bitmap.h 23.9 KB
Newer Older
Richard Kenner committed
1
/* Functions to support general ended bitmaps.
Jakub Jelinek committed
2
   Copyright (C) 1997-2015 Free Software Foundation, Inc.
Richard Kenner committed
3

4
This file is part of GCC.
Richard Kenner committed
5

6 7
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
8
Software Foundation; either version 3, or (at your option) any later
9
version.
Richard Kenner committed
10

11 12 13 14
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
Richard Kenner committed
15 16

You should have received a copy of the GNU General Public License
17 18
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
Richard Kenner committed
19

20
#ifndef GCC_BITMAP_H
Kazu Hirata committed
21
#define GCC_BITMAP_H
22 23 24 25 26

/* Implementation of sparse integer sets as a linked list.

   This sparse set representation is suitable for sparse sets with an
   unknown (a priori) universe.  The set is represented as a double-linked
27
   list of container nodes (struct bitmap_element).  Each node consists
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
   of an index for the first member that could be held in the container,
   a small array of integers that represent the members in the container,
   and pointers to the next and previous element in the linked list.  The
   elements in the list are sorted in ascending order, i.e. the head of
   the list holds the element with the smallest member of the set.

   For a given member I in the set:
     - the element for I will have index is I / (bits per element)
     - the position for I within element is I % (bits per element)

   This representation is very space-efficient for large sparse sets, and
   the size of the set can be changed dynamically without much overhead.
   An important parameter is the number of bits per element.  In this
   implementation, there are 128 bits per element.  This results in a
   high storage overhead *per element*, but a small overall overhead if
   the set is very sparse.

   The downside is that many operations are relatively slow because the
   linked list has to be traversed to test membership (i.e. member_p/
   add_member/remove_member).  To improve the performance of this set
   representation, the last accessed element and its index are cached.
   For membership tests on members close to recently accessed members,
   the cached last element improves membership test to a constant-time
   operation.

   The following operations can always be performed in O(1) time:

     * clear			: bitmap_clear
     * choose_one		: (not implemented, but could be
				   implemented in constant time)

   The following operations can be performed in O(E) time worst-case (with
   E the number of elements in the linked list), but in O(1) time with a
   suitable access patterns:

     * member_p			: bitmap_bit_p
     * add_member		: bitmap_set_bit
     * remove_member		: bitmap_clear_bit

   The following operations can be performed in O(E) time:

     * cardinality		: bitmap_count_bits
     * set_size			: bitmap_last_set_bit (but this could
				  in constant time with a pointer to
				  the last element in the chain)

   Additionally, the linked-list sparse set representation supports
   enumeration of the members in O(E) time:

     * forall			: EXECUTE_IF_SET_IN_BITMAP
     * set_copy			: bitmap_copy
     * set_intersection		: bitmap_intersect_p /
				  bitmap_and / bitmap_and_into /
				  EXECUTE_IF_AND_IN_BITMAP
     * set_union		: bitmap_ior / bitmap_ior_into
     * set_difference		: bitmap_intersect_compl_p /
				  bitmap_and_comp / bitmap_and_comp_into /
				  EXECUTE_IF_AND_COMPL_IN_BITMAP
     * set_disjuction		: bitmap_xor_comp / bitmap_xor_comp_into
     * set_compare		: bitmap_equal_p

   Some operations on 3 sets that occur frequently in in data flow problems
   are also implemented:

     * A | (B & C)		: bitmap_ior_and_into
     * A | (B & ~C)		: bitmap_ior_and_compl /
				  bitmap_ior_and_compl_into

   The storage requirements for linked-list sparse sets are O(E), with E->N
   in the worst case (a sparse set with large distances between the values
   of the set members).

   The linked-list set representation works well for problems involving very
   sparse sets.  The canonical example in GCC is, of course, the "set of
   sets" for some CFG-based data flow problems (liveness analysis, dominance
   frontiers, etc.).
   
   This representation also works well for data flow problems where the size
   of the set may grow dynamically, but care must be taken that the member_p,
   add_member, and remove_member operations occur with a suitable access
   pattern.
   
   For random-access sets with a known, relatively small universe size, the
   SparseSet or simple bitmap representations may be more efficient than a
   linked-list set.  For random-access sets of unknown universe, a hash table
   or a balanced binary tree representation is likely to be a more suitable
   choice.

   Traversing linked lists is usually cache-unfriendly, even with the last
   accessed element cached.
   
   Cache performance can be improved by keeping the elements in the set
   grouped together in memory, using a dedicated obstack for a set (or group
   of related sets).  Elements allocated on obstacks are released to a
   free-list and taken off the free list.  If multiple sets are allocated on
   the same obstack, elements freed from one set may be re-used for one of
   the other sets.  This usually helps avoid cache misses.

   A single free-list is used for all sets allocated in GGC space.  This is
   bad for persistent sets, so persistent sets should be allocated on an
   obstack whenever possible.  */

130
#include "hashtab.h"
131
#include "statistics.h"
132
#include "obstack.h"
133

134 135 136
/* Fundamental storage type for bitmap.  */

typedef unsigned long BITMAP_WORD;
137 138 139
/* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
   it is used in preprocessor directives -- hence the 1u.  */
#define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
140

Richard Kenner committed
141 142 143
/* Number of words to use for each element in the linked list.  */

#ifndef BITMAP_ELEMENT_WORDS
144
#define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
Richard Kenner committed
145 146
#endif

147
/* Number of bits in each actual element of a bitmap.  */
Richard Kenner committed
148

149
#define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
Richard Kenner committed
150

151
/* Obstack for allocating bitmaps and elements from.  */
152 153 154
struct GTY (()) bitmap_obstack {
  struct bitmap_element *elements;
  struct bitmap_head *heads;
155
  struct obstack GTY ((skip)) obstack;
156
};
157

Richard Kenner committed
158 159
/* Bitmap set element.  We use a linked list to hold only the bits that
   are set.  This allows for use to grow the bitset dynamically without
Mike Stump committed
160
   having to realloc and copy a giant bit array.
161 162 163 164 165 166 167 168

   The free list is implemented as a list of lists.  There is one
   outer list connected together by prev fields.  Each element of that
   outer is an inner list (that may consist only of the outer list
   element) that are connected by the next fields.  The prev pointer
   is undefined for interior elements.  This allows
   bitmap_elt_clear_from to be implemented in unit time rather than
   linear in the number of elements to be freed.  */
Richard Kenner committed
169

170 171 172
struct GTY((chain_next ("%h.next"), chain_prev ("%h.prev"))) bitmap_element {
  struct bitmap_element *next;	/* Next element.  */
  struct bitmap_element *prev;	/* Previous element.  */
Kazu Hirata committed
173
  unsigned int indx;			/* regno/BITMAP_ELEMENT_ALL_BITS.  */
174
  BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; /* Bits that are set.  */
175
};
Richard Kenner committed
176

177 178
/* Head of bitmap linked list.  The 'current' member points to something
   already pointed to by the chain started by first, so GTY((skip)) it.  */
179

180
struct GTY(()) bitmap_head {
181 182 183 184
  unsigned int indx;			/* Index of last element looked at.  */
  unsigned int descriptor_id;		/* Unique identifier for the allocation
					   site of this bitmap, for detailed
					   statistics gathering.  */
185 186 187 188
  bitmap_element *first;		/* First element in linked list.  */
  bitmap_element * GTY((skip(""))) current; /* Last element looked at.  */
  bitmap_obstack *obstack;		/* Obstack to allocate elements from.
					   If NULL, then use GGC allocation.  */
189
};
190

Richard Kenner committed
191
/* Global data */
192
extern bitmap_element bitmap_zero_bits;	/* Zero bitmap element */
193
extern bitmap_obstack bitmap_default_obstack;   /* Default bitmap obstack */
Richard Kenner committed
194 195

/* Clear a bitmap by freeing up the linked list.  */
196
extern void bitmap_clear (bitmap);
Richard Kenner committed
197

Kazu Hirata committed
198
/* Copy a bitmap to another bitmap.  */
199
extern void bitmap_copy (bitmap, const_bitmap);
Richard Kenner committed
200

201
/* True if two bitmaps are identical.  */
202
extern bool bitmap_equal_p (const_bitmap, const_bitmap);
203

204
/* True if the bitmaps intersect (their AND is non-empty).  */
205
extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
206 207 208

/* True if the complement of the second intersects the first (their
   AND_COMPL is non-empty).  */
209
extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
210 211

/* True if MAP is an empty bitmap.  */
212 213 214 215
inline bool bitmap_empty_p (const_bitmap map)
{
  return !map->first;
}
216

217 218 219
/* True if the bitmap has only a single bit set.  */
extern bool bitmap_single_bit_set_p (const_bitmap);

220
/* Count the number of bits set in the bitmap.  */
221
extern unsigned long bitmap_count_bits (const_bitmap);
222

223 224 225 226
/* Boolean operations on bitmaps.  The _into variants are two operand
   versions that modify the first source operand.  The other variants
   are three operand versions that to not destroy the source bitmaps.
   The operations supported are &, & ~, |, ^.  */
227
extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
228
extern bool bitmap_and_into (bitmap, const_bitmap);
229 230
extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
extern bool bitmap_and_compl_into (bitmap, const_bitmap);
231
#define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
232
extern void bitmap_compl_and_into (bitmap, const_bitmap);
233
extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
234
extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
235 236 237 238
extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
extern bool bitmap_ior_into (bitmap, const_bitmap);
extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
extern void bitmap_xor_into (bitmap, const_bitmap);
239

240 241
/* DST = A | (B & C).  Return true if DST changes.  */
extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
242
/* DST = A | (B & ~C).  Return true if DST changes.  */
243 244
extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
				  const_bitmap B, const_bitmap C);
245
/* A |= (B & ~C).  Return true if A changes.  */
246 247
extern bool bitmap_ior_and_compl_into (bitmap A,
				       const_bitmap B, const_bitmap C);
Richard Kenner committed
248

249 250
/* Clear a single bit in a bitmap.  Return true if the bit changed.  */
extern bool bitmap_clear_bit (bitmap, int);
Richard Kenner committed
251

252 253
/* Set a single bit in a bitmap.  Return true if the bit changed.  */
extern bool bitmap_set_bit (bitmap, int);
Richard Kenner committed
254 255

/* Return true if a register is set in a register set.  */
256
extern int bitmap_bit_p (bitmap, int);
Richard Kenner committed
257 258

/* Debug functions to print a bitmap linked list.  */
259 260
extern void debug_bitmap (const_bitmap);
extern void debug_bitmap_file (FILE *, const_bitmap);
Richard Kenner committed
261

262
/* Print a bitmap.  */
263
extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
264

265
/* Initialize and release a bitmap obstack.  */
266 267
extern void bitmap_obstack_initialize (bitmap_obstack *);
extern void bitmap_obstack_release (bitmap_obstack *);
268 269
extern void bitmap_register (bitmap MEM_STAT_DECL);
extern void dump_bitmap_statistics (void);
Richard Kenner committed
270

271 272 273 274
/* Initialize a bitmap header.  OBSTACK indicates the bitmap obstack
   to allocate from, NULL for GC'd bitmap.  */

static inline void
275
bitmap_initialize_stat (bitmap head, bitmap_obstack *obstack MEM_STAT_DECL)
276 277 278
{
  head->first = head->current = NULL;
  head->obstack = obstack;
279 280
  if (GATHER_STATISTICS)
    bitmap_register (head PASS_MEM_STAT);
281
}
282
#define bitmap_initialize(h,o) bitmap_initialize_stat (h,o MEM_STAT_INFO)
283 284

/* Allocate and free bitmaps from obstack, malloc and gc'd memory.  */
285 286 287 288
extern bitmap bitmap_obstack_alloc_stat (bitmap_obstack *obstack MEM_STAT_DECL);
#define bitmap_obstack_alloc(t) bitmap_obstack_alloc_stat (t MEM_STAT_INFO)
extern bitmap bitmap_gc_alloc_stat (ALONE_MEM_STAT_DECL);
#define bitmap_gc_alloc() bitmap_gc_alloc_stat (ALONE_MEM_STAT_INFO)
289
extern void bitmap_obstack_free (bitmap);
Richard Kenner committed
290

291
/* A few compatibility/functions macros for compatibility with sbitmaps */
292 293 294 295
inline void dump_bitmap (FILE *file, const_bitmap map)
{
  bitmap_print (file, map, "", "\n");
}
296 297
extern void debug (const bitmap_head &ref);
extern void debug (const bitmap_head *ptr);
298

299
extern unsigned bitmap_first_set_bit (const_bitmap);
300
extern unsigned bitmap_last_set_bit (const_bitmap);
301

302
/* Compute bitmap hash (for purposes of hashing etc.)  */
303
extern hashval_t bitmap_hash (const_bitmap);
304

305
/* Allocate a bitmap from a bit obstack.  */
306
#define BITMAP_ALLOC(OBSTACK) bitmap_obstack_alloc (OBSTACK)
307

308 309
/* Allocate a gc'd bitmap.  */
#define BITMAP_GGC_ALLOC() bitmap_gc_alloc ()
Kazu Hirata committed
310

Richard Kenner committed
311
/* Do any cleanup needed on a bitmap when it is no longer used.  */
312 313
#define BITMAP_FREE(BITMAP) \
       ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
314

315
/* Iterator for bitmaps.  */
Richard Kenner committed
316

317
struct bitmap_iterator
318
{
319 320
  /* Pointer to the current bitmap element.  */
  bitmap_element *elt1;
Mike Stump committed
321

322 323 324 325 326
  /* Pointer to 2nd bitmap element when two are involved.  */
  bitmap_element *elt2;

  /* Word within the current element.  */
  unsigned word_no;
Mike Stump committed
327

328 329 330
  /* Contents of the actually processed word.  When finding next bit
     it is shifted right, so that the actual bit is always the least
     significant bit of ACTUAL.  */
331
  BITMAP_WORD bits;
332
};
333

334 335
/* Initialize a single bitmap iterator.  START_BIT is the first bit to
   iterate from.  */
336

337
static inline void
338
bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
339
		   unsigned start_bit, unsigned *bit_no)
340
{
341 342 343 344 345
  bi->elt1 = map->first;
  bi->elt2 = NULL;

  /* Advance elt1 until it is not before the block containing start_bit.  */
  while (1)
346
    {
347 348 349 350 351
      if (!bi->elt1)
	{
	  bi->elt1 = &bitmap_zero_bits;
	  break;
	}
Mike Stump committed
352

353 354 355
      if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
	break;
      bi->elt1 = bi->elt1->next;
356 357
    }

358 359 360
  /* We might have gone past the start bit, so reinitialize it.  */
  if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
    start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
Mike Stump committed
361

362 363 364 365 366 367 368 369 370 371
  /* Initialize for what is now start_bit.  */
  bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
  bi->bits = bi->elt1->bits[bi->word_no];
  bi->bits >>= start_bit % BITMAP_WORD_BITS;

  /* If this word is zero, we must make sure we're not pointing at the
     first bit, otherwise our incrementing to the next word boundary
     will fail.  It won't matter if this increment moves us into the
     next word.  */
  start_bit += !bi->bits;
Mike Stump committed
372

373
  *bit_no = start_bit;
374 375
}

376 377
/* Initialize an iterator to iterate over the intersection of two
   bitmaps.  START_BIT is the bit to commence from.  */
378

379
static inline void
380
bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
381
		   unsigned start_bit, unsigned *bit_no)
382
{
383 384
  bi->elt1 = map1->first;
  bi->elt2 = map2->first;
385

386 387
  /* Advance elt1 until it is not before the block containing
     start_bit.  */
388 389
  while (1)
    {
390
      if (!bi->elt1)
391
	{
392 393
	  bi->elt2 = NULL;
	  break;
394
	}
Mike Stump committed
395

396 397 398
      if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
	break;
      bi->elt1 = bi->elt1->next;
399
    }
Mike Stump committed
400

401 402
  /* Advance elt2 until it is not before elt1.  */
  while (1)
403
    {
404 405 406 407 408
      if (!bi->elt2)
	{
	  bi->elt1 = bi->elt2 = &bitmap_zero_bits;
	  break;
	}
Mike Stump committed
409

410 411 412
      if (bi->elt2->indx >= bi->elt1->indx)
	break;
      bi->elt2 = bi->elt2->next;
413 414
    }

415
  /* If we're at the same index, then we have some intersecting bits.  */
416
  if (bi->elt1->indx == bi->elt2->indx)
417
    {
418
      /* We might have advanced beyond the start_bit, so reinitialize
Mike Stump committed
419
	 for that.  */
420 421
      if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
	start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
Mike Stump committed
422

423 424 425
      bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
      bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
      bi->bits >>= start_bit % BITMAP_WORD_BITS;
426 427 428
    }
  else
    {
429 430 431 432
      /* Otherwise we must immediately advance elt1, so initialize for
	 that.  */
      bi->word_no = BITMAP_ELEMENT_WORDS - 1;
      bi->bits = 0;
433
    }
Mike Stump committed
434

435 436 437 438 439
  /* If this word is zero, we must make sure we're not pointing at the
     first bit, otherwise our incrementing to the next word boundary
     will fail.  It won't matter if this increment moves us into the
     next word.  */
  start_bit += !bi->bits;
Mike Stump committed
440

441
  *bit_no = start_bit;
442 443
}

444 445
/* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
   */
446

447
static inline void
448 449
bmp_iter_and_compl_init (bitmap_iterator *bi,
			 const_bitmap map1, const_bitmap map2,
450
			 unsigned start_bit, unsigned *bit_no)
451
{
452 453
  bi->elt1 = map1->first;
  bi->elt2 = map2->first;
454

455
  /* Advance elt1 until it is not before the block containing start_bit.  */
456 457
  while (1)
    {
458
      if (!bi->elt1)
459
	{
460 461
	  bi->elt1 = &bitmap_zero_bits;
	  break;
462
	}
Mike Stump committed
463

464 465 466
      if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
	break;
      bi->elt1 = bi->elt1->next;
467
    }
468 469 470 471 472 473 474 475 476

  /* Advance elt2 until it is not before elt1.  */
  while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
    bi->elt2 = bi->elt2->next;

  /* We might have advanced beyond the start_bit, so reinitialize for
     that.  */
  if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
    start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
Mike Stump committed
477

478 479 480 481 482
  bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
  bi->bits = bi->elt1->bits[bi->word_no];
  if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
    bi->bits &= ~bi->elt2->bits[bi->word_no];
  bi->bits >>= start_bit % BITMAP_WORD_BITS;
Mike Stump committed
483

484 485 486 487 488
  /* If this word is zero, we must make sure we're not pointing at the
     first bit, otherwise our incrementing to the next word boundary
     will fail.  It won't matter if this increment moves us into the
     next word.  */
  start_bit += !bi->bits;
Mike Stump committed
489

490
  *bit_no = start_bit;
491 492
}

493
/* Advance to the next bit in BI.  We don't advance to the next
494
   nonzero bit yet.  */
495

496 497
static inline void
bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
498
{
499 500 501
  bi->bits >>= 1;
  *bit_no += 1;
}
502

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/* Advance to first set bit in BI.  */

static inline void
bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
{
#if (GCC_VERSION >= 3004)
  {
    unsigned int n = __builtin_ctzl (bi->bits);
    gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
    bi->bits >>= n;
    *bit_no += n;
  }
#else
  while (!(bi->bits & 1))
    {
      bi->bits >>= 1;
      *bit_no += 1;
    }
#endif
}

524
/* Advance to the next nonzero bit of a single bitmap, we will have
525 526
   already advanced past the just iterated bit.  Return true if there
   is a bit to iterate.  */
527

528 529 530
static inline bool
bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
{
531
  /* If our current word is nonzero, it contains the bit we want.  */
532
  if (bi->bits)
533
    {
534
    next_bit:
535
      bmp_iter_next_bit (bi, bit_no);
536
      return true;
537 538
    }

539 540 541 542 543 544
  /* Round up to the word boundary.  We might have just iterated past
     the end of the last word, hence the -1.  It is not possible for
     bit_no to point at the beginning of the now last word.  */
  *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
	     / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
  bi->word_no++;
545

546
  while (1)
547
    {
548
      /* Find the next nonzero word in this elt.  */
549 550 551 552 553 554 555 556
      while (bi->word_no != BITMAP_ELEMENT_WORDS)
	{
	  bi->bits = bi->elt1->bits[bi->word_no];
	  if (bi->bits)
	    goto next_bit;
	  *bit_no += BITMAP_WORD_BITS;
	  bi->word_no++;
	}
Mike Stump committed
557

558 559 560 561 562 563
      /* Advance to the next element.  */
      bi->elt1 = bi->elt1->next;
      if (!bi->elt1)
	return false;
      *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
      bi->word_no = 0;
564 565 566
    }
}

567 568
/* Advance to the next nonzero bit of an intersecting pair of
   bitmaps.  We will have already advanced past the just iterated bit.
569
   Return true if there is a bit to iterate.  */
570

571 572
static inline bool
bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
573
{
574
  /* If our current word is nonzero, it contains the bit we want.  */
575 576 577
  if (bi->bits)
    {
    next_bit:
578
      bmp_iter_next_bit (bi, bit_no);
579 580
      return true;
    }
581

582 583 584 585 586 587
  /* Round up to the word boundary.  We might have just iterated past
     the end of the last word, hence the -1.  It is not possible for
     bit_no to point at the beginning of the now last word.  */
  *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
	     / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
  bi->word_no++;
Mike Stump committed
588

589 590
  while (1)
    {
591
      /* Find the next nonzero word in this elt.  */
592
      while (bi->word_no != BITMAP_ELEMENT_WORDS)
593
	{
594 595 596 597 598
	  bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
	  if (bi->bits)
	    goto next_bit;
	  *bit_no += BITMAP_WORD_BITS;
	  bi->word_no++;
599
	}
Mike Stump committed
600

601
      /* Advance to the next identical element.  */
602 603
      do
	{
604 605 606
	  /* Advance elt1 while it is less than elt2.  We always want
	     to advance one elt.  */
	  do
607
	    {
608 609 610 611 612
	      bi->elt1 = bi->elt1->next;
	      if (!bi->elt1)
		return false;
	    }
	  while (bi->elt1->indx < bi->elt2->indx);
Mike Stump committed
613

614 615 616 617 618 619 620
	  /* Advance elt2 to be no less than elt1.  This might not
	     advance.  */
	  while (bi->elt2->indx < bi->elt1->indx)
	    {
	      bi->elt2 = bi->elt2->next;
	      if (!bi->elt2)
		return false;
621 622
	    }
	}
623
      while (bi->elt1->indx != bi->elt2->indx);
Mike Stump committed
624

625 626
      *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
      bi->word_no = 0;
627 628 629
    }
}

630
/* Advance to the next nonzero bit in the intersection of
631 632
   complemented bitmaps.  We will have already advanced past the just
   iterated bit.  */
633

634 635
static inline bool
bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
636
{
637
  /* If our current word is nonzero, it contains the bit we want.  */
638
  if (bi->bits)
639
    {
640
    next_bit:
641
      bmp_iter_next_bit (bi, bit_no);
642
      return true;
643 644
    }

645 646 647 648 649 650
  /* Round up to the word boundary.  We might have just iterated past
     the end of the last word, hence the -1.  It is not possible for
     bit_no to point at the beginning of the now last word.  */
  *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
	     / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
  bi->word_no++;
651

652
  while (1)
653
    {
654
      /* Find the next nonzero word in this elt.  */
655 656 657 658 659 660 661 662 663 664
      while (bi->word_no != BITMAP_ELEMENT_WORDS)
	{
	  bi->bits = bi->elt1->bits[bi->word_no];
	  if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
	    bi->bits &= ~bi->elt2->bits[bi->word_no];
	  if (bi->bits)
	    goto next_bit;
	  *bit_no += BITMAP_WORD_BITS;
	  bi->word_no++;
	}
Mike Stump committed
665

666 667 668 669 670 671 672 673
      /* Advance to the next element of elt1.  */
      bi->elt1 = bi->elt1->next;
      if (!bi->elt1)
	return false;

      /* Advance elt2 until it is no less than elt1.  */
      while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
	bi->elt2 = bi->elt2->next;
Mike Stump committed
674

675 676
      *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
      bi->word_no = 0;
677 678 679
    }
}

680 681 682 683
/* Loop over all bits set in BITMAP, starting with MIN and setting
   BITNUM to the bit number.  ITER is a bitmap iterator.  BITNUM
   should be treated as a read-only variable as it contains loop
   state.  */
684

685 686
#ifndef EXECUTE_IF_SET_IN_BITMAP
/* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP.  */
687 688 689 690
#define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER)		\
  for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM));		\
       bmp_iter_set (&(ITER), &(BITNUM));				\
       bmp_iter_next (&(ITER), &(BITNUM)))
691
#endif
692 693 694 695 696 697 698

/* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
   and setting BITNUM to the bit number.  ITER is a bitmap iterator.
   BITNUM should be treated as a read-only variable as it contains
   loop state.  */

#define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER)	\
Mike Stump committed
699
  for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),		\
700 701 702 703 704 705 706 707 708 709 710
			  &(BITNUM));					\
       bmp_iter_and (&(ITER), &(BITNUM));				\
       bmp_iter_next (&(ITER), &(BITNUM)))

/* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
   and setting BITNUM to the bit number.  ITER is a bitmap iterator.
   BITNUM should be treated as a read-only variable as it contains
   loop state.  */

#define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
  for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),	\
Mike Stump committed
711
				&(BITNUM));				\
712 713
       bmp_iter_and_compl (&(ITER), &(BITNUM));				\
       bmp_iter_next (&(ITER), &(BITNUM)))
714

715
#endif /* GCC_BITMAP_H */