
1927
      invalidate (SUBREG_REG (x), VOIDmode);
Richard Kenner committed
1928
      return;
1929

Richard Kenner committed
1930
    case PARALLEL:
1931
      for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1932 1933 1934
	invalidate (XVECEXP (x, 0, i), VOIDmode);
      return;

Richard Kenner committed
1935 1936 1937
    case EXPR_LIST:
      /* This is part of a disjoint return value; extract the location in
	 question ignoring the offset.  */
1938 1939
      invalidate (XEXP (x, 0), VOIDmode);
      return;
Richard Kenner committed
1940

Richard Kenner committed
1941
    case MEM:
1942 1943 1944 1945
      /* Calculate the canonical version of X here so that
	 true_dependence doesn't generate new RTL for X on each call.  */
      x = canon_rtx (x);

Richard Kenner committed
1946 1947 1948 1949
      /* Remove all hash table elements that refer to overlapping pieces of
	 memory.  */
      if (full_mode == VOIDmode)
	full_mode = GET_MODE (x);
1950

1951
      for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1952
	{
Richard Kenner committed
1953 1954 1955 1956 1957
	  register struct table_elt *next;

	  for (p = table[i]; p; p = next)
	    {
	      next = p->next_same_hash;
1958 1959
	      if (p->in_memory)
		{
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		  struct check_dependence_data d;

		  /* Just canonicalize the expression once;
		     otherwise each time we call invalidate
		     true_dependence will canonicalize the
		     expression again.  */
		  if (!p->canon_exp)
		    p->canon_exp = canon_rtx (p->exp);
		  d.exp = x;
		  d.mode = full_mode;
		  if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1971 1972
		    remove_from_table (p, i);
		}
Richard Kenner committed
1973
	    }
Richard Kenner committed
1974
	}
Richard Kenner committed
1975 1976 1977 1978
      return;

    default:
      abort ();
Richard Kenner committed
1979 1980
    }
}
Richard Kenner committed
1981

Richard Kenner committed
1982 1983 1984 1985 1986 1987 1988
/* Remove all expressions that refer to register REGNO,
   since they are already invalid, and we are about to
   mark that register valid again and don't want the old
   expressions to reappear as valid.  */

static void
remove_invalid_refs (regno)
1989
     unsigned int regno;
Richard Kenner committed
1990
{
1991 1992
  unsigned int i;
  struct table_elt *p, *next;
Richard Kenner committed
1993

1994
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
1995 1996 1997 1998
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (GET_CODE (p->exp) != REG
1999
	    && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
Richard Kenner committed
2000 2001 2002
	  remove_from_table (p, i);
      }
}
2003 2004 2005 2006

/* Likewise for a subreg with subreg_reg WORD and mode MODE.  */
static void
remove_invalid_subreg_refs (regno, word, mode)
2007 2008
     unsigned int regno;
     unsigned int word;
2009 2010
     enum machine_mode mode;
{
2011 2012 2013
  unsigned int i;
  struct table_elt *p, *next;
  unsigned int end = word + (GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD;
2014

2015
  for (i = 0; i < HASH_SIZE; i++)
2016 2017 2018 2019
    for (p = table[i]; p; p = next)
      {
	rtx exp;
	next = p->next_same_hash;
2020

2021 2022 2023 2024 2025 2026 2027 2028
	exp = p->exp;
	if (GET_CODE (p->exp) != REG
	    && (GET_CODE (exp) != SUBREG
		|| GET_CODE (SUBREG_REG (exp)) != REG
		|| REGNO (SUBREG_REG (exp)) != regno
		|| (((SUBREG_WORD (exp)
		      + (GET_MODE_SIZE (GET_MODE (exp)) - 1) / UNITS_PER_WORD)
		     >= word)
Kazu Hirata committed
2029
		    && SUBREG_WORD (exp) <= end))
2030 2031 2032 2033
	    && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
	  remove_from_table (p, i);
      }
}
Richard Kenner committed
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

/* Recompute the hash codes of any valid entries in the hash table that
   reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.

   This is called when we make a jump equivalence.  */

static void
rehash_using_reg (x)
     rtx x;
{
Kaveh R. Ghazi committed
2044
  unsigned int i;
Richard Kenner committed
2045
  struct table_elt *p, *next;
Richard Kenner committed
2046
  unsigned hash;
Richard Kenner committed
2047 2048 2049 2050 2051 2052 2053 2054

  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  /* If X is not a register or if the register is known not to be in any
     valid entries in the table, we have no work to do.  */

  if (GET_CODE (x) != REG
2055 2056
      || REG_IN_TABLE (REGNO (x)) < 0
      || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
Richard Kenner committed
2057 2058 2059 2060 2061 2062
    return;

  /* Scan all hash chains looking for valid entries that mention X.
     If we find one and it is in the wrong hash chain, move it.  We can skip
     objects that are registers, since they are handled specially.  */

2063
  for (i = 0; i < HASH_SIZE; i++)
Richard Kenner committed
2064 2065 2066 2067
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
2068
	    && exp_equiv_p (p->exp, p->exp, 1, 0)
2069
	    && i != (hash = safe_hash (p->exp, p->mode) & HASH_MASK))
Richard Kenner committed
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	  {
	    if (p->next_same_hash)
	      p->next_same_hash->prev_same_hash = p->prev_same_hash;

	    if (p->prev_same_hash)
	      p->prev_same_hash->next_same_hash = p->next_same_hash;
	    else
	      table[i] = p->next_same_hash;

	    p->next_same_hash = table[hash];
	    p->prev_same_hash = 0;
	    if (table[hash])
	      table[hash]->prev_same_hash = p;
	    table[hash] = p;
	  }
      }
}

/* Remove from the hash table any expression that is a call-clobbered
   register.  Also update their TICK values.  */

static void
invalidate_for_call ()
{
2094 2095
  unsigned int regno, endregno;
  unsigned int i;
Richard Kenner committed
2096
  unsigned hash;
Richard Kenner committed
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
  struct table_elt *p, *next;
  int in_table = 0;

  /* Go through all the hard registers.  For each that is clobbered in
     a CALL_INSN, remove the register from quantity chains and update
     reg_tick if defined.  Also see if any of these registers is currently
     in the table.  */

  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
      {
	delete_reg_equiv (regno);
2109 2110
	if (REG_TICK (regno) >= 0)
	  REG_TICK (regno)++;
Richard Kenner committed
2111

2112
	in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
Richard Kenner committed
2113 2114 2115 2116 2117 2118 2119
      }

  /* In the case where we have no call-clobbered hard registers in the
     table, we are done.  Otherwise, scan the table and remove any
     entry that overlaps a call-clobbered register.  */

  if (in_table)
2120
    for (hash = 0; hash < HASH_SIZE; hash++)
Richard Kenner committed
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
      for (p = table[hash]; p; p = next)
	{
	  next = p->next_same_hash;

	  if (GET_CODE (p->exp) != REG
	      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
	    continue;

	  regno = REGNO (p->exp);
	  endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));

	  for (i = regno; i < endregno; i++)
	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
	      {
		remove_from_table (p, hash);
		break;
	      }
	}
}

/* Given an expression X of type CONST,
   and ELT which is its table entry (or 0 if it
   is not in the hash table),
   return an alternate expression for X as a register plus integer.
   If none can be found, return 0.  */

static rtx
use_related_value (x, elt)
     rtx x;
     struct table_elt *elt;
{
  register struct table_elt *relt = 0;
  register struct table_elt *p, *q;
2154
  HOST_WIDE_INT offset;
Richard Kenner committed
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

  /* First, is there anything related known?
     If we have a table element, we can tell from that.
     Otherwise, must look it up.  */

  if (elt != 0 && elt->related_value != 0)
    relt = elt;
  else if (elt == 0 && GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
      if (subexp != 0)
	relt = lookup (subexp,
2167
		       safe_hash (subexp, GET_MODE (subexp)) & HASH_MASK,
Richard Kenner committed
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
		       GET_MODE (subexp));
    }

  if (relt == 0)
    return 0;

  /* Search all related table entries for one that has an
     equivalent register.  */

  p = relt;
  while (1)
    {
      /* This loop is strange in that it is executed in two different cases.
	 The first is when X is already in the table.  Then it is searching
	 the RELATED_VALUE list of X's class (RELT).  The second case is when
	 X is not in the table.  Then RELT points to a class for the related
	 value.

	 Ensure that, whatever case we are in, that we ignore classes that have
	 the same value as X.  */

      if (rtx_equal_p (x, p->exp))
	q = 0;
      else
	for (q = p->first_same_value; q; q = q->next_same_value)
	  if (GET_CODE (q->exp) == REG)
	    break;

      if (q)
	break;

      p = p->related_value;

      /* We went all the way around, so there is nothing to be found.
	 Alternatively, perhaps RELT was in the table for some other reason
	 and it has no related values recorded.  */
      if (p == relt || p == 0)
	break;
    }

  if (q == 0)
    return 0;

  offset = (get_integer_term (x) - get_integer_term (p->exp));
  /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity.  */
  return plus_constant (q->exp, offset);
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
/* Hash a string.  Just add its bytes up.  */
static inline unsigned
canon_hash_string (ps)
     const char *ps;
{
  unsigned hash = 0;
  const unsigned char *p = (const unsigned char *)ps;
  
  if (p)
    while (*p)
      hash += *p++;

  return hash;
}

Richard Kenner committed
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
/* Hash an rtx.  We are careful to make sure the value is never negative.
   Equivalent registers hash identically.
   MODE is used in hashing for CONST_INTs only;
   otherwise the mode of X is used.

   Store 1 in do_not_record if any subexpression is volatile.

   Store 1 in hash_arg_in_memory if X contains a MEM rtx
   which does not have the RTX_UNCHANGING_P bit set.

   Note that cse_insn knows that the hash code of a MEM expression
   is just (int) MEM plus the hash code of the address.  */

Richard Kenner committed
2244
static unsigned
Richard Kenner committed
2245 2246 2247 2248 2249
canon_hash (x, mode)
     rtx x;
     enum machine_mode mode;
{
  register int i, j;
Richard Kenner committed
2250
  register unsigned hash = 0;
Richard Kenner committed
2251
  register enum rtx_code code;
2252
  register const char *fmt;
Richard Kenner committed
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

  /* repeat is used to turn tail-recursion into iteration.  */
 repeat:
  if (x == 0)
    return hash;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      {
2264
	unsigned int regno = REGNO (x);
Richard Kenner committed
2265 2266 2267

	/* On some machines, we can't record any non-fixed hard register,
	   because extending its life will cause reload problems.  We
2268
	   consider ap, fp, and sp to be fixed for this purpose.
2269 2270 2271 2272 2273

	   We also consider CCmode registers to be fixed for this purpose;
	   failure to do so leads to failure to simplify 0<100 type of
	   conditionals.

Mike Stump committed
2274
	   On all machines, we can't record any global registers.  */
Richard Kenner committed
2275 2276 2277

	if (regno < FIRST_PSEUDO_REGISTER
	    && (global_regs[regno]
2278 2279
		|| (SMALL_REGISTER_CLASSES
		    && ! fixed_regs[regno]
Richard Kenner committed
2280
		    && regno != FRAME_POINTER_REGNUM
2281
		    && regno != HARD_FRAME_POINTER_REGNUM
Richard Kenner committed
2282
		    && regno != ARG_POINTER_REGNUM
2283 2284
		    && regno != STACK_POINTER_REGNUM
		    && GET_MODE_CLASS (GET_MODE (x)) != MODE_CC)))
Richard Kenner committed
2285 2286 2287 2288
	  {
	    do_not_record = 1;
	    return 0;
	  }
2289

2290
	hash += ((unsigned) REG << 7) + (unsigned) REG_QTY (regno);
Richard Kenner committed
2291
	return hash;
Richard Kenner committed
2292 2293
      }

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
    /* We handle SUBREG of a REG specially because the underlying
       reg changes its hash value with every value change; we don't
       want to have to forget unrelated subregs when one subreg changes.  */
    case SUBREG:
      {
	if (GET_CODE (SUBREG_REG (x)) == REG)
	  {
	    hash += (((unsigned) SUBREG << 7)
		     + REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
	    return hash;
	  }
	break;
      }

Richard Kenner committed
2308
    case CONST_INT:
Richard Kenner committed
2309 2310 2311 2312 2313
      {
	unsigned HOST_WIDE_INT tem = INTVAL (x);
	hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
	return hash;
      }
Richard Kenner committed
2314 2315 2316 2317

    case CONST_DOUBLE:
      /* This is like the general case, except that it only counts
	 the integers representing the constant.  */
Richard Kenner committed
2318
      hash += (unsigned) code + (unsigned) GET_MODE (x);
2319 2320 2321
      if (GET_MODE (x) != VOIDmode)
	for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
	  {
2322
	    unsigned HOST_WIDE_INT tem = XWINT (x, i);
2323 2324 2325 2326 2327
	    hash += tem;
	  }
      else
	hash += ((unsigned) CONST_DOUBLE_LOW (x)
		 + (unsigned) CONST_DOUBLE_HIGH (x));
Richard Kenner committed
2328 2329 2330 2331
      return hash;

      /* Assume there is only one rtx object for any given label.  */
    case LABEL_REF:
Kazu Hirata committed
2332
      hash += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
Richard Kenner committed
2333
      return hash;
Richard Kenner committed
2334 2335

    case SYMBOL_REF:
Kazu Hirata committed
2336
      hash += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
Richard Kenner committed
2337
      return hash;
Richard Kenner committed
2338 2339

    case MEM:
Richard Kenner committed
2340 2341 2342
      /* We don't record if marked volatile or if BLKmode since we don't
	 know the size of the move.  */
      if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
Richard Kenner committed
2343 2344 2345 2346
	{
	  do_not_record = 1;
	  return 0;
	}
2347
      if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
Richard Kenner committed
2348 2349 2350 2351 2352
	{
	  hash_arg_in_memory = 1;
	}
      /* Now that we have already found this special case,
	 might as well speed it up as much as possible.  */
Richard Kenner committed
2353
      hash += (unsigned) MEM;
Richard Kenner committed
2354 2355 2356
      x = XEXP (x, 0);
      goto repeat;

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
    case USE:
      /* A USE that mentions non-volatile memory needs special
	 handling since the MEM may be BLKmode which normally
	 prevents an entry from being made.  Pure calls are
	 marked by a USE which mentions BLKmode memory.  */
      if (GET_CODE (XEXP (x, 0)) == MEM
	  && ! MEM_VOLATILE_P (XEXP (x, 0)))
	{
	  hash += (unsigned)USE;
	  x = XEXP (x, 0);

	  if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
	    hash_arg_in_memory = 1;

	  /* Now that we have already found this special case,
	     might as well speed it up as much as possible.  */
	  hash += (unsigned) MEM;
	  x = XEXP (x, 0);
	  goto repeat;
	}
      break;

Richard Kenner committed
2379 2380 2381 2382
    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
2383 2384
    case PRE_MODIFY:
    case POST_MODIFY:
Richard Kenner committed
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
    case PC:
    case CC0:
    case CALL:
    case UNSPEC_VOLATILE:
      do_not_record = 1;
      return 0;

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	{
	  do_not_record = 1;
	  return 0;
	}
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
      else
	{
	  /* We don't want to take the filename and line into account.  */
	  hash += (unsigned) code + (unsigned) GET_MODE (x)
	    + canon_hash_string (ASM_OPERANDS_TEMPLATE (x))
	    + canon_hash_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
	    + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);

	  if (ASM_OPERANDS_INPUT_LENGTH (x))
	    {
	      for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
		{
		  hash += (canon_hash (ASM_OPERANDS_INPUT (x, i),
				       GET_MODE (ASM_OPERANDS_INPUT (x, i)))
			   + canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT
						(x, i)));
		}

	      hash += canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
	      x = ASM_OPERANDS_INPUT (x, 0);
	      mode = GET_MODE (x);
	      goto repeat;
	    }

	  return hash;
	}
2424
      break;
2425

2426 2427
    default:
      break;
Richard Kenner committed
2428 2429 2430
    }

  i = GET_RTX_LENGTH (code) - 1;
Richard Kenner committed
2431
  hash += (unsigned) code + (unsigned) GET_MODE (x);
Richard Kenner committed
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
  fmt = GET_RTX_FORMAT (code);
  for (; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  rtx tem = XEXP (x, i);

	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function  is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = tem;
	      goto repeat;
	    }
	  hash += canon_hash (tem, 0);
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  hash += canon_hash (XVECEXP (x, i, j), 0);
      else if (fmt[i] == 's')
2453
	hash += canon_hash_string (XSTR (x, i));
Richard Kenner committed
2454 2455
      else if (fmt[i] == 'i')
	{
Richard Kenner committed
2456 2457
	  register unsigned tem = XINT (x, i);
	  hash += tem;
Richard Kenner committed
2458
	}
2459
      else if (fmt[i] == '0' || fmt[i] == 't')
Kazu Hirata committed
2460 2461
	/* Unused.  */
	;
Richard Kenner committed
2462 2463 2464 2465 2466 2467 2468 2469
      else
	abort ();
    }
  return hash;
}

/* Like canon_hash but with no side effects.  */

Richard Kenner committed
2470
static unsigned
Richard Kenner committed
2471 2472 2473 2474 2475 2476
safe_hash (x, mode)
     rtx x;
     enum machine_mode mode;
{
  int save_do_not_record = do_not_record;
  int save_hash_arg_in_memory = hash_arg_in_memory;
Richard Kenner committed
2477
  unsigned hash = canon_hash (x, mode);
Richard Kenner committed
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
  hash_arg_in_memory = save_hash_arg_in_memory;
  do_not_record = save_do_not_record;
  return hash;
}

/* Return 1 iff X and Y would canonicalize into the same thing,
   without actually constructing the canonicalization of either one.
   If VALIDATE is nonzero,
   we assume X is an expression being processed from the rtl
   and Y was found in the hash table.  We check register refs
   in Y for being marked as valid.

   If EQUAL_VALUES is nonzero, we allow a register to match a constant value
   that is known to be in the register.  Ordinarily, we don't allow them
   to match, because letting them match would cause unpredictable results
   in all the places that search a hash table chain for an equivalent
   for a given value.  A possible equivalent that has different structure
   has its hash code computed from different data.  Whether the hash code
Jeff Law committed
2496
   is the same as that of the given value is pure luck.  */
Richard Kenner committed
2497 2498 2499 2500 2501 2502 2503

static int
exp_equiv_p (x, y, validate, equal_values)
     rtx x, y;
     int validate;
     int equal_values;
{
2504
  register int i, j;
Richard Kenner committed
2505
  register enum rtx_code code;
2506
  register const char *fmt;
Richard Kenner committed
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523

  /* Note: it is incorrect to assume an expression is equivalent to itself
     if VALIDATE is nonzero.  */
  if (x == y && !validate)
    return 1;
  if (x == 0 || y == 0)
    return x == y;

  code = GET_CODE (x);
  if (code != GET_CODE (y))
    {
      if (!equal_values)
	return 0;

      /* If X is a constant and Y is a register or vice versa, they may be
	 equivalent.  We only have to validate if Y is a register.  */
      if (CONSTANT_P (x) && GET_CODE (y) == REG
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	  && REGNO_QTY_VALID_P (REGNO (y)))
	{
	  int y_q = REG_QTY (REGNO (y));
	  struct qty_table_elem *y_ent = &qty_table[y_q];

	  if (GET_MODE (y) == y_ent->mode
	      && rtx_equal_p (x, y_ent->const_rtx)
	      && (! validate || REG_IN_TABLE (REGNO (y)) == REG_TICK (REGNO (y))))
	    return 1;
	}
Richard Kenner committed
2534 2535

      if (CONSTANT_P (y) && code == REG
2536 2537 2538 2539 2540 2541 2542 2543 2544
	  && REGNO_QTY_VALID_P (REGNO (x)))
	{
	  int x_q = REG_QTY (REGNO (x));
	  struct qty_table_elem *x_ent = &qty_table[x_q];

	  if (GET_MODE (x) == x_ent->mode
	      && rtx_equal_p (y, x_ent->const_rtx))
	    return 1;
	}
Richard Kenner committed
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

      return 0;
    }

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
  if (GET_MODE (x) != GET_MODE (y))
    return 0;

  switch (code)
    {
    case PC:
    case CC0:
    case CONST_INT:
2558
      return x == y;
Richard Kenner committed
2559 2560 2561 2562

    case LABEL_REF:
      return XEXP (x, 0) == XEXP (y, 0);

2563 2564 2565
    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);

Richard Kenner committed
2566 2567
    case REG:
      {
2568 2569
	unsigned int regno = REGNO (y);
	unsigned int endregno
Richard Kenner committed
2570 2571
	  = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
		     : HARD_REGNO_NREGS (regno, GET_MODE (y)));
2572
	unsigned int i;
Richard Kenner committed
2573 2574 2575 2576 2577

	/* If the quantities are not the same, the expressions are not
	   equivalent.  If there are and we are not to validate, they
	   are equivalent.  Otherwise, ensure all regs are up-to-date.  */

2578
	if (REG_QTY (REGNO (x)) != REG_QTY (regno))
Richard Kenner committed
2579 2580 2581 2582 2583 2584
	  return 0;

	if (! validate)
	  return 1;

	for (i = regno; i < endregno; i++)
2585
	  if (REG_IN_TABLE (i) != REG_TICK (i))
Richard Kenner committed
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
	    return 0;

	return 1;
      }

    /*  For commutative operations, check both orders.  */
    case PLUS:
    case MULT:
    case AND:
    case IOR:
    case XOR:
    case NE:
    case EQ:
      return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
	       && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
			       validate, equal_values))
	      || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
			       validate, equal_values)
		  && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
				  validate, equal_values)));
2606

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
    case ASM_OPERANDS:
      /* We don't use the generic code below because we want to
	 disregard filename and line numbers.  */

      /* A volatile asm isn't equivalent to any other.  */
      if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
	return 0;

      if (GET_MODE (x) != GET_MODE (y)
	  || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
	  || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
		     ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
	  || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
	  || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
	return 0;

      if (ASM_OPERANDS_INPUT_LENGTH (x))
	{
	  for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
	    if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
			       ASM_OPERANDS_INPUT (y, i),
			       validate, equal_values)
		|| strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
			   ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
	      return 0;
	}

      return 1;

2636 2637
    default:
      break;
Richard Kenner committed
2638 2639 2640 2641 2642 2643 2644 2645
    }

  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
2646
      switch (fmt[i])
Richard Kenner committed
2647
	{
2648
	case 'e':
Richard Kenner committed
2649 2650
	  if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
	    return 0;
2651 2652 2653
	  break;

	case 'E':
Richard Kenner committed
2654 2655 2656 2657 2658 2659
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
			       validate, equal_values))
	      return 0;
2660 2661 2662
	  break;

	case 's':
Richard Kenner committed
2663 2664
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
2665 2666 2667
	  break;

	case 'i':
Richard Kenner committed
2668 2669
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
2670 2671 2672 2673 2674
	  break;

	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
2675
	  break;
2676 2677

	case '0':
2678
	case 't':
2679 2680 2681 2682
	  break;

	default:
	  abort ();
Richard Kenner committed
2683
	}
2684
    }
2685

Richard Kenner committed
2686 2687 2688
  return 1;
}

2689 2690 2691
/* Return 1 if X has a value that can vary even between two
   executions of the program.  0 means X can be compared reliably
   against certain constants or near-constants.  */
Richard Kenner committed
2692 2693

static int
2694 2695
cse_rtx_varies_p (x)
     register rtx x;
Richard Kenner committed
2696 2697 2698 2699 2700
{
  /* We need not check for X and the equivalence class being of the same
     mode because if X is equivalent to a constant in some mode, it
     doesn't vary in any mode.  */

2701
  if (GET_CODE (x) == REG
2702 2703 2704 2705 2706 2707 2708 2709 2710
      && REGNO_QTY_VALID_P (REGNO (x)))
    {
      int x_q = REG_QTY (REGNO (x));
      struct qty_table_elem *x_ent = &qty_table[x_q];

      if (GET_MODE (x) == x_ent->mode
	  && x_ent->const_rtx != NULL_RTX)
	return 0;
    }
Richard Kenner committed
2711

2712 2713 2714
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 1)) == CONST_INT
      && GET_CODE (XEXP (x, 0)) == REG
2715 2716 2717 2718 2719 2720 2721 2722 2723
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
    {
      int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
      struct qty_table_elem *x0_ent = &qty_table[x0_q];

      if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
	  && x0_ent->const_rtx != NULL_RTX)
	return 0;
    }
Richard Kenner committed
2724

2725 2726 2727 2728 2729
  /* This can happen as the result of virtual register instantiation, if
     the initial constant is too large to be a valid address.  This gives
     us a three instruction sequence, load large offset into a register,
     load fp minus a constant into a register, then a MEM which is the
     sum of the two `constant' registers.  */
2730 2731 2732 2733
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == REG
      && GET_CODE (XEXP (x, 1)) == REG
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
    {
      int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
      int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
      struct qty_table_elem *x0_ent = &qty_table[x0_q];
      struct qty_table_elem *x1_ent = &qty_table[x1_q];

      if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
	  && x0_ent->const_rtx != NULL_RTX
	  && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
	  && x1_ent->const_rtx != NULL_RTX)
	return 0;
    }
2747

2748
  return rtx_varies_p (x);
Richard Kenner committed
2749 2750 2751 2752 2753 2754 2755
}

/* Canonicalize an expression:
   replace each register reference inside it
   with the "oldest" equivalent register.

   If INSN is non-zero and we are replacing a pseudo with a hard register
2756 2757 2758 2759 2760
   or vice versa, validate_change is used to ensure that INSN remains valid
   after we make our substitution.  The calls are made with IN_GROUP non-zero
   so apply_change_group must be called upon the outermost return from this
   function (unless INSN is zero).  The result of apply_change_group can
   generally be discarded since the changes we are making are optional.  */
Richard Kenner committed
2761 2762 2763 2764 2765 2766 2767 2768

static rtx
canon_reg (x, insn)
     rtx x;
     rtx insn;
{
  register int i;
  register enum rtx_code code;
2769
  register const char *fmt;
Richard Kenner committed
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790

  if (x == 0)
    return x;

  code = GET_CODE (x);
  switch (code)
    {
    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return x;

    case REG:
      {
	register int first;
2791 2792
	register int q;
	register struct qty_table_elem *ent;
Richard Kenner committed
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802

	/* Never replace a hard reg, because hard regs can appear
	   in more than one machine mode, and we must preserve the mode
	   of each occurrence.  Also, some hard regs appear in
	   MEMs that are shared and mustn't be altered.  Don't try to
	   replace any reg that maps to a reg of class NO_REGS.  */
	if (REGNO (x) < FIRST_PSEUDO_REGISTER
	    || ! REGNO_QTY_VALID_P (REGNO (x)))
	  return x;

2803
	q = REG_QTY (REGNO (x));
2804 2805
	ent = &qty_table[q];
	first = ent->first_reg;
Richard Kenner committed
2806 2807
	return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
		: REGNO_REG_CLASS (first) == NO_REGS ? x
2808
		: gen_rtx_REG (ent->mode, first));
Richard Kenner committed
2809
      }
2810

2811 2812
    default:
      break;
Richard Kenner committed
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      register int j;

      if (fmt[i] == 'e')
	{
	  rtx new = canon_reg (XEXP (x, i), insn);
2823
	  int insn_code;
Richard Kenner committed
2824 2825

	  /* If replacing pseudo with hard reg or vice versa, ensure the
2826
	     insn remains valid.  Likewise if the insn has MATCH_DUPs.  */
2827 2828
	  if (insn != 0 && new != 0
	      && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
2829 2830
	      && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
		   != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
2831
		  || (insn_code = recog_memoized (insn)) < 0
2832
		  || insn_data[insn_code].n_dups > 0))
2833
	    validate_change (insn, &XEXP (x, i), new, 1);
Richard Kenner committed
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
	  else
	    XEXP (x, i) = new;
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
    }

  return x;
}

Richard Kenner committed
2845
/* LOC is a location within INSN that is an operand address (the contents of
Richard Kenner committed
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
   a MEM).  Find the best equivalent address to use that is valid for this
   insn.

   On most CISC machines, complicated address modes are costly, and rtx_cost
   is a good approximation for that cost.  However, most RISC machines have
   only a few (usually only one) memory reference formats.  If an address is
   valid at all, it is often just as cheap as any other address.  Hence, for
   RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
   costs of various addresses.  For two addresses of equal cost, choose the one
   with the highest `rtx_cost' value as that has the potential of eliminating
   the most insns.  For equal costs, we choose the first in the equivalence
   class.  Note that we ignore the fact that pseudo registers are cheaper
   than hard registers here because we would also prefer the pseudo registers.
  */

2861
static void
2862
find_best_addr (insn, loc, mode)
Richard Kenner committed
2863 2864
     rtx insn;
     rtx *loc;
2865
     enum machine_mode mode;
Richard Kenner committed
2866
{
2867
  struct table_elt *elt;
Richard Kenner committed
2868
  rtx addr = *loc;
2869 2870
#ifdef ADDRESS_COST
  struct table_elt *p;
Richard Kenner committed
2871
  int found_better = 1;
2872
#endif
Richard Kenner committed
2873 2874 2875 2876
  int save_do_not_record = do_not_record;
  int save_hash_arg_in_memory = hash_arg_in_memory;
  int addr_volatile;
  int regno;
Richard Kenner committed
2877
  unsigned hash;
Richard Kenner committed
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891

  /* Do not try to replace constant addresses or addresses of local and
     argument slots.  These MEM expressions are made only once and inserted
     in many instructions, as well as being used to control symbol table
     output.  It is not safe to clobber them.

     There are some uncommon cases where the address is already in a register
     for some reason, but we cannot take advantage of that because we have
     no easy way to unshare the MEM.  In addition, looking up all stack
     addresses is costly.  */
  if ((GET_CODE (addr) == PLUS
       && GET_CODE (XEXP (addr, 0)) == REG
       && GET_CODE (XEXP (addr, 1)) == CONST_INT
       && (regno = REGNO (XEXP (addr, 0)),
2892 2893
	   regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
	   || regno == ARG_POINTER_REGNUM))
Richard Kenner committed
2894
      || (GET_CODE (addr) == REG
2895 2896 2897
	  && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
	      || regno == HARD_FRAME_POINTER_REGNUM
	      || regno == ARG_POINTER_REGNUM))
2898
      || GET_CODE (addr) == ADDRESSOF
Richard Kenner committed
2899 2900 2901 2902 2903 2904 2905
      || CONSTANT_ADDRESS_P (addr))
    return;

  /* If this address is not simply a register, try to fold it.  This will
     sometimes simplify the expression.  Many simplifications
     will not be valid, but some, usually applying the associative rule, will
     be valid and produce better code.  */
2906 2907 2908
  if (GET_CODE (addr) != REG)
    {
      rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);
2909 2910 2911 2912 2913 2914 2915 2916 2917
      int addr_folded_cost = address_cost (folded, mode);
      int addr_cost = address_cost (addr, mode);

      if ((addr_folded_cost < addr_cost
	   || (addr_folded_cost == addr_cost
	       /* ??? The rtx_cost comparison is left over from an older
		  version of this code.  It is probably no longer helpful.  */
	       && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
		   || approx_reg_cost (folded) < approx_reg_cost (addr))))
2918 2919 2920
	  && validate_change (insn, loc, folded, 0))
	addr = folded;
    }
2921

2922 2923 2924
  /* If this address is not in the hash table, we can't look for equivalences
     of the whole address.  Also, ignore if volatile.  */

Richard Kenner committed
2925
  do_not_record = 0;
Richard Kenner committed
2926
  hash = HASH (addr, Pmode);
Richard Kenner committed
2927 2928 2929 2930 2931 2932 2933
  addr_volatile = do_not_record;
  do_not_record = save_do_not_record;
  hash_arg_in_memory = save_hash_arg_in_memory;

  if (addr_volatile)
    return;

Richard Kenner committed
2934
  elt = lookup (addr, hash, Pmode);
Richard Kenner committed
2935 2936

#ifndef ADDRESS_COST
2937 2938
  if (elt)
    {
2939
      int our_cost = elt->cost;
2940 2941 2942 2943 2944 2945 2946

      /* Find the lowest cost below ours that works.  */
      for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
	if (elt->cost < our_cost
	    && (GET_CODE (elt->exp) == REG
		|| exp_equiv_p (elt->exp, elt->exp, 1, 0))
	    && validate_change (insn, loc,
2947
				canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
2948 2949 2950
	  return;
    }
#else
Richard Kenner committed
2951

2952 2953 2954 2955 2956 2957
  if (elt)
    {
      /* We need to find the best (under the criteria documented above) entry
	 in the class that is valid.  We use the `flag' field to indicate
	 choices that were invalid and iterate until we can't find a better
	 one that hasn't already been tried.  */
Richard Kenner committed
2958

2959 2960
      for (p = elt->first_same_value; p; p = p->next_same_value)
	p->flag = 0;
Richard Kenner committed
2961

2962 2963
      while (found_better)
	{
2964
	  int best_addr_cost = address_cost (*loc, mode);
2965
	  int best_rtx_cost = (elt->cost + 1) >> 1;
2966
	  int exp_cost;
2967
	  struct table_elt *best_elt = elt;
2968 2969 2970

	  found_better = 0;
	  for (p = elt->first_same_value; p; p = p->next_same_value)
2971
	    if (! p->flag)
2972
	      {
2973 2974
		if ((GET_CODE (p->exp) == REG
		     || exp_equiv_p (p->exp, p->exp, 1, 0))
2975 2976 2977
		    && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
			|| (exp_cost == best_addr_cost
			    && (p->cost + 1) >> 1 < best_rtx_cost)))
2978 2979
		  {
		    found_better = 1;
2980
		    best_addr_cost = exp_cost;
2981 2982 2983
		    best_rtx_cost = (p->cost + 1) >> 1;
		    best_elt = p;
		  }
2984
	      }
Richard Kenner committed
2985

2986 2987 2988
	  if (found_better)
	    {
	      if (validate_change (insn, loc,
2989 2990
				   canon_reg (copy_rtx (best_elt->exp),
					      NULL_RTX), 0))
2991 2992 2993 2994 2995 2996
		return;
	      else
		best_elt->flag = 1;
	    }
	}
    }
Richard Kenner committed
2997

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
  /* If the address is a binary operation with the first operand a register
     and the second a constant, do the same as above, but looking for
     equivalences of the register.  Then try to simplify before checking for
     the best address to use.  This catches a few cases:  First is when we
     have REG+const and the register is another REG+const.  We can often merge
     the constants and eliminate one insn and one register.  It may also be
     that a machine has a cheap REG+REG+const.  Finally, this improves the
     code on the Alpha for unaligned byte stores.  */

  if (flag_expensive_optimizations
      && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
	  || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
      && GET_CODE (XEXP (*loc, 0)) == REG
      && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
Richard Kenner committed
3012
    {
3013 3014 3015
      rtx c = XEXP (*loc, 1);

      do_not_record = 0;
Richard Kenner committed
3016
      hash = HASH (XEXP (*loc, 0), Pmode);
3017 3018 3019
      do_not_record = save_do_not_record;
      hash_arg_in_memory = save_hash_arg_in_memory;

Richard Kenner committed
3020
      elt = lookup (XEXP (*loc, 0), hash, Pmode);
3021 3022 3023 3024 3025 3026 3027
      if (elt == 0)
	return;

      /* We need to find the best (under the criteria documented above) entry
	 in the class that is valid.  We use the `flag' field to indicate
	 choices that were invalid and iterate until we can't find a better
	 one that hasn't already been tried.  */
Richard Kenner committed
3028 3029

      for (p = elt->first_same_value; p; p = p->next_same_value)
3030
	p->flag = 0;
Richard Kenner committed
3031

3032
      while (found_better)
Richard Kenner committed
3033
	{
3034
	  int best_addr_cost = address_cost (*loc, mode);
3035
	  int best_rtx_cost = (COST (*loc) + 1) >> 1;
3036
	  struct table_elt *best_elt = elt;
3037
	  rtx best_rtx = *loc;
3038 3039 3040 3041 3042
	  int count;

	  /* This is at worst case an O(n^2) algorithm, so limit our search
	     to the first 32 elements on the list.  This avoids trouble
	     compiling code with very long basic blocks that can easily
3043 3044
	     call simplify_gen_binary so many times that we run out of
	     memory.  */
3045

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	  found_better = 0;
	  for (p = elt->first_same_value, count = 0;
	       p && count < 32;
	       p = p->next_same_value, count++)
	    if (! p->flag
		&& (GET_CODE (p->exp) == REG
		    || exp_equiv_p (p->exp, p->exp, 1, 0)))
	      {
		rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
					       p->exp, c);
3056 3057
		int new_cost;
		new_cost = address_cost (new, mode);
3058

3059 3060 3061
		if (new_cost < best_addr_cost
		    || (new_cost == best_addr_cost
			&& (COST (new) + 1) >> 1 > best_rtx_cost))
3062 3063
		  {
		    found_better = 1;
3064
		    best_addr_cost = new_cost;
3065 3066 3067 3068 3069
		    best_rtx_cost = (COST (new) + 1) >> 1;
		    best_elt = p;
		    best_rtx = new;
		  }
	      }
3070

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	  if (found_better)
	    {
	      if (validate_change (insn, loc,
				   canon_reg (copy_rtx (best_rtx),
					      NULL_RTX), 0))
		return;
	      else
		best_elt->flag = 1;
	    }
	}
    }
#endif
3083 3084
}

3085 3086 3087
/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
   operation (EQ, NE, GT, etc.), follow it back through the hash table and
   what values are being compared.
3088

3089 3090 3091 3092
   *PARG1 and *PARG2 are updated to contain the rtx representing the values
   actually being compared.  For example, if *PARG1 was (cc0) and *PARG2
   was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
   compared to produce cc0.
3093

3094 3095
   The return value is the comparison operator and is either the code of
   A or the code corresponding to the inverse of the comparison.  */
Richard Kenner committed
3096

3097 3098
static enum rtx_code
find_comparison_args (code, parg1, parg2, pmode1, pmode2)
Richard Kenner committed
3099
     enum rtx_code code;
3100 3101
     rtx *parg1, *parg2;
     enum machine_mode *pmode1, *pmode2;
Richard Kenner committed
3102
{
3103
  rtx arg1, arg2;
3104

3105
  arg1 = *parg1, arg2 = *parg2;
Richard Kenner committed
3106

3107
  /* If ARG2 is const0_rtx, see what ARG1 is equivalent to.  */
Richard Kenner committed
3108

3109
  while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3110
    {
3111 3112 3113 3114
      /* Set non-zero when we find something of interest.  */
      rtx x = 0;
      int reverse_code = 0;
      struct table_elt *p = 0;
3115

3116 3117 3118 3119
      /* If arg1 is a COMPARE, extract the comparison arguments from it.
	 On machines with CC0, this is the only case that can occur, since
	 fold_rtx will return the COMPARE or item being compared with zero
	 when given CC0.  */
3120

3121 3122
      if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
	x = arg1;
3123

3124 3125
      /* If ARG1 is a comparison operator and CODE is testing for
	 STORE_FLAG_VALUE, get the inner arguments.  */
3126

3127
      else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
Richard Kenner committed
3128
	{
3129 3130 3131 3132 3133
	  if (code == NE
	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		  && code == LT && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3134 3135
		  && (REAL_VALUE_NEGATIVE
		      (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
Richard Kenner committed
3136
#endif
3137
	      )
3138 3139 3140 3141 3142 3143
	    x = arg1;
	  else if (code == EQ
		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		       && code == GE && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3144 3145
		       && (REAL_VALUE_NEGATIVE
			   (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3146 3147 3148
#endif
		   )
	    x = arg1, reverse_code = 1;
Richard Kenner committed
3149 3150
	}

3151
      /* ??? We could also check for
Richard Kenner committed
3152

3153
	 (ne (and (eq (...) (const_int 1))) (const_int 0))
Richard Kenner committed
3154

3155
	 and related forms, but let's wait until we see them occurring.  */
Richard Kenner committed
3156

3157 3158 3159
      if (x == 0)
	/* Look up ARG1 in the hash table and see if it has an equivalence
	   that lets us see what is being compared.  */
3160
	p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) & HASH_MASK,
3161
		    GET_MODE (arg1));
3162 3163
      if (p)
	p = p->first_same_value;
Richard Kenner committed
3164

3165
      for (; p; p = p->next_same_value)
Richard Kenner committed
3166
	{
3167
	  enum machine_mode inner_mode = GET_MODE (p->exp);
Richard Kenner committed
3168

3169 3170 3171
	  /* If the entry isn't valid, skip it.  */
	  if (! exp_equiv_p (p->exp, p->exp, 1, 0))
	    continue;
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
	  if (GET_CODE (p->exp) == COMPARE
	      /* Another possibility is that this machine has a compare insn
		 that includes the comparison code.  In that case, ARG1 would
		 be equivalent to a comparison operation that would set ARG1 to
		 either STORE_FLAG_VALUE or zero.  If this is an NE operation,
		 ORIG_CODE is the actual comparison being done; if it is an EQ,
		 we must reverse ORIG_CODE.  On machine with a negative value
		 for STORE_FLAG_VALUE, also look at LT and GE operations.  */
	      || ((code == NE
		   || (code == LT
		       && GET_MODE_CLASS (inner_mode) == MODE_INT
		       && (GET_MODE_BITSIZE (inner_mode)
			   <= HOST_BITS_PER_WIDE_INT)
		       && (STORE_FLAG_VALUE
			   & ((HOST_WIDE_INT) 1
			      << (GET_MODE_BITSIZE (inner_mode) - 1))))
#ifdef FLOAT_STORE_FLAG_VALUE
		   || (code == LT
		       && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3192 3193
		       && (REAL_VALUE_NEGATIVE
			   (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3194 3195 3196
#endif
		   )
		  && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
Richard Kenner committed
3197
	    {
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	      x = p->exp;
	      break;
	    }
	  else if ((code == EQ
		    || (code == GE
			&& GET_MODE_CLASS (inner_mode) == MODE_INT
			&& (GET_MODE_BITSIZE (inner_mode)
			    <= HOST_BITS_PER_WIDE_INT)
			&& (STORE_FLAG_VALUE
			    & ((HOST_WIDE_INT) 1
			       << (GET_MODE_BITSIZE (inner_mode) - 1))))
#ifdef FLOAT_STORE_FLAG_VALUE
		    || (code == GE
			&& GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3212 3213
		        && (REAL_VALUE_NEGATIVE
			    (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3214 3215 3216 3217 3218 3219 3220
#endif
		    )
		   && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
	    {
	      reverse_code = 1;
	      x = p->exp;
	      break;
Richard Kenner committed
3221 3222
	    }

3223 3224 3225 3226 3227 3228 3229
	  /* If this is fp + constant, the equivalent is a better operand since
	     it may let us predict the value of the comparison.  */
	  else if (NONZERO_BASE_PLUS_P (p->exp))
	    {
	      arg1 = p->exp;
	      continue;
	    }
Richard Kenner committed
3230 3231
	}

3232 3233 3234 3235
      /* If we didn't find a useful equivalence for ARG1, we are done.
	 Otherwise, set up for the next iteration.  */
      if (x == 0)
	break;
Richard Kenner committed
3236

3237
      arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3238 3239 3240 3241 3242
      if (GET_RTX_CLASS (GET_CODE (x)) == '<')
	code = GET_CODE (x);

      if (reverse_code)
	code = reverse_condition (code);
Richard Kenner committed
3243 3244
    }

3245 3246 3247 3248 3249 3250
  /* Return our results.  Return the modes from before fold_rtx
     because fold_rtx might produce const_int, and then it's too late.  */
  *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
  *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);

  return code;
Richard Kenner committed
3251 3252 3253 3254 3255 3256 3257 3258
}

/* If X is a nontrivial arithmetic operation on an argument
   for which a constant value can be determined, return
   the result of operating on that value, as a constant.
   Otherwise, return X, possibly with one or more operands
   modified by recursive calls to this function.

3259 3260 3261
   If X is a register whose contents are known, we do NOT
   return those contents here.  equiv_constant is called to
   perform that task.
Richard Kenner committed
3262 3263 3264 3265 3266 3267 3268

   INSN is the insn that we may be modifying.  If it is 0, make a copy
   of X before modifying it.  */

static rtx
fold_rtx (x, insn)
     rtx x;
3269
     rtx insn;
Richard Kenner committed
3270 3271 3272
{
  register enum rtx_code code;
  register enum machine_mode mode;
3273
  register const char *fmt;
3274
  register int i;
Richard Kenner committed
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
  rtx new = 0;
  int copied = 0;
  int must_swap = 0;

  /* Folded equivalents of first two operands of X.  */
  rtx folded_arg0;
  rtx folded_arg1;

  /* Constant equivalents of first three operands of X;
     0 when no such equivalent is known.  */
  rtx const_arg0;
  rtx const_arg1;
  rtx const_arg2;

  /* The mode of the first operand of X.  We need this for sign and zero
     extends.  */
  enum machine_mode mode_arg0;

  if (x == 0)
    return x;

  mode = GET_MODE (x);
  code = GET_CODE (x);
  switch (code)
    {
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case REG:
      /* No use simplifying an EXPR_LIST
	 since they are used only for lists of args
	 in a function call's REG_EQUAL note.  */
    case EXPR_LIST:
Jeff Law committed
3310 3311 3312 3313
      /* Changing anything inside an ADDRESSOF is incorrect; we don't
	 want to (e.g.,) make (addressof (const_int 0)) just because
	 the location is known to be zero.  */
    case ADDRESSOF:
Richard Kenner committed
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
      return x;

#ifdef HAVE_cc0
    case CC0:
      return prev_insn_cc0;
#endif

    case PC:
      /* If the next insn is a CODE_LABEL followed by a jump table,
	 PC's value is a LABEL_REF pointing to that label.  That
	 lets us fold switch statements on the Vax.  */
      if (insn && GET_CODE (insn) == JUMP_INSN)
	{
	  rtx next = next_nonnote_insn (insn);

	  if (next && GET_CODE (next) == CODE_LABEL
	      && NEXT_INSN (next) != 0
	      && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
	      && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
		  || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
3334
	    return gen_rtx_LABEL_REF (Pmode, next);
Richard Kenner committed
3335 3336 3337 3338
	}
      break;

    case SUBREG:
3339 3340 3341
      /* See if we previously assigned a constant value to this SUBREG.  */
      if ((new = lookup_as_function (x, CONST_INT)) != 0
	  || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
Richard Kenner committed
3342 3343
	return new;

3344 3345 3346 3347
      /* If this is a paradoxical SUBREG, we have no idea what value the
	 extra bits would have.  However, if the operand is equivalent
	 to a SUBREG whose operand is the same as our mode, and all the
	 modes are within a word, we can just use the inner operand
3348 3349 3350
	 because these SUBREGs just say how to treat the register.

	 Similarly if we find an integer constant.  */
3351

3352
      if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3353 3354 3355 3356 3357 3358 3359 3360
	{
	  enum machine_mode imode = GET_MODE (SUBREG_REG (x));
	  struct table_elt *elt;

	  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
	      && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
	      && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
				imode)) != 0)
Kazu Hirata committed
3361
	    for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3362 3363 3364 3365 3366
	      {
		if (CONSTANT_P (elt->exp)
		    && GET_MODE (elt->exp) == VOIDmode)
		  return elt->exp;

3367 3368
		if (GET_CODE (elt->exp) == SUBREG
		    && GET_MODE (SUBREG_REG (elt->exp)) == mode
3369
		    && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3370
		  return copy_rtx (SUBREG_REG (elt->exp));
3371
	      }
3372 3373 3374

	  return x;
	}
3375

Richard Kenner committed
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
      /* Fold SUBREG_REG.  If it changed, see if we can simplify the SUBREG.
	 We might be able to if the SUBREG is extracting a single word in an
	 integral mode or extracting the low part.  */

      folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
      const_arg0 = equiv_constant (folded_arg0);
      if (const_arg0)
	folded_arg0 = const_arg0;

      if (folded_arg0 != SUBREG_REG (x))
	{
	  new = 0;

	  if (GET_MODE_CLASS (mode) == MODE_INT
	      && GET_MODE_SIZE (mode) == UNITS_PER_WORD
	      && GET_MODE (SUBREG_REG (x)) != VOIDmode)
	    new = operand_subword (folded_arg0, SUBREG_WORD (x), 0,
				   GET_MODE (SUBREG_REG (x)));
	  if (new == 0 && subreg_lowpart_p (x))
	    new = gen_lowpart_if_possible (mode, folded_arg0);
	  if (new)
	    return new;
	}
3399 3400

      /* If this is a narrowing SUBREG and our operand is a REG, see if
3401
	 we can find an equivalence for REG that is an arithmetic operation
3402 3403 3404 3405 3406 3407
	 in a wider mode where both operands are paradoxical SUBREGs
	 from objects of our result mode.  In that case, we couldn't report
	 an equivalent value for that operation, since we don't know what the
	 extra bits will be.  But we can find an equivalence for this SUBREG
	 by folding that operation is the narrow mode.  This allows us to
	 fold arithmetic in narrow modes when the machine only supports
3408
	 word-sized arithmetic.
3409 3410 3411 3412 3413

	 Also look for a case where we have a SUBREG whose operand is the
	 same as our result.  If both modes are smaller than a word, we
	 are simply interpreting a register in different modes and we
	 can use the inner value.  */
3414 3415

      if (GET_CODE (folded_arg0) == REG
3416 3417
	  && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
	  && subreg_lowpart_p (x))
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	{
	  struct table_elt *elt;

	  /* We can use HASH here since we know that canon_hash won't be
	     called.  */
	  elt = lookup (folded_arg0,
			HASH (folded_arg0, GET_MODE (folded_arg0)),
			GET_MODE (folded_arg0));

	  if (elt)
	    elt = elt->first_same_value;

	  for (; elt; elt = elt->next_same_value)
	    {
3432 3433
	      enum rtx_code eltcode = GET_CODE (elt->exp);

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	      /* Just check for unary and binary operations.  */
	      if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
		  && GET_CODE (elt->exp) != SIGN_EXTEND
		  && GET_CODE (elt->exp) != ZERO_EXTEND
		  && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
		  && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode)
		{
		  rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));

		  if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3444
		    op0 = fold_rtx (op0, NULL_RTX);
3445 3446 3447 3448 3449 3450 3451 3452

		  op0 = equiv_constant (op0);
		  if (op0)
		    new = simplify_unary_operation (GET_CODE (elt->exp), mode,
						    op0, mode);
		}
	      else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
			|| GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
3453 3454 3455 3456
		       && eltcode != DIV && eltcode != MOD
		       && eltcode != UDIV && eltcode != UMOD
		       && eltcode != ASHIFTRT && eltcode != LSHIFTRT
		       && eltcode != ROTATE && eltcode != ROTATERT
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
		       && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
			    && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
				== mode))
			   || CONSTANT_P (XEXP (elt->exp, 0)))
		       && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
			    && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
				== mode))
			   || CONSTANT_P (XEXP (elt->exp, 1))))
		{
		  rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
		  rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));

		  if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3470
		    op0 = fold_rtx (op0, NULL_RTX);
3471 3472 3473 3474 3475

		  if (op0)
		    op0 = equiv_constant (op0);

		  if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
3476
		    op1 = fold_rtx (op1, NULL_RTX);
3477 3478 3479 3480

		  if (op1)
		    op1 = equiv_constant (op1);

3481
		  /* If we are looking for the low SImode part of
3482 3483 3484 3485
		     (ashift:DI c (const_int 32)), it doesn't work
		     to compute that in SImode, because a 32-bit shift
		     in SImode is unpredictable.  We know the value is 0.  */
		  if (op0 && op1
3486
		      && GET_CODE (elt->exp) == ASHIFT
3487 3488 3489 3490
		      && GET_CODE (op1) == CONST_INT
		      && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
		    {
		      if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3491

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
			/* If the count fits in the inner mode's width,
			   but exceeds the outer mode's width,
			   the value will get truncated to 0
			   by the subreg.  */
			new = const0_rtx;
		      else
			/* If the count exceeds even the inner mode's width,
			   don't fold this expression.  */
			new = 0;
		    }
		  else if (op0 && op1)
3503 3504 3505 3506
		    new = simplify_binary_operation (GET_CODE (elt->exp), mode,
						     op0, op1);
		}

3507 3508 3509 3510
	      else if (GET_CODE (elt->exp) == SUBREG
		       && GET_MODE (SUBREG_REG (elt->exp)) == mode
		       && (GET_MODE_SIZE (GET_MODE (folded_arg0))
			   <= UNITS_PER_WORD)
3511
		       && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3512 3513
		new = copy_rtx (SUBREG_REG (elt->exp));

3514 3515 3516 3517 3518
	      if (new)
		return new;
	    }
	}

Richard Kenner committed
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
      return x;

    case NOT:
    case NEG:
      /* If we have (NOT Y), see if Y is known to be (NOT Z).
	 If so, (NOT Y) simplifies to Z.  Similarly for NEG.  */
      new = lookup_as_function (XEXP (x, 0), code);
      if (new)
	return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
      break;
3529

Richard Kenner committed
3530 3531 3532 3533 3534
    case MEM:
      /* If we are not actually processing an insn, don't try to find the
	 best address.  Not only don't we care, but we could modify the
	 MEM in an invalid way since we have no insn to validate against.  */
      if (insn != 0)
3535
	find_best_addr (insn, &XEXP (x, 0), GET_MODE (x));
Richard Kenner committed
3536 3537 3538 3539

      {
	/* Even if we don't fold in the insn itself,
	   we can safely do so here, in hopes of getting a constant.  */
3540
	rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
3541
	rtx base = 0;
3542
	HOST_WIDE_INT offset = 0;
Richard Kenner committed
3543 3544

	if (GET_CODE (addr) == REG
3545 3546 3547 3548 3549 3550 3551 3552 3553
	    && REGNO_QTY_VALID_P (REGNO (addr)))
	  {
	    int addr_q = REG_QTY (REGNO (addr));
	    struct qty_table_elem *addr_ent = &qty_table[addr_q];

	    if (GET_MODE (addr) == addr_ent->mode
		&& addr_ent->const_rtx != NULL_RTX)
	      addr = addr_ent->const_rtx;
	  }
Richard Kenner committed
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566

	/* If address is constant, split it into a base and integer offset.  */
	if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
	  base = addr;
	else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
		 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
	  {
	    base = XEXP (XEXP (addr, 0), 0);
	    offset = INTVAL (XEXP (XEXP (addr, 0), 1));
	  }
	else if (GET_CODE (addr) == LO_SUM
		 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
	  base = XEXP (addr, 1);
3567
	else if (GET_CODE (addr) == ADDRESSOF)
Jeff Law committed
3568
	  return change_address (x, VOIDmode, addr);
Richard Kenner committed
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585

	/* If this is a constant pool reference, we can fold it into its
	   constant to allow better value tracking.  */
	if (base && GET_CODE (base) == SYMBOL_REF
	    && CONSTANT_POOL_ADDRESS_P (base))
	  {
	    rtx constant = get_pool_constant (base);
	    enum machine_mode const_mode = get_pool_mode (base);
	    rtx new;

	    if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
	      constant_pool_entries_cost = COST (constant);

	    /* If we are loading the full constant, we have an equivalence.  */
	    if (offset == 0 && mode == const_mode)
	      return constant;

Richard Kenner committed
3586
	    /* If this actually isn't a constant (weird!), we can't do
Richard Kenner committed
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	       anything.  Otherwise, handle the two most common cases:
	       extracting a word from a multi-word constant, and extracting
	       the low-order bits.  Other cases don't seem common enough to
	       worry about.  */
	    if (! CONSTANT_P (constant))
	      return x;

	    if (GET_MODE_CLASS (mode) == MODE_INT
		&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
		&& offset % UNITS_PER_WORD == 0
		&& (new = operand_subword (constant,
					   offset / UNITS_PER_WORD,
					   0, const_mode)) != 0)
	      return new;

	    if (((BYTES_BIG_ENDIAN
		  && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
		 || (! BYTES_BIG_ENDIAN && offset == 0))
		&& (new = gen_lowpart_if_possible (mode, constant)) != 0)
	      return new;
	  }

	/* If this is a reference to a label at a known position in a jump
	   table, we also know its value.  */
	if (base && GET_CODE (base) == LABEL_REF)
	  {
	    rtx label = XEXP (base, 0);
	    rtx table_insn = NEXT_INSN (label);
3615

Richard Kenner committed
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
	    if (table_insn && GET_CODE (table_insn) == JUMP_INSN
		&& GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
	      {
		rtx table = PATTERN (table_insn);

		if (offset >= 0
		    && (offset / GET_MODE_SIZE (GET_MODE (table))
			< XVECLEN (table, 0)))
		  return XVECEXP (table, 0,
				  offset / GET_MODE_SIZE (GET_MODE (table)));
	      }
	    if (table_insn && GET_CODE (table_insn) == JUMP_INSN
		&& GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
	      {
		rtx table = PATTERN (table_insn);

		if (offset >= 0
		    && (offset / GET_MODE_SIZE (GET_MODE (table))
			< XVECLEN (table, 1)))
		  {
		    offset /= GET_MODE_SIZE (GET_MODE (table));
3637 3638
		    new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
					 XEXP (table, 0));
Richard Kenner committed
3639 3640

		    if (GET_MODE (table) != Pmode)
3641
		      new = gen_rtx_TRUNCATE (GET_MODE (table), new);
Richard Kenner committed
3642

3643
		    /* Indicate this is a constant.  This isn't a
3644 3645
		       valid form of CONST, but it will only be used
		       to fold the next insns and then discarded, so
3646 3647 3648 3649 3650
		       it should be safe.

		       Note this expression must be explicitly discarded,
		       by cse_insn, else it may end up in a REG_EQUAL note
		       and "escape" to cause problems elsewhere.  */
3651
		    return gen_rtx_CONST (GET_MODE (new), new);
Richard Kenner committed
3652 3653 3654 3655 3656 3657
		  }
	      }
	  }

	return x;
      }
3658

3659 3660 3661 3662 3663 3664 3665
#ifdef NO_FUNCTION_CSE
    case CALL:
      if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
	return x;
      break;
#endif

3666
    case ASM_OPERANDS:
3667 3668 3669
      for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
	validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
			 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3670
      break;
3671

3672 3673
    default:
      break;
Richard Kenner committed
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
    }

  const_arg0 = 0;
  const_arg1 = 0;
  const_arg2 = 0;
  mode_arg0 = VOIDmode;

  /* Try folding our operands.
     Then see which ones have constant values known.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	rtx arg = XEXP (x, i);
	rtx folded_arg = arg, const_arg = 0;
	enum machine_mode mode_arg = GET_MODE (arg);
	rtx cheap_arg, expensive_arg;
	rtx replacements[2];
	int j;

	/* Most arguments are cheap, so handle them specially.  */
	switch (GET_CODE (arg))
	  {
	  case REG:
	    /* This is the same as calling equiv_constant; it is duplicated
	       here for speed.  */
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
	    if (REGNO_QTY_VALID_P (REGNO (arg)))
	      {
		int arg_q = REG_QTY (REGNO (arg));
		struct qty_table_elem *arg_ent = &qty_table[arg_q];

		if (arg_ent->const_rtx != NULL_RTX
		    && GET_CODE (arg_ent->const_rtx) != REG
		    && GET_CODE (arg_ent->const_rtx) != PLUS)
		  const_arg
		    = gen_lowpart_if_possible (GET_MODE (arg),
					       arg_ent->const_rtx);
	      }
Richard Kenner committed
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
	    break;

	  case CONST:
	  case CONST_INT:
	  case SYMBOL_REF:
	  case LABEL_REF:
	  case CONST_DOUBLE:
	    const_arg = arg;
	    break;

#ifdef HAVE_cc0
	  case CC0:
	    folded_arg = prev_insn_cc0;
	    mode_arg = prev_insn_cc0_mode;
	    const_arg = equiv_constant (folded_arg);
	    break;
#endif

	  default:
	    folded_arg = fold_rtx (arg, insn);
	    const_arg = equiv_constant (folded_arg);
	  }

	/* For the first three operands, see if the operand
	   is constant or equivalent to a constant.  */
	switch (i)
	  {
	  case 0:
	    folded_arg0 = folded_arg;
	    const_arg0 = const_arg;
	    mode_arg0 = mode_arg;
	    break;
	  case 1:
	    folded_arg1 = folded_arg;
	    const_arg1 = const_arg;
	    break;
	  case 2:
	    const_arg2 = const_arg;
	    break;
	  }

	/* Pick the least expensive of the folded argument and an
	   equivalent constant argument.  */
	if (const_arg == 0 || const_arg == folded_arg
3757
	    || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
Richard Kenner committed
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
	  cheap_arg = folded_arg, expensive_arg = const_arg;
	else
	  cheap_arg = const_arg, expensive_arg = folded_arg;

	/* Try to replace the operand with the cheapest of the two
	   possibilities.  If it doesn't work and this is either of the first
	   two operands of a commutative operation, try swapping them.
	   If THAT fails, try the more expensive, provided it is cheaper
	   than what is already there.  */

	if (cheap_arg == XEXP (x, i))
	  continue;

	if (insn == 0 && ! copied)
	  {
	    x = copy_rtx (x);
	    copied = 1;
	  }

3777 3778 3779 3780 3781
	/* Order the replacements from cheapest to most expensive.  */
	replacements[0] = cheap_arg;
	replacements[1] = expensive_arg;

	for (j = 0; j < 2 && replacements[j];  j++)
Richard Kenner committed
3782
	  {
3783 3784 3785 3786 3787 3788 3789 3790 3791
	    int old_cost = COST_IN (XEXP (x, i), code);
	    int new_cost = COST_IN (replacements[j], code);

	    /* Stop if what existed before was cheaper.  Prefer constants
	       in the case of a tie.  */
	    if (new_cost > old_cost
		|| (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
	      break;

Richard Kenner committed
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
	    if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
	      break;

	    if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c')
	      {
		validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
		validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);

		if (apply_change_group ())
		  {
		    /* Swap them back to be invalid so that this loop can
		       continue and flag them to be swapped back later.  */
		    rtx tem;

		    tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
				       XEXP (x, 1) = tem;
		    must_swap = 1;
		    break;
		  }
	      }
	  }
      }

3815 3816 3817 3818 3819
    else
      {
	if (fmt[i] == 'E')
	  /* Don't try to fold inside of a vector of expressions.
	     Doing nothing is harmless.  */
3820
	  {;}
3821
      }
Richard Kenner committed
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856

  /* If a commutative operation, place a constant integer as the second
     operand unless the first operand is also a constant integer.  Otherwise,
     place any constant second unless the first operand is also a constant.  */

  if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
    {
      if (must_swap || (const_arg0
	  		&& (const_arg1 == 0
	      		    || (GET_CODE (const_arg0) == CONST_INT
			        && GET_CODE (const_arg1) != CONST_INT))))
	{
	  register rtx tem = XEXP (x, 0);

	  if (insn == 0 && ! copied)
	    {
	      x = copy_rtx (x);
	      copied = 1;
	    }

	  validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
	  validate_change (insn, &XEXP (x, 1), tem, 1);
	  if (apply_change_group ())
	    {
	      tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
	      tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
	    }
	}
    }

  /* If X is an arithmetic operation, see if we can simplify it.  */

  switch (GET_RTX_CLASS (code))
    {
    case '1':
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
      {
	int is_const = 0;

	/* We can't simplify extension ops unless we know the
	   original mode.  */
	if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
	    && mode_arg0 == VOIDmode)
	  break;

	/* If we had a CONST, strip it off and put it back later if we
	   fold.  */
	if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
	  is_const = 1, const_arg0 = XEXP (const_arg0, 0);

	new = simplify_unary_operation (code, mode,
					const_arg0 ? const_arg0 : folded_arg0,
					mode_arg0);
	if (new != 0 && is_const)
3875
	  new = gen_rtx_CONST (mode, new);
3876
      }
Richard Kenner committed
3877
      break;
3878

Richard Kenner committed
3879 3880 3881 3882 3883 3884 3885 3886 3887
    case '<':
      /* See what items are actually being compared and set FOLDED_ARG[01]
	 to those values and CODE to the actual comparison code.  If any are
	 constant, set CONST_ARG0 and CONST_ARG1 appropriately.  We needn't
	 do anything if both operands are already known to be constant.  */

      if (const_arg0 == 0 || const_arg1 == 0)
	{
	  struct table_elt *p0, *p1;
3888
	  rtx true = const_true_rtx, false = const0_rtx;
3889
	  enum machine_mode mode_arg1;
3890 3891

#ifdef FLOAT_STORE_FLAG_VALUE
3892
	  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3893
	    {
3894 3895
	      true = (CONST_DOUBLE_FROM_REAL_VALUE
		      (FLOAT_STORE_FLAG_VALUE (mode), mode));
3896 3897 3898
	      false = CONST0_RTX (mode);
	    }
#endif
Richard Kenner committed
3899

3900 3901
	  code = find_comparison_args (code, &folded_arg0, &folded_arg1,
				       &mode_arg0, &mode_arg1);
Richard Kenner committed
3902 3903 3904
	  const_arg0 = equiv_constant (folded_arg0);
	  const_arg1 = equiv_constant (folded_arg1);

3905 3906 3907
	  /* If the mode is VOIDmode or a MODE_CC mode, we don't know
	     what kinds of things are being compared, so we can't do
	     anything with this comparison.  */
Richard Kenner committed
3908 3909 3910 3911

	  if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
	    break;

Mike Stump committed
3912 3913 3914
	  /* If we do not now have two constants being compared, see
	     if we can nevertheless deduce some things about the
	     comparison.  */
Richard Kenner committed
3915 3916
	  if (const_arg0 == 0 || const_arg1 == 0)
	    {
Mike Stump committed
3917 3918 3919
	      /* Is FOLDED_ARG0 frame-pointer plus a constant?  Or
		 non-explicit constant?  These aren't zero, but we
		 don't know their sign.  */
Richard Kenner committed
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
	      if (const_arg1 == const0_rtx
		  && (NONZERO_BASE_PLUS_P (folded_arg0)
#if 0  /* Sad to say, on sysvr4, #pragma weak can make a symbol address
	  come out as 0.  */
		      || GET_CODE (folded_arg0) == SYMBOL_REF
#endif
		      || GET_CODE (folded_arg0) == LABEL_REF
		      || GET_CODE (folded_arg0) == CONST))
		{
		  if (code == EQ)
3930
		    return false;
Richard Kenner committed
3931
		  else if (code == NE)
3932
		    return true;
Richard Kenner committed
3933 3934 3935 3936 3937 3938 3939
		}

	      /* See if the two operands are the same.  We don't do this
		 for IEEE floating-point since we can't assume x == x
		 since x might be a NaN.  */

	      if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3940
		   || ! FLOAT_MODE_P (mode_arg0) || flag_fast_math)
Richard Kenner committed
3941 3942 3943
		  && (folded_arg0 == folded_arg1
		      || (GET_CODE (folded_arg0) == REG
			  && GET_CODE (folded_arg1) == REG
3944 3945
			  && (REG_QTY (REGNO (folded_arg0))
			      == REG_QTY (REGNO (folded_arg1))))
Richard Kenner committed
3946 3947
		      || ((p0 = lookup (folded_arg0,
					(safe_hash (folded_arg0, mode_arg0)
3948
					 & HASH_MASK), mode_arg0))
Richard Kenner committed
3949 3950
			  && (p1 = lookup (folded_arg1,
					   (safe_hash (folded_arg1, mode_arg0)
3951
					    & HASH_MASK), mode_arg0))
Richard Kenner committed
3952 3953 3954
			  && p0->first_same_value == p1->first_same_value)))
		return ((code == EQ || code == LE || code == GE
			 || code == LEU || code == GEU)
3955
			? true : false);
Richard Kenner committed
3956 3957 3958 3959 3960 3961

	      /* If FOLDED_ARG0 is a register, see if the comparison we are
		 doing now is either the same as we did before or the reverse
		 (we only check the reverse if not floating-point).  */
	      else if (GET_CODE (folded_arg0) == REG)
		{
3962
		  int qty = REG_QTY (REGNO (folded_arg0));
Richard Kenner committed
3963

3964 3965 3966 3967 3968
		  if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
		    {
		      struct qty_table_elem *ent = &qty_table[qty];

		      if ((comparison_dominates_p (ent->comparison_code, code)
3969 3970 3971
			   || (! FLOAT_MODE_P (mode_arg0)
			       && comparison_dominates_p (ent->comparison_code,
						          reverse_condition (code))))
3972 3973 3974 3975 3976 3977 3978 3979 3980
			  && (rtx_equal_p (ent->comparison_const, folded_arg1)
			      || (const_arg1
				  && rtx_equal_p (ent->comparison_const,
						  const_arg1))
			      || (GET_CODE (folded_arg1) == REG
				  && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
			return (comparison_dominates_p (ent->comparison_code, code)
				? true : false);
		    }
Richard Kenner committed
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
		}
	    }
	}

      /* If we are comparing against zero, see if the first operand is
	 equivalent to an IOR with a constant.  If so, we may be able to
	 determine the result of this comparison.  */

      if (const_arg1 == const0_rtx)
	{
	  rtx y = lookup_as_function (folded_arg0, IOR);
	  rtx inner_const;

	  if (y != 0
	      && (inner_const = equiv_constant (XEXP (y, 1))) != 0
	      && GET_CODE (inner_const) == CONST_INT
	      && INTVAL (inner_const) != 0)
	    {
	      int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
4000 4001 4002
	      int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
			      && (INTVAL (inner_const)
				  & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4003 4004 4005
	      rtx true = const_true_rtx, false = const0_rtx;

#ifdef FLOAT_STORE_FLAG_VALUE
4006
	      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4007
		{
4008 4009
		  true = (CONST_DOUBLE_FROM_REAL_VALUE
			  (FLOAT_STORE_FLAG_VALUE (mode), mode));
4010 4011 4012
		  false = CONST0_RTX (mode);
		}
#endif
Richard Kenner committed
4013 4014 4015 4016

	      switch (code)
		{
		case EQ:
4017
		  return false;
Richard Kenner committed
4018
		case NE:
4019
		  return true;
Richard Kenner committed
4020 4021
		case LT:  case LE:
		  if (has_sign)
4022
		    return true;
Richard Kenner committed
4023 4024 4025
		  break;
		case GT:  case GE:
		  if (has_sign)
4026
		    return false;
Richard Kenner committed
4027
		  break;
4028 4029
		default:
		  break;
Richard Kenner committed
4030 4031 4032 4033
		}
	    }
	}

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
      new = simplify_relational_operation (code,
					   (mode_arg0 != VOIDmode
					    ? mode_arg0
					    : (GET_MODE (const_arg0
							 ? const_arg0
							 : folded_arg0)
					       != VOIDmode)
					    ? GET_MODE (const_arg0
							? const_arg0
							: folded_arg0)
					    : GET_MODE (const_arg1
							? const_arg1
							: folded_arg1)),
Richard Kenner committed
4047 4048
					   const_arg0 ? const_arg0 : folded_arg0,
					   const_arg1 ? const_arg1 : folded_arg1);
4049 4050
#ifdef FLOAT_STORE_FLAG_VALUE
      if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
4051 4052 4053 4054 4055 4056 4057
	{
	  if (new == const0_rtx)
	    new = CONST0_RTX (mode);
	  else
	    new = (CONST_DOUBLE_FROM_REAL_VALUE
		   (FLOAT_STORE_FLAG_VALUE (mode), mode));
	}
4058
#endif
Richard Kenner committed
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
      break;

    case '2':
    case 'c':
      switch (code)
	{
	case PLUS:
	  /* If the second operand is a LABEL_REF, see if the first is a MINUS
	     with that LABEL_REF as its second operand.  If so, the result is
	     the first operand of that MINUS.  This handles switches with an
	     ADDR_DIFF_VEC table.  */
	  if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
	    {
4072 4073
	      rtx y
		= GET_CODE (folded_arg0) == MINUS ? folded_arg0
Kazu Hirata committed
4074
		: lookup_as_function (folded_arg0, MINUS);
Richard Kenner committed
4075 4076 4077 4078

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
		return XEXP (y, 0);
4079 4080

	      /* Now try for a CONST of a MINUS like the above.  */
4081 4082
	      if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
			: lookup_as_function (folded_arg0, CONST))) != 0
4083 4084
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
Kazu Hirata committed
4085
		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4086
		return XEXP (XEXP (y, 0), 0);
Richard Kenner committed
4087
	    }
Richard Kenner committed
4088

4089 4090 4091 4092 4093
	  /* Likewise if the operands are in the other order.  */
	  if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
	    {
	      rtx y
		= GET_CODE (folded_arg1) == MINUS ? folded_arg1
Kazu Hirata committed
4094
		: lookup_as_function (folded_arg1, MINUS);
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
		return XEXP (y, 0);

	      /* Now try for a CONST of a MINUS like the above.  */
	      if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
			: lookup_as_function (folded_arg1, CONST))) != 0
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
Kazu Hirata committed
4105
		  && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4106 4107 4108
		return XEXP (XEXP (y, 0), 0);
	    }

Richard Kenner committed
4109 4110 4111
	  /* If second operand is a register equivalent to a negative
	     CONST_INT, see if we can find a register equivalent to the
	     positive constant.  Make a MINUS if so.  Don't do this for
4112
	     a non-negative constant since we might then alternate between
Richard Kenner committed
4113
	     chosing positive and negative constants.  Having the positive
4114 4115 4116 4117 4118 4119 4120
	     constant previously-used is the more common case.  Be sure
	     the resulting constant is non-negative; if const_arg1 were
	     the smallest negative number this would overflow: depending
	     on the mode, this would either just be the same value (and
	     hence not save anything) or be incorrect.  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
	      && INTVAL (const_arg1) < 0
4121 4122
	      /* This used to test

Kazu Hirata committed
4123
	         -INTVAL (const_arg1) >= 0
4124 4125 4126 4127

		 But The Sun V5.0 compilers mis-compiled that test.  So
		 instead we test for the problematic value in a more direct
		 manner and hope the Sun compilers get it correct.  */
4128 4129
	      && INTVAL (const_arg1) !=
	        ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4130
	      && GET_CODE (folded_arg1) == REG)
Richard Kenner committed
4131
	    {
Kazu Hirata committed
4132
	      rtx new_const = GEN_INT (-INTVAL (const_arg1));
Richard Kenner committed
4133
	      struct table_elt *p
4134
		= lookup (new_const, safe_hash (new_const, mode) & HASH_MASK,
Richard Kenner committed
4135 4136 4137 4138 4139
			  mode);

	      if (p)
		for (p = p->first_same_value; p; p = p->next_same_value)
		  if (GET_CODE (p->exp) == REG)
4140 4141
		    return simplify_gen_binary (MINUS, mode, folded_arg0,
						canon_reg (p->exp, NULL_RTX));
Richard Kenner committed
4142
	    }
4143 4144 4145 4146 4147 4148 4149 4150 4151
	  goto from_plus;

	case MINUS:
	  /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
	     If so, produce (PLUS Z C2-C).  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      rtx y = lookup_as_function (XEXP (x, 0), PLUS);
	      if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4152 4153
		return fold_rtx (plus_constant (copy_rtx (y),
						-INTVAL (const_arg1)),
4154
				 NULL_RTX);
4155
	    }
Richard Kenner committed
4156

Kazu Hirata committed
4157
	  /* Fall through.  */
Richard Kenner committed
4158

4159
	from_plus:
Richard Kenner committed
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
	case SMIN:    case SMAX:      case UMIN:    case UMAX:
	case IOR:     case AND:       case XOR:
	case MULT:    case DIV:       case UDIV:
	case ASHIFT:  case LSHIFTRT:  case ASHIFTRT:
	  /* If we have (<op> <reg> <const_int>) for an associative OP and REG
	     is known to be of similar form, we may be able to replace the
	     operation with a combined operation.  This may eliminate the
	     intermediate operation if every use is simplified in this way.
	     Note that the similar optimization done by combine.c only works
	     if the intermediate operation's result has only one reference.  */

	  if (GET_CODE (folded_arg0) == REG
	      && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      int is_shift
		= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
	      rtx y = lookup_as_function (folded_arg0, code);
	      rtx inner_const;
	      enum rtx_code associate_code;
	      rtx new_const;

	      if (y == 0
		  || 0 == (inner_const
			   = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
		  || GET_CODE (inner_const) != CONST_INT
		  /* If we have compiled a statement like
		     "if (x == (x & mask1))", and now are looking at
		     "x & mask2", we will have a case where the first operand
		     of Y is the same as our first operand.  Unless we detect
		     this case, an infinite loop will result.  */
		  || XEXP (y, 0) == folded_arg0)
		break;

	      /* Don't associate these operations if they are a PLUS with the
		 same constant and it is a power of two.  These might be doable
		 with a pre- or post-increment.  Similarly for two subtracts of
		 identical powers of two with post decrement.  */

	      if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
4199 4200 4201 4202 4203 4204 4205 4206
		  && ((HAVE_PRE_INCREMENT
			  && exact_log2 (INTVAL (const_arg1)) >= 0)
		      || (HAVE_POST_INCREMENT
			  && exact_log2 (INTVAL (const_arg1)) >= 0)
		      || (HAVE_PRE_DECREMENT
			  && exact_log2 (- INTVAL (const_arg1)) >= 0)
		      || (HAVE_POST_DECREMENT
			  && exact_log2 (- INTVAL (const_arg1)) >= 0)))
Richard Kenner committed
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
		break;

	      /* Compute the code used to compose the constants.  For example,
		 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT.  */

	      associate_code
		= (code == MULT || code == DIV || code == UDIV ? MULT
		   : is_shift || code == PLUS || code == MINUS ? PLUS : code);

	      new_const = simplify_binary_operation (associate_code, mode,
						     const_arg1, inner_const);

	      if (new_const == 0)
		break;

	      /* If we are associating shift operations, don't let this
4223 4224 4225 4226
		 produce a shift of the size of the object or larger.
		 This could occur when we follow a sign-extend by a right
		 shift on a machine that does a sign-extend as a pair
		 of shifts.  */
Richard Kenner committed
4227 4228

	      if (is_shift && GET_CODE (new_const) == CONST_INT
4229 4230 4231 4232 4233 4234 4235 4236 4237
		  && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
		{
		  /* As an exception, we can turn an ASHIFTRT of this
		     form into a shift of the number of bits - 1.  */
		  if (code == ASHIFTRT)
		    new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
		  else
		    break;
		}
Richard Kenner committed
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247

	      y = copy_rtx (XEXP (y, 0));

	      /* If Y contains our first operand (the most common way this
		 can happen is if Y is a MEM), we would do into an infinite
		 loop if we tried to fold it.  So don't in that case.  */

	      if (! reg_mentioned_p (folded_arg0, y))
		y = fold_rtx (y, insn);

4248
	      return simplify_gen_binary (code, mode, y, new_const);
Richard Kenner committed
4249
	    }
4250 4251 4252 4253
	  break;

	default:
	  break;
Richard Kenner committed
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
	}

      new = simplify_binary_operation (code, mode,
				       const_arg0 ? const_arg0 : folded_arg0,
				       const_arg1 ? const_arg1 : folded_arg1);
      break;

    case 'o':
      /* (lo_sum (high X) X) is simply X.  */
      if (code == LO_SUM && const_arg0 != 0
	  && GET_CODE (const_arg0) == HIGH
	  && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
	return const_arg1;
      break;

    case '3':
    case 'b':
      new = simplify_ternary_operation (code, mode, mode_arg0,
					const_arg0 ? const_arg0 : folded_arg0,
					const_arg1 ? const_arg1 : folded_arg1,
					const_arg2 ? const_arg2 : XEXP (x, 2));
      break;
4276 4277

    case 'x':
Kazu Hirata committed
4278
      /* Always eliminate CONSTANT_P_RTX at this stage.  */
4279 4280 4281
      if (code == CONSTANT_P_RTX)
	return (const_arg0 ? const1_rtx : const0_rtx);
      break;
Richard Kenner committed
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
    }

  return new ? new : x;
}

/* Return a constant value currently equivalent to X.
   Return 0 if we don't know one.  */

static rtx
equiv_constant (x)
     rtx x;
{
  if (GET_CODE (x) == REG
4295 4296 4297 4298 4299 4300 4301 4302
      && REGNO_QTY_VALID_P (REGNO (x)))
    {
      int x_q = REG_QTY (REGNO (x));
      struct qty_table_elem *x_ent = &qty_table[x_q];

      if (x_ent->const_rtx)
	x = gen_lowpart_if_possible (GET_MODE (x), x_ent->const_rtx);
    }
Richard Kenner committed
4303

4304
  if (x == 0 || CONSTANT_P (x))
Richard Kenner committed
4305 4306
    return x;

4307 4308 4309 4310 4311 4312 4313 4314 4315
  /* If X is a MEM, try to fold it outside the context of any insn to see if
     it might be equivalent to a constant.  That handles the case where it
     is a constant-pool reference.  Then try to look it up in the hash table
     in case it is something whose value we have seen before.  */

  if (GET_CODE (x) == MEM)
    {
      struct table_elt *elt;

4316
      x = fold_rtx (x, NULL_RTX);
4317 4318 4319
      if (CONSTANT_P (x))
	return x;

4320
      elt = lookup (x, safe_hash (x, GET_MODE (x)) & HASH_MASK, GET_MODE (x));
4321 4322 4323 4324 4325 4326 4327 4328
      if (elt == 0)
	return 0;

      for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
	if (elt->is_const && CONSTANT_P (elt->exp))
	  return elt->exp;
    }

Richard Kenner committed
4329 4330 4331 4332 4333 4334
  return 0;
}

/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
   number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
   least-significant part of X.
4335
   MODE specifies how big a part of X to return.
Richard Kenner committed
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355

   If the requested operation cannot be done, 0 is returned.

   This is similar to gen_lowpart in emit-rtl.c.  */

rtx
gen_lowpart_if_possible (mode, x)
     enum machine_mode mode;
     register rtx x;
{
  rtx result = gen_lowpart_common (mode, x);

  if (result)
    return result;
  else if (GET_CODE (x) == MEM)
    {
      /* This is the only other case we handle.  */
      register int offset = 0;
      rtx new;

4356 4357 4358 4359 4360 4361 4362 4363
      if (WORDS_BIG_ENDIAN)
	offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
		  - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
      if (BYTES_BIG_ENDIAN)
	/* Adjust the address so that the address-after-the-data is
	   unchanged.  */
	offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
		   - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4364
      new = gen_rtx_MEM (mode, plus_constant (XEXP (x, 0), offset));
Richard Kenner committed
4365 4366
      if (! memory_address_p (mode, XEXP (new, 0)))
	return 0;
4367
      MEM_COPY_ATTRIBUTES (new, x);
Richard Kenner committed
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
      return new;
    }
  else
    return 0;
}

/* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
   branch.  It will be zero if not.

   In certain cases, this can cause us to add an equivalence.  For example,
4378
   if we are following the taken case of
Richard Kenner committed
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
   	if (i == 2)
   we can add the fact that `i' and '2' are now equivalent.

   In any case, we can record that this comparison was passed.  If the same
   comparison is seen later, we will know its value.  */

static void
record_jump_equiv (insn, taken)
     rtx insn;
     int taken;
{
  int cond_known_true;
  rtx op0, op1;
4392
  rtx set;
4393
  enum machine_mode mode, mode0, mode1;
Richard Kenner committed
4394 4395 4396 4397
  int reversed_nonequality = 0;
  enum rtx_code code;

  /* Ensure this is the right kind of insn.  */
4398
  if (! any_condjump_p (insn))
Richard Kenner committed
4399
    return;
4400
  set = pc_set (insn);
Richard Kenner committed
4401 4402 4403

  /* See if this jump condition is known true or false.  */
  if (taken)
4404
    cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
Richard Kenner committed
4405
  else
4406
    cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
Richard Kenner committed
4407 4408 4409 4410

  /* Get the type of comparison being done and the operands being compared.
     If we had to reverse a non-equality condition, record that fact so we
     know that it isn't valid for floating-point.  */
4411 4412 4413
  code = GET_CODE (XEXP (SET_SRC (set), 0));
  op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
  op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
Richard Kenner committed
4414

4415
  code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
Richard Kenner committed
4416 4417 4418 4419
  if (! cond_known_true)
    {
      reversed_nonequality = (code != EQ && code != NE);
      code = reverse_condition (code);
4420 4421 4422 4423

      /* Don't remember if we can't find the inverse.  */
      if (code == UNKNOWN)
	return;
Richard Kenner committed
4424 4425 4426
    }

  /* The mode is the mode of the non-constant.  */
4427 4428 4429
  mode = mode0;
  if (mode1 != VOIDmode)
    mode = mode1;
Richard Kenner committed
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445

  record_jump_cond (code, mode, op0, op1, reversed_nonequality);
}

/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
   REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
   Make any useful entries we can with that information.  Called from
   above function and called recursively.  */

static void
record_jump_cond (code, mode, op0, op1, reversed_nonequality)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
     int reversed_nonequality;
{
Richard Kenner committed
4446
  unsigned op0_hash, op1_hash;
Bernd Schmidt committed
4447
  int op0_in_memory, op1_in_memory;
Richard Kenner committed
4448 4449 4450 4451 4452
  struct table_elt *op0_elt, *op1_elt;

  /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
     we know that they are also equal in the smaller mode (this is also
     true for all smaller modes whether or not there is a SUBREG, but
4453
     is not worth testing for with no SUBREG).  */
Richard Kenner committed
4454

4455
  /* Note that GET_MODE (op0) may not equal MODE.  */
Richard Kenner committed
4456
  if (code == EQ && GET_CODE (op0) == SUBREG
4457 4458
      && (GET_MODE_SIZE (GET_MODE (op0))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
Richard Kenner committed
4459 4460 4461 4462 4463
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
      rtx tem = gen_lowpart_if_possible (inner_mode, op1);

      record_jump_cond (code, mode, SUBREG_REG (op0),
4464
			tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
Richard Kenner committed
4465 4466 4467 4468
			reversed_nonequality);
    }

  if (code == EQ && GET_CODE (op1) == SUBREG
4469 4470
      && (GET_MODE_SIZE (GET_MODE (op1))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
Richard Kenner committed
4471 4472 4473 4474 4475
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
      rtx tem = gen_lowpart_if_possible (inner_mode, op0);

      record_jump_cond (code, mode, SUBREG_REG (op1),
4476
			tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
Richard Kenner committed
4477 4478 4479
			reversed_nonequality);
    }

4480
  /* Similarly, if this is an NE comparison, and either is a SUBREG
Richard Kenner committed
4481 4482
     making a smaller mode, we know the whole thing is also NE.  */

4483 4484 4485 4486
  /* Note that GET_MODE (op0) may not equal MODE;
     if we test MODE instead, we can get an infinite recursion
     alternating between two modes each wider than MODE.  */

Richard Kenner committed
4487 4488
  if (code == NE && GET_CODE (op0) == SUBREG
      && subreg_lowpart_p (op0)
4489 4490
      && (GET_MODE_SIZE (GET_MODE (op0))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
Richard Kenner committed
4491 4492 4493 4494 4495
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
      rtx tem = gen_lowpart_if_possible (inner_mode, op1);

      record_jump_cond (code, mode, SUBREG_REG (op0),
4496
			tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
Richard Kenner committed
4497 4498 4499 4500 4501
			reversed_nonequality);
    }

  if (code == NE && GET_CODE (op1) == SUBREG
      && subreg_lowpart_p (op1)
4502 4503
      && (GET_MODE_SIZE (GET_MODE (op1))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
Richard Kenner committed
4504 4505 4506 4507 4508
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
      rtx tem = gen_lowpart_if_possible (inner_mode, op0);

      record_jump_cond (code, mode, SUBREG_REG (op1),
4509
			tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
Richard Kenner committed
4510 4511 4512 4513 4514 4515 4516
			reversed_nonequality);
    }

  /* Hash both operands.  */

  do_not_record = 0;
  hash_arg_in_memory = 0;
Richard Kenner committed
4517
  op0_hash = HASH (op0, mode);
Richard Kenner committed
4518 4519 4520 4521 4522 4523 4524
  op0_in_memory = hash_arg_in_memory;

  if (do_not_record)
    return;

  do_not_record = 0;
  hash_arg_in_memory = 0;
Richard Kenner committed
4525
  op1_hash = HASH (op1, mode);
Richard Kenner committed
4526
  op1_in_memory = hash_arg_in_memory;
4527

Richard Kenner committed
4528 4529 4530 4531
  if (do_not_record)
    return;

  /* Look up both operands.  */
Richard Kenner committed
4532 4533
  op0_elt = lookup (op0, op0_hash, mode);
  op1_elt = lookup (op1, op1_hash, mode);
Richard Kenner committed
4534

4535 4536 4537 4538 4539 4540 4541
  /* If both operands are already equivalent or if they are not in the
     table but are identical, do nothing.  */
  if ((op0_elt != 0 && op1_elt != 0
       && op0_elt->first_same_value == op1_elt->first_same_value)
      || op0 == op1 || rtx_equal_p (op0, op1))
    return;

Richard Kenner committed
4542
  /* If we aren't setting two things equal all we can do is save this
4543 4544 4545 4546 4547
     comparison.   Similarly if this is floating-point.  In the latter
     case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
     If we record the equality, we might inadvertently delete code
     whose intent was to change -0 to +0.  */

4548
  if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
Richard Kenner committed
4549
    {
4550 4551 4552
      struct qty_table_elem *ent;
      int qty;

Richard Kenner committed
4553 4554 4555 4556 4557 4558 4559
      /* If we reversed a floating-point comparison, if OP0 is not a
	 register, or if OP1 is neither a register or constant, we can't
	 do anything.  */

      if (GET_CODE (op1) != REG)
	op1 = equiv_constant (op1);

4560
      if ((reversed_nonequality && FLOAT_MODE_P (mode))
Richard Kenner committed
4561 4562 4563 4564 4565 4566 4567
	  || GET_CODE (op0) != REG || op1 == 0)
	return;

      /* Put OP0 in the hash table if it isn't already.  This gives it a
	 new quantity number.  */
      if (op0_elt == 0)
	{
4568
	  if (insert_regs (op0, NULL_PTR, 0))
Richard Kenner committed
4569 4570
	    {
	      rehash_using_reg (op0);
Richard Kenner committed
4571
	      op0_hash = HASH (op0, mode);
4572 4573 4574 4575 4576

	      /* If OP0 is contained in OP1, this changes its hash code
		 as well.  Faster to rehash than to check, except
		 for the simple case of a constant.  */
	      if (! CONSTANT_P (op1))
Richard Kenner committed
4577
		op1_hash = HASH (op1,mode);
Richard Kenner committed
4578 4579
	    }

Richard Kenner committed
4580
	  op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
Richard Kenner committed
4581 4582 4583
	  op0_elt->in_memory = op0_in_memory;
	}

4584 4585 4586 4587
      qty = REG_QTY (REGNO (op0));
      ent = &qty_table[qty];

      ent->comparison_code = code;
Richard Kenner committed
4588 4589
      if (GET_CODE (op1) == REG)
	{
4590
	  /* Look it up again--in case op0 and op1 are the same.  */
Richard Kenner committed
4591
	  op1_elt = lookup (op1, op1_hash, mode);
4592

Richard Kenner committed
4593 4594 4595
	  /* Put OP1 in the hash table so it gets a new quantity number.  */
	  if (op1_elt == 0)
	    {
4596
	      if (insert_regs (op1, NULL_PTR, 0))
Richard Kenner committed
4597 4598
		{
		  rehash_using_reg (op1);
Richard Kenner committed
4599
		  op1_hash = HASH (op1, mode);
Richard Kenner committed
4600 4601
		}

Richard Kenner committed
4602
	      op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
Richard Kenner committed
4603 4604 4605
	      op1_elt->in_memory = op1_in_memory;
	    }

4606 4607
	  ent->comparison_const = NULL_RTX;
	  ent->comparison_qty = REG_QTY (REGNO (op1));
Richard Kenner committed
4608 4609 4610
	}
      else
	{
4611 4612
	  ent->comparison_const = op1;
	  ent->comparison_qty = -1;
Richard Kenner committed
4613 4614 4615 4616 4617
	}

      return;
    }

4618 4619
  /* If either side is still missing an equivalence, make it now,
     then merge the equivalences.  */
Richard Kenner committed
4620 4621 4622

  if (op0_elt == 0)
    {
4623
      if (insert_regs (op0, NULL_PTR, 0))
Richard Kenner committed
4624 4625
	{
	  rehash_using_reg (op0);
Richard Kenner committed
4626
	  op0_hash = HASH (op0, mode);
Richard Kenner committed
4627 4628
	}

Richard Kenner committed
4629
      op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
Richard Kenner committed
4630 4631 4632 4633 4634
      op0_elt->in_memory = op0_in_memory;
    }

  if (op1_elt == 0)
    {
4635
      if (insert_regs (op1, NULL_PTR, 0))
Richard Kenner committed
4636 4637
	{
	  rehash_using_reg (op1);
Richard Kenner committed
4638
	  op1_hash = HASH (op1, mode);
Richard Kenner committed
4639 4640
	}

Richard Kenner committed
4641
      op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
Richard Kenner committed
4642 4643
      op1_elt->in_memory = op1_in_memory;
    }
4644 4645 4646

  merge_equiv_classes (op0_elt, op1_elt);
  last_jump_equiv_class = op0_elt;
Richard Kenner committed
4647 4648 4649 4650 4651 4652
}

/* CSE processing for one instruction.
   First simplify sources and addresses of all assignments
   in the instruction, using previously-computed equivalents values.
   Then install the new sources and destinations in the table
4653
   of available values.
Richard Kenner committed
4654

4655 4656
   If LIBCALL_INSN is nonzero, don't record any equivalence made in
   the insn.  It means that INSN is inside libcall block.  In this
Kazu Hirata committed
4657
   case LIBCALL_INSN is the corresponding insn with REG_LIBCALL.  */
Richard Kenner committed
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668

/* Data on one SET contained in the instruction.  */

struct set
{
  /* The SET rtx itself.  */
  rtx rtl;
  /* The SET_SRC of the rtx (the original value, if it is changing).  */
  rtx src;
  /* The hash-table element for the SET_SRC of the SET.  */
  struct table_elt *src_elt;
Richard Kenner committed
4669 4670 4671 4672
  /* Hash value for the SET_SRC.  */
  unsigned src_hash;
  /* Hash value for the SET_DEST.  */
  unsigned dest_hash;
Richard Kenner committed
4673 4674
  /* The SET_DEST, with SUBREG, etc., stripped.  */
  rtx inner_dest;
4675
  /* Nonzero if the SET_SRC is in memory.  */
Richard Kenner committed
4676 4677 4678 4679 4680 4681 4682 4683
  char src_in_memory;
  /* Nonzero if the SET_SRC contains something
     whose value cannot be predicted and understood.  */
  char src_volatile;
  /* Original machine mode, in case it becomes a CONST_INT.  */
  enum machine_mode mode;
  /* A constant equivalent for SET_SRC, if any.  */
  rtx src_const;
4684 4685
  /* Original SET_SRC value used for libcall notes.  */
  rtx orig_src;
Richard Kenner committed
4686 4687
  /* Hash value of constant equivalent for SET_SRC.  */
  unsigned src_const_hash;
Richard Kenner committed
4688 4689 4690 4691 4692
  /* Table entry for constant equivalent for SET_SRC, if any.  */
  struct table_elt *src_const_elt;
};

static void
4693
cse_insn (insn, libcall_insn)
Richard Kenner committed
4694
     rtx insn;
4695
     rtx libcall_insn;
Richard Kenner committed
4696 4697 4698
{
  register rtx x = PATTERN (insn);
  register int i;
4699
  rtx tem;
Richard Kenner committed
4700 4701
  register int n_sets = 0;

4702
#ifdef HAVE_cc0
Richard Kenner committed
4703 4704
  /* Records what this insn does to set CC0.  */
  rtx this_insn_cc0 = 0;
4705
  enum machine_mode this_insn_cc0_mode = VOIDmode;
4706
#endif
Richard Kenner committed
4707 4708 4709

  rtx src_eqv = 0;
  struct table_elt *src_eqv_elt = 0;
Kaveh R. Ghazi committed
4710 4711 4712
  int src_eqv_volatile = 0;
  int src_eqv_in_memory = 0;
  unsigned src_eqv_hash = 0;
Richard Kenner committed
4713

4714
  struct set *sets = (struct set *) NULL_PTR;
Richard Kenner committed
4715 4716 4717 4718 4719 4720 4721 4722

  this_insn = insn;

  /* Find all the SETs and CLOBBERs in this instruction.
     Record all the SETs in the array `set' and count them.
     Also determine whether there is a CLOBBER that invalidates
     all memory references, or all references at varying addresses.  */

4723 4724 4725 4726
  if (GET_CODE (insn) == CALL_INSN)
    {
      for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
	if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4727
	  invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4728 4729
    }

Richard Kenner committed
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
  if (GET_CODE (x) == SET)
    {
      sets = (struct set *) alloca (sizeof (struct set));
      sets[0].rtl = x;

      /* Ignore SETs that are unconditional jumps.
	 They never need cse processing, so this does not hurt.
	 The reason is not efficiency but rather
	 so that we can test at the end for instructions
	 that have been simplified to unconditional jumps
	 and not be misled by unchanged instructions
	 that were unconditional jumps to begin with.  */
      if (SET_DEST (x) == pc_rtx
	  && GET_CODE (SET_SRC (x)) == LABEL_REF)
	;

      /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
	 The hard function value register is used only once, to copy to
	 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
	 Ensure we invalidate the destination register.  On the 80386 no
4750
	 other code would invalidate it since it is a fixed_reg.
Mike Stump committed
4751
	 We need not check the return of apply_change_group; see canon_reg.  */
Richard Kenner committed
4752 4753 4754 4755

      else if (GET_CODE (SET_SRC (x)) == CALL)
	{
	  canon_reg (SET_SRC (x), insn);
4756
	  apply_change_group ();
Richard Kenner committed
4757
	  fold_rtx (SET_SRC (x), insn);
4758
	  invalidate (SET_DEST (x), VOIDmode);
Richard Kenner committed
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
	}
      else
	n_sets = 1;
    }
  else if (GET_CODE (x) == PARALLEL)
    {
      register int lim = XVECLEN (x, 0);

      sets = (struct set *) alloca (lim * sizeof (struct set));

      /* Find all regs explicitly clobbered in this insn,
	 and ensure they are not replaced with any other regs
	 elsewhere in this insn.
	 When a reg that is clobbered is also used for input,
	 we should presume that that is for a reason,
	 and we should not substitute some other register
	 which is not supposed to be clobbered.
	 Therefore, this loop cannot be merged into the one below
4777
	 because a CALL may precede a CLOBBER and refer to the
Richard Kenner committed
4778 4779 4780 4781 4782
	 value clobbered.  We must not let a canonicalization do
	 anything in that case.  */
      for (i = 0; i < lim; i++)
	{
	  register rtx y = XVECEXP (x, 0, i);
4783 4784 4785 4786 4787 4788
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx clobbered = XEXP (y, 0);

	      if (GET_CODE (clobbered) == REG
		  || GET_CODE (clobbered) == SUBREG)
4789
		invalidate (clobbered, VOIDmode);
4790 4791
	      else if (GET_CODE (clobbered) == STRICT_LOW_PART
		       || GET_CODE (clobbered) == ZERO_EXTRACT)
4792
		invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4793
	    }
Richard Kenner committed
4794
	}
4795

Richard Kenner committed
4796 4797 4798 4799 4800
      for (i = 0; i < lim; i++)
	{
	  register rtx y = XVECEXP (x, 0, i);
	  if (GET_CODE (y) == SET)
	    {
4801 4802
	      /* As above, we ignore unconditional jumps and call-insns and
		 ignore the result of apply_change_group.  */
Richard Kenner committed
4803 4804 4805
	      if (GET_CODE (SET_SRC (y)) == CALL)
		{
		  canon_reg (SET_SRC (y), insn);
4806
		  apply_change_group ();
Richard Kenner committed
4807
		  fold_rtx (SET_SRC (y), insn);
4808
		  invalidate (SET_DEST (y), VOIDmode);
Richard Kenner committed
4809 4810 4811 4812 4813 4814 4815 4816 4817
		}
	      else if (SET_DEST (y) == pc_rtx
		       && GET_CODE (SET_SRC (y)) == LABEL_REF)
		;
	      else
		sets[n_sets++].rtl = y;
	    }
	  else if (GET_CODE (y) == CLOBBER)
	    {
4818
	      /* If we clobber memory, canon the address.
Richard Kenner committed
4819 4820 4821
		 This does nothing when a register is clobbered
		 because we have already invalidated the reg.  */
	      if (GET_CODE (XEXP (y, 0)) == MEM)
4822
		canon_reg (XEXP (y, 0), NULL_RTX);
Richard Kenner committed
4823 4824 4825 4826
	    }
	  else if (GET_CODE (y) == USE
		   && ! (GET_CODE (XEXP (y, 0)) == REG
			 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4827
	    canon_reg (y, NULL_RTX);
Richard Kenner committed
4828 4829
	  else if (GET_CODE (y) == CALL)
	    {
4830 4831
	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */
Richard Kenner committed
4832
	      canon_reg (y, insn);
4833
	      apply_change_group ();
Richard Kenner committed
4834 4835 4836 4837 4838 4839 4840
	      fold_rtx (y, insn);
	    }
	}
    }
  else if (GET_CODE (x) == CLOBBER)
    {
      if (GET_CODE (XEXP (x, 0)) == MEM)
4841
	canon_reg (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
4842 4843 4844 4845 4846 4847
    }

  /* Canonicalize a USE of a pseudo register or memory location.  */
  else if (GET_CODE (x) == USE
	   && ! (GET_CODE (XEXP (x, 0)) == REG
		 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4848
    canon_reg (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
4849 4850
  else if (GET_CODE (x) == CALL)
    {
4851
      /* The result of apply_change_group can be ignored; see canon_reg.  */
Richard Kenner committed
4852
      canon_reg (x, insn);
4853
      apply_change_group ();
Richard Kenner committed
4854 4855 4856
      fold_rtx (x, insn);
    }

4857 4858 4859
  /* Store the equivalent value in SRC_EQV, if different, or if the DEST
     is a STRICT_LOW_PART.  The latter condition is necessary because SRC_EQV
     is handled specially for this case, and if it isn't set, then there will
Richard Kenner committed
4860
     be no equivalence for the destination.  */
4861 4862
  if (n_sets == 1 && REG_NOTES (insn) != 0
      && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4863 4864
      && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
	  || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4865
    src_eqv = canon_reg (XEXP (tem, 0), NULL_RTX);
Richard Kenner committed
4866 4867 4868 4869 4870 4871 4872 4873 4874

  /* Canonicalize sources and addresses of destinations.
     We do this in a separate pass to avoid problems when a MATCH_DUP is
     present in the insn pattern.  In that case, we want to ensure that
     we don't break the duplicate nature of the pattern.  So we will replace
     both operands at the same time.  Otherwise, we would fail to find an
     equivalent substitution in the loop calling validate_change below.

     We used to suppress canonicalization of DEST if it appears in SRC,
4875
     but we don't do this any more.  */
Richard Kenner committed
4876 4877 4878 4879 4880 4881

  for (i = 0; i < n_sets; i++)
    {
      rtx dest = SET_DEST (sets[i].rtl);
      rtx src = SET_SRC (sets[i].rtl);
      rtx new = canon_reg (src, insn);
4882
      int insn_code;
Richard Kenner committed
4883

4884
      sets[i].orig_src = src;
4885 4886 4887
      if ((GET_CODE (new) == REG && GET_CODE (src) == REG
	   && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
	       != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4888
	  || (insn_code = recog_memoized (insn)) < 0
4889
	  || insn_data[insn_code].n_dups > 0)
4890
	validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
Richard Kenner committed
4891 4892 4893 4894 4895 4896
      else
	SET_SRC (sets[i].rtl) = new;

      if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
	{
	  validate_change (insn, &XEXP (dest, 1),
4897
			   canon_reg (XEXP (dest, 1), insn), 1);
Richard Kenner committed
4898
	  validate_change (insn, &XEXP (dest, 2),
4899
			   canon_reg (XEXP (dest, 2), insn), 1);
Richard Kenner committed
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
	}

      while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SIGN_EXTRACT)
	dest = XEXP (dest, 0);

      if (GET_CODE (dest) == MEM)
	canon_reg (dest, insn);
    }

4911 4912 4913 4914
  /* Now that we have done all the replacements, we can apply the change
     group and see if they all work.  Note that this will cause some
     canonicalizations that would have worked individually not to be applied
     because some other canonicalization didn't work, but this should not
4915
     occur often.
4916 4917

     The result of apply_change_group can be ignored; see canon_reg.  */
4918 4919 4920

  apply_change_group ();

Richard Kenner committed
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
  /* Set sets[i].src_elt to the class each source belongs to.
     Detect assignments from or to volatile things
     and set set[i] to zero so they will be ignored
     in the rest of this function.

     Nothing in this loop changes the hash table or the register chains.  */

  for (i = 0; i < n_sets; i++)
    {
      register rtx src, dest;
      register rtx src_folded;
      register struct table_elt *elt = 0, *p;
      enum machine_mode mode;
      rtx src_eqv_here;
      rtx src_const = 0;
      rtx src_related = 0;
      struct table_elt *src_const_elt = 0;
4938 4939
      int src_cost = MAX_COST, src_eqv_cost = MAX_COST, src_folded_cost = MAX_COST;
      int src_related_cost = MAX_COST, src_elt_cost = MAX_COST;
4940 4941
      int src_regcost, src_eqv_regcost, src_folded_regcost;
      int src_related_regcost, src_elt_regcost;
Richard Kenner committed
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
      /* Set non-zero if we need to call force_const_mem on with the
	 contents of src_folded before using it.  */
      int src_folded_force_flag = 0;

      dest = SET_DEST (sets[i].rtl);
      src = SET_SRC (sets[i].rtl);

      /* If SRC is a constant that has no machine mode,
	 hash it with the destination's machine mode.
	 This way we can keep different modes separate.  */

      mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
      sets[i].mode = mode;

      if (src_eqv)
	{
	  enum machine_mode eqvmode = mode;
	  if (GET_CODE (dest) == STRICT_LOW_PART)
	    eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  do_not_record = 0;
	  hash_arg_in_memory = 0;
	  src_eqv = fold_rtx (src_eqv, insn);
Richard Kenner committed
4964
	  src_eqv_hash = HASH (src_eqv, eqvmode);
Richard Kenner committed
4965 4966 4967 4968

	  /* Find the equivalence class for the equivalent expression.  */

	  if (!do_not_record)
Richard Kenner committed
4969
	    src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
Richard Kenner committed
4970 4971 4972 4973 4974 4975 4976

	  src_eqv_volatile = do_not_record;
	  src_eqv_in_memory = hash_arg_in_memory;
	}

      /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
	 value of the INNER register, not the destination.  So it is not
Richard Kenner committed
4977
	 a valid substitution for the source.  But save it for later.  */
Richard Kenner committed
4978 4979 4980 4981 4982 4983 4984 4985 4986
      if (GET_CODE (dest) == STRICT_LOW_PART)
	src_eqv_here = 0;
      else
	src_eqv_here = src_eqv;

      /* Simplify and foldable subexpressions in SRC.  Then get the fully-
	 simplified result, which may not necessarily be valid.  */
      src_folded = fold_rtx (src, insn);

4987 4988 4989 4990 4991 4992 4993
#if 0
      /* ??? This caused bad code to be generated for the m68k port with -O2.
	 Suppose src is (CONST_INT -1), and that after truncation src_folded
	 is (CONST_INT 3).  Suppose src_folded is then used for src_const.
	 At the end we will add src and src_const to the same equivalence
	 class.  We now have 3 and -1 on the same equivalence class.  This
	 causes later instructions to be mis-optimized.  */
Richard Kenner committed
4994 4995 4996 4997 4998 4999 5000 5001 5002
      /* If storing a constant in a bitfield, pre-truncate the constant
	 so we will be able to record it later.  */
      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
	  || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (GET_CODE (src) == CONST_INT
	      && GET_CODE (width) == CONST_INT
5003 5004 5005 5006 5007
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
	    src_folded
	      = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
					  << INTVAL (width)) - 1));
Richard Kenner committed
5008
	}
5009
#endif
Richard Kenner committed
5010 5011 5012 5013 5014 5015 5016 5017

      /* Compute SRC's hash code, and also notice if it
	 should not be recorded at all.  In that case,
	 prevent any further processing of this assignment.  */
      do_not_record = 0;
      hash_arg_in_memory = 0;

      sets[i].src = src;
Richard Kenner committed
5018
      sets[i].src_hash = HASH (src, mode);
Richard Kenner committed
5019 5020 5021
      sets[i].src_volatile = do_not_record;
      sets[i].src_in_memory = hash_arg_in_memory;

5022 5023 5024 5025
      /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
	 a pseudo that is set more than once, do not record SRC.  Using
	 SRC as a replacement for anything else will be incorrect in that
	 situation.  Note that this usually occurs only for stack slots,
Jeff Law committed
5026
	 in which case all the RTL would be referring to SRC, so we don't
5027 5028 5029 5030 5031 5032 5033
	 lose any optimization opportunities by not having SRC in the
	 hash table.  */

      if (GET_CODE (src) == MEM
	  && find_reg_note (insn, REG_EQUIV, src) != 0
	  && GET_CODE (dest) == REG
	  && REGNO (dest) >= FIRST_PSEUDO_REGISTER
5034
	  && REG_N_SETS (REGNO (dest)) != 1)
5035 5036
	sets[i].src_volatile = 1;

5037 5038 5039 5040
#if 0
      /* It is no longer clear why we used to do this, but it doesn't
	 appear to still be needed.  So let's try without it since this
	 code hurts cse'ing widened ops.  */
Richard Kenner committed
5041 5042 5043 5044 5045 5046 5047 5048
      /* If source is a perverse subreg (such as QI treated as an SI),
	 treat it as volatile.  It may do the work of an SI in one context
	 where the extra bits are not being used, but cannot replace an SI
	 in general.  */
      if (GET_CODE (src) == SUBREG
	  && (GET_MODE_SIZE (GET_MODE (src))
	      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
	sets[i].src_volatile = 1;
5049
#endif
Richard Kenner committed
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067

      /* Locate all possible equivalent forms for SRC.  Try to replace
         SRC in the insn with each cheaper equivalent.

         We have the following types of equivalents: SRC itself, a folded
         version, a value given in a REG_EQUAL note, or a value related
	 to a constant.

         Each of these equivalents may be part of an additional class
         of equivalents (if more than one is in the table, they must be in
         the same class; we check for this).

	 If the source is volatile, we don't do any table lookups.

         We note any constant equivalent for possible later use in a
         REG_NOTE.  */

      if (!sets[i].src_volatile)
Richard Kenner committed
5068
	elt = lookup (src, sets[i].src_hash, mode);
Richard Kenner committed
5069 5070 5071 5072

      sets[i].src_elt = elt;

      if (elt && src_eqv_here && src_eqv_elt)
5073 5074
	{
	  if (elt->first_same_value != src_eqv_elt->first_same_value)
Richard Kenner committed
5075 5076 5077 5078
	    {
	      /* The REG_EQUAL is indicating that two formerly distinct
		 classes are now equivalent.  So merge them.  */
	      merge_equiv_classes (elt, src_eqv_elt);
Richard Kenner committed
5079 5080
	      src_eqv_hash = HASH (src_eqv, elt->mode);
	      src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
Richard Kenner committed
5081 5082
	    }

5083 5084
	  src_eqv_here = 0;
	}
Richard Kenner committed
5085 5086

      else if (src_eqv_elt)
5087
	elt = src_eqv_elt;
Richard Kenner committed
5088 5089 5090 5091

      /* Try to find a constant somewhere and record it in `src_const'.
	 Record its table element, if any, in `src_const_elt'.  Look in
	 any known equivalences first.  (If the constant is not in the
Richard Kenner committed
5092
	 table, also set `sets[i].src_const_hash').  */
Richard Kenner committed
5093
      if (elt)
5094
	for (p = elt->first_same_value; p; p = p->next_same_value)
Richard Kenner committed
5095 5096 5097 5098 5099 5100 5101 5102 5103
	  if (p->is_const)
	    {
	      src_const = p->exp;
	      src_const_elt = elt;
	      break;
	    }

      if (src_const == 0
	  && (CONSTANT_P (src_folded)
5104
	      /* Consider (minus (label_ref L1) (label_ref L2)) as
Richard Kenner committed
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
		 "constant" here so we will record it. This allows us
		 to fold switch statements when an ADDR_DIFF_VEC is used.  */
	      || (GET_CODE (src_folded) == MINUS
		  && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
		  && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
	src_const = src_folded, src_const_elt = elt;
      else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
	src_const = src_eqv_here, src_const_elt = src_eqv_elt;

      /* If we don't know if the constant is in the table, get its
	 hash code and look it up.  */
      if (src_const && src_const_elt == 0)
	{
Richard Kenner committed
5118 5119
	  sets[i].src_const_hash = HASH (src_const, mode);
	  src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
Richard Kenner committed
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
	}

      sets[i].src_const = src_const;
      sets[i].src_const_elt = src_const_elt;

      /* If the constant and our source are both in the table, mark them as
	 equivalent.  Otherwise, if a constant is in the table but the source
	 isn't, set ELT to it.  */
      if (src_const_elt && elt
	  && src_const_elt->first_same_value != elt->first_same_value)
	merge_equiv_classes (elt, src_const_elt);
      else if (src_const_elt && elt == 0)
	elt = src_const_elt;

      /* See if there is a register linearly related to a constant
         equivalent of SRC.  */
      if (src_const
	  && (GET_CODE (src_const) == CONST
	      || (src_const_elt && src_const_elt->related_value != 0)))
5139 5140 5141 5142
	{
	  src_related = use_related_value (src_const, src_const_elt);
	  if (src_related)
	    {
Richard Kenner committed
5143
	      struct table_elt *src_related_elt
5144
		= lookup (src_related, HASH (src_related, mode), mode);
Richard Kenner committed
5145
	      if (src_related_elt && elt)
5146
		{
Richard Kenner committed
5147 5148
		  if (elt->first_same_value
		      != src_related_elt->first_same_value)
5149
		    /* This can occur when we previously saw a CONST
Richard Kenner committed
5150 5151 5152 5153
		       involving a SYMBOL_REF and then see the SYMBOL_REF
		       twice.  Merge the involved classes.  */
		    merge_equiv_classes (elt, src_related_elt);

5154
		  src_related = 0;
Richard Kenner committed
5155
		  src_related_elt = 0;
5156 5157 5158
		}
	      else if (src_related_elt && elt == 0)
		elt = src_related_elt;
Richard Kenner committed
5159
	    }
5160
	}
Richard Kenner committed
5161

5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
      /* See if we have a CONST_INT that is already in a register in a
	 wider mode.  */

      if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
	  && GET_MODE_CLASS (mode) == MODE_INT
	  && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
	{
	  enum machine_mode wider_mode;

	  for (wider_mode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
	       && src_related == 0;
	       wider_mode = GET_MODE_WIDER_MODE (wider_mode))
	    {
	      struct table_elt *const_elt
		= lookup (src_const, HASH (src_const, wider_mode), wider_mode);

	      if (const_elt == 0)
		continue;

	      for (const_elt = const_elt->first_same_value;
		   const_elt; const_elt = const_elt->next_same_value)
		if (GET_CODE (const_elt->exp) == REG)
		  {
		    src_related = gen_lowpart_if_possible (mode,
							   const_elt->exp);
		    break;
		  }
	    }
	}

5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
      /* Another possibility is that we have an AND with a constant in
	 a mode narrower than a word.  If so, it might have been generated
	 as part of an "if" which would narrow the AND.  If we already
	 have done the AND in a wider mode, we can use a SUBREG of that
	 value.  */

      if (flag_expensive_optimizations && ! src_related
	  && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
	  && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	{
	  enum machine_mode tmode;
5204
	  rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234

	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
	      rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
	      struct table_elt *larger_elt;

	      if (inner)
		{
		  PUT_MODE (new_and, tmode);
		  XEXP (new_and, 0) = inner;
		  larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
		  if (larger_elt == 0)
		    continue;

		  for (larger_elt = larger_elt->first_same_value;
		       larger_elt; larger_elt = larger_elt->next_same_value)
		    if (GET_CODE (larger_elt->exp) == REG)
		      {
			src_related
			  = gen_lowpart_if_possible (mode, larger_elt->exp);
			break;
		      }

		  if (src_related)
		    break;
		}
	    }
	}
5235 5236 5237 5238 5239 5240

#ifdef LOAD_EXTEND_OP
      /* See if a MEM has already been loaded with a widening operation;
	 if it has, we can use a subreg of that.  Many CISC machines
	 also have such operations, but this is only likely to be
	 beneficial these machines.  */
5241

Kazu Hirata committed
5242
      if (flag_expensive_optimizations && src_related == 0
5243 5244 5245 5246 5247 5248
	  && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	  && GET_MODE_CLASS (mode) == MODE_INT
	  && GET_CODE (src) == MEM && ! do_not_record
	  && LOAD_EXTEND_OP (mode) != NIL)
	{
	  enum machine_mode tmode;
5249

5250 5251 5252 5253
	  /* Set what we are trying to extend and the operation it might
	     have been extended with.  */
	  PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
	  XEXP (memory_extend_rtx, 0) = src;
5254

5255 5256 5257 5258 5259
	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
	      struct table_elt *larger_elt;
5260

5261
	      PUT_MODE (memory_extend_rtx, tmode);
5262
	      larger_elt = lookup (memory_extend_rtx,
5263 5264 5265
				   HASH (memory_extend_rtx, tmode), tmode);
	      if (larger_elt == 0)
		continue;
5266

5267 5268 5269 5270
	      for (larger_elt = larger_elt->first_same_value;
		   larger_elt; larger_elt = larger_elt->next_same_value)
		if (GET_CODE (larger_elt->exp) == REG)
		  {
5271
		    src_related = gen_lowpart_if_possible (mode,
5272 5273 5274
							   larger_elt->exp);
		    break;
		  }
5275

5276 5277 5278 5279 5280
	      if (src_related)
		break;
	    }
	}
#endif /* LOAD_EXTEND_OP */
5281

Richard Kenner committed
5282
      if (src == src_folded)
5283
	src_folded = 0;
Richard Kenner committed
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295

      /* At this point, ELT, if non-zero, points to a class of expressions
         equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
	 and SRC_RELATED, if non-zero, each contain additional equivalent
	 expressions.  Prune these latter expressions by deleting expressions
	 already in the equivalence class.

	 Check for an equivalent identical to the destination.  If found,
	 this is the preferred equivalent since it will likely lead to
	 elimination of the insn.  Indicate this by placing it in
	 `src_related'.  */

5296 5297
      if (elt)
	elt = elt->first_same_value;
Richard Kenner committed
5298
      for (p = elt; p; p = p->next_same_value)
5299
	{
Richard Kenner committed
5300 5301 5302 5303 5304 5305 5306 5307
	  enum rtx_code code = GET_CODE (p->exp);

	  /* If the expression is not valid, ignore it.  Then we do not
	     have to check for validity below.  In most cases, we can use
	     `rtx_equal_p', since canonicalization has already been done.  */
	  if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
	    continue;

5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
	  /* Also skip paradoxical subregs, unless that's what we're
	     looking for.  */
	  if (code == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (p->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (p->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
	    continue;

5320
	  if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
Richard Kenner committed
5321
	    src = 0;
5322
	  else if (src_folded && GET_CODE (src_folded) == code
Richard Kenner committed
5323 5324
		   && rtx_equal_p (src_folded, p->exp))
	    src_folded = 0;
5325
	  else if (src_eqv_here && GET_CODE (src_eqv_here) == code
Richard Kenner committed
5326 5327
		   && rtx_equal_p (src_eqv_here, p->exp))
	    src_eqv_here = 0;
5328
	  else if (src_related && GET_CODE (src_related) == code
Richard Kenner committed
5329 5330 5331 5332 5333 5334 5335 5336
		   && rtx_equal_p (src_related, p->exp))
	    src_related = 0;

	  /* This is the same as the destination of the insns, we want
	     to prefer it.  Copy it to src_related.  The code below will
	     then give it a negative cost.  */
	  if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
	    src_related = dest;
5337
	}
Richard Kenner committed
5338 5339 5340 5341 5342

      /* Find the cheapest valid equivalent, trying all the available
         possibilities.  Prefer items not in the hash table to ones
         that are when they are equal cost.  Note that we can never
         worsen an insn as the current contents will also succeed.
5343
	 If we find an equivalent identical to the destination, use it as best,
Mike Stump committed
5344
	 since this insn will probably be eliminated in that case.  */
Richard Kenner committed
5345 5346 5347
      if (src)
	{
	  if (rtx_equal_p (src, dest))
5348
	    src_cost = src_regcost = -1;
Richard Kenner committed
5349
	  else
5350 5351 5352 5353
	    {
	      src_cost = COST (src);
	      src_regcost = approx_reg_cost (src);
	    }
Richard Kenner committed
5354 5355 5356 5357 5358
	}

      if (src_eqv_here)
	{
	  if (rtx_equal_p (src_eqv_here, dest))
5359
	    src_eqv_cost = src_eqv_regcost = -1;
Richard Kenner committed
5360
	  else
5361 5362 5363 5364
	    {
	      src_eqv_cost = COST (src_eqv_here);
	      src_eqv_regcost = approx_reg_cost (src_eqv_here);
	    }
Richard Kenner committed
5365 5366 5367 5368 5369
	}

      if (src_folded)
	{
	  if (rtx_equal_p (src_folded, dest))
5370
	    src_folded_cost = src_folded_regcost = -1;
Richard Kenner committed
5371
	  else
5372 5373 5374 5375
	    {
	      src_folded_cost = COST (src_folded);
	      src_folded_regcost = approx_reg_cost (src_folded);
	    }
Richard Kenner committed
5376 5377 5378 5379 5380
	}

      if (src_related)
	{
	  if (rtx_equal_p (src_related, dest))
5381
	    src_related_cost = src_related_regcost = -1;
Richard Kenner committed
5382
	  else
5383 5384 5385 5386
	    {
	      src_related_cost = COST (src_related);
	      src_related_regcost = approx_reg_cost (src_related);
	    }
Richard Kenner committed
5387 5388 5389 5390 5391
	}

      /* If this was an indirect jump insn, a known label will really be
	 cheaper even though it looks more expensive.  */
      if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5392
	src_folded = src_const, src_folded_cost = src_folded_regcost -1;
5393

Richard Kenner committed
5394 5395 5396
      /* Terminate loop when replacement made.  This must terminate since
         the current contents will be tested and will always be valid.  */
      while (1)
5397 5398
	{
	  rtx trial;
Richard Kenner committed
5399

5400 5401 5402 5403
	  /* Skip invalid entries.  */
	  while (elt && GET_CODE (elt->exp) != REG
		 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
	    elt = elt->next_same_value;
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422

	  /* A paradoxical subreg would be bad here: it'll be the right
	     size, but later may be adjusted so that the upper bits aren't
	     what we want.  So reject it.  */
	  if (elt != 0
	      && GET_CODE (elt->exp) == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (elt->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
	      /* It is okay, though, if the rtx we're trying to match
		 will ignore any of the bits we can't predict.  */
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (elt->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
	    {
	      elt = elt->next_same_value;
	      continue;
	    }
5423

5424 5425 5426 5427 5428
          if (elt)
	    {
	      src_elt_cost = elt->cost;
	      src_elt_regcost = elt->regcost;
	    }
Richard Kenner committed
5429

5430
          /* Find cheapest and skip it for the next time.   For items
Richard Kenner committed
5431 5432
	     of equal cost, use this order:
	     src_folded, src, src_eqv, src_related and hash table entry.  */
5433 5434 5435 5436 5437 5438 5439 5440
	  if (preferrable (src_folded_cost, src_folded_regcost,
			   src_cost, src_regcost) <= 0
	      && preferrable (src_folded_cost, src_folded_regcost,
			      src_eqv_cost, src_eqv_regcost) <= 0
	      && preferrable (src_folded_cost, src_folded_regcost,
			      src_related_cost, src_related_regcost) <= 0
	      && preferrable (src_folded_cost, src_folded_regcost,
			      src_elt_cost, src_elt_regcost) <= 0)
Richard Kenner committed
5441
	    {
5442
	      trial = src_folded, src_folded_cost = MAX_COST;
Richard Kenner committed
5443 5444 5445
	      if (src_folded_force_flag)
		trial = force_const_mem (mode, trial);
	    }
5446 5447 5448 5449 5450 5451
	  else if (preferrable (src_cost, src_regcost,
				src_eqv_cost, src_eqv_regcost) <= 0
		   && preferrable (src_cost, src_regcost,
				   src_related_cost, src_related_regcost) <= 0
		   && preferrable (src_cost, src_regcost,
				   src_elt_cost, src_elt_regcost) <= 0)
5452
	    trial = src, src_cost = MAX_COST;
5453 5454 5455 5456
	  else if (preferrable (src_eqv_cost, src_eqv_regcost,
				src_related_cost, src_related_regcost) <= 0
		   && preferrable (src_eqv_cost, src_eqv_regcost,
				   src_elt_cost, src_elt_regcost) <= 0)
5457
	    trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5458 5459
	  else if (preferrable (src_related_cost, src_related_regcost,
				src_elt_cost, src_elt_regcost) <= 0)
5460
  	    trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5461
	  else
Richard Kenner committed
5462
	    {
5463
	      trial = copy_rtx (elt->exp);
Richard Kenner committed
5464
	      elt = elt->next_same_value;
5465
	      src_elt_cost = MAX_COST;
Richard Kenner committed
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
	    }

	  /* We don't normally have an insn matching (set (pc) (pc)), so
	     check for this separately here.  We will delete such an
	     insn below.

	     Tablejump insns contain a USE of the table, so simply replacing
	     the operand with the constant won't match.  This is simply an
	     unconditional branch, however, and is therefore valid.  Just
	     insert the substitution here and we will delete and re-emit
	     the insn later.  */

	  if (n_sets == 1 && dest == pc_rtx
	      && (trial == pc_rtx
		  || (GET_CODE (trial) == LABEL_REF
		      && ! condjump_p (insn))))
	    {
5483 5484 5485 5486 5487 5488 5489
	      if (trial == pc_rtx)
		{
		  SET_SRC (sets[i].rtl) = trial;
		  cse_jumps_altered = 1;
		  break;
		}

5490 5491
	      PATTERN (insn) = gen_jump (XEXP (trial, 0));
	      INSN_CODE (insn) = -1;
5492 5493 5494 5495 5496

	      if (NEXT_INSN (insn) != 0
		  && GET_CODE (NEXT_INSN (insn)) != BARRIER)
		emit_barrier_after (insn);

5497
	      cse_jumps_altered = 1;
Richard Kenner committed
5498 5499
	      break;
	    }
5500

Richard Kenner committed
5501
	  /* Look for a substitution that makes a valid insn.  */
Kazu Hirata committed
5502
	  else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5503
	    {
5504 5505 5506
	      /* If we just made a substitution inside a libcall, then we
		 need to make the same substitution in any notes attached
		 to the RETVAL insn.  */
5507
	      if (libcall_insn
5508 5509
		  && (GET_CODE (sets[i].orig_src) == REG
		      || GET_CODE (sets[i].orig_src) == SUBREG
5510 5511
		      || GET_CODE (sets[i].orig_src) == MEM))
		replace_rtx (REG_NOTES (libcall_insn), sets[i].orig_src,
5512 5513
			     canon_reg (SET_SRC (sets[i].rtl), insn));

5514 5515 5516 5517 5518 5519
	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */

	      validate_change (insn, &SET_SRC (sets[i].rtl),
			       canon_reg (SET_SRC (sets[i].rtl), insn),
			       1);
5520
	      apply_change_group ();
5521 5522
	      break;
	    }
Richard Kenner committed
5523

5524
	  /* If we previously found constant pool entries for
Richard Kenner committed
5525 5526 5527 5528 5529 5530
	     constants and this is a constant, try making a
	     pool entry.  Put it in src_folded unless we already have done
	     this since that is where it likely came from.  */

	  else if (constant_pool_entries_cost
		   && CONSTANT_P (trial)
5531 5532 5533
		   /* Reject cases that will abort in decode_rtx_const.
		      On the alpha when simplifying a switch, we get
		      (const (truncate (minus (label_ref) (label_ref)))).  */
5534 5535
		   && ! (GET_CODE (trial) == CONST
			 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5536 5537 5538 5539 5540
		   /* Likewise on IA-64, except without the truncate.  */
		   && ! (GET_CODE (trial) == CONST
			 && GET_CODE (XEXP (trial, 0)) == MINUS
			 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
			 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
5541 5542 5543
		   && (src_folded == 0
		       || (GET_CODE (src_folded) != MEM
			   && ! src_folded_force_flag))
5544 5545
		   && GET_MODE_CLASS (mode) != MODE_CC
		   && mode != VOIDmode)
Richard Kenner committed
5546 5547 5548 5549 5550
	    {
	      src_folded_force_flag = 1;
	      src_folded = trial;
	      src_folded_cost = constant_pool_entries_cost;
	    }
5551
	}
Richard Kenner committed
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561

      src = SET_SRC (sets[i].rtl);

      /* In general, it is good to have a SET with SET_SRC == SET_DEST.
	 However, there is an important exception:  If both are registers
	 that are not the head of their equivalence class, replace SET_SRC
	 with the head of the class.  If we do not do this, we will have
	 both registers live over a portion of the basic block.  This way,
	 their lifetimes will likely abut instead of overlapping.  */
      if (GET_CODE (dest) == REG
5562
	  && REGNO_QTY_VALID_P (REGNO (dest)))
Richard Kenner committed
5563
	{
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
	  int dest_q = REG_QTY (REGNO (dest));
	  struct qty_table_elem *dest_ent = &qty_table[dest_q];

	  if (dest_ent->mode == GET_MODE (dest)
	      && dest_ent->first_reg != REGNO (dest)
	      && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
	      /* Don't do this if the original insn had a hard reg as
		 SET_SRC or SET_DEST.  */
	      && (GET_CODE (sets[i].src) != REG
		  || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
	      && (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
	    /* We can't call canon_reg here because it won't do anything if
	       SRC is a hard register.  */
5577
	    {
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
	      int src_q = REG_QTY (REGNO (src));
	      struct qty_table_elem *src_ent = &qty_table[src_q];
	      int first = src_ent->first_reg;
	      rtx new_src
		= (first >= FIRST_PSEUDO_REGISTER
		   ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));

	      /* We must use validate-change even for this, because this
		 might be a special no-op instruction, suitable only to
		 tag notes onto.  */
	      if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
		{
		  src = new_src;
		  /* If we had a constant that is cheaper than what we are now
		     setting SRC to, use that constant.  We ignored it when we
		     thought we could make this into a no-op.  */
		  if (src_const && COST (src_const) < COST (src)
5595 5596
		      && validate_change (insn, &SET_SRC (sets[i].rtl),
					  src_const, 0))
5597 5598
		    src = src_const;
		}
5599
	    }
Richard Kenner committed
5600 5601 5602 5603
	}

      /* If we made a change, recompute SRC values.  */
      if (src != sets[i].src)
5604
	{
5605
	  cse_altered = 1;
5606 5607
	  do_not_record = 0;
	  hash_arg_in_memory = 0;
Richard Kenner committed
5608
	  sets[i].src = src;
5609 5610 5611 5612 5613
	  sets[i].src_hash = HASH (src, mode);
	  sets[i].src_volatile = do_not_record;
	  sets[i].src_in_memory = hash_arg_in_memory;
	  sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
	}
Richard Kenner committed
5614 5615 5616 5617

      /* If this is a single SET, we are setting a register, and we have an
	 equivalent constant, we want to add a REG_NOTE.   We don't want
	 to write a REG_EQUAL note for a constant pseudo since verifying that
5618
	 that pseudo hasn't been eliminated is a pain.  Such a note also
5619
	 won't help anything.
5620 5621 5622 5623 5624

	 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
	 which can be created for a reference to a compile time computable
	 entry in a jump table.  */

Richard Kenner committed
5625
      if (n_sets == 1 && src_const && GET_CODE (dest) == REG
5626 5627 5628 5629 5630
	  && GET_CODE (src_const) != REG
	  && ! (GET_CODE (src_const) == CONST
		&& GET_CODE (XEXP (src_const, 0)) == MINUS
		&& GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
		&& GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
Richard Kenner committed
5631
	{
5632
	  tem = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5633

5634 5635 5636
	  /* Make sure that the rtx is not shared with any other insn.  */
	  src_const = copy_rtx (src_const);

Richard Kenner committed
5637 5638 5639 5640 5641
	  /* Record the actual constant value in a REG_EQUAL note, making
	     a new one if one does not already exist.  */
	  if (tem)
	    XEXP (tem, 0) = src_const;
	  else
5642 5643
	    REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL,
						  src_const, REG_NOTES (insn));
Richard Kenner committed
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655

          /* If storing a constant value in a register that
	     previously held the constant value 0,
	     record this fact with a REG_WAS_0 note on this insn.

	     Note that the *register* is required to have previously held 0,
	     not just any register in the quantity and we must point to the
	     insn that set that register to zero.

	     Rather than track each register individually, we just see if
	     the last set for this quantity was for this register.  */

5656
	  if (REGNO_QTY_VALID_P (REGNO (dest)))
Richard Kenner committed
5657
	    {
5658 5659
	      int dest_q = REG_QTY (REGNO (dest));
	      struct qty_table_elem *dest_ent = &qty_table[dest_q];
Richard Kenner committed
5660

5661
	      if (dest_ent->const_rtx == const0_rtx)
Richard Kenner committed
5662
		{
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
		  /* See if we previously had a REG_WAS_0 note.  */
		  rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
		  rtx const_insn = dest_ent->const_insn;

		  if ((tem = single_set (const_insn)) != 0
		      && rtx_equal_p (SET_DEST (tem), dest))
		    {
		      if (note)
			XEXP (note, 0) = const_insn;
		      else
			REG_NOTES (insn)
			  = gen_rtx_INSN_LIST (REG_WAS_0, const_insn,
					       REG_NOTES (insn));
		    }
Richard Kenner committed
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
		}
	    }
	}

      /* Now deal with the destination.  */
      do_not_record = 0;

      /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
	 to the MEM or REG within it.  */
      while (GET_CODE (dest) == SIGN_EXTRACT
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SUBREG
	     || GET_CODE (dest) == STRICT_LOW_PART)
5690
	dest = XEXP (dest, 0);
Richard Kenner committed
5691 5692 5693 5694 5695

      sets[i].inner_dest = dest;

      if (GET_CODE (dest) == MEM)
	{
5696 5697 5698
#ifdef PUSH_ROUNDING
	  /* Stack pushes invalidate the stack pointer.  */
	  rtx addr = XEXP (dest, 0);
5699
	  if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
5700 5701 5702
	      && XEXP (addr, 0) == stack_pointer_rtx)
	    invalidate (stack_pointer_rtx, Pmode);
#endif
Richard Kenner committed
5703 5704 5705 5706 5707 5708 5709
	  dest = fold_rtx (dest, insn);
	}

      /* Compute the hash code of the destination now,
	 before the effects of this instruction are recorded,
	 since the register values used in the address computation
	 are those before this instruction.  */
Richard Kenner committed
5710
      sets[i].dest_hash = HASH (dest, mode);
Richard Kenner committed
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722

      /* Don't enter a bit-field in the hash table
	 because the value in it after the store
	 may not equal what was stored, due to truncation.  */

      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
	  || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (src_const != 0 && GET_CODE (src_const) == CONST_INT
	      && GET_CODE (width) == CONST_INT
5723 5724 5725
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && ! (INTVAL (src_const)
		    & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
Richard Kenner committed
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
	    /* Exception: if the value is constant,
	       and it won't be truncated, record it.  */
	    ;
	  else
	    {
	      /* This is chosen so that the destination will be invalidated
		 but no new value will be recorded.
		 We must invalidate because sometimes constant
		 values can be recorded for bitfields.  */
	      sets[i].src_elt = 0;
	      sets[i].src_volatile = 1;
	      src_eqv = 0;
	      src_eqv_elt = 0;
	    }
	}

      /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
	 the insn.  */
      else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
	{
5746 5747 5748
	  /* One less use of the label this insn used to jump to.  */
	  if (JUMP_LABEL (insn) != 0)
	    --LABEL_NUSES (JUMP_LABEL (insn));
Richard Kenner committed
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
	  PUT_CODE (insn, NOTE);
	  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	  NOTE_SOURCE_FILE (insn) = 0;
	  cse_jumps_altered = 1;
	  /* No more processing for this set.  */
	  sets[i].rtl = 0;
	}

      /* If this SET is now setting PC to a label, we know it used to
	 be a conditional or computed branch.  So we see if we can follow
	 it.  If it was a computed branch, delete it and re-emit.  */
      else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
	{
	  /* If this is not in the format for a simple branch and
	     we are the only SET in it, re-emit it.  */
	  if (! simplejump_p (insn) && n_sets == 1)
	    {
	      rtx new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
	      JUMP_LABEL (new) = XEXP (src, 0);
	      LABEL_NUSES (XEXP (src, 0))++;
	      insn = new;
	    }
5771 5772 5773 5774 5775 5776 5777
	  else
	    /* Otherwise, force rerecognition, since it probably had
	       a different pattern before.
	       This shouldn't really be necessary, since whatever
	       changed the source value above should have done this.
	       Until the right place is found, might as well do this here.  */
	    INSN_CODE (insn) = -1;
Richard Kenner committed
5778

5779 5780
	  never_reached_warning (insn);

Jeffrey A Law committed
5781 5782 5783 5784 5785
	  /* Now emit a BARRIER after the unconditional jump.  Do not bother
	     deleting any unreachable code, let jump/flow do that.  */
	  if (NEXT_INSN (insn) != 0
	      && GET_CODE (NEXT_INSN (insn)) != BARRIER)
	    emit_barrier_after (insn);
Richard Kenner committed
5786 5787 5788 5789 5790

	  cse_jumps_altered = 1;
	  sets[i].rtl = 0;
	}

5791 5792
      /* If destination is volatile, invalidate it and then do no further
	 processing for this assignment.  */
Richard Kenner committed
5793 5794

      else if (do_not_record)
5795
	{
5796
	  if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
5797
	    invalidate (dest, VOIDmode);
5798 5799 5800 5801 5802 5803 5804
	  else if (GET_CODE (dest) == MEM)
	    {
	      /* Outgoing arguments for a libcall don't
		 affect any recorded expressions.  */
	      if (! libcall_insn || insn == libcall_insn)
		invalidate (dest, VOIDmode);
	    }
5805 5806
	  else if (GET_CODE (dest) == STRICT_LOW_PART
		   || GET_CODE (dest) == ZERO_EXTRACT)
5807
	    invalidate (XEXP (dest, 0), GET_MODE (dest));
5808 5809
	  sets[i].rtl = 0;
	}
Richard Kenner committed
5810 5811

      if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
Richard Kenner committed
5812
	sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
Richard Kenner committed
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824

#ifdef HAVE_cc0
      /* If setting CC0, record what it was set to, or a constant, if it
	 is equivalent to a constant.  If it is being set to a floating-point
	 value, make a COMPARE with the appropriate constant of 0.  If we
	 don't do this, later code can interpret this as a test against
	 const0_rtx, which can cause problems if we try to put it into an
	 insn as a floating-point operand.  */
      if (dest == cc0_rtx)
	{
	  this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
	  this_insn_cc0_mode = mode;
5825
	  if (FLOAT_MODE_P (mode))
5826 5827
	    this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
					     CONST0_RTX (mode));
Richard Kenner committed
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852
	}
#endif
    }

  /* Now enter all non-volatile source expressions in the hash table
     if they are not already present.
     Record their equivalence classes in src_elt.
     This way we can insert the corresponding destinations into
     the same classes even if the actual sources are no longer in them
     (having been invalidated).  */

  if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
      && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
    {
      register struct table_elt *elt;
      register struct table_elt *classp = sets[0].src_elt;
      rtx dest = SET_DEST (sets[0].rtl);
      enum machine_mode eqvmode = GET_MODE (dest);

      if (GET_CODE (dest) == STRICT_LOW_PART)
	{
	  eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  classp = 0;
	}
      if (insert_regs (src_eqv, classp, 0))
5853 5854 5855 5856
	{
	  rehash_using_reg (src_eqv);
	  src_eqv_hash = HASH (src_eqv, eqvmode);
	}
Richard Kenner committed
5857
      elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
Richard Kenner committed
5858 5859
      elt->in_memory = src_eqv_in_memory;
      src_eqv_elt = elt;
5860 5861 5862 5863 5864

      /* Check to see if src_eqv_elt is the same as a set source which
	 does not yet have an elt, and if so set the elt of the set source
	 to src_eqv_elt.  */
      for (i = 0; i < n_sets; i++)
5865 5866
	if (sets[i].rtl && sets[i].src_elt == 0
	    && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5867
	  sets[i].src_elt = src_eqv_elt;
Richard Kenner committed
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
    }

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl && ! sets[i].src_volatile
	&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
      {
	if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
	  {
	    /* REG_EQUAL in setting a STRICT_LOW_PART
	       gives an equivalent for the entire destination register,
	       not just for the subreg being stored in now.
	       This is a more interesting equivalence, so we arrange later
	       to treat the entire reg as the destination.  */
	    sets[i].src_elt = src_eqv_elt;
Richard Kenner committed
5882
	    sets[i].src_hash = src_eqv_hash;
Richard Kenner committed
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
	  }
	else
	  {
	    /* Insert source and constant equivalent into hash table, if not
	       already present.  */
	    register struct table_elt *classp = src_eqv_elt;
	    register rtx src = sets[i].src;
	    register rtx dest = SET_DEST (sets[i].rtl);
	    enum machine_mode mode
	      = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);

5894
	    if (sets[i].src_elt == 0)
Richard Kenner committed
5895
	      {
5896 5897 5898 5899 5900 5901
		/* Don't put a hard register source into the table if this is
		   the last insn of a libcall.  In this case, we only need
		   to put src_eqv_elt in src_elt.  */
		if (GET_CODE (src) != REG
		    || REGNO (src) >= FIRST_PSEUDO_REGISTER
		    || ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5902
		  {
5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
		    register struct table_elt *elt;

		    /* Note that these insert_regs calls cannot remove
		       any of the src_elt's, because they would have failed to
		       match if not still valid.  */
		    if (insert_regs (src, classp, 0))
		      {
			rehash_using_reg (src);
			sets[i].src_hash = HASH (src, mode);
		      }
		    elt = insert (src, classp, sets[i].src_hash, mode);
		    elt->in_memory = sets[i].src_in_memory;
		    sets[i].src_elt = classp = elt;
5916
		  }
5917 5918
		else
		  sets[i].src_elt = classp;
Richard Kenner committed
5919 5920 5921 5922 5923
	      }
	    if (sets[i].src_const && sets[i].src_const_elt == 0
		&& src != sets[i].src_const
		&& ! rtx_equal_p (sets[i].src_const, src))
	      sets[i].src_elt = insert (sets[i].src_const, classp,
Richard Kenner committed
5924
					sets[i].src_const_hash, mode);
Richard Kenner committed
5925 5926 5927 5928 5929 5930 5931 5932
	  }
      }
    else if (sets[i].src_elt == 0)
      /* If we did not insert the source into the hash table (e.g., it was
	 volatile), note the equivalence class for the REG_EQUAL value, if any,
	 so that the destination goes into that class.  */
      sets[i].src_elt = src_eqv_elt;

5933
  invalidate_from_clobbers (x);
5934

5935
  /* Some registers are invalidated by subroutine calls.  Memory is
5936 5937
     invalidated by non-constant calls.  */

Richard Kenner committed
5938 5939
  if (GET_CODE (insn) == CALL_INSN)
    {
5940
      if (! CONST_CALL_P (insn))
5941
	invalidate_memory ();
Richard Kenner committed
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
      invalidate_for_call ();
    }

  /* Now invalidate everything set by this instruction.
     If a SUBREG or other funny destination is being set,
     sets[i].rtl is still nonzero, so here we invalidate the reg
     a part of which is being set.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
5953 5954 5955
	/* We can't use the inner dest, because the mode associated with
	   a ZERO_EXTRACT is significant.  */
	register rtx dest = SET_DEST (sets[i].rtl);
Richard Kenner committed
5956 5957 5958 5959 5960

	/* Needed for registers to remove the register from its
	   previous quantity's chain.
	   Needed for memory if this is a nonvarying address, unless
	   we have just done an invalidate_memory that covers even those.  */
5961
	if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
5962
	  invalidate (dest, VOIDmode);
5963 5964 5965 5966 5967 5968 5969
	else if (GET_CODE (dest) == MEM)
	  {
	    /* Outgoing arguments for a libcall don't
	       affect any recorded expressions.  */
	    if (! libcall_insn || insn == libcall_insn)
	      invalidate (dest, VOIDmode);
	  }
5970 5971
	else if (GET_CODE (dest) == STRICT_LOW_PART
		 || GET_CODE (dest) == ZERO_EXTRACT)
5972
	  invalidate (XEXP (dest, 0), GET_MODE (dest));
Richard Kenner committed
5973 5974
      }

5975 5976 5977 5978 5979 5980
  /* A volatile ASM invalidates everything.  */
  if (GET_CODE (insn) == INSN
      && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
      && MEM_VOLATILE_P (PATTERN (insn)))
    flush_hash_table ();

Richard Kenner committed
5981 5982 5983 5984 5985 5986 5987 5988 5989
  /* Make sure registers mentioned in destinations
     are safe for use in an expression to be inserted.
     This removes from the hash table
     any invalid entry that refers to one of these registers.

     We don't care about the return value from mention_regs because
     we are going to hash the SET_DEST values unconditionally.  */

  for (i = 0; i < n_sets; i++)
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
    {
      if (sets[i].rtl)
	{
	  rtx x = SET_DEST (sets[i].rtl);

	  if (GET_CODE (x) != REG)
	    mention_regs (x);
	  else
	    {
	      /* We used to rely on all references to a register becoming
		 inaccessible when a register changes to a new quantity,
		 since that changes the hash code.  However, that is not
6002
		 safe, since after HASH_SIZE new quantities we get a
6003 6004 6005 6006 6007 6008 6009 6010
		 hash 'collision' of a register with its own invalid
		 entries.  And since SUBREGs have been changed not to
		 change their hash code with the hash code of the register,
		 it wouldn't work any longer at all.  So we have to check
		 for any invalid references lying around now.
		 This code is similar to the REG case in mention_regs,
		 but it knows that reg_tick has been incremented, and
		 it leaves reg_in_table as -1 .  */
6011 6012
	      unsigned int regno = REGNO (x);
	      unsigned int endregno
6013 6014
		= regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
			   : HARD_REGNO_NREGS (regno, GET_MODE (x)));
6015
	      unsigned int i;
6016 6017 6018

	      for (i = regno; i < endregno; i++)
		{
6019
		  if (REG_IN_TABLE (i) >= 0)
6020 6021
		    {
		      remove_invalid_refs (i);
6022
		      REG_IN_TABLE (i) = -1;
6023 6024 6025 6026 6027
		    }
		}
	    }
	}
    }
Richard Kenner committed
6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055

  /* We may have just removed some of the src_elt's from the hash table.
     So replace each one with the current head of the same class.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
	if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
	  /* If elt was removed, find current head of same class,
	     or 0 if nothing remains of that class.  */
	  {
	    register struct table_elt *elt = sets[i].src_elt;

	    while (elt && elt->prev_same_value)
	      elt = elt->prev_same_value;

	    while (elt && elt->first_same_value == 0)
	      elt = elt->next_same_value;
	    sets[i].src_elt = elt ? elt->first_same_value : 0;
	  }
      }

  /* Now insert the destinations into their equivalence classes.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
	register rtx dest = SET_DEST (sets[i].rtl);
6056
	rtx inner_dest = sets[i].inner_dest;
Richard Kenner committed
6057 6058 6059 6060 6061 6062 6063
	register struct table_elt *elt;

	/* Don't record value if we are not supposed to risk allocating
	   floating-point values in registers that might be wider than
	   memory.  */
	if ((flag_float_store
	     && GET_CODE (dest) == MEM
6064
	     && FLOAT_MODE_P (GET_MODE (dest)))
6065 6066 6067 6068
	    /* Don't record BLKmode values, because we don't know the
	       size of it, and can't be sure that other BLKmode values
	       have the same or smaller size.  */
	    || GET_MODE (dest) == BLKmode
Richard Kenner committed
6069 6070 6071 6072
	    /* Don't record values of destinations set inside a libcall block
	       since we might delete the libcall.  Things should have been set
	       up so we won't want to reuse such a value, but we play it safe
	       here.  */
6073
	    || libcall_insn
Richard Kenner committed
6074 6075
	    /* If we didn't put a REG_EQUAL value or a source into the hash
	       table, there is no point is recording DEST.  */
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
	    || sets[i].src_elt == 0
	    /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
	       or SIGN_EXTEND, don't record DEST since it can cause
	       some tracking to be wrong.

	       ??? Think about this more later.  */
	    || (GET_CODE (dest) == SUBREG
		&& (GET_MODE_SIZE (GET_MODE (dest))
		    > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
		&& (GET_CODE (sets[i].src) == SIGN_EXTEND
		    || GET_CODE (sets[i].src) == ZERO_EXTEND)))
Richard Kenner committed
6087 6088 6089 6090 6091 6092 6093 6094
	  continue;

	/* STRICT_LOW_PART isn't part of the value BEING set,
	   and neither is the SUBREG inside it.
	   Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT.  */
	if (GET_CODE (dest) == STRICT_LOW_PART)
	  dest = SUBREG_REG (XEXP (dest, 0));

6095
	if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
Richard Kenner committed
6096 6097
	  /* Registers must also be inserted into chains for quantities.  */
	  if (insert_regs (dest, sets[i].src_elt, 1))
6098 6099 6100 6101 6102 6103
	    {
	      /* If `insert_regs' changes something, the hash code must be
		 recalculated.  */
	      rehash_using_reg (dest);
	      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
	    }
Richard Kenner committed
6104

6105 6106 6107
	if (GET_CODE (inner_dest) == MEM
	    && GET_CODE (XEXP (inner_dest, 0)) == ADDRESSOF)
	  /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
6108
	     that (MEM (ADDRESSOF (X))) is equivalent to Y.
6109 6110 6111 6112 6113 6114 6115 6116
	     Consider the case in which the address of the MEM is
	     passed to a function, which alters the MEM.  Then, if we
	     later use Y instead of the MEM we'll miss the update.  */
	  elt = insert (dest, 0, sets[i].dest_hash, GET_MODE (dest));
	else
	  elt = insert (dest, sets[i].src_elt,
			sets[i].dest_hash, GET_MODE (dest));

6117
	elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
6118 6119 6120
			  && (! RTX_UNCHANGING_P (sets[i].inner_dest)
			      || FIXED_BASE_PLUS_P (XEXP (sets[i].inner_dest,
							  0))));
6121

6122 6123 6124 6125
	/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
	   narrower than M2, and both M1 and M2 are the same number of words,
	   we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
	   make that equivalence as well.
Richard Kenner committed
6126 6127 6128 6129

	   However, BAR may have equivalences for which gen_lowpart_if_possible
	   will produce a simpler value than gen_lowpart_if_possible applied to
	   BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6130
	   BAR's equivalences.  If we don't get a simplified form, make
Richard Kenner committed
6131 6132 6133 6134 6135 6136 6137
	   the SUBREG.  It will not be used in an equivalence, but will
	   cause two similar assignments to be detected.

	   Note the loop below will find SUBREG_REG (DEST) since we have
	   already entered SRC and DEST of the SET in the table.  */

	if (GET_CODE (dest) == SUBREG
6138 6139
	    && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
		 / UNITS_PER_WORD)
6140
		== (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
Richard Kenner committed
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
	    && (GET_MODE_SIZE (GET_MODE (dest))
		>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
	    && sets[i].src_elt != 0)
	  {
	    enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
	    struct table_elt *elt, *classp = 0;

	    for (elt = sets[i].src_elt->first_same_value; elt;
		 elt = elt->next_same_value)
	      {
		rtx new_src = 0;
Richard Kenner committed
6152
		unsigned src_hash;
Richard Kenner committed
6153 6154 6155 6156 6157 6158 6159 6160 6161
		struct table_elt *src_elt;

		/* Ignore invalid entries.  */
		if (GET_CODE (elt->exp) != REG
		    && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
		  continue;

		new_src = gen_lowpart_if_possible (new_mode, elt->exp);
		if (new_src == 0)
6162
		  new_src = gen_rtx_SUBREG (new_mode, elt->exp, 0);
Richard Kenner committed
6163 6164 6165 6166 6167 6168 6169 6170 6171

		src_hash = HASH (new_src, new_mode);
		src_elt = lookup (new_src, src_hash, new_mode);

		/* Put the new source in the hash table is if isn't
		   already.  */
		if (src_elt == 0)
		  {
		    if (insert_regs (new_src, classp, 0))
6172 6173 6174 6175
		      {
			rehash_using_reg (new_src);
			src_hash = HASH (new_src, new_mode);
		      }
Richard Kenner committed
6176 6177 6178 6179
		    src_elt = insert (new_src, classp, src_hash, new_mode);
		    src_elt->in_memory = elt->in_memory;
		  }
		else if (classp && classp != src_elt->first_same_value)
6180
		  /* Show that two things that we've seen before are
Richard Kenner committed
6181 6182 6183 6184
		     actually the same.  */
		  merge_equiv_classes (src_elt, classp);

		classp = src_elt->first_same_value;
6185 6186 6187 6188 6189
		/* Ignore invalid entries.  */
		while (classp
		       && GET_CODE (classp->exp) != REG
		       && ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
		  classp = classp->next_same_value;
Richard Kenner committed
6190 6191 6192 6193
	      }
	  }
      }

6194 6195 6196 6197 6198 6199
  /* Special handling for (set REG0 REG1) where REG0 is the
     "cheapest", cheaper than REG1.  After cse, REG1 will probably not
     be used in the sequel, so (if easily done) change this insn to
     (set REG1 REG0) and replace REG1 with REG0 in the previous insn
     that computed their value.  Then REG1 will become a dead store
     and won't cloud the situation for later optimizations.
Richard Kenner committed
6200 6201 6202 6203 6204

     Do not make this change if REG1 is a hard register, because it will
     then be used in the sequel and we may be changing a two-operand insn
     into a three-operand insn.

6205 6206 6207 6208 6209
     Also do not do this if we are operating on a copy of INSN.

     Also don't do this if INSN ends a libcall; this would cause an unrelated
     register to be set in the middle of a libcall, and we then get bad code
     if the libcall is deleted.  */
Richard Kenner committed
6210 6211 6212 6213 6214

  if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
      && NEXT_INSN (PREV_INSN (insn)) == insn
      && GET_CODE (SET_SRC (sets[0].rtl)) == REG
      && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6215
      && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
Richard Kenner committed
6216
    {
6217 6218
      int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
      struct qty_table_elem *src_ent = &qty_table[src_q];
Richard Kenner committed
6219

6220 6221
      if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
	  && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
Richard Kenner committed
6222
	{
6223
	  rtx prev = prev_nonnote_insn (insn);
Richard Kenner committed
6224

6225 6226
	  if (prev != 0 && GET_CODE (prev) == INSN
	      && GET_CODE (PATTERN (prev)) == SET
6227 6228 6229
	      && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl))
	    {
	      rtx dest = SET_DEST (sets[0].rtl);
6230
	      rtx src = SET_SRC (sets[0].rtl);
6231
	      rtx note = find_reg_note (prev, REG_EQUIV, NULL_RTX);
Richard Kenner committed
6232

6233 6234 6235
	      validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
	      validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
	      validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6236
	      apply_change_group ();
Richard Kenner committed
6237

6238 6239 6240
	      /* If REG1 was equivalent to a constant, REG0 is not.  */
	      if (note)
		PUT_REG_NOTE_KIND (note, REG_EQUAL);
Richard Kenner committed
6241

6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
	      /* If there was a REG_WAS_0 note on PREV, remove it.  Move
		 any REG_WAS_0 note on INSN to PREV.  */
	      note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
	      if (note)
		remove_note (prev, note);

	      note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
	      if (note)
		{
		  remove_note (insn, note);
		  XEXP (note, 1) = REG_NOTES (prev);
		  REG_NOTES (prev) = note;
		}
6255

6256 6257 6258 6259
	      /* If INSN has a REG_EQUAL note, and this note mentions
		 REG0, then we must delete it, because the value in
		 REG0 has changed.  If the note's value is REG1, we must
		 also delete it because that is now this insn's dest.  */
6260
	      note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6261 6262 6263
	      if (note != 0
		  && (reg_mentioned_p (dest, XEXP (note, 0))
		      || rtx_equal_p (src, XEXP (note, 0))))
6264 6265
		remove_note (insn, note);
	    }
Richard Kenner committed
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
	}
    }

  /* If this is a conditional jump insn, record any known equivalences due to
     the condition being tested.  */

  last_jump_equiv_class = 0;
  if (GET_CODE (insn) == JUMP_INSN
      && n_sets == 1 && GET_CODE (x) == SET
      && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
    record_jump_equiv (insn, 0);

#ifdef HAVE_cc0
  /* If the previous insn set CC0 and this insn no longer references CC0,
     delete the previous insn.  Here we use the fact that nothing expects CC0
     to be valid over an insn, which is true until the final pass.  */
  if (prev_insn && GET_CODE (prev_insn) == INSN
      && (tem = single_set (prev_insn)) != 0
      && SET_DEST (tem) == cc0_rtx
      && ! reg_mentioned_p (cc0_rtx, x))
    {
      PUT_CODE (prev_insn, NOTE);
      NOTE_LINE_NUMBER (prev_insn) = NOTE_INSN_DELETED;
      NOTE_SOURCE_FILE (prev_insn) = 0;
    }

  prev_insn_cc0 = this_insn_cc0;
  prev_insn_cc0_mode = this_insn_cc0_mode;
#endif

  prev_insn = insn;
}

6299
/* Remove from the hash table all expressions that reference memory.  */
Richard Kenner committed
6300

Richard Kenner committed
6301
static void
6302
invalidate_memory ()
Richard Kenner committed
6303
{
6304 6305
  register int i;
  register struct table_elt *p, *next;
Richard Kenner committed
6306

6307
  for (i = 0; i < HASH_SIZE; i++)
6308 6309 6310 6311 6312 6313 6314 6315
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (p->in_memory)
	  remove_from_table (p, i);
      }
}

Richard Kenner committed
6316 6317 6318
/* If ADDR is an address that implicitly affects the stack pointer, return
   1 and update the register tables to show the effect.  Else, return 0.  */

6319
static int
Richard Kenner committed
6320
addr_affects_sp_p (addr)
6321 6322
     register rtx addr;
{
6323
  if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
6324 6325
      && GET_CODE (XEXP (addr, 0)) == REG
      && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
Richard Kenner committed
6326
    {
6327 6328
      if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
	REG_TICK (STACK_POINTER_REGNUM)++;
6329 6330 6331 6332

      /* This should be *very* rare.  */
      if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
	invalidate (stack_pointer_rtx, VOIDmode);
Richard Kenner committed
6333

6334
      return 1;
Richard Kenner committed
6335
    }
Richard Kenner committed
6336

6337
  return 0;
Richard Kenner committed
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
}

/* Perform invalidation on the basis of everything about an insn
   except for invalidating the actual places that are SET in it.
   This includes the places CLOBBERed, and anything that might
   alias with something that is SET or CLOBBERed.

   X is the pattern of the insn.  */

static void
6348
invalidate_from_clobbers (x)
Richard Kenner committed
6349 6350 6351 6352 6353
     rtx x;
{
  if (GET_CODE (x) == CLOBBER)
    {
      rtx ref = XEXP (x, 0);
6354 6355 6356 6357 6358 6359 6360 6361 6362
      if (ref)
	{
	  if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
	      || GET_CODE (ref) == MEM)
	    invalidate (ref, VOIDmode);
	  else if (GET_CODE (ref) == STRICT_LOW_PART
		   || GET_CODE (ref) == ZERO_EXTRACT)
	    invalidate (XEXP (ref, 0), GET_MODE (ref));
	}
Richard Kenner committed
6363 6364 6365 6366 6367 6368 6369 6370 6371 6372
    }
  else if (GET_CODE (x) == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  register rtx y = XVECEXP (x, 0, i);
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx ref = XEXP (y, 0);
6373 6374 6375 6376 6377 6378
	      if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
		  || GET_CODE (ref) == MEM)
		invalidate (ref, VOIDmode);
	      else if (GET_CODE (ref) == STRICT_LOW_PART
		       || GET_CODE (ref) == ZERO_EXTRACT)
		invalidate (XEXP (ref, 0), GET_MODE (ref));
Richard Kenner committed
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398
	    }
	}
    }
}

/* Process X, part of the REG_NOTES of an insn.  Look at any REG_EQUAL notes
   and replace any registers in them with either an equivalent constant
   or the canonical form of the register.  If we are inside an address,
   only do this if the address remains valid.

   OBJECT is 0 except when within a MEM in which case it is the MEM.

   Return the replacement for X.  */

static rtx
cse_process_notes (x, object)
     rtx x;
     rtx object;
{
  enum rtx_code code = GET_CODE (x);
6399
  const char *fmt = GET_RTX_FORMAT (code);
Richard Kenner committed
6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
  int i;

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
    case PC:
    case CC0:
    case LO_SUM:
      return x;

    case MEM:
      XEXP (x, 0) = cse_process_notes (XEXP (x, 0), x);
      return x;

    case EXPR_LIST:
    case INSN_LIST:
      if (REG_NOTE_KIND (x) == REG_EQUAL)
6421
	XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
6422
      if (XEXP (x, 1))
6423
	XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
Richard Kenner committed
6424 6425
      return x;

6426 6427
    case SIGN_EXTEND:
    case ZERO_EXTEND:
6428
    case SUBREG:
6429 6430 6431 6432 6433 6434 6435 6436 6437
      {
	rtx new = cse_process_notes (XEXP (x, 0), object);
	/* We don't substitute VOIDmode constants into these rtx,
	   since they would impede folding.  */
	if (GET_MODE (new) != VOIDmode)
	  validate_change (object, &XEXP (x, 0), new, 0);
	return x;
      }

Richard Kenner committed
6438
    case REG:
6439
      i = REG_QTY (REGNO (x));
Richard Kenner committed
6440 6441

      /* Return a constant or a constant register.  */
6442
      if (REGNO_QTY_VALID_P (REGNO (x)))
Richard Kenner committed
6443
	{
6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
	  struct qty_table_elem *ent = &qty_table[i];

	  if (ent->const_rtx != NULL_RTX
	      && (CONSTANT_P (ent->const_rtx)
		  || GET_CODE (ent->const_rtx) == REG))
	    {
	      rtx new = gen_lowpart_if_possible (GET_MODE (x), ent->const_rtx);
	      if (new)
		return new;
	    }
Richard Kenner committed
6454 6455 6456
	}

      /* Otherwise, canonicalize this register.  */
6457
      return canon_reg (x, NULL_RTX);
6458

6459 6460
    default:
      break;
Richard Kenner committed
6461 6462 6463 6464 6465
    }

  for (i = 0; i < GET_RTX_LENGTH (code); i++)
    if (fmt[i] == 'e')
      validate_change (object, &XEXP (x, i),
6466
		       cse_process_notes (XEXP (x, i), object), 0);
Richard Kenner committed
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506

  return x;
}

/* Find common subexpressions between the end test of a loop and the beginning
   of the loop.  LOOP_START is the CODE_LABEL at the start of a loop.

   Often we have a loop where an expression in the exit test is used
   in the body of the loop.  For example "while (*p) *q++ = *p++;".
   Because of the way we duplicate the loop exit test in front of the loop,
   however, we don't detect that common subexpression.  This will be caught
   when global cse is implemented, but this is a quite common case.

   This function handles the most common cases of these common expressions.
   It is called after we have processed the basic block ending with the
   NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
   jumps to a label used only once.  */

static void
cse_around_loop (loop_start)
     rtx loop_start;
{
  rtx insn;
  int i;
  struct table_elt *p;

  /* If the jump at the end of the loop doesn't go to the start, we don't
     do anything.  */
  for (insn = PREV_INSN (loop_start);
       insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
       insn = PREV_INSN (insn))
    ;

  if (insn == 0
      || GET_CODE (insn) != NOTE
      || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
    return;

  /* If the last insn of the loop (the end test) was an NE comparison,
     we will interpret it as an EQ comparison, since we fell through
6507
     the loop.  Any equivalences resulting from that comparison are
Richard Kenner committed
6508 6509 6510 6511
     therefore not valid and must be invalidated.  */
  if (last_jump_equiv_class)
    for (p = last_jump_equiv_class->first_same_value; p;
	 p = p->next_same_value)
Kaveh R. Ghazi committed
6512
      {
6513
	if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
Kaveh R. Ghazi committed
6514
	    || (GET_CODE (p->exp) == SUBREG
6515
		&& GET_CODE (SUBREG_REG (p->exp)) == REG))
Kaveh R. Ghazi committed
6516
	  invalidate (p->exp, VOIDmode);
6517 6518
	else if (GET_CODE (p->exp) == STRICT_LOW_PART
		 || GET_CODE (p->exp) == ZERO_EXTRACT)
Kaveh R. Ghazi committed
6519 6520
	  invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
      }
Richard Kenner committed
6521 6522 6523 6524 6525 6526

  /* Process insns starting after LOOP_START until we hit a CALL_INSN or
     a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).

     The only thing we do with SET_DEST is invalidate entries, so we
     can safely process each SET in order.  It is slightly less efficient
6527 6528 6529 6530 6531 6532
     to do so, but we only want to handle the most common cases.

     The gen_move_insn call in cse_set_around_loop may create new pseudos.
     These pseudos won't have valid entries in any of the tables indexed
     by register number, such as reg_qty.  We avoid out-of-range array
     accesses by not processing any instructions created after cse started.  */
Richard Kenner committed
6533 6534 6535

  for (insn = NEXT_INSN (loop_start);
       GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
6536
       && INSN_UID (insn) < max_insn_uid
Richard Kenner committed
6537 6538 6539 6540
       && ! (GET_CODE (insn) == NOTE
	     && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
       insn = NEXT_INSN (insn))
    {
6541
      if (INSN_P (insn)
Richard Kenner committed
6542 6543 6544
	  && (GET_CODE (PATTERN (insn)) == SET
	      || GET_CODE (PATTERN (insn)) == CLOBBER))
	cse_set_around_loop (PATTERN (insn), insn, loop_start);
6545
      else if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == PARALLEL)
Richard Kenner committed
6546 6547 6548 6549 6550 6551 6552 6553
	for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	  if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
	      || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
	    cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
				 loop_start);
    }
}

6554 6555 6556 6557
/* Process one SET of an insn that was skipped.  We ignore CLOBBERs
   since they are done elsewhere.  This function is called via note_stores.  */

static void
6558
invalidate_skipped_set (dest, set, data)
6559 6560
     rtx set;
     rtx dest;
6561
     void *data ATTRIBUTE_UNUSED;
6562
{
6563 6564 6565
  enum rtx_code code = GET_CODE (dest);

  if (code == MEM
Kazu Hirata committed
6566
      && ! addr_affects_sp_p (dest)	/* If this is not a stack push ...  */
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577
      /* There are times when an address can appear varying and be a PLUS
	 during this scan when it would be a fixed address were we to know
	 the proper equivalences.  So invalidate all memory if there is
	 a BLKmode or nonscalar memory reference or a reference to a
	 variable address.  */
      && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
	  || cse_rtx_varies_p (XEXP (dest, 0))))
    {
      invalidate_memory ();
      return;
    }
6578

6579 6580 6581 6582 6583 6584 6585
  if (GET_CODE (set) == CLOBBER
#ifdef HAVE_cc0
      || dest == cc0_rtx
#endif
      || dest == pc_rtx)
    return;

6586
  if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6587
    invalidate (XEXP (dest, 0), GET_MODE (dest));
6588 6589
  else if (code == REG || code == SUBREG || code == MEM)
    invalidate (dest, VOIDmode);
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
}

/* Invalidate all insns from START up to the end of the function or the
   next label.  This called when we wish to CSE around a block that is
   conditionally executed.  */

static void
invalidate_skipped_block (start)
     rtx start;
{
  rtx insn;

  for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
       insn = NEXT_INSN (insn))
    {
6605
      if (! INSN_P (insn))
6606 6607 6608 6609
	continue;

      if (GET_CODE (insn) == CALL_INSN)
	{
6610 6611
	  if (! CONST_CALL_P (insn))
	    invalidate_memory ();
6612 6613 6614
	  invalidate_for_call ();
	}

6615
      invalidate_from_clobbers (PATTERN (insn));
6616
      note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6617 6618 6619
    }
}

6620 6621 6622
/* If modifying X will modify the value in *DATA (which is really an
   `rtx *'), indicate that fact by setting the pointed to value to
   NULL_RTX.  */
Richard Kenner committed
6623 6624

static void
6625
cse_check_loop_start (x, set, data)
Richard Kenner committed
6626
     rtx x;
Kaveh R. Ghazi committed
6627
     rtx set ATTRIBUTE_UNUSED;
6628
     void *data;
Richard Kenner committed
6629
{
6630 6631 6632
  rtx *cse_check_loop_start_value = (rtx *) data;

  if (*cse_check_loop_start_value == NULL_RTX
Richard Kenner committed
6633 6634 6635
      || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
    return;

6636 6637 6638
  if ((GET_CODE (x) == MEM && GET_CODE (*cse_check_loop_start_value) == MEM)
      || reg_overlap_mentioned_p (x, *cse_check_loop_start_value))
    *cse_check_loop_start_value = NULL_RTX;
Richard Kenner committed
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
}

/* X is a SET or CLOBBER contained in INSN that was found near the start of
   a loop that starts with the label at LOOP_START.

   If X is a SET, we see if its SET_SRC is currently in our hash table.
   If so, we see if it has a value equal to some register used only in the
   loop exit code (as marked by jump.c).

   If those two conditions are true, we search backwards from the start of
   the loop to see if that same value was loaded into a register that still
   retains its value at the start of the loop.

   If so, we insert an insn after the load to copy the destination of that
   load into the equivalent register and (try to) replace our SET_SRC with that
   register.

   In any event, we invalidate whatever this SET or CLOBBER modifies.  */

static void
cse_set_around_loop (x, insn, loop_start)
     rtx x;
     rtx insn;
     rtx loop_start;
{
  struct table_elt *src_elt;

  /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
     are setting PC or CC0 or whose SET_SRC is already a register.  */
  if (GET_CODE (x) == SET
      && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
      && GET_CODE (SET_SRC (x)) != REG)
    {
      src_elt = lookup (SET_SRC (x),
			HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
			GET_MODE (SET_DEST (x)));

      if (src_elt)
	for (src_elt = src_elt->first_same_value; src_elt;
	     src_elt = src_elt->next_same_value)
	  if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
	      && COST (src_elt->exp) < COST (SET_SRC (x)))
	    {
	      rtx p, set;

	      /* Look for an insn in front of LOOP_START that sets
		 something in the desired mode to SET_SRC (x) before we hit
		 a label or CALL_INSN.  */

	      for (p = prev_nonnote_insn (loop_start);
		   p && GET_CODE (p) != CALL_INSN
		   && GET_CODE (p) != CODE_LABEL;
		   p = prev_nonnote_insn  (p))
		if ((set = single_set (p)) != 0
		    && GET_CODE (SET_DEST (set)) == REG
		    && GET_MODE (SET_DEST (set)) == src_elt->mode
		    && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
		  {
		    /* We now have to ensure that nothing between P
		       and LOOP_START modified anything referenced in
		       SET_SRC (x).  We know that nothing within the loop
		       can modify it, or we would have invalidated it in
		       the hash table.  */
		    rtx q;
6703
		    rtx cse_check_loop_start_value = SET_SRC (x);
Richard Kenner committed
6704
		    for (q = p; q != loop_start; q = NEXT_INSN (q))
6705
		      if (INSN_P (q))
6706 6707 6708
			note_stores (PATTERN (q),
				     cse_check_loop_start,
				     &cse_check_loop_start_value);
Richard Kenner committed
6709 6710 6711 6712 6713 6714 6715

		    /* If nothing was changed and we can replace our
		       SET_SRC, add an insn after P to copy its destination
		       to what we will be replacing SET_SRC with.  */
		    if (cse_check_loop_start_value
			&& validate_change (insn, &SET_SRC (x),
					    src_elt->exp, 0))
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
		      {
			/* If this creates new pseudos, this is unsafe,
			   because the regno of new pseudo is unsuitable
			   to index into reg_qty when cse_insn processes
			   the new insn.  Therefore, if a new pseudo was
			   created, discard this optimization.  */
			int nregs = max_reg_num ();
			rtx move
			  = gen_move_insn (src_elt->exp, SET_DEST (set));
			if (nregs != max_reg_num ())
			  {
			    if (! validate_change (insn, &SET_SRC (x),
						   SET_SRC (set), 0))
			      abort ();
			  }
			else
			  emit_insn_after (move, p);
		      }
Richard Kenner committed
6734 6735 6736 6737 6738
		    break;
		  }
	    }
    }

Richard Kenner committed
6739 6740
  /* Deal with the destination of X affecting the stack pointer.  */
  addr_affects_sp_p (SET_DEST (x));
Richard Kenner committed
6741

Richard Kenner committed
6742 6743
  /* See comment on similar code in cse_insn for explanation of these
     tests.  */
Richard Kenner committed
6744
  if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
6745
      || GET_CODE (SET_DEST (x)) == MEM)
6746
    invalidate (SET_DEST (x), VOIDmode);
6747 6748
  else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
	   || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
6749
    invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
Richard Kenner committed
6750 6751 6752 6753 6754 6755 6756 6757 6758
}

/* Find the end of INSN's basic block and return its range,
   the total number of SETs in all the insns of the block, the last insn of the
   block, and the branch path.

   The branch path indicates which branches should be followed.  If a non-zero
   path size is specified, the block should be rescanned and a different set
   of branches will be taken.  The branch path is only used if
6759
   FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
Richard Kenner committed
6760 6761 6762 6763 6764 6765 6766

   DATA is a pointer to a struct cse_basic_block_data, defined below, that is
   used to describe the block.  It is filled in with the information about
   the current block.  The incoming structure's branch path, if any, is used
   to construct the output branch path.  */

void
6767
cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
Richard Kenner committed
6768 6769 6770 6771
     rtx insn;
     struct cse_basic_block_data *data;
     int follow_jumps;
     int after_loop;
6772
     int skip_blocks;
Richard Kenner committed
6773 6774 6775 6776
{
  rtx p = insn, q;
  int nsets = 0;
  int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6777
  rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
Richard Kenner committed
6778 6779 6780 6781 6782 6783 6784 6785 6786 6787
  int path_size = data->path_size;
  int path_entry = 0;
  int i;

  /* Update the previous branch path, if any.  If the last branch was
     previously TAKEN, mark it NOT_TAKEN.  If it was previously NOT_TAKEN,
     shorten the path by one and look at the previous branch.  We know that
     at least one branch must have been taken if PATH_SIZE is non-zero.  */
  while (path_size > 0)
    {
6788
      if (data->path[path_size - 1].status != NOT_TAKEN)
Richard Kenner committed
6789 6790 6791 6792 6793 6794 6795 6796
	{
	  data->path[path_size - 1].status = NOT_TAKEN;
	  break;
	}
      else
	path_size--;
    }

6797 6798 6799 6800 6801 6802 6803 6804 6805
  /* If the first instruction is marked with QImode, that means we've
     already processed this block.  Our caller will look at DATA->LAST
     to figure out where to go next.  We want to return the next block
     in the instruction stream, not some branched-to block somewhere
     else.  We accomplish this by pretending our called forbid us to
     follow jumps, or skip blocks.  */
  if (GET_MODE (insn) == QImode)
    follow_jumps = skip_blocks = 0;

Richard Kenner committed
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
  /* Scan to end of this basic block.  */
  while (p && GET_CODE (p) != CODE_LABEL)
    {
      /* Don't cse out the end of a loop.  This makes a difference
	 only for the unusual loops that always execute at least once;
	 all other loops have labels there so we will stop in any case.
	 Cse'ing out the end of the loop is dangerous because it
	 might cause an invariant expression inside the loop
	 to be reused after the end of the loop.  This would make it
	 hard to move the expression out of the loop in loop.c,
	 especially if it is one of several equivalent expressions
	 and loop.c would like to eliminate it.

	 If we are running after loop.c has finished, we can ignore
	 the NOTE_INSN_LOOP_END.  */

      if (! after_loop && GET_CODE (p) == NOTE
	  && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
	break;

      /* Don't cse over a call to setjmp; on some machines (eg vax)
	 the regs restored by the longjmp come from
	 a later time than the setjmp.  */
      if (GET_CODE (p) == NOTE
	  && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
	break;

      /* A PARALLEL can have lots of SETs in it,
	 especially if it is really an ASM_OPERANDS.  */
6835
      if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
Richard Kenner committed
6836 6837 6838
	nsets += XVECLEN (PATTERN (p), 0);
      else if (GET_CODE (p) != NOTE)
	nsets += 1;
6839

6840 6841 6842 6843
      /* Ignore insns made by CSE; they cannot affect the boundaries of
	 the basic block.  */

      if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6844
	high_cuid = INSN_CUID (p);
6845 6846
      if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
	low_cuid = INSN_CUID (p);
Richard Kenner committed
6847 6848 6849 6850 6851

      /* See if this insn is in our branch path.  If it is and we are to
	 take it, do so.  */
      if (path_entry < path_size && data->path[path_entry].branch == p)
	{
6852
	  if (data->path[path_entry].status != NOT_TAKEN)
Richard Kenner committed
6853
	    p = JUMP_LABEL (p);
6854

Richard Kenner committed
6855 6856 6857 6858 6859 6860 6861
	  /* Point to next entry in path, if any.  */
	  path_entry++;
	}

      /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
	 was specified, we haven't reached our maximum path length, there are
	 insns following the target of the jump, this is the only use of the
6862 6863 6864 6865 6866 6867 6868 6869
	 jump label, and the target label is preceded by a BARRIER.

	 Alternatively, we can follow the jump if it branches around a
	 block of code and there are no other branches into the block.
	 In this case invalidate_skipped_block will be called to invalidate any
	 registers set in the block when following the jump.  */

      else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
Richard Kenner committed
6870
	       && GET_CODE (p) == JUMP_INSN
6871
	       && GET_CODE (PATTERN (p)) == SET
Richard Kenner committed
6872
	       && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6873
	       && JUMP_LABEL (p) != 0
Richard Kenner committed
6874 6875 6876 6877 6878
	       && LABEL_NUSES (JUMP_LABEL (p)) == 1
	       && NEXT_INSN (JUMP_LABEL (p)) != 0)
	{
	  for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
	    if ((GET_CODE (q) != NOTE
6879 6880 6881
		 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
		 || NOTE_LINE_NUMBER (q) == NOTE_INSN_SETJMP)
		&& (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
Richard Kenner committed
6882 6883 6884 6885
	      break;

	  /* If we ran into a BARRIER, this code is an extension of the
	     basic block when the branch is taken.  */
6886
	  if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
Richard Kenner committed
6887 6888 6889
	    {
	      /* Don't allow ourself to keep walking around an
		 always-executed loop.  */
6890 6891 6892 6893 6894
	      if (next_real_insn (q) == next)
		{
		  p = NEXT_INSN (p);
		  continue;
		}
Richard Kenner committed
6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916

	      /* Similarly, don't put a branch in our path more than once.  */
	      for (i = 0; i < path_entry; i++)
		if (data->path[i].branch == p)
		  break;

	      if (i != path_entry)
		break;

	      data->path[path_entry].branch = p;
	      data->path[path_entry++].status = TAKEN;

	      /* This branch now ends our path.  It was possible that we
		 didn't see this branch the last time around (when the
		 insn in front of the target was a JUMP_INSN that was
		 turned into a no-op).  */
	      path_size = path_entry;

	      p = JUMP_LABEL (p);
	      /* Mark block so we won't scan it again later.  */
	      PUT_MODE (NEXT_INSN (p), QImode);
	    }
6917 6918 6919 6920 6921
	  /* Detect a branch around a block of code.  */
	  else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
	    {
	      register rtx tmp;

6922 6923 6924 6925 6926
	      if (next_real_insn (q) == next)
		{
		  p = NEXT_INSN (p);
		  continue;
		}
6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939

	      for (i = 0; i < path_entry; i++)
		if (data->path[i].branch == p)
		  break;

	      if (i != path_entry)
		break;

	      /* This is no_labels_between_p (p, q) with an added check for
		 reaching the end of a function (in case Q precedes P).  */
	      for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
		if (GET_CODE (tmp) == CODE_LABEL)
		  break;
6940

6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
	      if (tmp == q)
		{
		  data->path[path_entry].branch = p;
		  data->path[path_entry++].status = AROUND;

		  path_size = path_entry;

		  p = JUMP_LABEL (p);
		  /* Mark block so we won't scan it again later.  */
		  PUT_MODE (NEXT_INSN (p), QImode);
		}
	    }
Richard Kenner committed
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964
	}
      p = NEXT_INSN (p);
    }

  data->low_cuid = low_cuid;
  data->high_cuid = high_cuid;
  data->nsets = nsets;
  data->last = p;

  /* If all jumps in the path are not taken, set our path length to zero
     so a rescan won't be done.  */
  for (i = path_size - 1; i >= 0; i--)
6965
    if (data->path[i].status != NOT_TAKEN)
Richard Kenner committed
6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
      break;

  if (i == -1)
    data->path_size = 0;
  else
    data->path_size = path_size;

  /* End the current branch path.  */
  data->path[path_size].branch = 0;
}

/* Perform cse on the instructions of a function.
   F is the first instruction.
   NREGS is one plus the highest pseudo-reg number used in the instruction.

   AFTER_LOOP is 1 if this is the cse call done after loop optimization
   (only if -frerun-cse-after-loop).

   Returns 1 if jump_optimize should be redone due to simplifications
   in conditional jump instructions.  */

int
cse_main (f, nregs, after_loop, file)
     rtx f;
     int nregs;
     int after_loop;
     FILE *file;
{
  struct cse_basic_block_data val;
  register rtx insn = f;
  register int i;

  cse_jumps_altered = 0;
6999
  recorded_label_ref = 0;
Richard Kenner committed
7000 7001 7002 7003
  constant_pool_entries_cost = 0;
  val.path_size = 0;

  init_recog ();
7004
  init_alias_analysis ();
Richard Kenner committed
7005 7006 7007

  max_reg = nregs;

7008 7009
  max_insn_uid = get_max_uid ();

7010
  reg_eqv_table = (struct reg_eqv_elem *)
7011
    xmalloc (nregs * sizeof (struct reg_eqv_elem));
Richard Kenner committed
7012

7013 7014 7015 7016
#ifdef LOAD_EXTEND_OP

  /* Allocate scratch rtl here.  cse_insn will fill in the memory reference
     and change the code and mode as appropriate.  */
7017
  memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
7018 7019
#endif

Mark Mitchell committed
7020 7021
  /* Reset the counter indicating how many elements have been made
     thus far.  */
Richard Kenner committed
7022 7023 7024 7025
  n_elements_made = 0;

  /* Find the largest uid.  */

7026
  max_uid = get_max_uid ();
7027
  uid_cuid = (int *) xcalloc (max_uid + 1, sizeof (int));
Richard Kenner committed
7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062

  /* Compute the mapping from uids to cuids.
     CUIDs are numbers assigned to insns, like uids,
     except that cuids increase monotonically through the code.
     Don't assign cuids to line-number NOTEs, so that the distance in cuids
     between two insns is not affected by -g.  */

  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) != NOTE
	  || NOTE_LINE_NUMBER (insn) < 0)
	INSN_CUID (insn) = ++i;
      else
	/* Give a line number note the same cuid as preceding insn.  */
	INSN_CUID (insn) = i;
    }

  /* Initialize which registers are clobbered by calls.  */

  CLEAR_HARD_REG_SET (regs_invalidated_by_call);

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if ((call_used_regs[i]
	 /* Used to check !fixed_regs[i] here, but that isn't safe;
	    fixed regs are still call-clobbered, and sched can get
	    confused if they can "live across calls".

	    The frame pointer is always preserved across calls.  The arg
	    pointer is if it is fixed.  The stack pointer usually is, unless
	    RETURN_POPS_ARGS, in which case an explicit CLOBBER
	    will be present.  If we are generating PIC code, the PIC offset
	    table register is preserved across calls.  */

	 && i != STACK_POINTER_REGNUM
	 && i != FRAME_POINTER_REGNUM
7063 7064 7065
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	 && i != HARD_FRAME_POINTER_REGNUM
#endif
Richard Kenner committed
7066 7067 7068
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
	 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
#endif
7069
#if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
Richard Kenner committed
7070 7071 7072 7073 7074 7075
	 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
#endif
	 )
	|| global_regs[i])
      SET_HARD_REG_BIT (regs_invalidated_by_call, i);

Mark Mitchell committed
7076
  ggc_push_context ();
7077

Richard Kenner committed
7078 7079 7080 7081 7082 7083
  /* Loop over basic blocks.
     Compute the maximum number of qty's needed for each basic block
     (which is 2 for each SET).  */
  insn = f;
  while (insn)
    {
7084
      cse_altered = 0;
7085 7086
      cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
			      flag_cse_skip_blocks);
Richard Kenner committed
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099

      /* If this basic block was already processed or has no sets, skip it.  */
      if (val.nsets == 0 || GET_MODE (insn) == QImode)
	{
	  PUT_MODE (insn, VOIDmode);
	  insn = (val.last ? NEXT_INSN (val.last) : 0);
	  val.path_size = 0;
	  continue;
	}

      cse_basic_block_start = val.low_cuid;
      cse_basic_block_end = val.high_cuid;
      max_qty = val.nsets * 2;
7100

Richard Kenner committed
7101
      if (file)
7102
	fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
Richard Kenner committed
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
		 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
		 val.nsets);

      /* Make MAX_QTY bigger to give us room to optimize
	 past the end of this basic block, if that should prove useful.  */
      if (max_qty < 500)
	max_qty = 500;

      max_qty += max_reg;

      /* If this basic block is being extended by following certain jumps,
         (see `cse_end_of_basic_block'), we reprocess the code from the start.
         Otherwise, we start after this basic block.  */
      if (val.path_size > 0)
7117
	cse_basic_block (insn, val.last, val.path, 0);
Richard Kenner committed
7118 7119 7120 7121 7122 7123 7124 7125 7126 7127
      else
	{
	  int old_cse_jumps_altered = cse_jumps_altered;
	  rtx temp;

	  /* When cse changes a conditional jump to an unconditional
	     jump, we want to reprocess the block, since it will give
	     us a new branch path to investigate.  */
	  cse_jumps_altered = 0;
	  temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
7128 7129
	  if (cse_jumps_altered == 0
	      || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
Richard Kenner committed
7130 7131 7132 7133 7134
	    insn = temp;

	  cse_jumps_altered |= old_cse_jumps_altered;
	}

Mark Mitchell committed
7135
      if (cse_altered)
7136 7137
	ggc_collect ();

Richard Kenner committed
7138 7139 7140 7141 7142
#ifdef USE_C_ALLOCA
      alloca (0);
#endif
    }

Mark Mitchell committed
7143
  ggc_pop_context ();
7144

Richard Kenner committed
7145 7146 7147
  if (max_elements_made < n_elements_made)
    max_elements_made = n_elements_made;

7148 7149
  /* Clean up.  */
  end_alias_analysis ();
7150
  free (uid_cuid);
7151
  free (reg_eqv_table);
7152

7153
  return cse_jumps_altered || recorded_label_ref;
Richard Kenner committed
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
}

/* Process a single basic block.  FROM and TO and the limits of the basic
   block.  NEXT_BRANCH points to the branch path when following jumps or
   a null path when not following jumps.

   AROUND_LOOP is non-zero if we are to try to cse around to the start of a
   loop.  This is true when we are being called for the last time on a
   block and this CSE pass is before loop.c.  */

static rtx
cse_basic_block (from, to, next_branch, around_loop)
     register rtx from, to;
     struct branch_path *next_branch;
     int around_loop;
{
  register rtx insn;
  int to_usage = 0;
7172
  rtx libcall_insn = NULL_RTX;
7173
  int num_insns = 0;
Richard Kenner committed
7174

7175 7176 7177
  /* This array is undefined before max_reg, so only allocate
     the space actually needed and adjust the start.  */

7178 7179
  qty_table
    = (struct qty_table_elem *) xmalloc ((max_qty - max_reg)
7180
					 * sizeof (struct qty_table_elem));
7181
  qty_table -= max_reg;
Richard Kenner committed
7182 7183 7184 7185 7186 7187 7188 7189 7190

  new_basic_block ();

  /* TO might be a label.  If so, protect it from being deleted.  */
  if (to != 0 && GET_CODE (to) == CODE_LABEL)
    ++LABEL_NUSES (to);

  for (insn = from; insn != to; insn = NEXT_INSN (insn))
    {
7191
      register enum rtx_code code = GET_CODE (insn);
7192

7193 7194
      /* If we have processed 1,000 insns, flush the hash table to
	 avoid extreme quadratic behavior.  We must not include NOTEs
7195
	 in the count since there may be more of them when generating
7196 7197 7198
	 debugging information.  If we clear the table at different
	 times, code generated with -g -O might be different than code
	 generated with -O but not -g.
7199 7200 7201

	 ??? This is a real kludge and needs to be done some other way.
	 Perhaps for 2.9.  */
7202
      if (code != NOTE && num_insns++ > 1000)
7203
	{
7204
	  flush_hash_table ();
7205 7206
	  num_insns = 0;
	}
Richard Kenner committed
7207 7208 7209 7210 7211

      /* See if this is a branch that is part of the path.  If so, and it is
	 to be taken, do so.  */
      if (next_branch->branch == insn)
	{
7212 7213
	  enum taken status = next_branch++->status;
	  if (status != NOT_TAKEN)
Richard Kenner committed
7214
	    {
7215 7216 7217 7218 7219
	      if (status == TAKEN)
		record_jump_equiv (insn, 1);
	      else
		invalidate_skipped_block (NEXT_INSN (insn));

Richard Kenner committed
7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
	      /* Set the last insn as the jump insn; it doesn't affect cc0.
		 Then follow this branch.  */
#ifdef HAVE_cc0
	      prev_insn_cc0 = 0;
#endif
	      prev_insn = insn;
	      insn = JUMP_LABEL (insn);
	      continue;
	    }
	}
7230

Richard Kenner committed
7231 7232 7233 7234 7235
      if (GET_MODE (insn) == QImode)
	PUT_MODE (insn, VOIDmode);

      if (GET_RTX_CLASS (code) == 'i')
	{
7236 7237
	  rtx p;

Richard Kenner committed
7238 7239 7240 7241
	  /* Process notes first so we have all notes in canonical forms when
	     looking for duplicate operations.  */

	  if (REG_NOTES (insn))
7242
	    REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
Richard Kenner committed
7243 7244 7245 7246

	  /* Track when we are inside in LIBCALL block.  Inside such a block,
	     we do not want to record destinations.  The last insn of a
	     LIBCALL block is not considered to be part of the block, since
7247
	     its destination is the result of the block and hence should be
Richard Kenner committed
7248 7249
	     recorded.  */

7250 7251 7252 7253 7254 7255 7256
	  if (REG_NOTES (insn) != 0)
	    {
	      if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
		libcall_insn = XEXP (p, 0);
	      else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
		libcall_insn = 0;
	    }
Richard Kenner committed
7257

7258
	  cse_insn (insn, libcall_insn);
Richard Kenner committed
7259 7260 7261 7262 7263 7264 7265
	}

      /* If INSN is now an unconditional jump, skip to the end of our
	 basic block by pretending that we just did the last insn in the
	 basic block.  If we are jumping to the end of our block, show
	 that we can have one usage of TO.  */

7266
      if (any_uncondjump_p (insn))
Richard Kenner committed
7267 7268
	{
	  if (to == 0)
7269 7270 7271 7272
	    {
	      free (qty_table + max_reg);
	      return 0;
	    }
Richard Kenner committed
7273 7274 7275 7276

	  if (JUMP_LABEL (insn) == to)
	    to_usage = 1;

7277 7278 7279
	  /* Maybe TO was deleted because the jump is unconditional.
	     If so, there is nothing left in this basic block.  */
	  /* ??? Perhaps it would be smarter to set TO
7280
	     to whatever follows this insn,
7281 7282 7283 7284
	     and pretend the basic block had always ended here.  */
	  if (INSN_DELETED_P (to))
	    break;

Richard Kenner committed
7285 7286 7287 7288 7289
	  insn = PREV_INSN (to);
	}

      /* See if it is ok to keep on going past the label
	 which used to end our basic block.  Remember that we incremented
7290
	 the count of that label, so we decrement it here.  If we made
Richard Kenner committed
7291 7292 7293 7294 7295 7296 7297
	 a jump unconditional, TO_USAGE will be one; in that case, we don't
	 want to count the use in that jump.  */

      if (to != 0 && NEXT_INSN (insn) == to
	  && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
	{
	  struct cse_basic_block_data val;
7298
	  rtx prev;
Richard Kenner committed
7299 7300 7301

	  insn = NEXT_INSN (to);

7302 7303
	  /* If TO was the last insn in the function, we are done.  */
	  if (insn == 0)
7304 7305 7306 7307
	    {
	      free (qty_table + max_reg);
	      return 0;
	    }
Richard Kenner committed
7308

7309 7310 7311 7312
	  /* If TO was preceded by a BARRIER we are done with this block
	     because it has no continuation.  */
	  prev = prev_nonnote_insn (to);
	  if (prev && GET_CODE (prev) == BARRIER)
7313 7314 7315 7316
	    {
	      free (qty_table + max_reg);
	      return insn;
	    }
7317 7318 7319

	  /* Find the end of the following block.  Note that we won't be
	     following branches in this case.  */
Richard Kenner committed
7320 7321
	  to_usage = 0;
	  val.path_size = 0;
7322
	  cse_end_of_basic_block (insn, &val, 0, 0, 0);
Richard Kenner committed
7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351

	  /* If the tables we allocated have enough space left
	     to handle all the SETs in the next basic block,
	     continue through it.  Otherwise, return,
	     and that block will be scanned individually.  */
	  if (val.nsets * 2 + next_qty > max_qty)
	    break;

	  cse_basic_block_start = val.low_cuid;
	  cse_basic_block_end = val.high_cuid;
	  to = val.last;

	  /* Prevent TO from being deleted if it is a label.  */
	  if (to != 0 && GET_CODE (to) == CODE_LABEL)
	    ++LABEL_NUSES (to);

	  /* Back up so we process the first insn in the extension.  */
	  insn = PREV_INSN (insn);
	}
    }

  if (next_qty > max_qty)
    abort ();

  /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
     the previous insn is the only insn that branches to the head of a loop,
     we can cse into the loop.  Don't do this if we changed the jump
     structure of a loop unless we aren't going to be following jumps.  */

7352 7353
  if ((cse_jumps_altered == 0
       || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
Richard Kenner committed
7354 7355 7356 7357 7358 7359 7360
      && around_loop && to != 0
      && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
      && GET_CODE (PREV_INSN (to)) == JUMP_INSN
      && JUMP_LABEL (PREV_INSN (to)) != 0
      && LABEL_NUSES (JUMP_LABEL (PREV_INSN (to))) == 1)
    cse_around_loop (JUMP_LABEL (PREV_INSN (to)));

7361
  free (qty_table + max_reg);
7362

Richard Kenner committed
7363 7364 7365 7366 7367
  return to ? NEXT_INSN (to) : 0;
}

/* Count the number of times registers are used (not set) in X.
   COUNTS is an array in which we accumulate the count, INCR is how much
7368
   we count each register usage.
7369

7370
   Don't count a usage of DEST, which is the SET_DEST of a SET which
7371 7372
   contains X in its SET_SRC.  This is because such a SET does not
   modify the liveness of DEST.  */
Richard Kenner committed
7373 7374

static void
7375
count_reg_usage (x, counts, dest, incr)
Richard Kenner committed
7376 7377
     rtx x;
     int *counts;
7378
     rtx dest;
Richard Kenner committed
7379 7380
     int incr;
{
7381
  enum rtx_code code;
7382
  const char *fmt;
Richard Kenner committed
7383 7384
  int i, j;

7385 7386 7387 7388
  if (x == 0)
    return;

  switch (code = GET_CODE (x))
Richard Kenner committed
7389 7390
    {
    case REG:
7391 7392
      if (x != dest)
	counts[REGNO (x)] += incr;
Richard Kenner committed
7393 7394 7395 7396 7397 7398 7399 7400 7401
      return;

    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
7402 7403
      return;

7404
    case CLOBBER:
7405 7406 7407 7408
      /* If we are clobbering a MEM, mark any registers inside the address
         as being used.  */
      if (GET_CODE (XEXP (x, 0)) == MEM)
	count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
Richard Kenner committed
7409 7410 7411 7412 7413
      return;

    case SET:
      /* Unless we are setting a REG, count everything in SET_DEST.  */
      if (GET_CODE (SET_DEST (x)) != REG)
7414
	count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
7415 7416 7417 7418 7419 7420 7421 7422 7423 7424

      /* If SRC has side-effects, then we can't delete this insn, so the
	 usage of SET_DEST inside SRC counts.

	 ??? Strictly-speaking, we might be preserving this insn
	 because some other SET has side-effects, but that's hard
	 to do and can't happen now.  */
      count_reg_usage (SET_SRC (x), counts,
		       side_effects_p (SET_SRC (x)) ? NULL_RTX : SET_DEST (x),
		       incr);
Richard Kenner committed
7425 7426
      return;

7427 7428
    case CALL_INSN:
      count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);
Kazu Hirata committed
7429
      /* Fall through.  */
7430

Richard Kenner committed
7431 7432
    case INSN:
    case JUMP_INSN:
7433
      count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);
Richard Kenner committed
7434 7435 7436 7437

      /* Things used in a REG_EQUAL note aren't dead since loop may try to
	 use them.  */

7438
      count_reg_usage (REG_NOTES (x), counts, NULL_RTX, incr);
Richard Kenner committed
7439 7440 7441 7442
      return;

    case EXPR_LIST:
    case INSN_LIST:
7443
      if (REG_NOTE_KIND (x) == REG_EQUAL
7444
	  || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE))
7445
	count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
7446
      count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
Richard Kenner committed
7447
      return;
7448

7449 7450
    default:
      break;
Richard Kenner committed
7451 7452 7453 7454 7455 7456
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
7457
	count_reg_usage (XEXP (x, i), counts, dest, incr);
Richard Kenner committed
7458 7459
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7460
	  count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
Richard Kenner committed
7461 7462 7463 7464 7465 7466
    }
}

/* Scan all the insns and delete any that are dead; i.e., they store a register
   that is never used or they copy a register to itself.

7467 7468 7469 7470
   This is used to remove insns made obviously dead by cse, loop or other
   optimizations.  It improves the heuristics in loop since it won't try to
   move dead invariants out of loops or make givs for dead quantities.  The
   remaining passes of the compilation are also sped up.  */
Richard Kenner committed
7471 7472

void
7473
delete_trivially_dead_insns (insns, nreg)
Richard Kenner committed
7474 7475 7476
     rtx insns;
     int nreg;
{
7477
  int *counts;
7478
  rtx insn, prev;
Kaveh R. Ghazi committed
7479
#ifdef HAVE_cc0
7480
  rtx tem;
Kaveh R. Ghazi committed
7481
#endif
Richard Kenner committed
7482
  int i;
7483
  int in_libcall = 0, dead_libcall = 0;
Richard Kenner committed
7484 7485

  /* First count the number of times each register is used.  */
7486
  counts = (int *) xcalloc (nreg, sizeof (int));
Richard Kenner committed
7487
  for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
7488
    count_reg_usage (insn, counts, NULL_RTX, 1);
Richard Kenner committed
7489 7490 7491

  /* Go from the last insn to the first and delete insns that only set unused
     registers or copy a register to itself.  As we delete an insn, remove
7492
     usage counts for registers it uses.
7493 7494 7495 7496 7497

     The first jump optimization pass may leave a real insn as the last
     insn in the function.   We must not skip that insn or we may end
     up deleting code that is not really dead.   */
  insn = get_last_insn ();
7498
  if (! INSN_P (insn))
7499 7500
    insn = prev_real_insn (insn);

7501
  for (; insn; insn = prev)
Richard Kenner committed
7502 7503
    {
      int live_insn = 0;
7504
      rtx note;
Richard Kenner committed
7505

7506 7507
      prev = prev_real_insn (insn);

7508 7509 7510
      /* Don't delete any insns that are part of a libcall block unless
	 we can delete the whole libcall block.

7511 7512
	 Flow or loop might get confused if we did that.  Remember
	 that we are scanning backwards.  */
7513
      if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7514 7515 7516 7517
	{
	  in_libcall = 1;
	  live_insn = 1;
	  dead_libcall = 0;
7518

7519 7520
	  /* See if there's a REG_EQUAL note on this insn and try to
	     replace the source with the REG_EQUAL expression.
7521

7522 7523 7524 7525 7526 7527
	     We assume that insns with REG_RETVALs can only be reg->reg
	     copies at this point.  */
	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
	  if (note)
	    {
	      rtx set = single_set (insn);
7528 7529 7530 7531 7532 7533
	      rtx new = simplify_rtx (XEXP (note, 0));

	      if (!new)
		new = XEXP (note, 0);

	      if (set && validate_change (insn, &SET_SRC (set), new, 0))
7534 7535 7536 7537 7538 7539 7540 7541 7542
		{
		  remove_note (insn,
			       find_reg_note (insn, REG_RETVAL, NULL_RTX));
		  dead_libcall = 1;
		}
	    }
	}
      else if (in_libcall)
	live_insn = ! dead_libcall;
7543
      else if (GET_CODE (PATTERN (insn)) == SET)
Richard Kenner committed
7544
	{
7545 7546 7547 7548
	  if ((GET_CODE (SET_DEST (PATTERN (insn))) == REG
	       || GET_CODE (SET_DEST (PATTERN (insn))) == SUBREG)
	      && rtx_equal_p (SET_DEST (PATTERN (insn)),
			      SET_SRC (PATTERN (insn))))
Richard Kenner committed
7549
	    ;
7550 7551 7552 7553
	  else if (GET_CODE (SET_DEST (PATTERN (insn))) == STRICT_LOW_PART
		   && rtx_equal_p (XEXP (SET_DEST (PATTERN (insn)), 0),
				   SET_SRC (PATTERN (insn))))
	    ;
Richard Kenner committed
7554

7555 7556 7557 7558
#ifdef HAVE_cc0
	  else if (GET_CODE (SET_DEST (PATTERN (insn))) == CC0
		   && ! side_effects_p (SET_SRC (PATTERN (insn)))
		   && ((tem = next_nonnote_insn (insn)) == 0
7559
		       || ! INSN_P (tem)
7560 7561 7562
		       || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
	    ;
#endif
Richard Kenner committed
7563 7564 7565
	  else if (GET_CODE (SET_DEST (PATTERN (insn))) != REG
		   || REGNO (SET_DEST (PATTERN (insn))) < FIRST_PSEUDO_REGISTER
		   || counts[REGNO (SET_DEST (PATTERN (insn)))] != 0
7566 7567 7568 7569 7570 7571 7572
		   || side_effects_p (SET_SRC (PATTERN (insn)))
		   /* An ADDRESSOF expression can turn into a use of the
		      internal arg pointer, so always consider the
		      internal arg pointer live.  If it is truly dead,
		      flow will delete the initializing insn.  */
		   || (SET_DEST (PATTERN (insn))
		       == current_function_internal_arg_pointer))
Richard Kenner committed
7573 7574 7575 7576 7577 7578 7579 7580 7581
	    live_insn = 1;
	}
      else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	  {
	    rtx elt = XVECEXP (PATTERN (insn), 0, i);

	    if (GET_CODE (elt) == SET)
	      {
7582 7583 7584
		if ((GET_CODE (SET_DEST (elt)) == REG
		     || GET_CODE (SET_DEST (elt)) == SUBREG)
		    && rtx_equal_p (SET_DEST (elt), SET_SRC (elt)))
Richard Kenner committed
7585 7586
		  ;

7587 7588 7589 7590
#ifdef HAVE_cc0
		else if (GET_CODE (SET_DEST (elt)) == CC0
			 && ! side_effects_p (SET_SRC (elt))
			 && ((tem = next_nonnote_insn (insn)) == 0
7591
			     || ! INSN_P (tem)
7592 7593 7594
			     || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
		  ;
#endif
Richard Kenner committed
7595 7596 7597
		else if (GET_CODE (SET_DEST (elt)) != REG
			 || REGNO (SET_DEST (elt)) < FIRST_PSEUDO_REGISTER
			 || counts[REGNO (SET_DEST (elt))] != 0
7598 7599 7600 7601 7602 7603 7604
			 || side_effects_p (SET_SRC (elt))
			 /* An ADDRESSOF expression can turn into a use of the
			    internal arg pointer, so always consider the
			    internal arg pointer live.  If it is truly dead,
			    flow will delete the initializing insn.  */
			 || (SET_DEST (elt)
			     == current_function_internal_arg_pointer))
Richard Kenner committed
7605 7606 7607 7608 7609 7610 7611 7612 7613
		  live_insn = 1;
	      }
	    else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
	      live_insn = 1;
	  }
      else
	live_insn = 1;

      /* If this is a dead insn, delete it and show registers in it aren't
7614
	 being used.  */
Richard Kenner committed
7615

7616
      if (! live_insn)
Richard Kenner committed
7617
	{
7618
	  count_reg_usage (insn, counts, NULL_RTX, -1);
7619
	  delete_insn (insn);
Richard Kenner committed
7620
	}
7621

7622
      if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7623 7624 7625 7626
	{
	  in_libcall = 0;
	  dead_libcall = 0;
	}
Richard Kenner committed
7627
    }
7628 7629 7630

  /* Clean up.  */
  free (counts);
Richard Kenner committed
7631
}