cse.c 277 KB
Newer Older
Richard Kenner committed
1
/* Common subexpression elimination for GNU compiler.
2
   Copyright (C) 1987, 88, 89, 92-7, 1998 Free Software Foundation, Inc.
Richard Kenner committed
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
Richard Kenner committed
18 19
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */
Richard Kenner committed
20 21 22


#include "config.h"
23 24
/* stdio.h must precede rtl.h for FFS.  */
#include "system.h"
Kaveh R. Ghazi committed
25
#include <setjmp.h>
26

Richard Kenner committed
27 28 29 30 31 32 33
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
Jeff Law committed
34
#include "expr.h"
Kaveh R. Ghazi committed
35 36
#include "toplev.h"
#include "output.h"
Richard Kenner committed
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

/* The basic idea of common subexpression elimination is to go
   through the code, keeping a record of expressions that would
   have the same value at the current scan point, and replacing
   expressions encountered with the cheapest equivalent expression.

   It is too complicated to keep track of the different possibilities
   when control paths merge; so, at each label, we forget all that is
   known and start fresh.  This can be described as processing each
   basic block separately.  Note, however, that these are not quite
   the same as the basic blocks found by a later pass and used for
   data flow analysis and register packing.  We do not need to start fresh
   after a conditional jump instruction if there is no label there.

   We use two data structures to record the equivalent expressions:
   a hash table for most expressions, and several vectors together
   with "quantity numbers" to record equivalent (pseudo) registers.

   The use of the special data structure for registers is desirable
   because it is faster.  It is possible because registers references
   contain a fairly small number, the register number, taken from
   a contiguously allocated series, and two register references are
   identical if they have the same number.  General expressions
   do not have any such thing, so the only way to retrieve the
   information recorded on an expression other than a register
   is to keep it in a hash table.

Registers and "quantity numbers":
   
   At the start of each basic block, all of the (hardware and pseudo)
   registers used in the function are given distinct quantity
   numbers to indicate their contents.  During scan, when the code
   copies one register into another, we copy the quantity number.
   When a register is loaded in any other way, we allocate a new
   quantity number to describe the value generated by this operation.
   `reg_qty' records what quantity a register is currently thought
   of as containing.

   All real quantity numbers are greater than or equal to `max_reg'.
   If register N has not been assigned a quantity, reg_qty[N] will equal N.

   Quantity numbers below `max_reg' do not exist and none of the `qty_...'
   variables should be referenced with an index below `max_reg'.

   We also maintain a bidirectional chain of registers for each
   quantity number.  `qty_first_reg', `qty_last_reg',
   `reg_next_eqv' and `reg_prev_eqv' hold these chains.

   The first register in a chain is the one whose lifespan is least local.
   Among equals, it is the one that was seen first.
   We replace any equivalent register with that one.

   If two registers have the same quantity number, it must be true that
   REG expressions with `qty_mode' must be in the hash table for both
   registers and must be in the same class.

   The converse is not true.  Since hard registers may be referenced in
   any mode, two REG expressions might be equivalent in the hash table
   but not have the same quantity number if the quantity number of one
   of the registers is not the same mode as those expressions.
   
Constants and quantity numbers

   When a quantity has a known constant value, that value is stored
   in the appropriate element of qty_const.  This is in addition to
   putting the constant in the hash table as is usual for non-regs.

104
   Whether a reg or a constant is preferred is determined by the configuration
Richard Kenner committed
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
   macro CONST_COSTS and will often depend on the constant value.  In any
   event, expressions containing constants can be simplified, by fold_rtx.

   When a quantity has a known nearly constant value (such as an address
   of a stack slot), that value is stored in the appropriate element
   of qty_const.

   Integer constants don't have a machine mode.  However, cse
   determines the intended machine mode from the destination
   of the instruction that moves the constant.  The machine mode
   is recorded in the hash table along with the actual RTL
   constant expression so that different modes are kept separate.

Other expressions:

   To record known equivalences among expressions in general
   we use a hash table called `table'.  It has a fixed number of buckets
   that contain chains of `struct table_elt' elements for expressions.
   These chains connect the elements whose expressions have the same
   hash codes.

   Other chains through the same elements connect the elements which
   currently have equivalent values.

   Register references in an expression are canonicalized before hashing
   the expression.  This is done using `reg_qty' and `qty_first_reg'.
   The hash code of a register reference is computed using the quantity
   number, not the register number.

   When the value of an expression changes, it is necessary to remove from the
   hash table not just that expression but all expressions whose values
   could be different as a result.

     1. If the value changing is in memory, except in special cases
     ANYTHING referring to memory could be changed.  That is because
     nobody knows where a pointer does not point.
     The function `invalidate_memory' removes what is necessary.

     The special cases are when the address is constant or is
     a constant plus a fixed register such as the frame pointer
     or a static chain pointer.  When such addresses are stored in,
     we can tell exactly which other such addresses must be invalidated
     due to overlap.  `invalidate' does this.
     All expressions that refer to non-constant
     memory addresses are also invalidated.  `invalidate_memory' does this.

     2. If the value changing is a register, all expressions
     containing references to that register, and only those,
     must be removed.

   Because searching the entire hash table for expressions that contain
   a register is very slow, we try to figure out when it isn't necessary.
   Precisely, this is necessary only when expressions have been
   entered in the hash table using this register, and then the value has
   changed, and then another expression wants to be added to refer to
   the register's new value.  This sequence of circumstances is rare
   within any one basic block.

   The vectors `reg_tick' and `reg_in_table' are used to detect this case.
   reg_tick[i] is incremented whenever a value is stored in register i.
   reg_in_table[i] holds -1 if no references to register i have been
   entered in the table; otherwise, it contains the value reg_tick[i] had
   when the references were entered.  If we want to enter a reference
   and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
   Until we want to enter a new entry, the mere fact that the two vectors
   don't match makes the entries be ignored if anyone tries to match them.

   Registers themselves are entered in the hash table as well as in
   the equivalent-register chains.  However, the vectors `reg_tick'
   and `reg_in_table' do not apply to expressions which are simple
   register references.  These expressions are removed from the table
   immediately when they become invalid, and this can be done even if
   we do not immediately search for all the expressions that refer to
   the register.

   A CLOBBER rtx in an instruction invalidates its operand for further
   reuse.  A CLOBBER or SET rtx whose operand is a MEM:BLK
   invalidates everything that resides in memory.

Related expressions:

   Constant expressions that differ only by an additive integer
   are called related.  When a constant expression is put in
   the table, the related expression with no constant term
   is also entered.  These are made to point at each other
   so that it is possible to find out if there exists any
   register equivalent to an expression related to a given expression.  */
   
/* One plus largest register number used in this function.  */

static int max_reg;

197 198 199 200 201
/* One plus largest instruction UID used in this function at time of
   cse_main call.  */

static int max_insn_uid;

Richard Kenner committed
202 203 204 205 206 207 208 209 210 211
/* Length of vectors indexed by quantity number.
   We know in advance we will not need a quantity number this big.  */

static int max_qty;

/* Next quantity number to be allocated.
   This is 1 + the largest number needed so far.  */

static int next_qty;

212
/* Indexed by quantity number, gives the first (or last) register 
Richard Kenner committed
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
   in the chain of registers that currently contain this quantity.  */

static int *qty_first_reg;
static int *qty_last_reg;

/* Index by quantity number, gives the mode of the quantity.  */

static enum machine_mode *qty_mode;

/* Indexed by quantity number, gives the rtx of the constant value of the
   quantity, or zero if it does not have a known value.
   A sum of the frame pointer (or arg pointer) plus a constant
   can also be entered here.  */

static rtx *qty_const;

/* Indexed by qty number, gives the insn that stored the constant value
   recorded in `qty_const'.  */

static rtx *qty_const_insn;

/* The next three variables are used to track when a comparison between a
   quantity and some constant or register has been passed.  In that case, we
   know the results of the comparison in case we see it again.  These variables
   record a comparison that is known to be true.  */

/* Indexed by qty number, gives the rtx code of a comparison with a known
   result involving this quantity.  If none, it is UNKNOWN.  */
static enum rtx_code *qty_comparison_code;

/* Indexed by qty number, gives the constant being compared against in a
   comparison of known result.  If no such comparison, it is undefined.
   If the comparison is not with a constant, it is zero.  */

static rtx *qty_comparison_const;

/* Indexed by qty number, gives the quantity being compared against in a
   comparison of known result.  If no such comparison, if it undefined.
   If the comparison is not with a register, it is -1.  */

static int *qty_comparison_qty;

#ifdef HAVE_cc0
/* For machines that have a CC0, we do not record its value in the hash
   table since its use is guaranteed to be the insn immediately following
   its definition and any other insn is presumed to invalidate it.

   Instead, we store below the value last assigned to CC0.  If it should
   happen to be a constant, it is stored in preference to the actual
   assigned value.  In case it is a constant, we store the mode in which
   the constant should be interpreted.  */

static rtx prev_insn_cc0;
static enum machine_mode prev_insn_cc0_mode;
#endif

/* Previous actual insn.  0 if at first insn of basic block.  */

static rtx prev_insn;

/* Insn being scanned.  */

static rtx this_insn;

277
/* Index by register number, gives the quantity number
Richard Kenner committed
278 279 280 281
   of the register's current contents.  */

static int *reg_qty;

282 283
/* Index by register number, gives the number of the next (or
   previous) register in the chain of registers sharing the same
Richard Kenner committed
284 285 286 287 288 289 290 291 292
   value.

   Or -1 if this register is at the end of the chain.

   If reg_qty[N] == N, reg_next_eqv[N] is undefined.  */

static int *reg_next_eqv;
static int *reg_prev_eqv;

293
/* Index by register number, gives the number of times
Richard Kenner committed
294 295 296 297
   that register has been altered in the current basic block.  */

static int *reg_tick;

298
/* Index by register number, gives the reg_tick value at which
Richard Kenner committed
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
   rtx's containing this register are valid in the hash table.
   If this does not equal the current reg_tick value, such expressions
   existing in the hash table are invalid.
   If this is -1, no expressions containing this register have been
   entered in the table.  */

static int *reg_in_table;

/* A HARD_REG_SET containing all the hard registers for which there is 
   currently a REG expression in the hash table.  Note the difference
   from the above variables, which indicate if the REG is mentioned in some
   expression in the table.  */

static HARD_REG_SET hard_regs_in_table;

/* A HARD_REG_SET containing all the hard registers that are invalidated
   by a CALL_INSN.  */

static HARD_REG_SET regs_invalidated_by_call;

/* Two vectors of ints:
   one containing max_reg -1's; the other max_reg + 500 (an approximation
   for max_qty) elements where element i contains i.
   These are used to initialize various other vectors fast.  */

static int *all_minus_one;
static int *consec_ints;

/* CUID of insn that starts the basic block currently being cse-processed.  */

static int cse_basic_block_start;

/* CUID of insn that ends the basic block currently being cse-processed.  */

static int cse_basic_block_end;

/* Vector mapping INSN_UIDs to cuids.
336
   The cuids are like uids but increase monotonically always.
Richard Kenner committed
337 338
   We use them to see whether a reg is used outside a given basic block.  */

339
static int *uid_cuid;
Richard Kenner committed
340

341 342 343
/* Highest UID in UID_CUID.  */
static int max_uid;

Richard Kenner committed
344 345 346 347 348 349 350 351 352
/* Get the cuid of an insn.  */

#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])

/* Nonzero if cse has altered conditional jump insns
   in such a way that jump optimization should be redone.  */

static int cse_jumps_altered;

353 354 355 356 357
/* Nonzero if we put a LABEL_REF into the hash table.  Since we may have put
   it into an INSN without a REG_LABEL, we have to rerun jump after CSE
   to put in the note.  */
static int recorded_label_ref;

Richard Kenner committed
358 359 360 361 362 363
/* canon_hash stores 1 in do_not_record
   if it notices a reference to CC0, PC, or some other volatile
   subexpression.  */

static int do_not_record;

364 365 366 367 368 369
#ifdef LOAD_EXTEND_OP

/* Scratch rtl used when looking for load-extended copy of a MEM.  */
static rtx memory_extend_rtx;
#endif

Richard Kenner committed
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
/* canon_hash stores 1 in hash_arg_in_memory
   if it notices a reference to memory within the expression being hashed.  */

static int hash_arg_in_memory;

/* canon_hash stores 1 in hash_arg_in_struct
   if it notices a reference to memory that's part of a structure.  */

static int hash_arg_in_struct;

/* The hash table contains buckets which are chains of `struct table_elt's,
   each recording one expression's information.
   That expression is in the `exp' field.

   Those elements with the same hash code are chained in both directions
   through the `next_same_hash' and `prev_same_hash' fields.

   Each set of expressions with equivalent values
   are on a two-way chain through the `next_same_value'
   and `prev_same_value' fields, and all point with
   the `first_same_value' field at the first element in
   that chain.  The chain is in order of increasing cost.
   Each element's cost value is in its `cost' field.

   The `in_memory' field is nonzero for elements that
   involve any reference to memory.  These elements are removed
   whenever a write is done to an unidentified location in memory.
   To be safe, we assume that a memory address is unidentified unless
   the address is either a symbol constant or a constant plus
   the frame pointer or argument pointer.

   The `in_struct' field is nonzero for elements that
   involve any reference to memory inside a structure or array.

   The `related_value' field is used to connect related expressions
   (that differ by adding an integer).
   The related expressions are chained in a circular fashion.
   `related_value' is zero for expressions for which this
   chain is not useful.

   The `cost' field stores the cost of this element's expression.

   The `is_const' flag is set if the element is a constant (including
   a fixed address).

   The `flag' field is used as a temporary during some search routines.

   The `mode' field is usually the same as GET_MODE (`exp'), but
   if `exp' is a CONST_INT and has no machine mode then the `mode'
   field is the mode it was being used as.  Each constant is
   recorded separately for each mode it is used with.  */


struct table_elt
{
  rtx exp;
  struct table_elt *next_same_hash;
  struct table_elt *prev_same_hash;
  struct table_elt *next_same_value;
  struct table_elt *prev_same_value;
  struct table_elt *first_same_value;
  struct table_elt *related_value;
  int cost;
  enum machine_mode mode;
  char in_memory;
  char in_struct;
  char is_const;
  char flag;
};

/* We don't want a lot of buckets, because we rarely have very many
   things stored in the hash table, and a lot of buckets slows
   down a lot of loops that happen frequently.  */
#define NBUCKETS 31

/* Compute hash code of X in mode M.  Special-case case where X is a pseudo
   register (hard registers may require `do_not_record' to be set).  */

#define HASH(X, M)	\
 (GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
Richard Kenner committed
450
  ? (((unsigned) REG << 7) + (unsigned) reg_qty[REGNO (X)]) % NBUCKETS	\
Richard Kenner committed
451 452 453 454 455 456 457 458 459
  : canon_hash (X, M) % NBUCKETS)

/* Determine whether register number N is considered a fixed register for CSE.
   It is desirable to replace other regs with fixed regs, to reduce need for
   non-fixed hard regs.
   A reg wins if it is either the frame pointer or designated as fixed,
   but not if it is an overlapping register.  */
#ifdef OVERLAPPING_REGNO_P
#define FIXED_REGNO_P(N)  \
460
  (((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
461
    || fixed_regs[N] || global_regs[N])	  \
Richard Kenner committed
462 463 464
   && ! OVERLAPPING_REGNO_P ((N)))
#else
#define FIXED_REGNO_P(N)  \
465
  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
466
   || fixed_regs[N] || global_regs[N])
Richard Kenner committed
467 468 469
#endif

/* Compute cost of X, as stored in the `cost' field of a table_elt.  Fixed
470 471 472 473
   hard registers and pointers into the frame are the cheapest with a cost
   of 0.  Next come pseudos with a cost of one and other hard registers with
   a cost of 2.  Aside from these special cases, call `rtx_cost'.  */

474
#define CHEAP_REGNO(N) \
475 476 477 478
  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM 	\
   || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM	     	\
   || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) 	\
   || ((N) < FIRST_PSEUDO_REGISTER					\
479
       && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
Richard Kenner committed
480

481 482 483 484 485 486 487
/* A register is cheap if it is a user variable assigned to the register
   or if its register number always corresponds to a cheap register.  */

#define CHEAP_REG(N) \
  ((REG_USERVAR_P (N) && REGNO (N) < FIRST_PSEUDO_REGISTER)	\
   || CHEAP_REGNO (REGNO (N)))

488 489 490 491 492
#define COST(X)								\
  (GET_CODE (X) == REG							\
   ? (CHEAP_REG (X) ? 0							\
      : REGNO (X) >= FIRST_PSEUDO_REGISTER ? 1				\
      : 2)								\
493
   : notreg_cost(X))
Richard Kenner committed
494 495 496 497 498 499

/* Determine if the quantity number for register X represents a valid index
   into the `qty_...' variables.  */

#define REGNO_QTY_VALID_P(N) (reg_qty[N] != (N))

500 501 502 503 504 505 506 507 508 509
#ifdef ADDRESS_COST
/* The ADDRESS_COST macro does not deal with ADDRESSOF nodes.  But,
   during CSE, such nodes are present.  Using an ADDRESSOF node which
   refers to the address of a REG is a good thing because we can then
   turn (MEM (ADDRESSSOF (REG))) into just plain REG.  */
#define CSE_ADDRESS_COST(RTX)					\
  ((GET_CODE (RTX) == ADDRESSOF && REG_P (XEXP ((RTX), 0)))	\
   ? -1 : ADDRESS_COST(RTX))
#endif 

Richard Kenner committed
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
static struct table_elt *table[NBUCKETS];

/* Chain of `struct table_elt's made so far for this function
   but currently removed from the table.  */

static struct table_elt *free_element_chain;

/* Number of `struct table_elt' structures made so far for this function.  */

static int n_elements_made;

/* Maximum value `n_elements_made' has had so far in this compilation
   for functions previously processed.  */

static int max_elements_made;

/* Surviving equivalence class when two equivalence classes are merged 
   by recording the effects of a jump in the last insn.  Zero if the
   last insn was not a conditional jump.  */

static struct table_elt *last_jump_equiv_class;

/* Set to the cost of a constant pool reference if one was found for a
   symbolic constant.  If this was found, it means we should try to
   convert constants into constant pool entries if they don't fit in
   the insn.  */

static int constant_pool_entries_cost;

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
/* Define maximum length of a branch path.  */

#define PATHLENGTH	10

/* This data describes a block that will be processed by cse_basic_block.  */

struct cse_basic_block_data {
  /* Lowest CUID value of insns in block.  */
  int low_cuid;
  /* Highest CUID value of insns in block.  */
  int high_cuid;
  /* Total number of SETs in block.  */
  int nsets;
  /* Last insn in the block.  */
  rtx last;
  /* Size of current branch path, if any.  */
  int path_size;
  /* Current branch path, indicating which branches will be taken.  */
  struct branch_path {
Mike Stump committed
558
    /* The branch insn.  */
559 560 561 562 563 564 565 566
    rtx branch;
    /* Whether it should be taken or not.  AROUND is the same as taken
       except that it is used when the destination label is not preceded
       by a BARRIER.  */
    enum taken {TAKEN, NOT_TAKEN, AROUND} status;
  } path[PATHLENGTH];
};

Richard Kenner committed
567 568 569 570 571
/* Nonzero if X has the form (PLUS frame-pointer integer).  We check for
   virtual regs here because the simplify_*_operation routines are called
   by integrate.c, which is called before virtual register instantiation.  */

#define FIXED_BASE_PLUS_P(X)					\
572 573
  ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx	\
   || (X) == arg_pointer_rtx					\
Richard Kenner committed
574 575 576 577
   || (X) == virtual_stack_vars_rtx				\
   || (X) == virtual_incoming_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == frame_pointer_rtx			\
578
	   || XEXP (X, 0) == hard_frame_pointer_rtx		\
Richard Kenner committed
579 580
	   || XEXP (X, 0) == arg_pointer_rtx			\
	   || XEXP (X, 0) == virtual_stack_vars_rtx		\
581 582
	   || XEXP (X, 0) == virtual_incoming_args_rtx))	\
   || GET_CODE (X) == ADDRESSOF)
Richard Kenner committed
583

Jim Wilson committed
584 585 586 587 588
/* Similar, but also allows reference to the stack pointer.

   This used to include FIXED_BASE_PLUS_P, however, we can't assume that
   arg_pointer_rtx by itself is nonzero, because on at least one machine,
   the i960, the arg pointer is zero when it is unused.  */
Richard Kenner committed
589 590

#define NONZERO_BASE_PLUS_P(X)					\
591
  ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx	\
Jim Wilson committed
592 593 594 595
   || (X) == virtual_stack_vars_rtx				\
   || (X) == virtual_incoming_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == frame_pointer_rtx			\
596
	   || XEXP (X, 0) == hard_frame_pointer_rtx		\
Jim Wilson committed
597 598 599
	   || XEXP (X, 0) == arg_pointer_rtx			\
	   || XEXP (X, 0) == virtual_stack_vars_rtx		\
	   || XEXP (X, 0) == virtual_incoming_args_rtx))	\
Richard Kenner committed
600 601 602 603 604 605
   || (X) == stack_pointer_rtx					\
   || (X) == virtual_stack_dynamic_rtx				\
   || (X) == virtual_outgoing_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == stack_pointer_rtx			\
	   || XEXP (X, 0) == virtual_stack_dynamic_rtx		\
606 607
	   || XEXP (X, 0) == virtual_outgoing_args_rtx))	\
   || GET_CODE (X) == ADDRESSOF)
Richard Kenner committed
608

609
static int notreg_cost		PROTO((rtx));
610 611 612 613 614 615 616
static void new_basic_block	PROTO((void));
static void make_new_qty	PROTO((int));
static void make_regs_eqv	PROTO((int, int));
static void delete_reg_equiv	PROTO((int));
static int mention_regs		PROTO((rtx));
static int insert_regs		PROTO((rtx, struct table_elt *, int));
static void free_element	PROTO((struct table_elt *));
Richard Kenner committed
617
static void remove_from_table	PROTO((struct table_elt *, unsigned));
618
static struct table_elt *get_element PROTO((void));
Richard Kenner committed
619 620
static struct table_elt *lookup	PROTO((rtx, unsigned, enum machine_mode)),
       *lookup_for_remove PROTO((rtx, unsigned, enum machine_mode));
621
static rtx lookup_as_function	PROTO((rtx, enum rtx_code));
Richard Kenner committed
622
static struct table_elt *insert PROTO((rtx, struct table_elt *, unsigned,
623 624 625
				       enum machine_mode));
static void merge_equiv_classes PROTO((struct table_elt *,
				       struct table_elt *));
626
static void invalidate		PROTO((rtx, enum machine_mode));
627
static int cse_rtx_varies_p	PROTO((rtx));
628
static void remove_invalid_refs	PROTO((int));
629
static void remove_invalid_subreg_refs	PROTO((int, int, enum machine_mode));
630
static void rehash_using_reg	PROTO((rtx));
631
static void invalidate_memory	PROTO((void));
632 633
static void invalidate_for_call	PROTO((void));
static rtx use_related_value	PROTO((rtx, struct table_elt *));
Richard Kenner committed
634 635
static unsigned canon_hash	PROTO((rtx, enum machine_mode));
static unsigned safe_hash	PROTO((rtx, enum machine_mode));
636
static int exp_equiv_p		PROTO((rtx, rtx, int, int));
637
static void set_nonvarying_address_components PROTO((rtx, int, rtx *,
638 639
						     HOST_WIDE_INT *,
						     HOST_WIDE_INT *));
640 641 642 643 644 645
static int refers_to_p		PROTO((rtx, rtx));
static rtx canon_reg		PROTO((rtx, rtx));
static void find_best_addr	PROTO((rtx, rtx *));
static enum rtx_code find_comparison_args PROTO((enum rtx_code, rtx *, rtx *,
						 enum machine_mode *,
						 enum machine_mode *));
646 647 648 649
static rtx cse_gen_binary	PROTO((enum rtx_code, enum machine_mode,
				       rtx, rtx));
static rtx simplify_plus_minus	PROTO((enum rtx_code, enum machine_mode,
				       rtx, rtx));
650 651 652 653 654
static rtx fold_rtx		PROTO((rtx, rtx));
static rtx equiv_constant	PROTO((rtx));
static void record_jump_equiv	PROTO((rtx, int));
static void record_jump_cond	PROTO((enum rtx_code, enum machine_mode,
				       rtx, rtx, int));
655
static void cse_insn		PROTO((rtx, rtx));
656 657
static int note_mem_written	PROTO((rtx));
static void invalidate_from_clobbers PROTO((rtx));
658 659 660 661 662 663 664
static rtx cse_process_notes	PROTO((rtx, rtx));
static void cse_around_loop	PROTO((rtx));
static void invalidate_skipped_set PROTO((rtx, rtx));
static void invalidate_skipped_block PROTO((rtx));
static void cse_check_loop_start PROTO((rtx, rtx));
static void cse_set_around_loop	PROTO((rtx, rtx, rtx));
static rtx cse_basic_block	PROTO((rtx, rtx, struct branch_path *, int));
665
static void count_reg_usage	PROTO((rtx, int *, rtx, int));
666 667

extern int rtx_equal_function_value_matters;
Richard Kenner committed
668 669 670 671 672 673

/* Return an estimate of the cost of computing rtx X.
   One use is in cse, to decide which expression to keep in the hash table.
   Another is in rtl generation, to pick the cheapest way to multiply.
   Other uses like the latter are expected in the future.  */

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
/* Internal function, to compute cost when X is not a register; called
   from COST macro to keep it simple.  */

static int
notreg_cost (x)
     rtx x;
{
  return ((GET_CODE (x) == SUBREG
	   && GET_CODE (SUBREG_REG (x)) == REG
	   && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
	   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
	   && (GET_MODE_SIZE (GET_MODE (x))
	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
	   && subreg_lowpart_p (x)
	   && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
				     GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
	  ? (CHEAP_REG (SUBREG_REG (x)) ? 0
	     : (REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER ? 1
		: 2))
	  : rtx_cost (x, SET) * 2);
}

Richard Kenner committed
696 697 698 699 700 701 702
/* Return the right cost to give to an operation
   to make the cost of the corresponding register-to-register instruction
   N times that of a fast register-to-register instruction.  */

#define COSTS_N_INSNS(N) ((N) * 4 - 2)

int
703
rtx_cost (x, outer_code)
Richard Kenner committed
704
     rtx x;
705
     enum rtx_code outer_code;
Richard Kenner committed
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
{
  register int i, j;
  register enum rtx_code code;
  register char *fmt;
  register int total;

  if (x == 0)
    return 0;

  /* Compute the default costs of certain things.
     Note that RTX_COSTS can override the defaults.  */

  code = GET_CODE (x);
  switch (code)
    {
    case MULT:
      /* Count multiplication by 2**n as a shift,
	 because if we are considering it, we would output it as a shift.  */
      if (GET_CODE (XEXP (x, 1)) == CONST_INT
	  && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
	total = 2;
      else
	total = COSTS_N_INSNS (5);
      break;
    case DIV:
    case UDIV:
    case MOD:
    case UMOD:
      total = COSTS_N_INSNS (7);
      break;
    case USE:
      /* Used in loop.c and combine.c as a marker.  */
      total = 0;
      break;
740 741 742 743 744 745
    case ASM_OPERANDS:
      /* We don't want these to be used in substitutions because
	 we have no way of validating the resulting insn.  So assign
	 anything containing an ASM_OPERANDS a very high cost.  */
      total = 1000;
      break;
Richard Kenner committed
746 747 748 749 750 751 752
    default:
      total = 2;
    }

  switch (code)
    {
    case REG:
753
      return ! CHEAP_REG (x);
754

Richard Kenner committed
755
    case SUBREG:
756 757 758 759 760
      /* If we can't tie these modes, make this expensive.  The larger
	 the mode, the more expensive it is.  */
      if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
	return COSTS_N_INSNS (2
			      + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
Richard Kenner committed
761 762
      return 2;
#ifdef RTX_COSTS
763
      RTX_COSTS (x, code, outer_code);
Richard Kenner committed
764
#endif 
765
#ifdef CONST_COSTS
766
      CONST_COSTS (x, code, outer_code);
767
#endif
768 769 770 771 772 773

    default:
#ifdef DEFAULT_RTX_COSTS
      DEFAULT_RTX_COSTS(x, code, outer_code);
#endif
      break;
Richard Kenner committed
774 775 776 777 778 779 780 781
    }

  /* Sum the costs of the sub-rtx's, plus cost of this operation,
     which is already in total.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
782
      total += rtx_cost (XEXP (x, i), code);
Richard Kenner committed
783 784
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
785
	total += rtx_cost (XVECEXP (x, i, j), code);
Richard Kenner committed
786 787 788 789 790 791 792 793 794 795 796 797 798 799

  return total;
}

/* Clear the hash table and initialize each register with its own quantity,
   for a new basic block.  */

static void
new_basic_block ()
{
  register int i;

  next_qty = max_reg;

800
  bzero ((char *) reg_tick, max_reg * sizeof (int));
Richard Kenner committed
801

802 803 804
  bcopy ((char *) all_minus_one, (char *) reg_in_table,
	 max_reg * sizeof (int));
  bcopy ((char *) consec_ints, (char *) reg_qty, max_reg * sizeof (int));
Richard Kenner committed
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
  CLEAR_HARD_REG_SET (hard_regs_in_table);

  /* The per-quantity values used to be initialized here, but it is
     much faster to initialize each as it is made in `make_new_qty'.  */

  for (i = 0; i < NBUCKETS; i++)
    {
      register struct table_elt *this, *next;
      for (this = table[i]; this; this = next)
	{
	  next = this->next_same_hash;
	  free_element (this);
	}
    }

820
  bzero ((char *) table, sizeof table);
Richard Kenner committed
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

  prev_insn = 0;

#ifdef HAVE_cc0
  prev_insn_cc0 = 0;
#endif
}

/* Say that register REG contains a quantity not in any register before
   and initialize that quantity.  */

static void
make_new_qty (reg)
     register int reg;
{
  register int q;

  if (next_qty >= max_qty)
    abort ();

  q = reg_qty[reg] = next_qty++;
  qty_first_reg[q] = reg;
  qty_last_reg[q] = reg;
  qty_const[q] = qty_const_insn[q] = 0;
  qty_comparison_code[q] = UNKNOWN;

  reg_next_eqv[reg] = reg_prev_eqv[reg] = -1;
}

/* Make reg NEW equivalent to reg OLD.
   OLD is not changing; NEW is.  */

static void
make_regs_eqv (new, old)
     register int new, old;
{
  register int lastr, firstr;
  register int q = reg_qty[old];

  /* Nothing should become eqv until it has a "non-invalid" qty number.  */
  if (! REGNO_QTY_VALID_P (old))
    abort ();

  reg_qty[new] = q;
  firstr = qty_first_reg[q];
  lastr = qty_last_reg[q];

  /* Prefer fixed hard registers to anything.  Prefer pseudo regs to other
     hard regs.  Among pseudos, if NEW will live longer than any other reg
     of the same qty, and that is beyond the current basic block,
     make it the new canonical replacement for this qty.  */
  if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
      /* Certain fixed registers might be of the class NO_REGS.  This means
	 that not only can they not be allocated by the compiler, but
875
	 they cannot be used in substitutions or canonicalizations
Richard Kenner committed
876 877 878 879 880
	 either.  */
      && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
      && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
	  || (new >= FIRST_PSEUDO_REGISTER
	      && (firstr < FIRST_PSEUDO_REGISTER
881 882
		  || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
		       || (uid_cuid[REGNO_FIRST_UID (new)]
Richard Kenner committed
883
			   < cse_basic_block_start))
884 885
		      && (uid_cuid[REGNO_LAST_UID (new)]
			  > uid_cuid[REGNO_LAST_UID (firstr)]))))))
Richard Kenner committed
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
    {
      reg_prev_eqv[firstr] = new;
      reg_next_eqv[new] = firstr;
      reg_prev_eqv[new] = -1;
      qty_first_reg[q] = new;
    }
  else
    {
      /* If NEW is a hard reg (known to be non-fixed), insert at end.
	 Otherwise, insert before any non-fixed hard regs that are at the
	 end.  Registers of class NO_REGS cannot be used as an
	 equivalent for anything.  */
      while (lastr < FIRST_PSEUDO_REGISTER && reg_prev_eqv[lastr] >= 0
	     && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
	     && new >= FIRST_PSEUDO_REGISTER)
	lastr = reg_prev_eqv[lastr];
      reg_next_eqv[new] = reg_next_eqv[lastr];
      if (reg_next_eqv[lastr] >= 0)
	reg_prev_eqv[reg_next_eqv[lastr]] = new;
      else
	qty_last_reg[q] = new;
      reg_next_eqv[lastr] = new;
      reg_prev_eqv[new] = lastr;
    }
}

/* Remove REG from its equivalence class.  */

static void
delete_reg_equiv (reg)
     register int reg;
{
  register int q = reg_qty[reg];
919
  register int p, n;
Richard Kenner committed
920

921
  /* If invalid, do nothing.  */
Richard Kenner committed
922 923 924
  if (q == reg)
    return;

925 926 927
  p = reg_prev_eqv[reg];
  n = reg_next_eqv[reg];

Richard Kenner committed
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
  if (n != -1)
    reg_prev_eqv[n] = p;
  else
    qty_last_reg[q] = p;
  if (p != -1)
    reg_next_eqv[p] = n;
  else
    qty_first_reg[q] = n;

  reg_qty[reg] = reg;
}

/* Remove any invalid expressions from the hash table
   that refer to any of the registers contained in expression X.

   Make sure that newly inserted references to those registers
   as subexpressions will be considered valid.

   mention_regs is not called when a register itself
   is being stored in the table.

   Return 1 if we have done something that may have changed the hash code
   of X.  */

static int
mention_regs (x)
     rtx x;
{
  register enum rtx_code code;
  register int i, j;
  register char *fmt;
  register int changed = 0;

  if (x == 0)
962
    return 0;
Richard Kenner committed
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983

  code = GET_CODE (x);
  if (code == REG)
    {
      register int regno = REGNO (x);
      register int endregno
	= regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
		   : HARD_REGNO_NREGS (regno, GET_MODE (x)));
      int i;

      for (i = regno; i < endregno; i++)
	{
	  if (reg_in_table[i] >= 0 && reg_in_table[i] != reg_tick[i])
	    remove_invalid_refs (i);

	  reg_in_table[i] = reg_tick[i];
	}

      return 0;
    }

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
  /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
     pseudo if they don't use overlapping words.  We handle only pseudos
     here for simplicity.  */
  if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
      && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
    {
      int i = REGNO (SUBREG_REG (x));

      if (reg_in_table[i] >= 0 && reg_in_table[i] != reg_tick[i])
	{
	  /* If reg_tick has been incremented more than once since
	     reg_in_table was last set, that means that the entire
	     register has been set before, so discard anything memorized
	     for the entrire register, including all SUBREG expressions.  */
	  if (reg_in_table[i] != reg_tick[i] - 1)
	    remove_invalid_refs (i);
	  else
	    remove_invalid_subreg_refs (i, SUBREG_WORD (x), GET_MODE (x));
	}

      reg_in_table[i] = reg_tick[i];
      return 0;
    }

Richard Kenner committed
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
  /* If X is a comparison or a COMPARE and either operand is a register
     that does not have a quantity, give it one.  This is so that a later
     call to record_jump_equiv won't cause X to be assigned a different
     hash code and not found in the table after that call.

     It is not necessary to do this here, since rehash_using_reg can
     fix up the table later, but doing this here eliminates the need to
     call that expensive function in the most common case where the only
     use of the register is in the comparison.  */

  if (code == COMPARE || GET_RTX_CLASS (code) == '<')
    {
      if (GET_CODE (XEXP (x, 0)) == REG
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1022
	if (insert_regs (XEXP (x, 0), NULL_PTR, 0))
Richard Kenner committed
1023 1024 1025 1026 1027 1028 1029
	  {
	    rehash_using_reg (XEXP (x, 0));
	    changed = 1;
	  }

      if (GET_CODE (XEXP (x, 1)) == REG
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1030
	if (insert_regs (XEXP (x, 1), NULL_PTR, 0))
Richard Kenner committed
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	  {
	    rehash_using_reg (XEXP (x, 1));
	    changed = 1;
	  }
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      changed |= mention_regs (XEXP (x, i));
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	changed |= mention_regs (XVECEXP (x, i, j));

  return changed;
}

/* Update the register quantities for inserting X into the hash table
   with a value equivalent to CLASSP.
   (If the class does not contain a REG, it is irrelevant.)
   If MODIFIED is nonzero, X is a destination; it is being modified.
   Note that delete_reg_equiv should be called on a register
   before insert_regs is done on that register with MODIFIED != 0.

   Nonzero value means that elements of reg_qty have changed
   so X's hash code may be different.  */

static int
insert_regs (x, classp, modified)
     rtx x;
     struct table_elt *classp;
     int modified;
{
  if (GET_CODE (x) == REG)
    {
      register int regno = REGNO (x);

1068 1069 1070 1071 1072 1073 1074 1075
      /* If REGNO is in the equivalence table already but is of the
	 wrong mode for that equivalence, don't do anything here.  */

      if (REGNO_QTY_VALID_P (regno)
	  && qty_mode[reg_qty[regno]] != GET_MODE (x))
	return 0;

      if (modified || ! REGNO_QTY_VALID_P (regno))
Richard Kenner committed
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	{
	  if (classp)
	    for (classp = classp->first_same_value;
		 classp != 0;
		 classp = classp->next_same_value)
	      if (GET_CODE (classp->exp) == REG
		  && GET_MODE (classp->exp) == GET_MODE (x))
		{
		  make_regs_eqv (regno, REGNO (classp->exp));
		  return 1;
		}

	  make_new_qty (regno);
	  qty_mode[reg_qty[regno]] = GET_MODE (x);
	  return 1;
	}
1092 1093

      return 0;
Richard Kenner committed
1094
    }
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

  /* If X is a SUBREG, we will likely be inserting the inner register in the
     table.  If that register doesn't have an assigned quantity number at
     this point but does later, the insertion that we will be doing now will
     not be accessible because its hash code will have changed.  So assign
     a quantity number now.  */

  else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
	   && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
    {
1105 1106
      int regno = REGNO (SUBREG_REG (x));

1107
      insert_regs (SUBREG_REG (x), NULL_PTR, 0);
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
      /* Mention_regs checks if REG_TICK is exactly one larger than
	 REG_IN_TABLE to find out if there was only a single preceding
	 invalidation - for the SUBREG - or another one, which would be
	 for the full register.  Since we don't invalidate the SUBREG
	 here first, we might have to bump up REG_TICK so that mention_regs
	 will do the right thing.  */
      if (reg_in_table[regno] >= 0
	  && reg_tick[regno] == reg_in_table[regno] + 1)
	reg_tick++;
      mention_regs (x);
1118 1119
      return 1;
    }
Richard Kenner committed
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
  else
    return mention_regs (x);
}

/* Look in or update the hash table.  */

/* Put the element ELT on the list of free elements.  */

static void
free_element (elt)
     struct table_elt *elt;
{
  elt->next_same_hash = free_element_chain;
  free_element_chain = elt;
}

/* Return an element that is free for use.  */

static struct table_elt *
get_element ()
{
  struct table_elt *elt = free_element_chain;
  if (elt)
    {
      free_element_chain = elt->next_same_hash;
      return elt;
    }
  n_elements_made++;
  return (struct table_elt *) oballoc (sizeof (struct table_elt));
}

/* Remove table element ELT from use in the table.
   HASH is its hash code, made using the HASH macro.
   It's an argument because often that is known in advance
   and we save much time not recomputing it.  */

static void
remove_from_table (elt, hash)
     register struct table_elt *elt;
Richard Kenner committed
1159
     unsigned hash;
Richard Kenner committed
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
{
  if (elt == 0)
    return;

  /* Mark this element as removed.  See cse_insn.  */
  elt->first_same_value = 0;

  /* Remove the table element from its equivalence class.  */
     
  {
    register struct table_elt *prev = elt->prev_same_value;
    register struct table_elt *next = elt->next_same_value;

    if (next) next->prev_same_value = prev;

    if (prev)
      prev->next_same_value = next;
    else
      {
	register struct table_elt *newfirst = next;
	while (next)
	  {
	    next->first_same_value = newfirst;
	    next = next->next_same_value;
	  }
      }
  }

  /* Remove the table element from its hash bucket.  */

  {
    register struct table_elt *prev = elt->prev_same_hash;
    register struct table_elt *next = elt->next_same_hash;

    if (next) next->prev_same_hash = prev;

    if (prev)
      prev->next_same_hash = next;
    else if (table[hash] == elt)
      table[hash] = next;
    else
      {
	/* This entry is not in the proper hash bucket.  This can happen
	   when two classes were merged by `merge_equiv_classes'.  Search
	   for the hash bucket that it heads.  This happens only very
	   rarely, so the cost is acceptable.  */
	for (hash = 0; hash < NBUCKETS; hash++)
	  if (table[hash] == elt)
	    table[hash] = next;
      }
  }

  /* Remove the table element from its related-value circular chain.  */

  if (elt->related_value != 0 && elt->related_value != elt)
    {
      register struct table_elt *p = elt->related_value;
      while (p->related_value != elt)
	p = p->related_value;
      p->related_value = elt->related_value;
      if (p->related_value == p)
	p->related_value = 0;
    }

  free_element (elt);
}

/* Look up X in the hash table and return its table element,
   or 0 if X is not in the table.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   Here we are satisfied to find an expression whose tree structure
   looks like X.  */

static struct table_elt *
lookup (x, hash, mode)
     rtx x;
Richard Kenner committed
1239
     unsigned hash;
Richard Kenner committed
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
     enum machine_mode mode;
{
  register struct table_elt *p;

  for (p = table[hash]; p; p = p->next_same_hash)
    if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
			    || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
      return p;

  return 0;
}

/* Like `lookup' but don't care whether the table element uses invalid regs.
   Also ignore discrepancies in the machine mode of a register.  */

static struct table_elt *
lookup_for_remove (x, hash, mode)
     rtx x;
Richard Kenner committed
1258
     unsigned hash;
Richard Kenner committed
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
     enum machine_mode mode;
{
  register struct table_elt *p;

  if (GET_CODE (x) == REG)
    {
      int regno = REGNO (x);
      /* Don't check the machine mode when comparing registers;
	 invalidating (REG:SI 0) also invalidates (REG:DF 0).  */
      for (p = table[hash]; p; p = p->next_same_hash)
	if (GET_CODE (p->exp) == REG
	    && REGNO (p->exp) == regno)
	  return p;
    }
  else
    {
      for (p = table[hash]; p; p = p->next_same_hash)
	if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
	  return p;
    }

  return 0;
}

/* Look for an expression equivalent to X and with code CODE.
   If one is found, return that expression.  */

static rtx
lookup_as_function (x, code)
     rtx x;
     enum rtx_code code;
{
  register struct table_elt *p = lookup (x, safe_hash (x, VOIDmode) % NBUCKETS,
					 GET_MODE (x));
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
  /* If we are looking for a CONST_INT, the mode doesn't really matter, as
     long as we are narrowing.  So if we looked in vain for a mode narrower
     than word_mode before, look for word_mode now.  */
  if (p == 0 && code == CONST_INT
      && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
    {
      x = copy_rtx (x);
      PUT_MODE (x, word_mode);
      p = lookup (x, safe_hash (x, VOIDmode) % NBUCKETS, word_mode);
    }

Richard Kenner committed
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
  if (p == 0)
    return 0;

  for (p = p->first_same_value; p; p = p->next_same_value)
    {
      if (GET_CODE (p->exp) == code
	  /* Make sure this is a valid entry in the table.  */
	  && exp_equiv_p (p->exp, p->exp, 1, 0))
	return p->exp;
    }
  
  return 0;
}

/* Insert X in the hash table, assuming HASH is its hash code
   and CLASSP is an element of the class it should go in
   (or 0 if a new class should be made).
   It is inserted at the proper position to keep the class in
   the order cheapest first.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   For elements of equal cheapness, the most recent one
   goes in front, except that the first element in the list
   remains first unless a cheaper element is added.  The order of
   pseudo-registers does not matter, as canon_reg will be called to
1331
   find the cheapest when a register is retrieved from the table.
Richard Kenner committed
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

   The in_memory field in the hash table element is set to 0.
   The caller must set it nonzero if appropriate.

   You should call insert_regs (X, CLASSP, MODIFY) before calling here,
   and if insert_regs returns a nonzero value
   you must then recompute its hash code before calling here.

   If necessary, update table showing constant values of quantities.  */

#define CHEAPER(X,Y)   ((X)->cost < (Y)->cost)

static struct table_elt *
insert (x, classp, hash, mode)
     register rtx x;
     register struct table_elt *classp;
Richard Kenner committed
1348
     unsigned hash;
Richard Kenner committed
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
     enum machine_mode mode;
{
  register struct table_elt *elt;

  /* If X is a register and we haven't made a quantity for it,
     something is wrong.  */
  if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
    abort ();

  /* If X is a hard register, show it is being put in the table.  */
  if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
    {
      int regno = REGNO (x);
      int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
      int i;

      for (i = regno; i < endregno; i++)
	    SET_HARD_REG_BIT (hard_regs_in_table, i);
    }

1369
  /* If X is a label, show we recorded it.  */
1370 1371 1372
  if (GET_CODE (x) == LABEL_REF
      || (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF))
1373
    recorded_label_ref = 1;
Richard Kenner committed
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

  /* Put an element for X into the right hash bucket.  */

  elt = get_element ();
  elt->exp = x;
  elt->cost = COST (x);
  elt->next_same_value = 0;
  elt->prev_same_value = 0;
  elt->next_same_hash = table[hash];
  elt->prev_same_hash = 0;
  elt->related_value = 0;
  elt->in_memory = 0;
  elt->mode = mode;
  elt->is_const = (CONSTANT_P (x)
		   /* GNU C++ takes advantage of this for `this'
		      (and other const values).  */
		   || (RTX_UNCHANGING_P (x)
		       && GET_CODE (x) == REG
		       && REGNO (x) >= FIRST_PSEUDO_REGISTER)
		   || FIXED_BASE_PLUS_P (x));

  if (table[hash])
    table[hash]->prev_same_hash = elt;
  table[hash] = elt;

  /* Put it into the proper value-class.  */
  if (classp)
    {
      classp = classp->first_same_value;
      if (CHEAPER (elt, classp))
	/* Insert at the head of the class */
	{
	  register struct table_elt *p;
	  elt->next_same_value = classp;
	  classp->prev_same_value = elt;
	  elt->first_same_value = elt;

	  for (p = classp; p; p = p->next_same_value)
	    p->first_same_value = elt;
	}
      else
	{
	  /* Insert not at head of the class.  */
	  /* Put it after the last element cheaper than X.  */
	  register struct table_elt *p, *next;
	  for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
	       p = next);
	  /* Put it after P and before NEXT.  */
	  elt->next_same_value = next;
	  if (next)
	    next->prev_same_value = elt;
	  elt->prev_same_value = p;
	  p->next_same_value = elt;
	  elt->first_same_value = classp;
	}
    }
  else
    elt->first_same_value = elt;

  /* If this is a constant being set equivalent to a register or a register
     being set equivalent to a constant, note the constant equivalence.

     If this is a constant, it cannot be equivalent to a different constant,
     and a constant is the only thing that can be cheaper than a register.  So
     we know the register is the head of the class (before the constant was
     inserted).

     If this is a register that is not already known equivalent to a
     constant, we must check the entire class.

     If this is a register that is already known equivalent to an insn,
     update `qty_const_insn' to show that `this_insn' is the latest
     insn making that quantity equivalent to the constant.  */

1448 1449
  if (elt->is_const && classp && GET_CODE (classp->exp) == REG
      && GET_CODE (x) != REG)
Richard Kenner committed
1450 1451 1452 1453 1454 1455
    {
      qty_const[reg_qty[REGNO (classp->exp)]]
	= gen_lowpart_if_possible (qty_mode[reg_qty[REGNO (classp->exp)]], x);
      qty_const_insn[reg_qty[REGNO (classp->exp)]] = this_insn;
    }

1456 1457
  else if (GET_CODE (x) == REG && classp && ! qty_const[reg_qty[REGNO (x)]]
	   && ! elt->is_const)
Richard Kenner committed
1458 1459 1460 1461 1462
    {
      register struct table_elt *p;

      for (p = classp; p != 0; p = p->next_same_value)
	{
1463
	  if (p->is_const && GET_CODE (p->exp) != REG)
Richard Kenner committed
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	    {
	      qty_const[reg_qty[REGNO (x)]]
		= gen_lowpart_if_possible (GET_MODE (x), p->exp);
	      qty_const_insn[reg_qty[REGNO (x)]] = this_insn;
	      break;
	    }
	}
    }

  else if (GET_CODE (x) == REG && qty_const[reg_qty[REGNO (x)]]
	   && GET_MODE (x) == qty_mode[reg_qty[REGNO (x)]])
    qty_const_insn[reg_qty[REGNO (x)]] = this_insn;

  /* If this is a constant with symbolic value,
     and it has a term with an explicit integer value,
     link it up with related expressions.  */
  if (GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
Richard Kenner committed
1483
      unsigned subhash;
Richard Kenner committed
1484 1485 1486 1487 1488 1489 1490 1491
      struct table_elt *subelt, *subelt_prev;

      if (subexp != 0)
	{
	  /* Get the integer-free subexpression in the hash table.  */
	  subhash = safe_hash (subexp, mode) % NBUCKETS;
	  subelt = lookup (subexp, subhash, mode);
	  if (subelt == 0)
1492
	    subelt = insert (subexp, NULL_PTR, subhash, mode);
Richard Kenner committed
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	  /* Initialize SUBELT's circular chain if it has none.  */
	  if (subelt->related_value == 0)
	    subelt->related_value = subelt;
	  /* Find the element in the circular chain that precedes SUBELT.  */
	  subelt_prev = subelt;
	  while (subelt_prev->related_value != subelt)
	    subelt_prev = subelt_prev->related_value;
	  /* Put new ELT into SUBELT's circular chain just before SUBELT.
	     This way the element that follows SUBELT is the oldest one.  */
	  elt->related_value = subelt_prev->related_value;
	  subelt_prev->related_value = elt;
	}
    }

  return elt;
}

/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
   CLASS2 into CLASS1.  This is done when we have reached an insn which makes
   the two classes equivalent.

   CLASS1 will be the surviving class; CLASS2 should not be used after this
   call.

   Any invalid entries in CLASS2 will not be copied.  */

static void
merge_equiv_classes (class1, class2)
     struct table_elt *class1, *class2;
{
  struct table_elt *elt, *next, *new;

  /* Ensure we start with the head of the classes.  */
  class1 = class1->first_same_value;
  class2 = class2->first_same_value;

  /* If they were already equal, forget it.  */
  if (class1 == class2)
    return;

  for (elt = class2; elt; elt = next)
    {
Richard Kenner committed
1535
      unsigned hash;
Richard Kenner committed
1536 1537 1538 1539 1540 1541 1542
      rtx exp = elt->exp;
      enum machine_mode mode = elt->mode;

      next = elt->next_same_value;

      /* Remove old entry, make a new one in CLASS1's class.
	 Don't do this for invalid entries as we cannot find their
Mike Stump committed
1543
	 hash code (it also isn't necessary).  */
Richard Kenner committed
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
      if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
	{
	  hash_arg_in_memory = 0;
	  hash_arg_in_struct = 0;
	  hash = HASH (exp, mode);
	      
	  if (GET_CODE (exp) == REG)
	    delete_reg_equiv (REGNO (exp));
	      
	  remove_from_table (elt, hash);

	  if (insert_regs (exp, class1, 0))
1556 1557 1558 1559
	    {
	      rehash_using_reg (exp);
	      hash = HASH (exp, mode);
	    }
Richard Kenner committed
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	  new = insert (exp, class1, hash, mode);
	  new->in_memory = hash_arg_in_memory;
	  new->in_struct = hash_arg_in_struct;
	}
    }
}

/* Remove from the hash table, or mark as invalid,
   all expressions whose values could be altered by storing in X.
   X is a register, a subreg, or a memory reference with nonvarying address
   (because, when a memory reference with a varying address is stored in,
   all memory references are removed by invalidate_memory
   so specific invalidation is superfluous).
1573 1574 1575
   FULL_MODE, if not VOIDmode, indicates that this much should be invalidated
   instead of just the amount indicated by the mode of X.  This is only used
   for bitfield stores into memory.
Richard Kenner committed
1576 1577 1578 1579 1580 1581

   A nonvarying address may be just a register or just
   a symbol reference, or it may be either of those plus
   a numeric offset.  */

static void
1582
invalidate (x, full_mode)
Richard Kenner committed
1583
     rtx x;
1584
     enum machine_mode full_mode;
Richard Kenner committed
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
{
  register int i;
  register struct table_elt *p;

  /* If X is a register, dependencies on its contents
     are recorded through the qty number mechanism.
     Just change the qty number of the register,
     mark it as invalid for expressions that refer to it,
     and remove it itself.  */

  if (GET_CODE (x) == REG)
    {
      register int regno = REGNO (x);
Richard Kenner committed
1598
      register unsigned hash = HASH (x, GET_MODE (x));
Richard Kenner committed
1599 1600

      /* Remove REGNO from any quantity list it might be on and indicate
1601
	 that its value might have changed.  If it is a pseudo, remove its
Richard Kenner committed
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
	 entry from the hash table.

	 For a hard register, we do the first two actions above for any
	 additional hard registers corresponding to X.  Then, if any of these
	 registers are in the table, we must remove any REG entries that
	 overlap these registers.  */

      delete_reg_equiv (regno);
      reg_tick[regno]++;

      if (regno >= FIRST_PSEUDO_REGISTER)
1613 1614 1615 1616 1617 1618
	{
	  /* Because a register can be referenced in more than one mode,
	     we might have to remove more than one table entry.  */

	  struct table_elt *elt;

1619
	  while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1620 1621
	    remove_from_table (elt, hash);
	}
Richard Kenner committed
1622 1623
      else
	{
1624 1625
	  HOST_WIDE_INT in_table
	    = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
Richard Kenner committed
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	  int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
	  int tregno, tendregno;
	  register struct table_elt *p, *next;

	  CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);

	  for (i = regno + 1; i < endregno; i++)
	    {
	      in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, i);
	      CLEAR_HARD_REG_BIT (hard_regs_in_table, i);
	      delete_reg_equiv (i);
	      reg_tick[i]++;
	    }

	  if (in_table)
	    for (hash = 0; hash < NBUCKETS; hash++)
	      for (p = table[hash]; p; p = next)
		{
		  next = p->next_same_hash;

		  if (GET_CODE (p->exp) != REG
		      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
		    continue;

		  tregno = REGNO (p->exp);
		  tendregno
		    = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
		  if (tendregno > regno && tregno < endregno)
		  remove_from_table (p, hash);
		}
	}

      return;
    }

  if (GET_CODE (x) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (x)) != REG)
	abort ();
1665
      invalidate (SUBREG_REG (x), VOIDmode);
Richard Kenner committed
1666 1667 1668
      return;
    }

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
  /* If X is a parallel, invalidate all of its elements.  */

  if (GET_CODE (x) == PARALLEL)
    {
      for (i = XVECLEN (x, 0) - 1; i >= 0 ; --i)
	invalidate (XVECEXP (x, 0, i), VOIDmode);
      return;
    }

  /* If X is an expr_list, this is part of a disjoint return value;
     extract the location in question ignoring the offset.  */

  if (GET_CODE (x) == EXPR_LIST)
    {
      invalidate (XEXP (x, 0), VOIDmode);
      return;
    }

Richard Kenner committed
1687 1688 1689 1690 1691 1692 1693
  /* X is not a register; it must be a memory reference with
     a nonvarying address.  Remove all hash table elements
     that refer to overlapping pieces of memory.  */

  if (GET_CODE (x) != MEM)
    abort ();

1694 1695 1696
  if (full_mode == VOIDmode)
    full_mode = GET_MODE (x);

Richard Kenner committed
1697 1698 1699 1700 1701 1702
  for (i = 0; i < NBUCKETS; i++)
    {
      register struct table_elt *next;
      for (p = table[i]; p; p = next)
	{
	  next = p->next_same_hash;
1703 1704 1705 1706 1707
	  /* Invalidate ASM_OPERANDS which reference memory (this is easier
	     than checking all the aliases).  */
	  if (p->in_memory
	      && (GET_CODE (p->exp) != MEM
		  || true_dependence (x, full_mode, p->exp, cse_rtx_varies_p)))
Richard Kenner committed
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	    remove_from_table (p, i);
	}
    }
}

/* Remove all expressions that refer to register REGNO,
   since they are already invalid, and we are about to
   mark that register valid again and don't want the old
   expressions to reappear as valid.  */

static void
remove_invalid_refs (regno)
     int regno;
{
  register int i;
  register struct table_elt *p, *next;

  for (i = 0; i < NBUCKETS; i++)
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (GET_CODE (p->exp) != REG
1730
	    && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
Richard Kenner committed
1731 1732 1733
	  remove_from_table (p, i);
      }
}
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764

/* Likewise for a subreg with subreg_reg WORD and mode MODE.  */
static void
remove_invalid_subreg_refs (regno, word, mode)
     int regno;
     int word;
     enum machine_mode mode;
{
  register int i;
  register struct table_elt *p, *next;
  int end = word + (GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD;

  for (i = 0; i < NBUCKETS; i++)
    for (p = table[i]; p; p = next)
      {
	rtx exp;
	next = p->next_same_hash;
	
	exp = p->exp;
	if (GET_CODE (p->exp) != REG
	    && (GET_CODE (exp) != SUBREG
		|| GET_CODE (SUBREG_REG (exp)) != REG
		|| REGNO (SUBREG_REG (exp)) != regno
		|| (((SUBREG_WORD (exp)
		      + (GET_MODE_SIZE (GET_MODE (exp)) - 1) / UNITS_PER_WORD)
		     >= word)
		 && SUBREG_WORD (exp) <= end))
	    && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
	  remove_from_table (p, i);
      }
}
Richard Kenner committed
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

/* Recompute the hash codes of any valid entries in the hash table that
   reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.

   This is called when we make a jump equivalence.  */

static void
rehash_using_reg (x)
     rtx x;
{
  int i;
  struct table_elt *p, *next;
Richard Kenner committed
1777
  unsigned hash;
Richard Kenner committed
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798

  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  /* If X is not a register or if the register is known not to be in any
     valid entries in the table, we have no work to do.  */

  if (GET_CODE (x) != REG
      || reg_in_table[REGNO (x)] < 0
      || reg_in_table[REGNO (x)] != reg_tick[REGNO (x)])
    return;

  /* Scan all hash chains looking for valid entries that mention X.
     If we find one and it is in the wrong hash chain, move it.  We can skip
     objects that are registers, since they are handled specially.  */

  for (i = 0; i < NBUCKETS; i++)
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
1799
	    && exp_equiv_p (p->exp, p->exp, 1, 0)
Richard Kenner committed
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	    && i != (hash = safe_hash (p->exp, p->mode) % NBUCKETS))
	  {
	    if (p->next_same_hash)
	      p->next_same_hash->prev_same_hash = p->prev_same_hash;

	    if (p->prev_same_hash)
	      p->prev_same_hash->next_same_hash = p->next_same_hash;
	    else
	      table[i] = p->next_same_hash;

	    p->next_same_hash = table[hash];
	    p->prev_same_hash = 0;
	    if (table[hash])
	      table[hash]->prev_same_hash = p;
	    table[hash] = p;
	  }
      }
}

/* Remove from the hash table any expression that is a call-clobbered
   register.  Also update their TICK values.  */

static void
invalidate_for_call ()
{
  int regno, endregno;
  int i;
Richard Kenner committed
1827
  unsigned hash;
Richard Kenner committed
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
  struct table_elt *p, *next;
  int in_table = 0;

  /* Go through all the hard registers.  For each that is clobbered in
     a CALL_INSN, remove the register from quantity chains and update
     reg_tick if defined.  Also see if any of these registers is currently
     in the table.  */

  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
      {
	delete_reg_equiv (regno);
	if (reg_tick[regno] >= 0)
	  reg_tick[regno]++;

1843
	in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
Richard Kenner committed
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
      }

  /* In the case where we have no call-clobbered hard registers in the
     table, we are done.  Otherwise, scan the table and remove any
     entry that overlaps a call-clobbered register.  */

  if (in_table)
    for (hash = 0; hash < NBUCKETS; hash++)
      for (p = table[hash]; p; p = next)
	{
	  next = p->next_same_hash;

1856 1857 1858 1859 1860 1861
	  if (p->in_memory)
	    {
	      remove_from_table (p, hash);
	      continue;
	    }

Richard Kenner committed
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	  if (GET_CODE (p->exp) != REG
	      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
	    continue;

	  regno = REGNO (p->exp);
	  endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));

	  for (i = regno; i < endregno; i++)
	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
	      {
		remove_from_table (p, hash);
		break;
	      }
	}
}

/* Given an expression X of type CONST,
   and ELT which is its table entry (or 0 if it
   is not in the hash table),
   return an alternate expression for X as a register plus integer.
   If none can be found, return 0.  */

static rtx
use_related_value (x, elt)
     rtx x;
     struct table_elt *elt;
{
  register struct table_elt *relt = 0;
  register struct table_elt *p, *q;
1891
  HOST_WIDE_INT offset;
Richard Kenner committed
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967

  /* First, is there anything related known?
     If we have a table element, we can tell from that.
     Otherwise, must look it up.  */

  if (elt != 0 && elt->related_value != 0)
    relt = elt;
  else if (elt == 0 && GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
      if (subexp != 0)
	relt = lookup (subexp,
		       safe_hash (subexp, GET_MODE (subexp)) % NBUCKETS,
		       GET_MODE (subexp));
    }

  if (relt == 0)
    return 0;

  /* Search all related table entries for one that has an
     equivalent register.  */

  p = relt;
  while (1)
    {
      /* This loop is strange in that it is executed in two different cases.
	 The first is when X is already in the table.  Then it is searching
	 the RELATED_VALUE list of X's class (RELT).  The second case is when
	 X is not in the table.  Then RELT points to a class for the related
	 value.

	 Ensure that, whatever case we are in, that we ignore classes that have
	 the same value as X.  */

      if (rtx_equal_p (x, p->exp))
	q = 0;
      else
	for (q = p->first_same_value; q; q = q->next_same_value)
	  if (GET_CODE (q->exp) == REG)
	    break;

      if (q)
	break;

      p = p->related_value;

      /* We went all the way around, so there is nothing to be found.
	 Alternatively, perhaps RELT was in the table for some other reason
	 and it has no related values recorded.  */
      if (p == relt || p == 0)
	break;
    }

  if (q == 0)
    return 0;

  offset = (get_integer_term (x) - get_integer_term (p->exp));
  /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity.  */
  return plus_constant (q->exp, offset);
}

/* Hash an rtx.  We are careful to make sure the value is never negative.
   Equivalent registers hash identically.
   MODE is used in hashing for CONST_INTs only;
   otherwise the mode of X is used.

   Store 1 in do_not_record if any subexpression is volatile.

   Store 1 in hash_arg_in_memory if X contains a MEM rtx
   which does not have the RTX_UNCHANGING_P bit set.
   In this case, also store 1 in hash_arg_in_struct
   if there is a MEM rtx which has the MEM_IN_STRUCT_P bit set.

   Note that cse_insn knows that the hash code of a MEM expression
   is just (int) MEM plus the hash code of the address.  */

Richard Kenner committed
1968
static unsigned
Richard Kenner committed
1969 1970 1971 1972 1973
canon_hash (x, mode)
     rtx x;
     enum machine_mode mode;
{
  register int i, j;
Richard Kenner committed
1974
  register unsigned hash = 0;
Richard Kenner committed
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
  register enum rtx_code code;
  register char *fmt;

  /* repeat is used to turn tail-recursion into iteration.  */
 repeat:
  if (x == 0)
    return hash;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      {
	register int regno = REGNO (x);

	/* On some machines, we can't record any non-fixed hard register,
	   because extending its life will cause reload problems.  We
	   consider ap, fp, and sp to be fixed for this purpose.
Mike Stump committed
1993
	   On all machines, we can't record any global registers.  */
Richard Kenner committed
1994 1995 1996

	if (regno < FIRST_PSEUDO_REGISTER
	    && (global_regs[regno]
1997 1998
		|| (SMALL_REGISTER_CLASSES
		    && ! fixed_regs[regno]
Richard Kenner committed
1999
		    && regno != FRAME_POINTER_REGNUM
2000
		    && regno != HARD_FRAME_POINTER_REGNUM
Richard Kenner committed
2001
		    && regno != ARG_POINTER_REGNUM
2002
		    && regno != STACK_POINTER_REGNUM)))
Richard Kenner committed
2003 2004 2005 2006
	  {
	    do_not_record = 1;
	    return 0;
	  }
Richard Kenner committed
2007 2008
	hash += ((unsigned) REG << 7) + (unsigned) reg_qty[regno];
	return hash;
Richard Kenner committed
2009 2010
      }

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
    /* We handle SUBREG of a REG specially because the underlying
       reg changes its hash value with every value change; we don't
       want to have to forget unrelated subregs when one subreg changes.  */
    case SUBREG:
      {
	if (GET_CODE (SUBREG_REG (x)) == REG)
	  {
	    hash += (((unsigned) SUBREG << 7)
		     + REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
	    return hash;
	  }
	break;
      }

Richard Kenner committed
2025
    case CONST_INT:
Richard Kenner committed
2026 2027 2028 2029 2030
      {
	unsigned HOST_WIDE_INT tem = INTVAL (x);
	hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
	return hash;
      }
Richard Kenner committed
2031 2032 2033 2034

    case CONST_DOUBLE:
      /* This is like the general case, except that it only counts
	 the integers representing the constant.  */
Richard Kenner committed
2035
      hash += (unsigned) code + (unsigned) GET_MODE (x);
2036 2037 2038 2039 2040 2041 2042 2043 2044
      if (GET_MODE (x) != VOIDmode)
	for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
	  {
	    unsigned tem = XINT (x, i);
	    hash += tem;
	  }
      else
	hash += ((unsigned) CONST_DOUBLE_LOW (x)
		 + (unsigned) CONST_DOUBLE_HIGH (x));
Richard Kenner committed
2045 2046 2047 2048
      return hash;

      /* Assume there is only one rtx object for any given label.  */
    case LABEL_REF:
2049
      hash
2050
	+= ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
Richard Kenner committed
2051
      return hash;
Richard Kenner committed
2052 2053

    case SYMBOL_REF:
2054
      hash
2055
	+= ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
Richard Kenner committed
2056
      return hash;
Richard Kenner committed
2057 2058 2059 2060 2061 2062 2063

    case MEM:
      if (MEM_VOLATILE_P (x))
	{
	  do_not_record = 1;
	  return 0;
	}
2064
      if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
Richard Kenner committed
2065 2066 2067 2068 2069 2070
	{
	  hash_arg_in_memory = 1;
	  if (MEM_IN_STRUCT_P (x)) hash_arg_in_struct = 1;
	}
      /* Now that we have already found this special case,
	 might as well speed it up as much as possible.  */
Richard Kenner committed
2071
      hash += (unsigned) MEM;
Richard Kenner committed
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
      x = XEXP (x, 0);
      goto repeat;

    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
    case PC:
    case CC0:
    case CALL:
    case UNSPEC_VOLATILE:
      do_not_record = 1;
      return 0;

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	{
	  do_not_record = 1;
	  return 0;
	}
2092 2093 2094 2095
      break;
      
    default:
      break;
Richard Kenner committed
2096 2097 2098
    }

  i = GET_RTX_LENGTH (code) - 1;
Richard Kenner committed
2099
  hash += (unsigned) code + (unsigned) GET_MODE (x);
Richard Kenner committed
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
  fmt = GET_RTX_FORMAT (code);
  for (; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  rtx tem = XEXP (x, i);

	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function  is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = tem;
	      goto repeat;
	    }
	  hash += canon_hash (tem, 0);
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  hash += canon_hash (XVECEXP (x, i, j), 0);
      else if (fmt[i] == 's')
	{
Richard Kenner committed
2122
	  register unsigned char *p = (unsigned char *) XSTR (x, i);
Richard Kenner committed
2123 2124
	  if (p)
	    while (*p)
Richard Kenner committed
2125
	      hash += *p++;
Richard Kenner committed
2126 2127 2128
	}
      else if (fmt[i] == 'i')
	{
Richard Kenner committed
2129 2130
	  register unsigned tem = XINT (x, i);
	  hash += tem;
Richard Kenner committed
2131
	}
2132 2133
      else if (fmt[i] == '0')
	/* unused */;
Richard Kenner committed
2134 2135 2136 2137 2138 2139 2140 2141
      else
	abort ();
    }
  return hash;
}

/* Like canon_hash but with no side effects.  */

Richard Kenner committed
2142
static unsigned
Richard Kenner committed
2143 2144 2145 2146 2147 2148 2149
safe_hash (x, mode)
     rtx x;
     enum machine_mode mode;
{
  int save_do_not_record = do_not_record;
  int save_hash_arg_in_memory = hash_arg_in_memory;
  int save_hash_arg_in_struct = hash_arg_in_struct;
Richard Kenner committed
2150
  unsigned hash = canon_hash (x, mode);
Richard Kenner committed
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
  hash_arg_in_memory = save_hash_arg_in_memory;
  hash_arg_in_struct = save_hash_arg_in_struct;
  do_not_record = save_do_not_record;
  return hash;
}

/* Return 1 iff X and Y would canonicalize into the same thing,
   without actually constructing the canonicalization of either one.
   If VALIDATE is nonzero,
   we assume X is an expression being processed from the rtl
   and Y was found in the hash table.  We check register refs
   in Y for being marked as valid.

   If EQUAL_VALUES is nonzero, we allow a register to match a constant value
   that is known to be in the register.  Ordinarily, we don't allow them
   to match, because letting them match would cause unpredictable results
   in all the places that search a hash table chain for an equivalent
   for a given value.  A possible equivalent that has different structure
   has its hash code computed from different data.  Whether the hash code
Jeff Law committed
2170
   is the same as that of the given value is pure luck.  */
Richard Kenner committed
2171 2172 2173 2174 2175 2176 2177

static int
exp_equiv_p (x, y, validate, equal_values)
     rtx x, y;
     int validate;
     int equal_values;
{
2178
  register int i, j;
Richard Kenner committed
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
  register enum rtx_code code;
  register char *fmt;

  /* Note: it is incorrect to assume an expression is equivalent to itself
     if VALIDATE is nonzero.  */
  if (x == y && !validate)
    return 1;
  if (x == 0 || y == 0)
    return x == y;

  code = GET_CODE (x);
  if (code != GET_CODE (y))
    {
      if (!equal_values)
	return 0;

      /* If X is a constant and Y is a register or vice versa, they may be
	 equivalent.  We only have to validate if Y is a register.  */
      if (CONSTANT_P (x) && GET_CODE (y) == REG
	  && REGNO_QTY_VALID_P (REGNO (y))
	  && GET_MODE (y) == qty_mode[reg_qty[REGNO (y)]]
	  && rtx_equal_p (x, qty_const[reg_qty[REGNO (y)]])
	  && (! validate || reg_in_table[REGNO (y)] == reg_tick[REGNO (y)]))
	return 1;

      if (CONSTANT_P (y) && code == REG
	  && REGNO_QTY_VALID_P (REGNO (x))
	  && GET_MODE (x) == qty_mode[reg_qty[REGNO (x)]]
	  && rtx_equal_p (y, qty_const[reg_qty[REGNO (x)]]))
	return 1;

      return 0;
    }

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
  if (GET_MODE (x) != GET_MODE (y))
    return 0;

  switch (code)
    {
    case PC:
    case CC0:
      return x == y;

    case CONST_INT:
Richard Kenner committed
2224
      return INTVAL (x) == INTVAL (y);
Richard Kenner committed
2225 2226 2227 2228

    case LABEL_REF:
      return XEXP (x, 0) == XEXP (y, 0);

2229 2230 2231
    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);

Richard Kenner committed
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
    case REG:
      {
	int regno = REGNO (y);
	int endregno
	  = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
		     : HARD_REGNO_NREGS (regno, GET_MODE (y)));
	int i;

	/* If the quantities are not the same, the expressions are not
	   equivalent.  If there are and we are not to validate, they
	   are equivalent.  Otherwise, ensure all regs are up-to-date.  */

	if (reg_qty[REGNO (x)] != reg_qty[regno])
	  return 0;

	if (! validate)
	  return 1;

	for (i = regno; i < endregno; i++)
	  if (reg_in_table[i] != reg_tick[i])
	    return 0;

	return 1;
      }

    /*  For commutative operations, check both orders.  */
    case PLUS:
    case MULT:
    case AND:
    case IOR:
    case XOR:
    case NE:
    case EQ:
      return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
	       && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
			       validate, equal_values))
	      || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
			       validate, equal_values)
		  && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
				  validate, equal_values)));
2272 2273 2274
      
    default:
      break;
Richard Kenner committed
2275 2276 2277 2278 2279 2280 2281 2282
    }

  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
2283
      switch (fmt[i])
Richard Kenner committed
2284
	{
2285
	case 'e':
Richard Kenner committed
2286 2287
	  if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
	    return 0;
2288 2289 2290
	  break;

	case 'E':
Richard Kenner committed
2291 2292 2293 2294 2295 2296
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
			       validate, equal_values))
	      return 0;
2297 2298 2299
	  break;

	case 's':
Richard Kenner committed
2300 2301
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
2302 2303 2304
	  break;

	case 'i':
Richard Kenner committed
2305 2306
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	  break;

	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
	break;

	case '0':
	  break;

	default:
	  abort ();
Richard Kenner committed
2319
	}
2320 2321
      }

Richard Kenner committed
2322 2323 2324 2325 2326 2327 2328
  return 1;
}

/* Return 1 iff any subexpression of X matches Y.
   Here we do not require that X or Y be valid (for registers referred to)
   for being in the hash table.  */

2329
static int
Richard Kenner committed
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
refers_to_p (x, y)
     rtx x, y;
{
  register int i;
  register enum rtx_code code;
  register char *fmt;

 repeat:
  if (x == y)
    return 1;
  if (x == 0 || y == 0)
    return 0;

  code = GET_CODE (x);
  /* If X as a whole has the same code as Y, they may match.
     If so, return 1.  */
  if (code == GET_CODE (y))
    {
      if (exp_equiv_p (x, y, 0, 1))
	return 1;
    }

  /* X does not match, so try its subexpressions.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	if (i == 0)
	  {
	    x = XEXP (x, 0);
	    goto repeat;
	  }
	else
	  if (refers_to_p (XEXP (x, i), y))
	    return 1;
      }
    else if (fmt[i] == 'E')
      {
	int j;
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (refers_to_p (XVECEXP (x, i, j), y))
	    return 1;
      }

  return 0;
}

2378 2379 2380 2381
/* Given ADDR and SIZE (a memory address, and the size of the memory reference),
   set PBASE, PSTART, and PEND which correspond to the base of the address,
   the starting offset, and ending offset respectively.

2382
   ADDR is known to be a nonvarying address.  */
2383

2384 2385
/* ??? Despite what the comments say, this function is in fact frequently
   passed varying addresses.  This does not appear to cause any problems.  */
2386 2387 2388 2389 2390 2391

static void
set_nonvarying_address_components (addr, size, pbase, pstart, pend)
     rtx addr;
     int size;
     rtx *pbase;
2392
     HOST_WIDE_INT *pstart, *pend;
2393 2394
{
  rtx base;
2395
  HOST_WIDE_INT start, end;
2396 2397 2398 2399 2400

  base = addr;
  start = 0;
  end = 0;

2401 2402 2403 2404
  if (flag_pic && GET_CODE (base) == PLUS
      && XEXP (base, 0) == pic_offset_table_rtx)
    base = XEXP (base, 1);

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
  /* Registers with nonvarying addresses usually have constant equivalents;
     but the frame pointer register is also possible.  */
  if (GET_CODE (base) == REG
      && qty_const != 0
      && REGNO_QTY_VALID_P (REGNO (base))
      && qty_mode[reg_qty[REGNO (base)]] == GET_MODE (base)
      && qty_const[reg_qty[REGNO (base)]] != 0)
    base = qty_const[reg_qty[REGNO (base)]];
  else if (GET_CODE (base) == PLUS
	   && GET_CODE (XEXP (base, 1)) == CONST_INT
	   && GET_CODE (XEXP (base, 0)) == REG
	   && qty_const != 0
	   && REGNO_QTY_VALID_P (REGNO (XEXP (base, 0)))
	   && (qty_mode[reg_qty[REGNO (XEXP (base, 0))]]
	       == GET_MODE (XEXP (base, 0)))
	   && qty_const[reg_qty[REGNO (XEXP (base, 0))]])
    {
      start = INTVAL (XEXP (base, 1));
      base = qty_const[reg_qty[REGNO (XEXP (base, 0))]];
    }
2425
  /* This can happen as the result of virtual register instantiation,
Richard Kenner committed
2426
     if the initial offset is too large to be a valid address.  */
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
  else if (GET_CODE (base) == PLUS
	   && GET_CODE (XEXP (base, 0)) == REG
	   && GET_CODE (XEXP (base, 1)) == REG
	   && qty_const != 0
	   && REGNO_QTY_VALID_P (REGNO (XEXP (base, 0)))
	   && (qty_mode[reg_qty[REGNO (XEXP (base, 0))]]
	       == GET_MODE (XEXP (base, 0)))
	   && qty_const[reg_qty[REGNO (XEXP (base, 0))]]
	   && REGNO_QTY_VALID_P (REGNO (XEXP (base, 1)))
	   && (qty_mode[reg_qty[REGNO (XEXP (base, 1))]]
	       == GET_MODE (XEXP (base, 1)))
	   && qty_const[reg_qty[REGNO (XEXP (base, 1))]])
    {
      rtx tem = qty_const[reg_qty[REGNO (XEXP (base, 1))]];
      base = qty_const[reg_qty[REGNO (XEXP (base, 0))]];

      /* One of the two values must be a constant.  */
      if (GET_CODE (base) != CONST_INT)
	{
	  if (GET_CODE (tem) != CONST_INT)
	    abort ();
	  start = INTVAL (tem);
	}
      else
	{
	  start = INTVAL (base);
	  base = tem;
	}
    }
2456

2457 2458
  /* Handle everything that we can find inside an address that has been
     viewed as constant.  */
2459

2460
  while (1)
2461
    {
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
      /* If no part of this switch does a "continue", the code outside
	 will exit this loop.  */

      switch (GET_CODE (base))
	{
	case LO_SUM:
	  /* By definition, operand1 of a LO_SUM is the associated constant
	     address.  Use the associated constant address as the base
	     instead.  */
	  base = XEXP (base, 1);
	  continue;

	case CONST:
	  /* Strip off CONST.  */
	  base = XEXP (base, 0);
	  continue;

	case PLUS:
	  if (GET_CODE (XEXP (base, 1)) == CONST_INT)
	    {
	      start += INTVAL (XEXP (base, 1));
	      base = XEXP (base, 0);
	      continue;
	    }
	  break;

	case AND:
	  /* Handle the case of an AND which is the negative of a power of
	     two.  This is used to represent unaligned memory operations.  */
	  if (GET_CODE (XEXP (base, 1)) == CONST_INT
	      && exact_log2 (- INTVAL (XEXP (base, 1))) > 0)
	    {
	      set_nonvarying_address_components (XEXP (base, 0), size,
						 pbase, pstart, pend);

	      /* Assume the worst misalignment.  START is affected, but not
		 END, so compensate but adjusting SIZE.  Don't lose any
		 constant we already had.  */

	      size = *pend - *pstart - INTVAL (XEXP (base, 1)) - 1;
2502 2503
	      start += *pstart + INTVAL (XEXP (base, 1)) + 1;
	      end += *pend;
2504 2505 2506
	      base = *pbase;
	    }
	  break;
2507 2508 2509

	default:
	  break;
2510 2511 2512
	}

      break;
2513 2514
    }

2515 2516 2517 2518 2519 2520
  if (GET_CODE (base) == CONST_INT)
    {
      start += INTVAL (base);
      base = const0_rtx;
    }

2521 2522 2523 2524 2525 2526 2527 2528
  end = start + size;

  /* Set the return values.  */
  *pbase = base;
  *pstart = start;
  *pend = end;
}

2529 2530 2531
/* Return 1 if X has a value that can vary even between two
   executions of the program.  0 means X can be compared reliably
   against certain constants or near-constants.  */
Richard Kenner committed
2532 2533

static int
2534 2535
cse_rtx_varies_p (x)
     register rtx x;
Richard Kenner committed
2536 2537 2538 2539 2540
{
  /* We need not check for X and the equivalence class being of the same
     mode because if X is equivalent to a constant in some mode, it
     doesn't vary in any mode.  */

2541 2542 2543 2544
  if (GET_CODE (x) == REG
      && REGNO_QTY_VALID_P (REGNO (x))
      && GET_MODE (x) == qty_mode[reg_qty[REGNO (x)]]
      && qty_const[reg_qty[REGNO (x)]] != 0)
Richard Kenner committed
2545 2546
    return 0;

2547 2548 2549 2550 2551 2552 2553
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 1)) == CONST_INT
      && GET_CODE (XEXP (x, 0)) == REG
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
      && (GET_MODE (XEXP (x, 0))
	  == qty_mode[reg_qty[REGNO (XEXP (x, 0))]])
      && qty_const[reg_qty[REGNO (XEXP (x, 0))]])
Richard Kenner committed
2554 2555
    return 0;

2556 2557 2558 2559 2560
  /* This can happen as the result of virtual register instantiation, if
     the initial constant is too large to be a valid address.  This gives
     us a three instruction sequence, load large offset into a register,
     load fp minus a constant into a register, then a MEM which is the
     sum of the two `constant' registers.  */
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == REG
      && GET_CODE (XEXP (x, 1)) == REG
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
      && (GET_MODE (XEXP (x, 0))
	  == qty_mode[reg_qty[REGNO (XEXP (x, 0))]])
      && qty_const[reg_qty[REGNO (XEXP (x, 0))]]
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1)))
      && (GET_MODE (XEXP (x, 1))
	  == qty_mode[reg_qty[REGNO (XEXP (x, 1))]])
      && qty_const[reg_qty[REGNO (XEXP (x, 1))]])
2572 2573
    return 0;

2574
  return rtx_varies_p (x);
Richard Kenner committed
2575 2576 2577 2578 2579 2580 2581
}

/* Canonicalize an expression:
   replace each register reference inside it
   with the "oldest" equivalent register.

   If INSN is non-zero and we are replacing a pseudo with a hard register
2582 2583 2584 2585 2586
   or vice versa, validate_change is used to ensure that INSN remains valid
   after we make our substitution.  The calls are made with IN_GROUP non-zero
   so apply_change_group must be called upon the outermost return from this
   function (unless INSN is zero).  The result of apply_change_group can
   generally be discarded since the changes we are making are optional.  */
Richard Kenner committed
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

static rtx
canon_reg (x, insn)
     rtx x;
     rtx insn;
{
  register int i;
  register enum rtx_code code;
  register char *fmt;

  if (x == 0)
    return x;

  code = GET_CODE (x);
  switch (code)
    {
    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return x;

    case REG:
      {
	register int first;

	/* Never replace a hard reg, because hard regs can appear
	   in more than one machine mode, and we must preserve the mode
	   of each occurrence.  Also, some hard regs appear in
	   MEMs that are shared and mustn't be altered.  Don't try to
	   replace any reg that maps to a reg of class NO_REGS.  */
	if (REGNO (x) < FIRST_PSEUDO_REGISTER
	    || ! REGNO_QTY_VALID_P (REGNO (x)))
	  return x;

	first = qty_first_reg[reg_qty[REGNO (x)]];
	return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
		: REGNO_REG_CLASS (first) == NO_REGS ? x
2630
		: gen_rtx_REG (qty_mode[reg_qty[REGNO (x)]], first));
Richard Kenner committed
2631
      }
2632 2633 2634
      
    default:
      break;
Richard Kenner committed
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      register int j;

      if (fmt[i] == 'e')
	{
	  rtx new = canon_reg (XEXP (x, i), insn);
2645
	  int insn_code;
Richard Kenner committed
2646 2647

	  /* If replacing pseudo with hard reg or vice versa, ensure the
2648
	     insn remains valid.  Likewise if the insn has MATCH_DUPs.  */
2649 2650
	  if (insn != 0 && new != 0
	      && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
2651 2652
	      && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
		   != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
2653 2654
		  || (insn_code = recog_memoized (insn)) < 0
		  || insn_n_dups[insn_code] > 0))
2655
	    validate_change (insn, &XEXP (x, i), new, 1);
Richard Kenner committed
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	  else
	    XEXP (x, i) = new;
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
    }

  return x;
}

Richard Kenner committed
2667
/* LOC is a location within INSN that is an operand address (the contents of
Richard Kenner committed
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
   a MEM).  Find the best equivalent address to use that is valid for this
   insn.

   On most CISC machines, complicated address modes are costly, and rtx_cost
   is a good approximation for that cost.  However, most RISC machines have
   only a few (usually only one) memory reference formats.  If an address is
   valid at all, it is often just as cheap as any other address.  Hence, for
   RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
   costs of various addresses.  For two addresses of equal cost, choose the one
   with the highest `rtx_cost' value as that has the potential of eliminating
   the most insns.  For equal costs, we choose the first in the equivalence
   class.  Note that we ignore the fact that pseudo registers are cheaper
   than hard registers here because we would also prefer the pseudo registers.
  */

2683
static void
Richard Kenner committed
2684 2685 2686 2687
find_best_addr (insn, loc)
     rtx insn;
     rtx *loc;
{
2688
  struct table_elt *elt;
Richard Kenner committed
2689
  rtx addr = *loc;
2690 2691
#ifdef ADDRESS_COST
  struct table_elt *p;
Richard Kenner committed
2692
  int found_better = 1;
2693
#endif
Richard Kenner committed
2694 2695 2696 2697 2698
  int save_do_not_record = do_not_record;
  int save_hash_arg_in_memory = hash_arg_in_memory;
  int save_hash_arg_in_struct = hash_arg_in_struct;
  int addr_volatile;
  int regno;
Richard Kenner committed
2699
  unsigned hash;
Richard Kenner committed
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713

  /* Do not try to replace constant addresses or addresses of local and
     argument slots.  These MEM expressions are made only once and inserted
     in many instructions, as well as being used to control symbol table
     output.  It is not safe to clobber them.

     There are some uncommon cases where the address is already in a register
     for some reason, but we cannot take advantage of that because we have
     no easy way to unshare the MEM.  In addition, looking up all stack
     addresses is costly.  */
  if ((GET_CODE (addr) == PLUS
       && GET_CODE (XEXP (addr, 0)) == REG
       && GET_CODE (XEXP (addr, 1)) == CONST_INT
       && (regno = REGNO (XEXP (addr, 0)),
2714 2715
	   regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
	   || regno == ARG_POINTER_REGNUM))
Richard Kenner committed
2716
      || (GET_CODE (addr) == REG
2717 2718 2719
	  && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
	      || regno == HARD_FRAME_POINTER_REGNUM
	      || regno == ARG_POINTER_REGNUM))
2720
      || GET_CODE (addr) == ADDRESSOF
Richard Kenner committed
2721 2722 2723 2724 2725 2726 2727
      || CONSTANT_ADDRESS_P (addr))
    return;

  /* If this address is not simply a register, try to fold it.  This will
     sometimes simplify the expression.  Many simplifications
     will not be valid, but some, usually applying the associative rule, will
     be valid and produce better code.  */
2728 2729 2730 2731 2732 2733
  if (GET_CODE (addr) != REG)
    {
      rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);

      if (1
#ifdef ADDRESS_COST
2734 2735
	  && (CSE_ADDRESS_COST (folded) < CSE_ADDRESS_COST (addr)
	      || (CSE_ADDRESS_COST (folded) == CSE_ADDRESS_COST (addr)
2736
		  && rtx_cost (folded, MEM) > rtx_cost (addr, MEM)))
2737
#else
2738
	  && rtx_cost (folded, MEM) < rtx_cost (addr, MEM)
2739 2740 2741 2742
#endif
	  && validate_change (insn, loc, folded, 0))
	addr = folded;
    }
Richard Kenner committed
2743
	
2744 2745 2746
  /* If this address is not in the hash table, we can't look for equivalences
     of the whole address.  Also, ignore if volatile.  */

Richard Kenner committed
2747
  do_not_record = 0;
Richard Kenner committed
2748
  hash = HASH (addr, Pmode);
Richard Kenner committed
2749 2750 2751 2752 2753 2754 2755 2756
  addr_volatile = do_not_record;
  do_not_record = save_do_not_record;
  hash_arg_in_memory = save_hash_arg_in_memory;
  hash_arg_in_struct = save_hash_arg_in_struct;

  if (addr_volatile)
    return;

Richard Kenner committed
2757
  elt = lookup (addr, hash, Pmode);
Richard Kenner committed
2758 2759

#ifndef ADDRESS_COST
2760 2761
  if (elt)
    {
2762
      int our_cost = elt->cost;
2763 2764 2765 2766 2767 2768 2769

      /* Find the lowest cost below ours that works.  */
      for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
	if (elt->cost < our_cost
	    && (GET_CODE (elt->exp) == REG
		|| exp_equiv_p (elt->exp, elt->exp, 1, 0))
	    && validate_change (insn, loc,
2770
				canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
2771 2772 2773
	  return;
    }
#else
Richard Kenner committed
2774

2775 2776 2777 2778 2779 2780
  if (elt)
    {
      /* We need to find the best (under the criteria documented above) entry
	 in the class that is valid.  We use the `flag' field to indicate
	 choices that were invalid and iterate until we can't find a better
	 one that hasn't already been tried.  */
Richard Kenner committed
2781

2782 2783
      for (p = elt->first_same_value; p; p = p->next_same_value)
	p->flag = 0;
Richard Kenner committed
2784

2785 2786
      while (found_better)
	{
2787
	  int best_addr_cost = CSE_ADDRESS_COST (*loc);
2788 2789 2790 2791 2792
	  int best_rtx_cost = (elt->cost + 1) >> 1;
	  struct table_elt *best_elt = elt; 

	  found_better = 0;
	  for (p = elt->first_same_value; p; p = p->next_same_value)
2793
	    if (! p->flag)
2794
	      {
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
		if ((GET_CODE (p->exp) == REG
		     || exp_equiv_p (p->exp, p->exp, 1, 0))
		    && (CSE_ADDRESS_COST (p->exp) < best_addr_cost
			|| (CSE_ADDRESS_COST (p->exp) == best_addr_cost
			    && (p->cost + 1) >> 1 > best_rtx_cost)))
		  {
		    found_better = 1;
		    best_addr_cost = CSE_ADDRESS_COST (p->exp);
		    best_rtx_cost = (p->cost + 1) >> 1;
		    best_elt = p;
		  }
2806
	      }
Richard Kenner committed
2807

2808 2809 2810
	  if (found_better)
	    {
	      if (validate_change (insn, loc,
2811 2812
				   canon_reg (copy_rtx (best_elt->exp),
					      NULL_RTX), 0))
2813 2814 2815 2816 2817 2818
		return;
	      else
		best_elt->flag = 1;
	    }
	}
    }
Richard Kenner committed
2819

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
  /* If the address is a binary operation with the first operand a register
     and the second a constant, do the same as above, but looking for
     equivalences of the register.  Then try to simplify before checking for
     the best address to use.  This catches a few cases:  First is when we
     have REG+const and the register is another REG+const.  We can often merge
     the constants and eliminate one insn and one register.  It may also be
     that a machine has a cheap REG+REG+const.  Finally, this improves the
     code on the Alpha for unaligned byte stores.  */

  if (flag_expensive_optimizations
      && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
	  || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
      && GET_CODE (XEXP (*loc, 0)) == REG
      && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
Richard Kenner committed
2834
    {
2835 2836 2837
      rtx c = XEXP (*loc, 1);

      do_not_record = 0;
Richard Kenner committed
2838
      hash = HASH (XEXP (*loc, 0), Pmode);
2839 2840 2841 2842
      do_not_record = save_do_not_record;
      hash_arg_in_memory = save_hash_arg_in_memory;
      hash_arg_in_struct = save_hash_arg_in_struct;

Richard Kenner committed
2843
      elt = lookup (XEXP (*loc, 0), hash, Pmode);
2844 2845 2846 2847 2848 2849 2850
      if (elt == 0)
	return;

      /* We need to find the best (under the criteria documented above) entry
	 in the class that is valid.  We use the `flag' field to indicate
	 choices that were invalid and iterate until we can't find a better
	 one that hasn't already been tried.  */
Richard Kenner committed
2851 2852

      for (p = elt->first_same_value; p; p = p->next_same_value)
2853
	p->flag = 0;
Richard Kenner committed
2854

2855
      while (found_better)
Richard Kenner committed
2856
	{
2857
	  int best_addr_cost = CSE_ADDRESS_COST (*loc);
2858 2859 2860
	  int best_rtx_cost = (COST (*loc) + 1) >> 1;
	  struct table_elt *best_elt = elt; 
	  rtx best_rtx = *loc;
2861 2862 2863 2864 2865 2866
	  int count;

	  /* This is at worst case an O(n^2) algorithm, so limit our search
	     to the first 32 elements on the list.  This avoids trouble
	     compiling code with very long basic blocks that can easily
	     call cse_gen_binary so many times that we run out of memory.  */
2867 2868

	  found_better = 0;
2869 2870 2871
	  for (p = elt->first_same_value, count = 0;
	       p && count < 32;
	       p = p->next_same_value, count++)
2872 2873 2874 2875
	    if (! p->flag
		&& (GET_CODE (p->exp) == REG
		    || exp_equiv_p (p->exp, p->exp, 1, 0)))
	      {
2876
		rtx new = cse_gen_binary (GET_CODE (*loc), Pmode, p->exp, c);
2877

2878 2879
		if ((CSE_ADDRESS_COST (new) < best_addr_cost
		    || (CSE_ADDRESS_COST (new) == best_addr_cost
2880 2881 2882
			&& (COST (new) + 1) >> 1 > best_rtx_cost)))
		  {
		    found_better = 1;
2883
		    best_addr_cost = CSE_ADDRESS_COST (new);
2884 2885 2886 2887 2888 2889 2890 2891 2892
		    best_rtx_cost = (COST (new) + 1) >> 1;
		    best_elt = p;
		    best_rtx = new;
		  }
	      }

	  if (found_better)
	    {
	      if (validate_change (insn, loc,
2893 2894
				   canon_reg (copy_rtx (best_rtx),
					      NULL_RTX), 0))
2895 2896 2897 2898
		return;
	      else
		best_elt->flag = 1;
	    }
Richard Kenner committed
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
	}
    }
#endif
}

/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
   operation (EQ, NE, GT, etc.), follow it back through the hash table and
   what values are being compared.

   *PARG1 and *PARG2 are updated to contain the rtx representing the values
   actually being compared.  For example, if *PARG1 was (cc0) and *PARG2
   was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
   compared to produce cc0.

   The return value is the comparison operator and is either the code of
   A or the code corresponding to the inverse of the comparison.  */

static enum rtx_code
2917
find_comparison_args (code, parg1, parg2, pmode1, pmode2)
Richard Kenner committed
2918 2919
     enum rtx_code code;
     rtx *parg1, *parg2;
2920
     enum machine_mode *pmode1, *pmode2;
Richard Kenner committed
2921 2922 2923 2924 2925 2926 2927
{
  rtx arg1, arg2;

  arg1 = *parg1, arg2 = *parg2;

  /* If ARG2 is const0_rtx, see what ARG1 is equivalent to.  */

2928
  while (arg2 == CONST0_RTX (GET_MODE (arg1)))
Richard Kenner committed
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
    {
      /* Set non-zero when we find something of interest.  */
      rtx x = 0;
      int reverse_code = 0;
      struct table_elt *p = 0;

      /* If arg1 is a COMPARE, extract the comparison arguments from it.
	 On machines with CC0, this is the only case that can occur, since
	 fold_rtx will return the COMPARE or item being compared with zero
	 when given CC0.  */

      if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
	x = arg1;

      /* If ARG1 is a comparison operator and CODE is testing for
	 STORE_FLAG_VALUE, get the inner arguments.  */

      else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
	{
2948 2949 2950 2951 2952 2953 2954 2955
	  if (code == NE
	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		  && code == LT && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
		  && FLOAT_STORE_FLAG_VALUE < 0)
#endif
	      )
Richard Kenner committed
2956
	    x = arg1;
2957 2958 2959 2960 2961 2962 2963 2964
	  else if (code == EQ
		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		       && code == GE && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
		       && FLOAT_STORE_FLAG_VALUE < 0)
#endif
		   )
Richard Kenner committed
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	    x = arg1, reverse_code = 1;
	}

      /* ??? We could also check for

	 (ne (and (eq (...) (const_int 1))) (const_int 0))

	 and related forms, but let's wait until we see them occurring.  */

      if (x == 0)
	/* Look up ARG1 in the hash table and see if it has an equivalence
	   that lets us see what is being compared.  */
	p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) % NBUCKETS,
		    GET_MODE (arg1));
      if (p) p = p->first_same_value;

      for (; p; p = p->next_same_value)
	{
	  enum machine_mode inner_mode = GET_MODE (p->exp);

	  /* If the entry isn't valid, skip it.  */
	  if (! exp_equiv_p (p->exp, p->exp, 1, 0))
	    continue;

	  if (GET_CODE (p->exp) == COMPARE
	      /* Another possibility is that this machine has a compare insn
		 that includes the comparison code.  In that case, ARG1 would
		 be equivalent to a comparison operation that would set ARG1 to
		 either STORE_FLAG_VALUE or zero.  If this is an NE operation,
		 ORIG_CODE is the actual comparison being done; if it is an EQ,
		 we must reverse ORIG_CODE.  On machine with a negative value
		 for STORE_FLAG_VALUE, also look at LT and GE operations.  */
	      || ((code == NE
		   || (code == LT
2999
		       && GET_MODE_CLASS (inner_mode) == MODE_INT
3000 3001
		       && (GET_MODE_BITSIZE (inner_mode)
			   <= HOST_BITS_PER_WIDE_INT)
Richard Kenner committed
3002
		       && (STORE_FLAG_VALUE
3003 3004
			   & ((HOST_WIDE_INT) 1
			      << (GET_MODE_BITSIZE (inner_mode) - 1))))
3005 3006 3007 3008 3009 3010
#ifdef FLOAT_STORE_FLAG_VALUE
		   || (code == LT
		       && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
		       && FLOAT_STORE_FLAG_VALUE < 0)
#endif
		   )
Richard Kenner committed
3011 3012 3013 3014 3015 3016 3017
		  && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
	    {
	      x = p->exp;
	      break;
	    }
	  else if ((code == EQ
		    || (code == GE
3018
			&& GET_MODE_CLASS (inner_mode) == MODE_INT
3019 3020
			&& (GET_MODE_BITSIZE (inner_mode)
			    <= HOST_BITS_PER_WIDE_INT)
Richard Kenner committed
3021
			&& (STORE_FLAG_VALUE
3022 3023
			    & ((HOST_WIDE_INT) 1
			       << (GET_MODE_BITSIZE (inner_mode) - 1))))
3024 3025 3026 3027 3028 3029
#ifdef FLOAT_STORE_FLAG_VALUE
		    || (code == GE
			&& GET_MODE_CLASS (inner_mode) == MODE_FLOAT
			&& FLOAT_STORE_FLAG_VALUE < 0)
#endif
		    )
Richard Kenner committed
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
		   && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
	    {
	      reverse_code = 1;
	      x = p->exp;
	      break;
	    }

	  /* If this is fp + constant, the equivalent is a better operand since
	     it may let us predict the value of the comparison.  */
	  else if (NONZERO_BASE_PLUS_P (p->exp))
	    {
	      arg1 = p->exp;
	      continue;
	    }
	}

      /* If we didn't find a useful equivalence for ARG1, we are done.
	 Otherwise, set up for the next iteration.  */
      if (x == 0)
	break;

      arg1 = XEXP (x, 0),  arg2 = XEXP (x, 1);
      if (GET_RTX_CLASS (GET_CODE (x)) == '<')
	code = GET_CODE (x);

      if (reverse_code)
	code = reverse_condition (code);
    }

3059 3060 3061
  /* Return our results.  Return the modes from before fold_rtx
     because fold_rtx might produce const_int, and then it's too late.  */
  *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
Richard Kenner committed
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
  *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);

  return code;
}

/* Try to simplify a unary operation CODE whose output mode is to be
   MODE with input operand OP whose mode was originally OP_MODE.
   Return zero if no simplification can be made.  */

rtx
simplify_unary_operation (code, mode, op, op_mode)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op;
     enum machine_mode op_mode;
{
  register int width = GET_MODE_BITSIZE (mode);

  /* The order of these tests is critical so that, for example, we don't
     check the wrong mode (input vs. output) for a conversion operation,
     such as FIX.  At some point, this should be simplified.  */

3084
#if !defined(REAL_IS_NOT_DOUBLE) || defined(REAL_ARITHMETIC)
Richard Kenner committed
3085

3086 3087
  if (code == FLOAT && GET_MODE (op) == VOIDmode
      && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
Richard Kenner committed
3088
    {
3089
      HOST_WIDE_INT hv, lv;
Richard Kenner committed
3090 3091
      REAL_VALUE_TYPE d;

3092 3093 3094
      if (GET_CODE (op) == CONST_INT)
	lv = INTVAL (op), hv = INTVAL (op) < 0 ? -1 : 0;
      else
3095
	lv = CONST_DOUBLE_LOW (op),  hv = CONST_DOUBLE_HIGH (op);
Richard Kenner committed
3096 3097

#ifdef REAL_ARITHMETIC
3098
      REAL_VALUE_FROM_INT (d, lv, hv, mode);
Richard Kenner committed
3099
#else
3100
      if (hv < 0)
Richard Kenner committed
3101
	{
3102
	  d = (double) (~ hv);
3103 3104
	  d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
		* (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
3105
	  d += (double) (unsigned HOST_WIDE_INT) (~ lv);
Richard Kenner committed
3106 3107 3108 3109
	  d = (- d - 1.0);
	}
      else
	{
3110
	  d = (double) hv;
3111 3112
	  d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
		* (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
3113
	  d += (double) (unsigned HOST_WIDE_INT) lv;
Richard Kenner committed
3114 3115
	}
#endif  /* REAL_ARITHMETIC */
3116
      d = real_value_truncate (mode, d);
Richard Kenner committed
3117 3118
      return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
    }
3119 3120
  else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
	   && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
Richard Kenner committed
3121
    {
3122
      HOST_WIDE_INT hv, lv;
Richard Kenner committed
3123 3124
      REAL_VALUE_TYPE d;

3125 3126 3127
      if (GET_CODE (op) == CONST_INT)
	lv = INTVAL (op), hv = INTVAL (op) < 0 ? -1 : 0;
      else
3128
	lv = CONST_DOUBLE_LOW (op),  hv = CONST_DOUBLE_HIGH (op);
3129

3130 3131 3132 3133 3134 3135 3136 3137
      if (op_mode == VOIDmode)
	{
	  /* We don't know how to interpret negative-looking numbers in
	     this case, so don't try to fold those.  */
	  if (hv < 0)
	    return 0;
	}
      else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
3138 3139 3140 3141
	;
      else
	hv = 0, lv &= GET_MODE_MASK (op_mode);

Richard Kenner committed
3142
#ifdef REAL_ARITHMETIC
3143
      REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
Richard Kenner committed
3144
#else
3145

3146
      d = (double) (unsigned HOST_WIDE_INT) hv;
3147 3148
      d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
	    * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
3149
      d += (double) (unsigned HOST_WIDE_INT) lv;
Richard Kenner committed
3150
#endif  /* REAL_ARITHMETIC */
3151
      d = real_value_truncate (mode, d);
Richard Kenner committed
3152 3153 3154 3155
      return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
    }
#endif

3156 3157
  if (GET_CODE (op) == CONST_INT
      && width <= HOST_BITS_PER_WIDE_INT && width > 0)
Richard Kenner committed
3158
    {
3159 3160
      register HOST_WIDE_INT arg0 = INTVAL (op);
      register HOST_WIDE_INT val;
Richard Kenner committed
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189

      switch (code)
	{
	case NOT:
	  val = ~ arg0;
	  break;

	case NEG:
	  val = - arg0;
	  break;

	case ABS:
	  val = (arg0 >= 0 ? arg0 : - arg0);
	  break;

	case FFS:
	  /* Don't use ffs here.  Instead, get low order bit and then its
	     number.  If arg0 is zero, this will return 0, as desired.  */
	  arg0 &= GET_MODE_MASK (mode);
	  val = exact_log2 (arg0 & (- arg0)) + 1;
	  break;

	case TRUNCATE:
	  val = arg0;
	  break;

	case ZERO_EXTEND:
	  if (op_mode == VOIDmode)
	    op_mode = mode;
3190
	  if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
3191 3192 3193 3194 3195 3196 3197 3198
	    {
	      /* If we were really extending the mode,
		 we would have to distinguish between zero-extension
		 and sign-extension.  */
	      if (width != GET_MODE_BITSIZE (op_mode))
		abort ();
	      val = arg0;
	    }
3199 3200
	  else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
	    val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
Richard Kenner committed
3201 3202 3203 3204 3205 3206 3207
	  else
	    return 0;
	  break;

	case SIGN_EXTEND:
	  if (op_mode == VOIDmode)
	    op_mode = mode;
3208
	  if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
3209 3210 3211 3212 3213 3214 3215 3216
	    {
	      /* If we were really extending the mode,
		 we would have to distinguish between zero-extension
		 and sign-extension.  */
	      if (width != GET_MODE_BITSIZE (op_mode))
		abort ();
	      val = arg0;
	    }
3217
	  else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
Richard Kenner committed
3218
	    {
3219 3220 3221 3222 3223
	      val
		= arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
	      if (val
		  & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
		val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
Richard Kenner committed
3224 3225 3226 3227 3228
	    }
	  else
	    return 0;
	  break;

3229 3230 3231
	case SQRT:
	  return 0;

Richard Kenner committed
3232 3233 3234 3235 3236 3237 3238 3239
	default:
	  abort ();
	}

      /* Clear the bits that don't belong in our mode,
	 unless they and our sign bit are all one.
	 So we get either a reasonable negative value or a reasonable
	 unsigned value for this mode.  */
3240 3241 3242
      if (width < HOST_BITS_PER_WIDE_INT
	  && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
	      != ((HOST_WIDE_INT) (-1) << (width - 1))))
3243
	val &= ((HOST_WIDE_INT) 1 << width) - 1;
Richard Kenner committed
3244

3245
      return GEN_INT (val);
Richard Kenner committed
3246 3247 3248
    }

  /* We can do some operations on integer CONST_DOUBLEs.  Also allow
Mike Stump committed
3249
     for a DImode operation on a CONST_INT.  */
3250
  else if (GET_MODE (op) == VOIDmode && width <= HOST_BITS_PER_INT * 2
Richard Kenner committed
3251 3252
	   && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
    {
3253
      HOST_WIDE_INT l1, h1, lv, hv;
Richard Kenner committed
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280

      if (GET_CODE (op) == CONST_DOUBLE)
	l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
      else
	l1 = INTVAL (op), h1 = l1 < 0 ? -1 : 0;

      switch (code)
	{
	case NOT:
	  lv = ~ l1;
	  hv = ~ h1;
	  break;

	case NEG:
	  neg_double (l1, h1, &lv, &hv);
	  break;

	case ABS:
	  if (h1 < 0)
	    neg_double (l1, h1, &lv, &hv);
	  else
	    lv = l1, hv = h1;
	  break;

	case FFS:
	  hv = 0;
	  if (l1 == 0)
3281
	    lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & (-h1)) + 1;
Richard Kenner committed
3282 3283 3284 3285 3286
	  else
	    lv = exact_log2 (l1 & (-l1)) + 1;
	  break;

	case TRUNCATE:
3287
	  /* This is just a change-of-mode, so do nothing.  */
3288
	  lv = l1, hv = h1;
Richard Kenner committed
3289 3290
	  break;

3291 3292
	case ZERO_EXTEND:
	  if (op_mode == VOIDmode
3293
	      || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
3294 3295 3296 3297 3298 3299 3300 3301
	    return 0;

	  hv = 0;
	  lv = l1 & GET_MODE_MASK (op_mode);
	  break;

	case SIGN_EXTEND:
	  if (op_mode == VOIDmode
3302
	      || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
3303 3304 3305 3306
	    return 0;
	  else
	    {
	      lv = l1 & GET_MODE_MASK (op_mode);
3307 3308 3309 3310
	      if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
		  && (lv & ((HOST_WIDE_INT) 1
			    << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
		lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
3311

3312
	      hv = (lv < 0) ? ~ (HOST_WIDE_INT) 0 : 0;
3313 3314 3315
	    }
	  break;

3316 3317 3318
	case SQRT:
	  return 0;

Richard Kenner committed
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
	default:
	  return 0;
	}

      return immed_double_const (lv, hv, mode);
    }

#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
  else if (GET_CODE (op) == CONST_DOUBLE
	   && GET_MODE_CLASS (mode) == MODE_FLOAT)
    {
      REAL_VALUE_TYPE d;
      jmp_buf handler;
      rtx x;

      if (setjmp (handler))
	/* There used to be a warning here, but that is inadvisable.
	   People may want to cause traps, and the natural way
	   to do it should not get a warning.  */
	return 0;

      set_float_handler (handler);

      REAL_VALUE_FROM_CONST_DOUBLE (d, op);

      switch (code)
	{
	case NEG:
	  d = REAL_VALUE_NEGATE (d);
	  break;

	case ABS:
3351
	  if (REAL_VALUE_NEGATIVE (d))
Richard Kenner committed
3352 3353 3354 3355
	    d = REAL_VALUE_NEGATE (d);
	  break;

	case FLOAT_TRUNCATE:
3356
	  d = real_value_truncate (mode, d);
Richard Kenner committed
3357 3358 3359 3360 3361 3362 3363
	  break;

	case FLOAT_EXTEND:
	  /* All this does is change the mode.  */
	  break;

	case FIX:
3364
	  d = REAL_VALUE_RNDZINT (d);
Richard Kenner committed
3365 3366 3367
	  break;

	case UNSIGNED_FIX:
3368
	  d = REAL_VALUE_UNSIGNED_RNDZINT (d);
Richard Kenner committed
3369 3370
	  break;

3371 3372 3373
	case SQRT:
	  return 0;

Richard Kenner committed
3374 3375 3376 3377
	default:
	  abort ();
	}

3378
      x = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
3379
      set_float_handler (NULL_PTR);
Richard Kenner committed
3380 3381
      return x;
    }
3382 3383 3384 3385

  else if (GET_CODE (op) == CONST_DOUBLE
	   && GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
	   && GET_MODE_CLASS (mode) == MODE_INT
3386
	   && width <= HOST_BITS_PER_WIDE_INT && width > 0)
Richard Kenner committed
3387 3388 3389
    {
      REAL_VALUE_TYPE d;
      jmp_buf handler;
3390
      HOST_WIDE_INT val;
Richard Kenner committed
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412

      if (setjmp (handler))
	return 0;

      set_float_handler (handler);

      REAL_VALUE_FROM_CONST_DOUBLE (d, op);

      switch (code)
	{
	case FIX:
	  val = REAL_VALUE_FIX (d);
	  break;

	case UNSIGNED_FIX:
	  val = REAL_VALUE_UNSIGNED_FIX (d);
	  break;

	default:
	  abort ();
	}

3413
      set_float_handler (NULL_PTR);
Richard Kenner committed
3414 3415 3416 3417 3418

      /* Clear the bits that don't belong in our mode,
	 unless they and our sign bit are all one.
	 So we get either a reasonable negative value or a reasonable
	 unsigned value for this mode.  */
3419 3420 3421 3422
      if (width < HOST_BITS_PER_WIDE_INT
	  && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
	      != ((HOST_WIDE_INT) (-1) << (width - 1))))
	val &= ((HOST_WIDE_INT) 1 << width) - 1;
Richard Kenner committed
3423

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
      /* If this would be an entire word for the target, but is not for
	 the host, then sign-extend on the host so that the number will look
	 the same way on the host that it would on the target.

	 For example, when building a 64 bit alpha hosted 32 bit sparc
	 targeted compiler, then we want the 32 bit unsigned value -1 to be
	 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
	 The later confuses the sparc backend.  */

      if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
	  && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
	val |= ((HOST_WIDE_INT) (-1) << width);

3437
      return GEN_INT (val);
Richard Kenner committed
3438 3439
    }
#endif
3440 3441 3442
  /* This was formerly used only for non-IEEE float.
     eggert@twinsun.com says it is safe for IEEE also.  */
  else
Richard Kenner committed
3443 3444
    {
      /* There are some simplifications we can do even if the operands
3445
	 aren't constant.  */
Richard Kenner committed
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
      switch (code)
	{
	case NEG:
	case NOT:
	  /* (not (not X)) == X, similarly for NEG.  */
	  if (GET_CODE (op) == code)
	    return XEXP (op, 0);
	  break;

	case SIGN_EXTEND:
	  /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
	     becomes just the MINUS if its mode is MODE.  This allows
	     folding switch statements on machines using casesi (such as
	     the Vax).  */
	  if (GET_CODE (op) == TRUNCATE
	      && GET_MODE (XEXP (op, 0)) == mode
	      && GET_CODE (XEXP (op, 0)) == MINUS
	      && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
	      && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
	    return XEXP (op, 0);
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480

#ifdef POINTERS_EXTEND_UNSIGNED
	  if (! POINTERS_EXTEND_UNSIGNED
	      && mode == Pmode && GET_MODE (op) == ptr_mode
	      && CONSTANT_P (op))
	    return convert_memory_address (Pmode, op);
#endif
	  break;

#ifdef POINTERS_EXTEND_UNSIGNED
	case ZERO_EXTEND:
	  if (POINTERS_EXTEND_UNSIGNED
	      && mode == Pmode && GET_MODE (op) == ptr_mode
	      && CONSTANT_P (op))
	    return convert_memory_address (Pmode, op);
Richard Kenner committed
3481
	  break;
3482
#endif
3483 3484 3485
	  
	default:
	  break;
Richard Kenner committed
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
	}

      return 0;
    }
}

/* Simplify a binary operation CODE with result mode MODE, operating on OP0
   and OP1.  Return 0 if no simplification is possible.

   Don't use this for relational operations such as EQ or LT.
   Use simplify_relational_operation instead.  */

rtx
simplify_binary_operation (code, mode, op0, op1)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
{
3504 3505
  register HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
  HOST_WIDE_INT val;
Richard Kenner committed
3506
  int width = GET_MODE_BITSIZE (mode);
3507
  rtx tem;
Richard Kenner committed
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531

  /* Relational operations don't work here.  We must know the mode
     of the operands in order to do the comparison correctly.
     Assuming a full word can give incorrect results.
     Consider comparing 128 with -128 in QImode.  */

  if (GET_RTX_CLASS (code) == '<')
    abort ();

#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
  if (GET_MODE_CLASS (mode) == MODE_FLOAT
      && GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
      && mode == GET_MODE (op0) && mode == GET_MODE (op1))
    {
      REAL_VALUE_TYPE f0, f1, value;
      jmp_buf handler;

      if (setjmp (handler))
	return 0;

      set_float_handler (handler);

      REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
      REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
3532 3533
      f0 = real_value_truncate (mode, f0);
      f1 = real_value_truncate (mode, f1);
Richard Kenner committed
3534 3535

#ifdef REAL_ARITHMETIC
Jeff Law committed
3536 3537 3538 3539
#ifndef REAL_INFINITY
      if (code == DIV && REAL_VALUES_EQUAL (f1, dconst0))
	return 0;
#endif
3540
      REAL_ARITHMETIC (value, rtx_to_tree_code (code), f0, f1);
Richard Kenner committed
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
#else
      switch (code)
	{
	case PLUS:
	  value = f0 + f1;
	  break;
	case MINUS:
	  value = f0 - f1;
	  break;
	case MULT:
	  value = f0 * f1;
	  break;
	case DIV:
#ifndef REAL_INFINITY
	  if (f1 == 0)
3556
	    return 0;
Richard Kenner committed
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
#endif
	  value = f0 / f1;
	  break;
	case SMIN:
	  value = MIN (f0, f1);
	  break;
	case SMAX:
	  value = MAX (f0, f1);
	  break;
	default:
	  abort ();
	}
#endif

3571
      value = real_value_truncate (mode, value);
3572
      set_float_handler (NULL_PTR);
3573
      return CONST_DOUBLE_FROM_REAL_VALUE (value, mode);
Richard Kenner committed
3574
    }
3575
#endif  /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
Richard Kenner committed
3576 3577

  /* We can fold some multi-word operations.  */
3578
  if (GET_MODE_CLASS (mode) == MODE_INT
3579
      && width == HOST_BITS_PER_WIDE_INT * 2
3580
      && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
3581
      && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
Richard Kenner committed
3582
    {
3583
      HOST_WIDE_INT l1, l2, h1, h2, lv, hv;
Richard Kenner committed
3584

3585 3586 3587 3588
      if (GET_CODE (op0) == CONST_DOUBLE)
	l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
      else
	l1 = INTVAL (op0), h1 = l1 < 0 ? -1 : 0;
Richard Kenner committed
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601

      if (GET_CODE (op1) == CONST_DOUBLE)
	l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
      else
	l2 = INTVAL (op1), h2 = l2 < 0 ? -1 : 0;

      switch (code)
	{
	case MINUS:
	  /* A - B == A + (-B).  */
	  neg_double (l2, h2, &lv, &hv);
	  l2 = lv, h2 = hv;

Mike Stump committed
3602
	  /* .. fall through ...  */
Richard Kenner committed
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629

	case PLUS:
	  add_double (l1, h1, l2, h2, &lv, &hv);
	  break;

	case MULT:
	  mul_double (l1, h1, l2, h2, &lv, &hv);
	  break;

	case DIV:  case MOD:   case UDIV:  case UMOD:
	  /* We'd need to include tree.h to do this and it doesn't seem worth
	     it.  */
	  return 0;

	case AND:
	  lv = l1 & l2, hv = h1 & h2;
	  break;

	case IOR:
	  lv = l1 | l2, hv = h1 | h2;
	  break;

	case XOR:
	  lv = l1 ^ l2, hv = h1 ^ h2;
	  break;

	case SMIN:
3630 3631 3632 3633
	  if (h1 < h2
	      || (h1 == h2
		  && ((unsigned HOST_WIDE_INT) l1
		      < (unsigned HOST_WIDE_INT) l2)))
Richard Kenner committed
3634 3635 3636 3637 3638 3639
	    lv = l1, hv = h1;
	  else
	    lv = l2, hv = h2;
	  break;

	case SMAX:
3640 3641 3642 3643
	  if (h1 > h2
	      || (h1 == h2
		  && ((unsigned HOST_WIDE_INT) l1
		      > (unsigned HOST_WIDE_INT) l2)))
Richard Kenner committed
3644 3645 3646 3647 3648 3649
	    lv = l1, hv = h1;
	  else
	    lv = l2, hv = h2;
	  break;

	case UMIN:
3650 3651 3652 3653
	  if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
	      || (h1 == h2
		  && ((unsigned HOST_WIDE_INT) l1
		      < (unsigned HOST_WIDE_INT) l2)))
Richard Kenner committed
3654 3655 3656 3657 3658 3659
	    lv = l1, hv = h1;
	  else
	    lv = l2, hv = h2;
	  break;

	case UMAX:
3660 3661 3662 3663
	  if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
	      || (h1 == h2
		  && ((unsigned HOST_WIDE_INT) l1
		      > (unsigned HOST_WIDE_INT) l2)))
Richard Kenner committed
3664 3665 3666 3667 3668 3669
	    lv = l1, hv = h1;
	  else
	    lv = l2, hv = h2;
	  break;

	case LSHIFTRT:   case ASHIFTRT:
3670
	case ASHIFT:
Richard Kenner committed
3671 3672
	case ROTATE:     case ROTATERT:
#ifdef SHIFT_COUNT_TRUNCATED
3673 3674
	  if (SHIFT_COUNT_TRUNCATED)
	    l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
Richard Kenner committed
3675 3676 3677 3678 3679 3680 3681 3682
#endif

	  if (h2 != 0 || l2 < 0 || l2 >= GET_MODE_BITSIZE (mode))
	    return 0;

	  if (code == LSHIFTRT || code == ASHIFTRT)
	    rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
			   code == ASHIFTRT);
3683 3684
	  else if (code == ASHIFT)
	    lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
Richard Kenner committed
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	  else if (code == ROTATE)
	    lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
	  else /* code == ROTATERT */
	    rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
	  break;

	default:
	  return 0;
	}

      return immed_double_const (lv, hv, mode);
    }

  if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
3699
      || width > HOST_BITS_PER_WIDE_INT || width == 0)
Richard Kenner committed
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
    {
      /* Even if we can't compute a constant result,
	 there are some cases worth simplifying.  */

      switch (code)
	{
	case PLUS:
	  /* In IEEE floating point, x+0 is not the same as x.  Similarly
	     for the other optimizations below.  */
	  if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
3710
	      && FLOAT_MODE_P (mode) && ! flag_fast_math)
Richard Kenner committed
3711 3712 3713 3714 3715 3716 3717
	    break;

	  if (op1 == CONST0_RTX (mode))
	    return op0;

	  /* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
	  if (GET_CODE (op0) == NEG)
3718
	    return cse_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
Richard Kenner committed
3719
	  else if (GET_CODE (op1) == NEG)
3720
	    return cse_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
Richard Kenner committed
3721

3722 3723
	  /* Handle both-operands-constant cases.  We can only add
	     CONST_INTs to constants since the sum of relocatable symbols
3724 3725 3726
	     can't be handled by most assemblers.  Don't add CONST_INT
	     to CONST_INT since overflow won't be computed properly if wider
	     than HOST_BITS_PER_WIDE_INT.  */
Richard Kenner committed
3727

3728 3729
	  if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
	      && GET_CODE (op1) == CONST_INT)
3730
	    return plus_constant (op0, INTVAL (op1));
3731 3732
	  else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
		   && GET_CODE (op0) == CONST_INT)
3733
	    return plus_constant (op1, INTVAL (op0));
Richard Kenner committed
3734

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	  /* See if this is something like X * C - X or vice versa or
	     if the multiplication is written as a shift.  If so, we can
	     distribute and make a new multiply, shift, or maybe just
	     have X (if C is 2 in the example above).  But don't make
	     real multiply if we didn't have one before.  */

	  if (! FLOAT_MODE_P (mode))
	    {
	      HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
	      rtx lhs = op0, rhs = op1;
	      int had_mult = 0;

	      if (GET_CODE (lhs) == NEG)
		coeff0 = -1, lhs = XEXP (lhs, 0);
	      else if (GET_CODE (lhs) == MULT
		       && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
		{
		  coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
		  had_mult = 1;
		}
	      else if (GET_CODE (lhs) == ASHIFT
		       && GET_CODE (XEXP (lhs, 1)) == CONST_INT
		       && INTVAL (XEXP (lhs, 1)) >= 0
		       && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
		{
		  coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
		  lhs = XEXP (lhs, 0);
		}

	      if (GET_CODE (rhs) == NEG)
		coeff1 = -1, rhs = XEXP (rhs, 0);
	      else if (GET_CODE (rhs) == MULT
		       && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
		{
		  coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
		  had_mult = 1;
		}
	      else if (GET_CODE (rhs) == ASHIFT
		       && GET_CODE (XEXP (rhs, 1)) == CONST_INT
		       && INTVAL (XEXP (rhs, 1)) >= 0
		       && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
		{
		  coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
		  rhs = XEXP (rhs, 0);
		}

	      if (rtx_equal_p (lhs, rhs))
		{
		  tem = cse_gen_binary (MULT, mode, lhs,
					GEN_INT (coeff0 + coeff1));
		  return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
		}
	    }

3789 3790 3791 3792 3793
	  /* If one of the operands is a PLUS or a MINUS, see if we can
	     simplify this by the associative law. 
	     Don't use the associative law for floating point.
	     The inaccuracy makes it nonassociative,
	     and subtle programs can break if operations are associated.  */
Richard Kenner committed
3794

3795
	  if (INTEGRAL_MODE_P (mode)
3796 3797 3798 3799
	      && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
		  || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
	      && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
	    return tem;
Richard Kenner committed
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
	  break;

	case COMPARE:
#ifdef HAVE_cc0
	  /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
	     using cc0, in which case we want to leave it as a COMPARE
	     so we can distinguish it from a register-register-copy.

	     In IEEE floating point, x-0 is not the same as x.  */

	  if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3811
	       || ! FLOAT_MODE_P (mode) || flag_fast_math)
Richard Kenner committed
3812 3813 3814 3815 3816 3817 3818 3819
	      && op1 == CONST0_RTX (mode))
	    return op0;
#else
	  /* Do nothing here.  */
#endif
	  break;
	      
	case MINUS:
3820 3821 3822
	  /* None of these optimizations can be done for IEEE
	     floating point.  */
	  if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
3823
	      && FLOAT_MODE_P (mode) && ! flag_fast_math)
3824 3825
	    break;

3826 3827 3828
	  /* We can't assume x-x is 0 even with non-IEEE floating point,
	     but since it is zero except in very strange circumstances, we
	     will treat it as zero with -ffast-math.  */
Richard Kenner committed
3829 3830
	  if (rtx_equal_p (op0, op1)
	      && ! side_effects_p (op0)
3831 3832
	      && (! FLOAT_MODE_P (mode) || flag_fast_math))
	    return CONST0_RTX (mode);
Richard Kenner committed
3833 3834 3835

	  /* Change subtraction from zero into negation.  */
	  if (op0 == CONST0_RTX (mode))
3836
	    return gen_rtx_NEG (mode, op1);
Richard Kenner committed
3837

3838 3839
	  /* (-1 - a) is ~a.  */
	  if (op0 == constm1_rtx)
3840
	    return gen_rtx_NOT (mode, op1);
3841

Richard Kenner committed
3842 3843 3844 3845
	  /* Subtracting 0 has no effect.  */
	  if (op1 == CONST0_RTX (mode))
	    return op0;

3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
	  /* See if this is something like X * C - X or vice versa or
	     if the multiplication is written as a shift.  If so, we can
	     distribute and make a new multiply, shift, or maybe just
	     have X (if C is 2 in the example above).  But don't make
	     real multiply if we didn't have one before.  */

	  if (! FLOAT_MODE_P (mode))
	    {
	      HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
	      rtx lhs = op0, rhs = op1;
	      int had_mult = 0;

	      if (GET_CODE (lhs) == NEG)
		coeff0 = -1, lhs = XEXP (lhs, 0);
	      else if (GET_CODE (lhs) == MULT
		       && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
		{
		  coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
		  had_mult = 1;
		}
	      else if (GET_CODE (lhs) == ASHIFT
		       && GET_CODE (XEXP (lhs, 1)) == CONST_INT
		       && INTVAL (XEXP (lhs, 1)) >= 0
		       && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
		{
		  coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
		  lhs = XEXP (lhs, 0);
		}

	      if (GET_CODE (rhs) == NEG)
		coeff1 = - 1, rhs = XEXP (rhs, 0);
	      else if (GET_CODE (rhs) == MULT
		       && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
		{
		  coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
		  had_mult = 1;
		}
	      else if (GET_CODE (rhs) == ASHIFT
		       && GET_CODE (XEXP (rhs, 1)) == CONST_INT
		       && INTVAL (XEXP (rhs, 1)) >= 0
		       && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
		{
		  coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
		  rhs = XEXP (rhs, 0);
		}

	      if (rtx_equal_p (lhs, rhs))
		{
		  tem = cse_gen_binary (MULT, mode, lhs,
					GEN_INT (coeff0 - coeff1));
		  return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
		}
	    }

Richard Kenner committed
3900 3901
	  /* (a - (-b)) -> (a + b).  */
	  if (GET_CODE (op1) == NEG)
3902
	    return cse_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
Richard Kenner committed
3903

3904 3905 3906
	  /* If one of the operands is a PLUS or a MINUS, see if we can
	     simplify this by the associative law. 
	     Don't use the associative law for floating point.
Richard Kenner committed
3907 3908 3909
	     The inaccuracy makes it nonassociative,
	     and subtle programs can break if operations are associated.  */

3910
	  if (INTEGRAL_MODE_P (mode)
3911 3912 3913 3914
	      && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
		  || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
	      && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
	    return tem;
Richard Kenner committed
3915 3916

	  /* Don't let a relocatable value get a negative coeff.  */
3917
	  if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
Richard Kenner committed
3918
	    return plus_constant (op0, - INTVAL (op1));
3919 3920 3921 3922 3923

	  /* (x - (x & y)) -> (x & ~y) */
	  if (GET_CODE (op1) == AND)
	    {
	     if (rtx_equal_p (op0, XEXP (op1, 0)))
3924
	       return cse_gen_binary (AND, mode, op0, gen_rtx_NOT (mode, XEXP (op1, 1)));
3925
	     if (rtx_equal_p (op0, XEXP (op1, 1)))
3926
	       return cse_gen_binary (AND, mode, op0, gen_rtx_NOT (mode, XEXP (op1, 0)));
3927
	   }
Richard Kenner committed
3928 3929 3930 3931 3932
	  break;

	case MULT:
	  if (op1 == constm1_rtx)
	    {
3933
	      tem = simplify_unary_operation (NEG, mode, op0, mode);
Richard Kenner committed
3934

3935
	      return tem ? tem : gen_rtx_NEG (mode, op0);
Richard Kenner committed
3936 3937 3938 3939
	    }

	  /* In IEEE floating point, x*0 is not always 0.  */
	  if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3940
	       || ! FLOAT_MODE_P (mode) || flag_fast_math)
Richard Kenner committed
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
	      && op1 == CONST0_RTX (mode)
	      && ! side_effects_p (op0))
	    return op1;

	  /* In IEEE floating point, x*1 is not equivalent to x for nans.
	     However, ANSI says we can drop signals,
	     so we can do this anyway.  */
	  if (op1 == CONST1_RTX (mode))
	    return op0;

3951 3952
	  /* Convert multiply by constant power of two into shift unless
	     we are still generating RTL.  This test is a kludge.  */
Richard Kenner committed
3953
	  if (GET_CODE (op1) == CONST_INT
3954
	      && (val = exact_log2 (INTVAL (op1))) >= 0
3955 3956 3957 3958 3959
	      /* If the mode is larger than the host word size, and the
		 uppermost bit is set, then this isn't a power of two due
		 to implicit sign extension.  */
	      && (width <= HOST_BITS_PER_WIDE_INT
		  || val != HOST_BITS_PER_WIDE_INT - 1)
3960
	      && ! rtx_equal_function_value_matters)
3961
	    return gen_rtx_ASHIFT (mode, op0, GEN_INT (val));
Richard Kenner committed
3962 3963 3964 3965 3966

	  if (GET_CODE (op1) == CONST_DOUBLE
	      && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT)
	    {
	      REAL_VALUE_TYPE d;
3967 3968 3969 3970 3971 3972 3973
	      jmp_buf handler;
	      int op1is2, op1ism1;

	      if (setjmp (handler))
		return 0;

	      set_float_handler (handler);
Richard Kenner committed
3974
	      REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3975 3976 3977
	      op1is2 = REAL_VALUES_EQUAL (d, dconst2);
	      op1ism1 = REAL_VALUES_EQUAL (d, dconstm1);
	      set_float_handler (NULL_PTR);
Richard Kenner committed
3978 3979

	      /* x*2 is x+x and x*(-1) is -x */
3980
	      if (op1is2 && GET_MODE (op0) == mode)
3981
		return gen_rtx_PLUS (mode, op0, copy_rtx (op0));
Richard Kenner committed
3982

3983
	      else if (op1ism1 && GET_MODE (op0) == mode)
3984
		return gen_rtx_NEG (mode, op0);
Richard Kenner committed
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
	    }
	  break;

	case IOR:
	  if (op1 == const0_rtx)
	    return op0;
	  if (GET_CODE (op1) == CONST_INT
	      && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
	    return op1;
	  if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
	    return op0;
	  /* A | (~A) -> -1 */
	  if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
	       || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
3999
	      && ! side_effects_p (op0)
4000
	      && GET_MODE_CLASS (mode) != MODE_CC)
Richard Kenner committed
4001 4002 4003 4004 4005 4006 4007 4008
	    return constm1_rtx;
	  break;

	case XOR:
	  if (op1 == const0_rtx)
	    return op0;
	  if (GET_CODE (op1) == CONST_INT
	      && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
4009
	    return gen_rtx_NOT (mode, op0);
4010
	  if (op0 == op1 && ! side_effects_p (op0)
4011
	      && GET_MODE_CLASS (mode) != MODE_CC)
Richard Kenner committed
4012 4013 4014 4015 4016 4017 4018 4019 4020
	    return const0_rtx;
	  break;

	case AND:
	  if (op1 == const0_rtx && ! side_effects_p (op0))
	    return const0_rtx;
	  if (GET_CODE (op1) == CONST_INT
	      && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
	    return op0;
4021
	  if (op0 == op1 && ! side_effects_p (op0)
4022
	      && GET_MODE_CLASS (mode) != MODE_CC)
Richard Kenner committed
4023 4024 4025 4026
	    return op0;
	  /* A & (~A) -> 0 */
	  if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
	       || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
4027
	      && ! side_effects_p (op0)
4028
	      && GET_MODE_CLASS (mode) != MODE_CC)
Richard Kenner committed
4029 4030 4031 4032 4033 4034 4035 4036
	    return const0_rtx;
	  break;

	case UDIV:
	  /* Convert divide by power of two into shift (divide by 1 handled
	     below).  */
	  if (GET_CODE (op1) == CONST_INT
	      && (arg1 = exact_log2 (INTVAL (op1))) > 0)
4037
	    return gen_rtx_LSHIFTRT (mode, op0, GEN_INT (arg1));
Richard Kenner committed
4038

Mike Stump committed
4039
	  /* ... fall through ...  */
Richard Kenner committed
4040 4041 4042 4043

	case DIV:
	  if (op1 == CONST1_RTX (mode))
	    return op0;
4044 4045 4046

	  /* In IEEE floating point, 0/x is not always 0.  */
	  if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4047
	       || ! FLOAT_MODE_P (mode) || flag_fast_math)
4048 4049
	      && op0 == CONST0_RTX (mode)
	      && ! side_effects_p (op1))
Richard Kenner committed
4050
	    return op0;
4051

Richard Kenner committed
4052
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4053 4054 4055
	  /* Change division by a constant into multiplication.  Only do
	     this with -ffast-math until an expert says it is safe in
	     general.  */
Richard Kenner committed
4056 4057
	  else if (GET_CODE (op1) == CONST_DOUBLE
		   && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT
4058 4059
		   && op1 != CONST0_RTX (mode)
		   && flag_fast_math)
Richard Kenner committed
4060 4061 4062
	    {
	      REAL_VALUE_TYPE d;
	      REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
4063 4064 4065

	      if (! REAL_VALUES_EQUAL (d, dconst0))
		{
Richard Kenner committed
4066
#if defined (REAL_ARITHMETIC)
4067
		  REAL_ARITHMETIC (d, rtx_to_tree_code (DIV), dconst1, d);
4068 4069
		  return gen_rtx_MULT (mode, op0, 
				       CONST_DOUBLE_FROM_REAL_VALUE (d, mode));
Richard Kenner committed
4070
#else
4071 4072
		  return gen_rtx_MULT (mode, op0, 
				       CONST_DOUBLE_FROM_REAL_VALUE (1./d, mode));
Richard Kenner committed
4073
#endif
4074 4075
		}
	    }
Richard Kenner committed
4076 4077 4078 4079 4080 4081 4082
#endif
	  break;

	case UMOD:
	  /* Handle modulus by power of two (mod with 1 handled below).  */
	  if (GET_CODE (op1) == CONST_INT
	      && exact_log2 (INTVAL (op1)) > 0)
4083
	    return gen_rtx_AND (mode, op0, GEN_INT (INTVAL (op1) - 1));
Richard Kenner committed
4084

Mike Stump committed
4085
	  /* ... fall through ...  */
Richard Kenner committed
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

	case MOD:
	  if ((op0 == const0_rtx || op1 == const1_rtx)
	      && ! side_effects_p (op0) && ! side_effects_p (op1))
	    return const0_rtx;
	  break;

	case ROTATERT:
	case ROTATE:
	  /* Rotating ~0 always results in ~0.  */
4096
	  if (GET_CODE (op0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
Richard Kenner committed
4097 4098 4099 4100
	      && INTVAL (op0) == GET_MODE_MASK (mode)
	      && ! side_effects_p (op1))
	    return op0;

Mike Stump committed
4101
	  /* ... fall through ...  */
Richard Kenner committed
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

	case ASHIFT:
	case ASHIFTRT:
	case LSHIFTRT:
	  if (op1 == const0_rtx)
	    return op0;
	  if (op0 == const0_rtx && ! side_effects_p (op1))
	    return op0;
	  break;

	case SMIN:
4113 4114
	  if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT 
	      && INTVAL (op1) == (HOST_WIDE_INT) 1 << (width -1)
Richard Kenner committed
4115 4116 4117 4118 4119 4120 4121
	      && ! side_effects_p (op0))
	    return op1;
	  else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
	    return op0;
	  break;
	   
	case SMAX:
4122
	  if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
4123 4124
	      && (INTVAL (op1)
		  == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
Richard Kenner committed
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
	      && ! side_effects_p (op0))
	    return op1;
	  else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
	    return op0;
	  break;

	case UMIN:
	  if (op1 == const0_rtx && ! side_effects_p (op0))
	    return op1;
	  else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
	    return op0;
	  break;
	    
	case UMAX:
	  if (op1 == constm1_rtx && ! side_effects_p (op0))
	    return op1;
	  else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
	    return op0;
	  break;

	default:
	  abort ();
	}
      
      return 0;
    }

  /* Get the integer argument values in two forms:
     zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S.  */

  arg0 = INTVAL (op0);
  arg1 = INTVAL (op1);

4158
  if (width < HOST_BITS_PER_WIDE_INT)
Richard Kenner committed
4159
    {
4160 4161
      arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
      arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
Richard Kenner committed
4162 4163

      arg0s = arg0;
4164 4165
      if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
	arg0s |= ((HOST_WIDE_INT) (-1) << width);
Richard Kenner committed
4166 4167

      arg1s = arg1;
4168 4169
      if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
	arg1s |= ((HOST_WIDE_INT) (-1) << width);
Richard Kenner committed
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
    }
  else
    {
      arg0s = arg0;
      arg1s = arg1;
    }

  /* Compute the value of the arithmetic.  */

  switch (code)
    {
    case PLUS:
4182
      val = arg0s + arg1s;
Richard Kenner committed
4183 4184 4185
      break;

    case MINUS:
4186
      val = arg0s - arg1s;
Richard Kenner committed
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
      break;

    case MULT:
      val = arg0s * arg1s;
      break;

    case DIV:
      if (arg1s == 0)
	return 0;
      val = arg0s / arg1s;
      break;

    case MOD:
      if (arg1s == 0)
	return 0;
      val = arg0s % arg1s;
      break;

    case UDIV:
      if (arg1 == 0)
	return 0;
4208
      val = (unsigned HOST_WIDE_INT) arg0 / arg1;
Richard Kenner committed
4209 4210 4211 4212 4213
      break;

    case UMOD:
      if (arg1 == 0)
	return 0;
4214
      val = (unsigned HOST_WIDE_INT) arg0 % arg1;
Richard Kenner committed
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
      break;

    case AND:
      val = arg0 & arg1;
      break;

    case IOR:
      val = arg0 | arg1;
      break;

    case XOR:
      val = arg0 ^ arg1;
      break;

    case LSHIFTRT:
      /* If shift count is undefined, don't fold it; let the machine do
	 what it wants.  But truncate it if the machine will do that.  */
      if (arg1 < 0)
	return 0;

#ifdef SHIFT_COUNT_TRUNCATED
4236
      if (SHIFT_COUNT_TRUNCATED)
4237
	arg1 %= width;
Richard Kenner committed
4238 4239
#endif

4240
      val = ((unsigned HOST_WIDE_INT) arg0) >> arg1;
Richard Kenner committed
4241 4242 4243 4244 4245 4246 4247
      break;

    case ASHIFT:
      if (arg1 < 0)
	return 0;

#ifdef SHIFT_COUNT_TRUNCATED
4248
      if (SHIFT_COUNT_TRUNCATED)
4249
	arg1 %= width;
Richard Kenner committed
4250 4251
#endif

4252
      val = ((unsigned HOST_WIDE_INT) arg0) << arg1;
Richard Kenner committed
4253 4254 4255 4256 4257 4258 4259
      break;

    case ASHIFTRT:
      if (arg1 < 0)
	return 0;

#ifdef SHIFT_COUNT_TRUNCATED
4260
      if (SHIFT_COUNT_TRUNCATED)
4261
	arg1 %= width;
Richard Kenner committed
4262 4263 4264
#endif

      val = arg0s >> arg1;
4265 4266 4267 4268 4269 4270

      /* Bootstrap compiler may not have sign extended the right shift.
	 Manually extend the sign to insure bootstrap cc matches gcc.  */
      if (arg0s < 0 && arg1 > 0)
	val |= ((HOST_WIDE_INT) -1) << (HOST_BITS_PER_WIDE_INT - arg1);

Richard Kenner committed
4271 4272 4273 4274 4275 4276 4277
      break;

    case ROTATERT:
      if (arg1 < 0)
	return 0;

      arg1 %= width;
4278 4279
      val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
	     | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
Richard Kenner committed
4280 4281 4282 4283 4284 4285 4286
      break;

    case ROTATE:
      if (arg1 < 0)
	return 0;

      arg1 %= width;
4287 4288
      val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
	     | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
Richard Kenner committed
4289 4290 4291 4292 4293 4294
      break;

    case COMPARE:
      /* Do nothing here.  */
      return 0;

4295 4296 4297 4298 4299
    case SMIN:
      val = arg0s <= arg1s ? arg0s : arg1s;
      break;

    case UMIN:
4300 4301
      val = ((unsigned HOST_WIDE_INT) arg0
	     <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
4302 4303 4304 4305 4306 4307 4308
      break;

    case SMAX:
      val = arg0s > arg1s ? arg0s : arg1s;
      break;

    case UMAX:
4309 4310
      val = ((unsigned HOST_WIDE_INT) arg0
	     > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
4311 4312
      break;

Richard Kenner committed
4313 4314 4315 4316 4317 4318 4319
    default:
      abort ();
    }

  /* Clear the bits that don't belong in our mode, unless they and our sign
     bit are all one.  So we get either a reasonable negative value or a
     reasonable unsigned value for this mode.  */
4320 4321 4322 4323 4324
  if (width < HOST_BITS_PER_WIDE_INT
      && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
	  != ((HOST_WIDE_INT) (-1) << (width - 1))))
    val &= ((HOST_WIDE_INT) 1 << width) - 1;

4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
  /* If this would be an entire word for the target, but is not for
     the host, then sign-extend on the host so that the number will look
     the same way on the host that it would on the target.

     For example, when building a 64 bit alpha hosted 32 bit sparc
     targeted compiler, then we want the 32 bit unsigned value -1 to be
     represented as a 64 bit value -1, and not as 0x00000000ffffffff.
     The later confuses the sparc backend.  */

  if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT && BITS_PER_WORD == width
      && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
    val |= ((HOST_WIDE_INT) (-1) << width);

4338
  return GEN_INT (val);
Richard Kenner committed
4339 4340
}

4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
/* Simplify a PLUS or MINUS, at least one of whose operands may be another
   PLUS or MINUS.

   Rather than test for specific case, we do this by a brute-force method
   and do all possible simplifications until no more changes occur.  Then
   we rebuild the operation.  */

static rtx
simplify_plus_minus (code, mode, op0, op1)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
{
  rtx ops[8];
  int negs[8];
  rtx result, tem;
4357
  int n_ops = 2, input_ops = 2, input_consts = 0, n_consts = 0;
4358
  int first = 1, negate = 0, changed;
4359
  int i, j;
4360

4361
  bzero ((char *) ops, sizeof ops);
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
  
  /* Set up the two operands and then expand them until nothing has been
     changed.  If we run out of room in our array, give up; this should
     almost never happen.  */

  ops[0] = op0, ops[1] = op1, negs[0] = 0, negs[1] = (code == MINUS);

  changed = 1;
  while (changed)
    {
      changed = 0;

      for (i = 0; i < n_ops; i++)
	switch (GET_CODE (ops[i]))
	  {
	  case PLUS:
	  case MINUS:
	    if (n_ops == 7)
	      return 0;

	    ops[n_ops] = XEXP (ops[i], 1);
	    negs[n_ops++] = GET_CODE (ops[i]) == MINUS ? !negs[i] : negs[i];
	    ops[i] = XEXP (ops[i], 0);
4385
	    input_ops++;
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
	    changed = 1;
	    break;

	  case NEG:
	    ops[i] = XEXP (ops[i], 0);
	    negs[i] = ! negs[i];
	    changed = 1;
	    break;

	  case CONST:
	    ops[i] = XEXP (ops[i], 0);
4397
	    input_consts++;
4398 4399 4400 4401 4402 4403 4404 4405
	    changed = 1;
	    break;

	  case NOT:
	    /* ~a -> (-a - 1) */
	    if (n_ops != 7)
	      {
		ops[n_ops] = constm1_rtx;
4406
		negs[n_ops++] = negs[i];
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
		ops[i] = XEXP (ops[i], 0);
		negs[i] = ! negs[i];
		changed = 1;
	      }
	    break;

	  case CONST_INT:
	    if (negs[i])
	      ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0, changed = 1;
	    break;
4417 4418 4419

	  default:
	    break;
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
	  }
    }

  /* If we only have two operands, we can't do anything.  */
  if (n_ops <= 2)
    return 0;

  /* Now simplify each pair of operands until nothing changes.  The first
     time through just simplify constants against each other.  */

  changed = 1;
  while (changed)
    {
      changed = first;

      for (i = 0; i < n_ops - 1; i++)
	for (j = i + 1; j < n_ops; j++)
	  if (ops[i] != 0 && ops[j] != 0
	      && (! first || (CONSTANT_P (ops[i]) && CONSTANT_P (ops[j]))))
	    {
	      rtx lhs = ops[i], rhs = ops[j];
	      enum rtx_code ncode = PLUS;

	      if (negs[i] && ! negs[j])
		lhs = ops[j], rhs = ops[i], ncode = MINUS;
	      else if (! negs[i] && negs[j])
		ncode = MINUS;

	      tem = simplify_binary_operation (ncode, mode, lhs, rhs);
4449
	      if (tem)
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
		{
		  ops[i] = tem, ops[j] = 0;
		  negs[i] = negs[i] && negs[j];
		  if (GET_CODE (tem) == NEG)
		    ops[i] = XEXP (tem, 0), negs[i] = ! negs[i];

		  if (GET_CODE (ops[i]) == CONST_INT && negs[i])
		    ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0;
		  changed = 1;
		}
	    }

      first = 0;
    }

  /* Pack all the operands to the lower-numbered entries and give up if
4466
     we didn't reduce the number of operands we had.  Make sure we
4467 4468 4469
     count a CONST as two operands.  If we have the same number of
     operands, but have made more CONSTs than we had, this is also
     an improvement, so accept it.  */
4470

4471
  for (i = 0, j = 0; j < n_ops; j++)
4472
    if (ops[j] != 0)
4473 4474 4475
      {
	ops[i] = ops[j], negs[i++] = negs[j];
	if (GET_CODE (ops[j]) == CONST)
4476
	  n_consts++;
4477
      }
4478

4479 4480
  if (i + n_consts > input_ops
      || (i + n_consts == input_ops && n_consts <= input_consts))
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
    return 0;

  n_ops = i;

  /* If we have a CONST_INT, put it last.  */
  for (i = 0; i < n_ops - 1; i++)
    if (GET_CODE (ops[i]) == CONST_INT)
      {
	tem = ops[n_ops - 1], ops[n_ops - 1] = ops[i] , ops[i] = tem;
	j = negs[n_ops - 1], negs[n_ops - 1] = negs[i], negs[i] = j;
      }

  /* Put a non-negated operand first.  If there aren't any, make all
     operands positive and negate the whole thing later.  */
  for (i = 0; i < n_ops && negs[i]; i++)
    ;

  if (i == n_ops)
    {
      for (i = 0; i < n_ops; i++)
	negs[i] = 0;
      negate = 1;
    }
  else if (i != 0)
    {
      tem = ops[0], ops[0] = ops[i], ops[i] = tem;
      j = negs[0], negs[0] = negs[i], negs[i] = j;
    }

  /* Now make the result by performing the requested operations.  */
  result = ops[0];
  for (i = 1; i < n_ops; i++)
    result = cse_gen_binary (negs[i] ? MINUS : PLUS, mode, result, ops[i]);

4515
  return negate ? gen_rtx_NEG (mode, result) : result;
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
}

/* Make a binary operation by properly ordering the operands and 
   seeing if the expression folds.  */

static rtx
cse_gen_binary (code, mode, op0, op1)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
{
  rtx tem;

  /* Put complex operands first and constants second if commutative.  */
  if (GET_RTX_CLASS (code) == 'c'
      && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
	  || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
	      && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
	  || (GET_CODE (op0) == SUBREG
	      && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
	      && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
    tem = op0, op0 = op1, op1 = tem;

  /* If this simplifies, do it.  */
  tem = simplify_binary_operation (code, mode, op0, op1);

  if (tem)
    return tem;

  /* Handle addition and subtraction of CONST_INT specially.  Otherwise,
     just form the operation.  */

  if (code == PLUS && GET_CODE (op1) == CONST_INT
      && GET_MODE (op0) != VOIDmode)
    return plus_constant (op0, INTVAL (op1));
  else if (code == MINUS && GET_CODE (op1) == CONST_INT
	   && GET_MODE (op0) != VOIDmode)
    return plus_constant (op0, - INTVAL (op1));
  else
4555
    return gen_rtx_fmt_ee (code, mode, op0, op1);
4556 4557
}

Richard Kenner committed
4558
/* Like simplify_binary_operation except used for relational operators.
4559 4560 4561 4562 4563 4564
   MODE is the mode of the operands, not that of the result.  If MODE
   is VOIDmode, both operands must also be VOIDmode and we compare the
   operands in "infinite precision".

   If no simplification is possible, this function returns zero.  Otherwise,
   it returns either const_true_rtx or const0_rtx.  */
Richard Kenner committed
4565 4566 4567 4568 4569 4570 4571

rtx
simplify_relational_operation (code, mode, op0, op1)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
{
4572 4573
  int equal, op0lt, op0ltu, op1lt, op1ltu;
  rtx tem;
Richard Kenner committed
4574 4575 4576 4577 4578

  /* If op0 is a compare, extract the comparison arguments from it.  */
  if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);

4579 4580 4581 4582 4583 4584 4585
  /* We can't simplify MODE_CC values since we don't know what the
     actual comparison is.  */
  if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC
#ifdef HAVE_cc0
      || op0 == cc0_rtx
#endif
      )
4586 4587
    return 0;

4588 4589 4590 4591 4592
  /* For integer comparisons of A and B maybe we can simplify A - B and can
     then simplify a comparison of that with zero.  If A and B are both either
     a register or a CONST_INT, this can't help; testing for these cases will
     prevent infinite recursion here and speed things up.

4593 4594 4595 4596
     If CODE is an unsigned comparison, then we can never do this optimization,
     because it gives an incorrect result if the subtraction wraps around zero.
     ANSI C defines unsigned operations such that they never overflow, and
     thus such cases can not be ignored.  */
4597 4598 4599 4600 4601

  if (INTEGRAL_MODE_P (mode) && op1 != const0_rtx
      && ! ((GET_CODE (op0) == REG || GET_CODE (op0) == CONST_INT)
	    && (GET_CODE (op1) == REG || GET_CODE (op1) == CONST_INT))
      && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
4602
      && code != GTU && code != GEU && code != LTU && code != LEU)
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
    return simplify_relational_operation (signed_condition (code),
					  mode, tem, const0_rtx);

  /* For non-IEEE floating-point, if the two operands are equal, we know the
     result.  */
  if (rtx_equal_p (op0, op1)
      && (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
	  || ! FLOAT_MODE_P (GET_MODE (op0)) || flag_fast_math))
    equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;

  /* If the operands are floating-point constants, see if we can fold
     the result.  */
4615
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4616 4617 4618 4619 4620 4621 4622 4623
  else if (GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
	   && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
    {
      REAL_VALUE_TYPE d0, d1;
      jmp_buf handler;
      
      if (setjmp (handler))
	return 0;
Richard Kenner committed
4624

4625 4626 4627 4628 4629 4630 4631 4632 4633
      set_float_handler (handler);
      REAL_VALUE_FROM_CONST_DOUBLE (d0, op0);
      REAL_VALUE_FROM_CONST_DOUBLE (d1, op1);
      equal = REAL_VALUES_EQUAL (d0, d1);
      op0lt = op0ltu = REAL_VALUES_LESS (d0, d1);
      op1lt = op1ltu = REAL_VALUES_LESS (d1, d0);
      set_float_handler (NULL_PTR);
    }
#endif  /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
Richard Kenner committed
4634

4635 4636 4637 4638 4639 4640
  /* Otherwise, see if the operands are both integers.  */
  else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
	   && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
	   && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
    {
      int width = GET_MODE_BITSIZE (mode);
4641 4642
      HOST_WIDE_INT l0s, h0s, l1s, h1s;
      unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
Richard Kenner committed
4643

4644 4645 4646 4647 4648
      /* Get the two words comprising each integer constant.  */
      if (GET_CODE (op0) == CONST_DOUBLE)
	{
	  l0u = l0s = CONST_DOUBLE_LOW (op0);
	  h0u = h0s = CONST_DOUBLE_HIGH (op0);
Richard Kenner committed
4649
	}
4650
      else
4651
	{
4652
	  l0u = l0s = INTVAL (op0);
4653
	  h0u = h0s = l0s < 0 ? -1 : 0;
4654
	}
4655
	  
4656 4657 4658 4659 4660 4661 4662 4663
      if (GET_CODE (op1) == CONST_DOUBLE)
	{
	  l1u = l1s = CONST_DOUBLE_LOW (op1);
	  h1u = h1s = CONST_DOUBLE_HIGH (op1);
	}
      else
	{
	  l1u = l1s = INTVAL (op1);
4664
	  h1u = h1s = l1s < 0 ? -1 : 0;
4665 4666 4667 4668 4669 4670
	}

      /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
	 we have to sign or zero-extend the values.  */
      if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
	h0u = h1u = 0, h0s = l0s < 0 ? -1 : 0, h1s = l1s < 0 ? -1 : 0;
4671

4672 4673 4674 4675
      if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
	{
	  l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
	  l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
4676

4677 4678
	  if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
	    l0s |= ((HOST_WIDE_INT) (-1) << width);
4679

4680 4681
	  if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
	    l1s |= ((HOST_WIDE_INT) (-1) << width);
4682 4683
	}

4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
      equal = (h0u == h1u && l0u == l1u);
      op0lt = (h0s < h1s || (h0s == h1s && l0s < l1s));
      op1lt = (h1s < h0s || (h1s == h0s && l1s < l0s));
      op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
      op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
    }

  /* Otherwise, there are some code-specific tests we can make.  */
  else
    {
Richard Kenner committed
4694 4695 4696
      switch (code)
	{
	case EQ:
4697 4698 4699 4700
	  /* References to the frame plus a constant or labels cannot
	     be zero, but a SYMBOL_REF can due to #pragma weak.  */
	  if (((NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx)
	       || GET_CODE (op0) == LABEL_REF)
4701
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4702 4703
	      /* On some machines, the ap reg can be 0 sometimes.  */
	      && op0 != arg_pointer_rtx
Richard Kenner committed
4704
#endif
4705 4706 4707
		)
	    return const0_rtx;
	  break;
Richard Kenner committed
4708 4709

	case NE:
4710 4711
	  if (((NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx)
	       || GET_CODE (op0) == LABEL_REF)
4712
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4713
	      && op0 != arg_pointer_rtx
Richard Kenner committed
4714
#endif
4715
	      )
Richard Kenner committed
4716 4717 4718 4719
	    return const_true_rtx;
	  break;

	case GEU:
4720 4721
	  /* Unsigned values are never negative.  */
	  if (op1 == const0_rtx)
Richard Kenner committed
4722 4723 4724 4725
	    return const_true_rtx;
	  break;

	case LTU:
4726
	  if (op1 == const0_rtx)
Richard Kenner committed
4727 4728 4729 4730 4731 4732 4733 4734
	    return const0_rtx;
	  break;

	case LEU:
	  /* Unsigned values are never greater than the largest
	     unsigned value.  */
	  if (GET_CODE (op1) == CONST_INT
	      && INTVAL (op1) == GET_MODE_MASK (mode)
4735 4736
	    && INTEGRAL_MODE_P (mode))
	  return const_true_rtx;
Richard Kenner committed
4737 4738 4739 4740 4741
	  break;

	case GTU:
	  if (GET_CODE (op1) == CONST_INT
	      && INTVAL (op1) == GET_MODE_MASK (mode)
4742
	      && INTEGRAL_MODE_P (mode))
Richard Kenner committed
4743 4744
	    return const0_rtx;
	  break;
4745 4746 4747
	  
	default:
	  break;
Richard Kenner committed
4748 4749 4750 4751 4752
	}

      return 0;
    }

4753 4754
  /* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
     as appropriate.  */
Richard Kenner committed
4755 4756 4757
  switch (code)
    {
    case EQ:
4758 4759 4760
      return equal ? const_true_rtx : const0_rtx;
    case NE:
      return ! equal ? const_true_rtx : const0_rtx;
Richard Kenner committed
4761
    case LT:
4762
      return op0lt ? const_true_rtx : const0_rtx;
Richard Kenner committed
4763
    case GT:
4764
      return op1lt ? const_true_rtx : const0_rtx;
Richard Kenner committed
4765
    case LTU:
4766
      return op0ltu ? const_true_rtx : const0_rtx;
Richard Kenner committed
4767
    case GTU:
4768 4769 4770 4771 4772 4773 4774 4775 4776
      return op1ltu ? const_true_rtx : const0_rtx;
    case LE:
      return equal || op0lt ? const_true_rtx : const0_rtx;
    case GE:
      return equal || op1lt ? const_true_rtx : const0_rtx;
    case LEU:
      return equal || op0ltu ? const_true_rtx : const0_rtx;
    case GEU:
      return equal || op1ltu ? const_true_rtx : const0_rtx;
4777 4778
    default:
      abort ();
Richard Kenner committed
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
    }
}

/* Simplify CODE, an operation with result mode MODE and three operands,
   OP0, OP1, and OP2.  OP0_MODE was the mode of OP0 before it became
   a constant.  Return 0 if no simplifications is possible.  */

rtx
simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
     enum rtx_code code;
     enum machine_mode mode, op0_mode;
     rtx op0, op1, op2;
{
  int width = GET_MODE_BITSIZE (mode);

  /* VOIDmode means "infinite" precision.  */
  if (width == 0)
4796
    width = HOST_BITS_PER_WIDE_INT;
Richard Kenner committed
4797 4798 4799 4800 4801 4802 4803 4804 4805

  switch (code)
    {
    case SIGN_EXTRACT:
    case ZERO_EXTRACT:
      if (GET_CODE (op0) == CONST_INT
	  && GET_CODE (op1) == CONST_INT
	  && GET_CODE (op2) == CONST_INT
	  && INTVAL (op1) + INTVAL (op2) <= GET_MODE_BITSIZE (op0_mode)
4806
	  && width <= HOST_BITS_PER_WIDE_INT)
Richard Kenner committed
4807 4808
	{
	  /* Extracting a bit-field from a constant */
4809
	  HOST_WIDE_INT val = INTVAL (op0);
Richard Kenner committed
4810

4811 4812 4813 4814 4815 4816
	  if (BITS_BIG_ENDIAN)
	    val >>= (GET_MODE_BITSIZE (op0_mode)
		     - INTVAL (op2) - INTVAL (op1));
	  else
	    val >>= INTVAL (op2);

4817
	  if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
Richard Kenner committed
4818 4819
	    {
	      /* First zero-extend.  */
4820
	      val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
Richard Kenner committed
4821
	      /* If desired, propagate sign bit.  */
4822 4823 4824
	      if (code == SIGN_EXTRACT
		  && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
		val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
Richard Kenner committed
4825 4826 4827 4828 4829 4830
	    }

	  /* Clear the bits that don't belong in our mode,
	     unless they and our sign bit are all one.
	     So we get either a reasonable negative value or a reasonable
	     unsigned value for this mode.  */
4831 4832 4833 4834
	  if (width < HOST_BITS_PER_WIDE_INT
	      && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
		  != ((HOST_WIDE_INT) (-1) << (width - 1))))
	    val &= ((HOST_WIDE_INT) 1 << width) - 1;
Richard Kenner committed
4835

4836
	  return GEN_INT (val);
Richard Kenner committed
4837 4838 4839 4840 4841 4842
	}
      break;

    case IF_THEN_ELSE:
      if (GET_CODE (op0) == CONST_INT)
	return op0 != const0_rtx ? op1 : op2;
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852

      /* Convert a == b ? b : a to "a".  */
      if (GET_CODE (op0) == NE && ! side_effects_p (op0)
	  && rtx_equal_p (XEXP (op0, 0), op1)
	  && rtx_equal_p (XEXP (op0, 1), op2))
	return op1;
      else if (GET_CODE (op0) == EQ && ! side_effects_p (op0)
	  && rtx_equal_p (XEXP (op0, 1), op1)
	  && rtx_equal_p (XEXP (op0, 0), op2))
	return op2;
4853
      else if (GET_RTX_CLASS (GET_CODE (op0)) == '<' && ! side_effects_p (op0))
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
	{
	  rtx temp;
	  temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
						XEXP (op0, 0), XEXP (op0, 1));
	  /* See if any simplifications were possible.  */
	  if (temp == const0_rtx)
	    return op2;
	  else if (temp == const1_rtx)
	    return op1;
	}
Richard Kenner committed
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
      break;

    default:
      abort ();
    }

  return 0;
}

/* If X is a nontrivial arithmetic operation on an argument
   for which a constant value can be determined, return
   the result of operating on that value, as a constant.
   Otherwise, return X, possibly with one or more operands
   modified by recursive calls to this function.

4879 4880 4881
   If X is a register whose contents are known, we do NOT
   return those contents here.  equiv_constant is called to
   perform that task.
Richard Kenner committed
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893

   INSN is the insn that we may be modifying.  If it is 0, make a copy
   of X before modifying it.  */

static rtx
fold_rtx (x, insn)
     rtx x;
     rtx insn;    
{
  register enum rtx_code code;
  register enum machine_mode mode;
  register char *fmt;
4894
  register int i;
Richard Kenner committed
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
  rtx new = 0;
  int copied = 0;
  int must_swap = 0;

  /* Folded equivalents of first two operands of X.  */
  rtx folded_arg0;
  rtx folded_arg1;

  /* Constant equivalents of first three operands of X;
     0 when no such equivalent is known.  */
  rtx const_arg0;
  rtx const_arg1;
  rtx const_arg2;

  /* The mode of the first operand of X.  We need this for sign and zero
     extends.  */
  enum machine_mode mode_arg0;

  if (x == 0)
    return x;

  mode = GET_MODE (x);
  code = GET_CODE (x);
  switch (code)
    {
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case REG:
      /* No use simplifying an EXPR_LIST
	 since they are used only for lists of args
	 in a function call's REG_EQUAL note.  */
    case EXPR_LIST:
Jeff Law committed
4930 4931 4932 4933
      /* Changing anything inside an ADDRESSOF is incorrect; we don't
	 want to (e.g.,) make (addressof (const_int 0)) just because
	 the location is known to be zero.  */
    case ADDRESSOF:
Richard Kenner committed
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
      return x;

#ifdef HAVE_cc0
    case CC0:
      return prev_insn_cc0;
#endif

    case PC:
      /* If the next insn is a CODE_LABEL followed by a jump table,
	 PC's value is a LABEL_REF pointing to that label.  That
	 lets us fold switch statements on the Vax.  */
      if (insn && GET_CODE (insn) == JUMP_INSN)
	{
	  rtx next = next_nonnote_insn (insn);

	  if (next && GET_CODE (next) == CODE_LABEL
	      && NEXT_INSN (next) != 0
	      && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
	      && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
		  || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
4954
	    return gen_rtx_LABEL_REF (Pmode, next);
Richard Kenner committed
4955 4956 4957 4958
	}
      break;

    case SUBREG:
4959 4960 4961
      /* See if we previously assigned a constant value to this SUBREG.  */
      if ((new = lookup_as_function (x, CONST_INT)) != 0
	  || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
Richard Kenner committed
4962 4963
	return new;

4964 4965 4966 4967
      /* If this is a paradoxical SUBREG, we have no idea what value the
	 extra bits would have.  However, if the operand is equivalent
	 to a SUBREG whose operand is the same as our mode, and all the
	 modes are within a word, we can just use the inner operand
4968 4969 4970
	 because these SUBREGs just say how to treat the register.

	 Similarly if we find an integer constant.  */
4971

4972
      if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4973 4974 4975 4976 4977 4978 4979 4980
	{
	  enum machine_mode imode = GET_MODE (SUBREG_REG (x));
	  struct table_elt *elt;

	  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
	      && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
	      && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
				imode)) != 0)
4981 4982 4983 4984 4985 4986 4987
	    for (elt = elt->first_same_value;
		 elt; elt = elt->next_same_value)
	      {
		if (CONSTANT_P (elt->exp)
		    && GET_MODE (elt->exp) == VOIDmode)
		  return elt->exp;

4988 4989
		if (GET_CODE (elt->exp) == SUBREG
		    && GET_MODE (SUBREG_REG (elt->exp)) == mode
4990
		    && exp_equiv_p (elt->exp, elt->exp, 1, 0))
4991 4992 4993 4994 4995
		  return copy_rtx (SUBREG_REG (elt->exp));
	    }

	  return x;
	}
4996

Richard Kenner committed
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019
      /* Fold SUBREG_REG.  If it changed, see if we can simplify the SUBREG.
	 We might be able to if the SUBREG is extracting a single word in an
	 integral mode or extracting the low part.  */

      folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
      const_arg0 = equiv_constant (folded_arg0);
      if (const_arg0)
	folded_arg0 = const_arg0;

      if (folded_arg0 != SUBREG_REG (x))
	{
	  new = 0;

	  if (GET_MODE_CLASS (mode) == MODE_INT
	      && GET_MODE_SIZE (mode) == UNITS_PER_WORD
	      && GET_MODE (SUBREG_REG (x)) != VOIDmode)
	    new = operand_subword (folded_arg0, SUBREG_WORD (x), 0,
				   GET_MODE (SUBREG_REG (x)));
	  if (new == 0 && subreg_lowpart_p (x))
	    new = gen_lowpart_if_possible (mode, folded_arg0);
	  if (new)
	    return new;
	}
5020 5021

      /* If this is a narrowing SUBREG and our operand is a REG, see if
5022
	 we can find an equivalence for REG that is an arithmetic operation
5023 5024 5025 5026 5027 5028
	 in a wider mode where both operands are paradoxical SUBREGs
	 from objects of our result mode.  In that case, we couldn't report
	 an equivalent value for that operation, since we don't know what the
	 extra bits will be.  But we can find an equivalence for this SUBREG
	 by folding that operation is the narrow mode.  This allows us to
	 fold arithmetic in narrow modes when the machine only supports
5029 5030 5031 5032 5033 5034
	 word-sized arithmetic.  

	 Also look for a case where we have a SUBREG whose operand is the
	 same as our result.  If both modes are smaller than a word, we
	 are simply interpreting a register in different modes and we
	 can use the inner value.  */
5035 5036

      if (GET_CODE (folded_arg0) == REG
5037 5038
	  && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
	  && subreg_lowpart_p (x))
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
	{
	  struct table_elt *elt;

	  /* We can use HASH here since we know that canon_hash won't be
	     called.  */
	  elt = lookup (folded_arg0,
			HASH (folded_arg0, GET_MODE (folded_arg0)),
			GET_MODE (folded_arg0));

	  if (elt)
	    elt = elt->first_same_value;

	  for (; elt; elt = elt->next_same_value)
	    {
5053 5054
	      enum rtx_code eltcode = GET_CODE (elt->exp);

5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
	      /* Just check for unary and binary operations.  */
	      if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
		  && GET_CODE (elt->exp) != SIGN_EXTEND
		  && GET_CODE (elt->exp) != ZERO_EXTEND
		  && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
		  && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode)
		{
		  rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));

		  if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
5065
		    op0 = fold_rtx (op0, NULL_RTX);
5066 5067 5068 5069 5070 5071 5072 5073

		  op0 = equiv_constant (op0);
		  if (op0)
		    new = simplify_unary_operation (GET_CODE (elt->exp), mode,
						    op0, mode);
		}
	      else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
			|| GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
5074 5075 5076 5077
		       && eltcode != DIV && eltcode != MOD
		       && eltcode != UDIV && eltcode != UMOD
		       && eltcode != ASHIFTRT && eltcode != LSHIFTRT
		       && eltcode != ROTATE && eltcode != ROTATERT
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
		       && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
			    && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
				== mode))
			   || CONSTANT_P (XEXP (elt->exp, 0)))
		       && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
			    && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
				== mode))
			   || CONSTANT_P (XEXP (elt->exp, 1))))
		{
		  rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
		  rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));

		  if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
5091
		    op0 = fold_rtx (op0, NULL_RTX);
5092 5093 5094 5095 5096

		  if (op0)
		    op0 = equiv_constant (op0);

		  if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
5097
		    op1 = fold_rtx (op1, NULL_RTX);
5098 5099 5100 5101

		  if (op1)
		    op1 = equiv_constant (op1);

5102 5103 5104 5105 5106
		  /* If we are looking for the low SImode part of 
		     (ashift:DI c (const_int 32)), it doesn't work
		     to compute that in SImode, because a 32-bit shift
		     in SImode is unpredictable.  We know the value is 0.  */
		  if (op0 && op1
5107
		      && GET_CODE (elt->exp) == ASHIFT
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
		      && GET_CODE (op1) == CONST_INT
		      && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
		    {
		      if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
			
			/* If the count fits in the inner mode's width,
			   but exceeds the outer mode's width,
			   the value will get truncated to 0
			   by the subreg.  */
			new = const0_rtx;
		      else
			/* If the count exceeds even the inner mode's width,
			   don't fold this expression.  */
			new = 0;
		    }
		  else if (op0 && op1)
5124 5125 5126 5127
		    new = simplify_binary_operation (GET_CODE (elt->exp), mode,
						     op0, op1);
		}

5128 5129 5130 5131
	      else if (GET_CODE (elt->exp) == SUBREG
		       && GET_MODE (SUBREG_REG (elt->exp)) == mode
		       && (GET_MODE_SIZE (GET_MODE (folded_arg0))
			   <= UNITS_PER_WORD)
5132
		       && exp_equiv_p (elt->exp, elt->exp, 1, 0))
5133 5134
		new = copy_rtx (SUBREG_REG (elt->exp));

5135 5136 5137 5138 5139
	      if (new)
		return new;
	    }
	}

Richard Kenner committed
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
      return x;

    case NOT:
    case NEG:
      /* If we have (NOT Y), see if Y is known to be (NOT Z).
	 If so, (NOT Y) simplifies to Z.  Similarly for NEG.  */
      new = lookup_as_function (XEXP (x, 0), code);
      if (new)
	return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
      break;
5150

Richard Kenner committed
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
    case MEM:
      /* If we are not actually processing an insn, don't try to find the
	 best address.  Not only don't we care, but we could modify the
	 MEM in an invalid way since we have no insn to validate against.  */
      if (insn != 0)
	find_best_addr (insn, &XEXP (x, 0));

      {
	/* Even if we don't fold in the insn itself,
	   we can safely do so here, in hopes of getting a constant.  */
5161
	rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
5162
	rtx base = 0;
5163
	HOST_WIDE_INT offset = 0;
Richard Kenner committed
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182

	if (GET_CODE (addr) == REG
	    && REGNO_QTY_VALID_P (REGNO (addr))
	    && GET_MODE (addr) == qty_mode[reg_qty[REGNO (addr)]]
	    && qty_const[reg_qty[REGNO (addr)]] != 0)
	  addr = qty_const[reg_qty[REGNO (addr)]];

	/* If address is constant, split it into a base and integer offset.  */
	if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
	  base = addr;
	else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
		 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
	  {
	    base = XEXP (XEXP (addr, 0), 0);
	    offset = INTVAL (XEXP (XEXP (addr, 0), 1));
	  }
	else if (GET_CODE (addr) == LO_SUM
		 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
	  base = XEXP (addr, 1);
5183
	else if (GET_CODE (addr) == ADDRESSOF)
Jeff Law committed
5184
	  return change_address (x, VOIDmode, addr);
Richard Kenner committed
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201

	/* If this is a constant pool reference, we can fold it into its
	   constant to allow better value tracking.  */
	if (base && GET_CODE (base) == SYMBOL_REF
	    && CONSTANT_POOL_ADDRESS_P (base))
	  {
	    rtx constant = get_pool_constant (base);
	    enum machine_mode const_mode = get_pool_mode (base);
	    rtx new;

	    if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
	      constant_pool_entries_cost = COST (constant);

	    /* If we are loading the full constant, we have an equivalence.  */
	    if (offset == 0 && mode == const_mode)
	      return constant;

Richard Kenner committed
5202
	    /* If this actually isn't a constant (weird!), we can't do
Richard Kenner committed
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
	       anything.  Otherwise, handle the two most common cases:
	       extracting a word from a multi-word constant, and extracting
	       the low-order bits.  Other cases don't seem common enough to
	       worry about.  */
	    if (! CONSTANT_P (constant))
	      return x;

	    if (GET_MODE_CLASS (mode) == MODE_INT
		&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
		&& offset % UNITS_PER_WORD == 0
		&& (new = operand_subword (constant,
					   offset / UNITS_PER_WORD,
					   0, const_mode)) != 0)
	      return new;

	    if (((BYTES_BIG_ENDIAN
		  && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
		 || (! BYTES_BIG_ENDIAN && offset == 0))
		&& (new = gen_lowpart_if_possible (mode, constant)) != 0)
	      return new;
	  }

	/* If this is a reference to a label at a known position in a jump
	   table, we also know its value.  */
	if (base && GET_CODE (base) == LABEL_REF)
	  {
	    rtx label = XEXP (base, 0);
	    rtx table_insn = NEXT_INSN (label);
	    
	    if (table_insn && GET_CODE (table_insn) == JUMP_INSN
		&& GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
	      {
		rtx table = PATTERN (table_insn);

		if (offset >= 0
		    && (offset / GET_MODE_SIZE (GET_MODE (table))
			< XVECLEN (table, 0)))
		  return XVECEXP (table, 0,
				  offset / GET_MODE_SIZE (GET_MODE (table)));
	      }
	    if (table_insn && GET_CODE (table_insn) == JUMP_INSN
		&& GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
	      {
		rtx table = PATTERN (table_insn);

		if (offset >= 0
		    && (offset / GET_MODE_SIZE (GET_MODE (table))
			< XVECLEN (table, 1)))
		  {
		    offset /= GET_MODE_SIZE (GET_MODE (table));
5253 5254
		    new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
					 XEXP (table, 0));
Richard Kenner committed
5255 5256

		    if (GET_MODE (table) != Pmode)
5257
		      new = gen_rtx_TRUNCATE (GET_MODE (table), new);
Richard Kenner committed
5258

5259 5260 5261 5262
		    /* Indicate this is a constant.  This isn't a 
		       valid form of CONST, but it will only be used
		       to fold the next insns and then discarded, so
		       it should be safe.  */
5263
		    return gen_rtx_CONST (GET_MODE (new), new);
Richard Kenner committed
5264 5265 5266 5267 5268 5269
		  }
	      }
	  }

	return x;
      }
5270 5271 5272 5273 5274 5275

    case ASM_OPERANDS:
      for (i = XVECLEN (x, 3) - 1; i >= 0; i--)
	validate_change (insn, &XVECEXP (x, 3, i),
			 fold_rtx (XVECEXP (x, 3, i), insn), 0);
      break;
5276 5277 5278
      
    default:
      break;
Richard Kenner committed
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405
    }

  const_arg0 = 0;
  const_arg1 = 0;
  const_arg2 = 0;
  mode_arg0 = VOIDmode;

  /* Try folding our operands.
     Then see which ones have constant values known.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	rtx arg = XEXP (x, i);
	rtx folded_arg = arg, const_arg = 0;
	enum machine_mode mode_arg = GET_MODE (arg);
	rtx cheap_arg, expensive_arg;
	rtx replacements[2];
	int j;

	/* Most arguments are cheap, so handle them specially.  */
	switch (GET_CODE (arg))
	  {
	  case REG:
	    /* This is the same as calling equiv_constant; it is duplicated
	       here for speed.  */
	    if (REGNO_QTY_VALID_P (REGNO (arg))
		&& qty_const[reg_qty[REGNO (arg)]] != 0
		&& GET_CODE (qty_const[reg_qty[REGNO (arg)]]) != REG
		&& GET_CODE (qty_const[reg_qty[REGNO (arg)]]) != PLUS)
	      const_arg
		= gen_lowpart_if_possible (GET_MODE (arg),
					   qty_const[reg_qty[REGNO (arg)]]);
	    break;

	  case CONST:
	  case CONST_INT:
	  case SYMBOL_REF:
	  case LABEL_REF:
	  case CONST_DOUBLE:
	    const_arg = arg;
	    break;

#ifdef HAVE_cc0
	  case CC0:
	    folded_arg = prev_insn_cc0;
	    mode_arg = prev_insn_cc0_mode;
	    const_arg = equiv_constant (folded_arg);
	    break;
#endif

	  default:
	    folded_arg = fold_rtx (arg, insn);
	    const_arg = equiv_constant (folded_arg);
	  }

	/* For the first three operands, see if the operand
	   is constant or equivalent to a constant.  */
	switch (i)
	  {
	  case 0:
	    folded_arg0 = folded_arg;
	    const_arg0 = const_arg;
	    mode_arg0 = mode_arg;
	    break;
	  case 1:
	    folded_arg1 = folded_arg;
	    const_arg1 = const_arg;
	    break;
	  case 2:
	    const_arg2 = const_arg;
	    break;
	  }

	/* Pick the least expensive of the folded argument and an
	   equivalent constant argument.  */
	if (const_arg == 0 || const_arg == folded_arg
	    || COST (const_arg) > COST (folded_arg))
	  cheap_arg = folded_arg, expensive_arg = const_arg;
	else
	  cheap_arg = const_arg, expensive_arg = folded_arg;

	/* Try to replace the operand with the cheapest of the two
	   possibilities.  If it doesn't work and this is either of the first
	   two operands of a commutative operation, try swapping them.
	   If THAT fails, try the more expensive, provided it is cheaper
	   than what is already there.  */

	if (cheap_arg == XEXP (x, i))
	  continue;

	if (insn == 0 && ! copied)
	  {
	    x = copy_rtx (x);
	    copied = 1;
	  }

	replacements[0] = cheap_arg, replacements[1] = expensive_arg;
	for (j = 0;
	     j < 2 && replacements[j]
	     && COST (replacements[j]) < COST (XEXP (x, i));
	     j++)
	  {
	    if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
	      break;

	    if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c')
	      {
		validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
		validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);

		if (apply_change_group ())
		  {
		    /* Swap them back to be invalid so that this loop can
		       continue and flag them to be swapped back later.  */
		    rtx tem;

		    tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
				       XEXP (x, 1) = tem;
		    must_swap = 1;
		    break;
		  }
	      }
	  }
      }

5406 5407 5408 5409 5410 5411 5412
    else
      {
	if (fmt[i] == 'E')
	  /* Don't try to fold inside of a vector of expressions.
	     Doing nothing is harmless.  */
	  {;}	
      }
Richard Kenner committed
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447

  /* If a commutative operation, place a constant integer as the second
     operand unless the first operand is also a constant integer.  Otherwise,
     place any constant second unless the first operand is also a constant.  */

  if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
    {
      if (must_swap || (const_arg0
	  		&& (const_arg1 == 0
	      		    || (GET_CODE (const_arg0) == CONST_INT
			        && GET_CODE (const_arg1) != CONST_INT))))
	{
	  register rtx tem = XEXP (x, 0);

	  if (insn == 0 && ! copied)
	    {
	      x = copy_rtx (x);
	      copied = 1;
	    }

	  validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
	  validate_change (insn, &XEXP (x, 1), tem, 1);
	  if (apply_change_group ())
	    {
	      tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
	      tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
	    }
	}
    }

  /* If X is an arithmetic operation, see if we can simplify it.  */

  switch (GET_RTX_CLASS (code))
    {
    case '1':
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
      {
	int is_const = 0;

	/* We can't simplify extension ops unless we know the
	   original mode.  */
	if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
	    && mode_arg0 == VOIDmode)
	  break;

	/* If we had a CONST, strip it off and put it back later if we
	   fold.  */
	if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
	  is_const = 1, const_arg0 = XEXP (const_arg0, 0);

	new = simplify_unary_operation (code, mode,
					const_arg0 ? const_arg0 : folded_arg0,
					mode_arg0);
	if (new != 0 && is_const)
5466
	  new = gen_rtx_CONST (mode, new);
5467
      }
Richard Kenner committed
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
      break;
      
    case '<':
      /* See what items are actually being compared and set FOLDED_ARG[01]
	 to those values and CODE to the actual comparison code.  If any are
	 constant, set CONST_ARG0 and CONST_ARG1 appropriately.  We needn't
	 do anything if both operands are already known to be constant.  */

      if (const_arg0 == 0 || const_arg1 == 0)
	{
	  struct table_elt *p0, *p1;
5479
	  rtx true = const_true_rtx, false = const0_rtx;
5480
	  enum machine_mode mode_arg1;
5481 5482

#ifdef FLOAT_STORE_FLAG_VALUE
5483
	  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5484
	    {
5485 5486
	      true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE,
						   mode);
5487 5488 5489
	      false = CONST0_RTX (mode);
	    }
#endif
Richard Kenner committed
5490

5491 5492
	  code = find_comparison_args (code, &folded_arg0, &folded_arg1,
				       &mode_arg0, &mode_arg1);
Richard Kenner committed
5493 5494 5495
	  const_arg0 = equiv_constant (folded_arg0);
	  const_arg1 = equiv_constant (folded_arg1);

5496 5497 5498
	  /* If the mode is VOIDmode or a MODE_CC mode, we don't know
	     what kinds of things are being compared, so we can't do
	     anything with this comparison.  */
Richard Kenner committed
5499 5500 5501 5502

	  if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
	    break;

Mike Stump committed
5503 5504 5505
	  /* If we do not now have two constants being compared, see
	     if we can nevertheless deduce some things about the
	     comparison.  */
Richard Kenner committed
5506 5507
	  if (const_arg0 == 0 || const_arg1 == 0)
	    {
Mike Stump committed
5508 5509 5510
	      /* Is FOLDED_ARG0 frame-pointer plus a constant?  Or
		 non-explicit constant?  These aren't zero, but we
		 don't know their sign.  */
Richard Kenner committed
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
	      if (const_arg1 == const0_rtx
		  && (NONZERO_BASE_PLUS_P (folded_arg0)
#if 0  /* Sad to say, on sysvr4, #pragma weak can make a symbol address
	  come out as 0.  */
		      || GET_CODE (folded_arg0) == SYMBOL_REF
#endif
		      || GET_CODE (folded_arg0) == LABEL_REF
		      || GET_CODE (folded_arg0) == CONST))
		{
		  if (code == EQ)
5521
		    return false;
Richard Kenner committed
5522
		  else if (code == NE)
5523
		    return true;
Richard Kenner committed
5524 5525 5526 5527 5528 5529 5530
		}

	      /* See if the two operands are the same.  We don't do this
		 for IEEE floating-point since we can't assume x == x
		 since x might be a NaN.  */

	      if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
5531
		   || ! FLOAT_MODE_P (mode_arg0) || flag_fast_math)
Richard Kenner committed
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
		  && (folded_arg0 == folded_arg1
		      || (GET_CODE (folded_arg0) == REG
			  && GET_CODE (folded_arg1) == REG
			  && (reg_qty[REGNO (folded_arg0)]
			      == reg_qty[REGNO (folded_arg1)]))
		      || ((p0 = lookup (folded_arg0,
					(safe_hash (folded_arg0, mode_arg0)
					 % NBUCKETS), mode_arg0))
			  && (p1 = lookup (folded_arg1,
					   (safe_hash (folded_arg1, mode_arg0)
					    % NBUCKETS), mode_arg0))
			  && p0->first_same_value == p1->first_same_value)))
		return ((code == EQ || code == LE || code == GE
			 || code == LEU || code == GEU)
5546
			? true : false);
Richard Kenner committed
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558

	      /* If FOLDED_ARG0 is a register, see if the comparison we are
		 doing now is either the same as we did before or the reverse
		 (we only check the reverse if not floating-point).  */
	      else if (GET_CODE (folded_arg0) == REG)
		{
		  int qty = reg_qty[REGNO (folded_arg0)];

		  if (REGNO_QTY_VALID_P (REGNO (folded_arg0))
		      && (comparison_dominates_p (qty_comparison_code[qty], code)
			  || (comparison_dominates_p (qty_comparison_code[qty],
						      reverse_condition (code))
5559
			      && ! FLOAT_MODE_P (mode_arg0)))
Richard Kenner committed
5560 5561 5562 5563 5564 5565 5566 5567 5568
		      && (rtx_equal_p (qty_comparison_const[qty], folded_arg1)
			  || (const_arg1
			      && rtx_equal_p (qty_comparison_const[qty],
					      const_arg1))
			  || (GET_CODE (folded_arg1) == REG
			      && (reg_qty[REGNO (folded_arg1)]
				  == qty_comparison_qty[qty]))))
		    return (comparison_dominates_p (qty_comparison_code[qty],
						    code)
5569
			    ? true : false);
Richard Kenner committed
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
		}
	    }
	}

      /* If we are comparing against zero, see if the first operand is
	 equivalent to an IOR with a constant.  If so, we may be able to
	 determine the result of this comparison.  */

      if (const_arg1 == const0_rtx)
	{
	  rtx y = lookup_as_function (folded_arg0, IOR);
	  rtx inner_const;

	  if (y != 0
	      && (inner_const = equiv_constant (XEXP (y, 1))) != 0
	      && GET_CODE (inner_const) == CONST_INT
	      && INTVAL (inner_const) != 0)
	    {
	      int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
5589 5590 5591
	      int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
			      && (INTVAL (inner_const)
				  & ((HOST_WIDE_INT) 1 << sign_bitnum)));
5592 5593 5594
	      rtx true = const_true_rtx, false = const0_rtx;

#ifdef FLOAT_STORE_FLAG_VALUE
5595
	      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5596
		{
5597 5598
		  true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE,
						       mode);
5599 5600 5601
		  false = CONST0_RTX (mode);
		}
#endif
Richard Kenner committed
5602 5603 5604 5605

	      switch (code)
		{
		case EQ:
5606
		  return false;
Richard Kenner committed
5607
		case NE:
5608
		  return true;
Richard Kenner committed
5609 5610
		case LT:  case LE:
		  if (has_sign)
5611
		    return true;
Richard Kenner committed
5612 5613 5614
		  break;
		case GT:  case GE:
		  if (has_sign)
5615
		    return false;
Richard Kenner committed
5616
		  break;
5617 5618
		default:
		  break;
Richard Kenner committed
5619 5620 5621 5622 5623 5624 5625
		}
	    }
	}

      new = simplify_relational_operation (code, mode_arg0,
					   const_arg0 ? const_arg0 : folded_arg0,
					   const_arg1 ? const_arg1 : folded_arg1);
5626 5627 5628
#ifdef FLOAT_STORE_FLAG_VALUE
      if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
	new = ((new == const0_rtx) ? CONST0_RTX (mode)
5629
	       : CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE, mode));
5630
#endif
Richard Kenner committed
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
      break;

    case '2':
    case 'c':
      switch (code)
	{
	case PLUS:
	  /* If the second operand is a LABEL_REF, see if the first is a MINUS
	     with that LABEL_REF as its second operand.  If so, the result is
	     the first operand of that MINUS.  This handles switches with an
	     ADDR_DIFF_VEC table.  */
	  if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
	    {
5644 5645 5646
	      rtx y
		= GET_CODE (folded_arg0) == MINUS ? folded_arg0
		  : lookup_as_function (folded_arg0, MINUS);
Richard Kenner committed
5647 5648 5649 5650

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
		return XEXP (y, 0);
5651 5652

	      /* Now try for a CONST of a MINUS like the above.  */
5653 5654
	      if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
			: lookup_as_function (folded_arg0, CONST))) != 0
5655 5656 5657 5658
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
		  && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg1, 0))
		return XEXP (XEXP (y, 0), 0);
Richard Kenner committed
5659
	    }
Richard Kenner committed
5660

5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
	  /* Likewise if the operands are in the other order.  */
	  if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
	    {
	      rtx y
		= GET_CODE (folded_arg1) == MINUS ? folded_arg1
		  : lookup_as_function (folded_arg1, MINUS);

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
		return XEXP (y, 0);

	      /* Now try for a CONST of a MINUS like the above.  */
	      if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
			: lookup_as_function (folded_arg1, CONST))) != 0
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
		  && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg0, 0))
		return XEXP (XEXP (y, 0), 0);
	    }

Richard Kenner committed
5681 5682 5683
	  /* If second operand is a register equivalent to a negative
	     CONST_INT, see if we can find a register equivalent to the
	     positive constant.  Make a MINUS if so.  Don't do this for
5684
	     a non-negative constant since we might then alternate between
Richard Kenner committed
5685
	     chosing positive and negative constants.  Having the positive
5686 5687 5688 5689 5690 5691 5692 5693 5694
	     constant previously-used is the more common case.  Be sure
	     the resulting constant is non-negative; if const_arg1 were
	     the smallest negative number this would overflow: depending
	     on the mode, this would either just be the same value (and
	     hence not save anything) or be incorrect.  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
	      && INTVAL (const_arg1) < 0
	      && - INTVAL (const_arg1) >= 0
	      && GET_CODE (folded_arg1) == REG)
Richard Kenner committed
5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
	    {
	      rtx new_const = GEN_INT (- INTVAL (const_arg1));
	      struct table_elt *p
		= lookup (new_const, safe_hash (new_const, mode) % NBUCKETS,
			  mode);

	      if (p)
		for (p = p->first_same_value; p; p = p->next_same_value)
		  if (GET_CODE (p->exp) == REG)
		    return cse_gen_binary (MINUS, mode, folded_arg0,
					   canon_reg (p->exp, NULL_RTX));
	    }
5707 5708 5709 5710 5711 5712 5713 5714 5715
	  goto from_plus;

	case MINUS:
	  /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
	     If so, produce (PLUS Z C2-C).  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      rtx y = lookup_as_function (XEXP (x, 0), PLUS);
	      if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
5716 5717
		return fold_rtx (plus_constant (copy_rtx (y),
						-INTVAL (const_arg1)),
5718
				 NULL_RTX);
5719
	    }
Richard Kenner committed
5720

Mike Stump committed
5721
	  /* ... fall through ...  */
Richard Kenner committed
5722

5723
	from_plus:
Richard Kenner committed
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
	case SMIN:    case SMAX:      case UMIN:    case UMAX:
	case IOR:     case AND:       case XOR:
	case MULT:    case DIV:       case UDIV:
	case ASHIFT:  case LSHIFTRT:  case ASHIFTRT:
	  /* If we have (<op> <reg> <const_int>) for an associative OP and REG
	     is known to be of similar form, we may be able to replace the
	     operation with a combined operation.  This may eliminate the
	     intermediate operation if every use is simplified in this way.
	     Note that the similar optimization done by combine.c only works
	     if the intermediate operation's result has only one reference.  */

	  if (GET_CODE (folded_arg0) == REG
	      && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      int is_shift
		= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
	      rtx y = lookup_as_function (folded_arg0, code);
	      rtx inner_const;
	      enum rtx_code associate_code;
	      rtx new_const;

	      if (y == 0
		  || 0 == (inner_const
			   = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
		  || GET_CODE (inner_const) != CONST_INT
		  /* If we have compiled a statement like
		     "if (x == (x & mask1))", and now are looking at
		     "x & mask2", we will have a case where the first operand
		     of Y is the same as our first operand.  Unless we detect
		     this case, an infinite loop will result.  */
		  || XEXP (y, 0) == folded_arg0)
		break;

	      /* Don't associate these operations if they are a PLUS with the
		 same constant and it is a power of two.  These might be doable
		 with a pre- or post-increment.  Similarly for two subtracts of
		 identical powers of two with post decrement.  */

	      if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
		  && (0
#if defined(HAVE_PRE_INCREMENT) || defined(HAVE_POST_INCREMENT)
		      || exact_log2 (INTVAL (const_arg1)) >= 0
#endif
#if defined(HAVE_PRE_DECREMENT) || defined(HAVE_POST_DECREMENT)
		      || exact_log2 (- INTVAL (const_arg1)) >= 0
#endif
		  ))
		break;

	      /* Compute the code used to compose the constants.  For example,
		 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT.  */

	      associate_code
		= (code == MULT || code == DIV || code == UDIV ? MULT
		   : is_shift || code == PLUS || code == MINUS ? PLUS : code);

	      new_const = simplify_binary_operation (associate_code, mode,
						     const_arg1, inner_const);

	      if (new_const == 0)
		break;

	      /* If we are associating shift operations, don't let this
5787 5788 5789 5790
		 produce a shift of the size of the object or larger.
		 This could occur when we follow a sign-extend by a right
		 shift on a machine that does a sign-extend as a pair
		 of shifts.  */
Richard Kenner committed
5791 5792

	      if (is_shift && GET_CODE (new_const) == CONST_INT
5793 5794 5795 5796 5797 5798 5799 5800 5801
		  && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
		{
		  /* As an exception, we can turn an ASHIFTRT of this
		     form into a shift of the number of bits - 1.  */
		  if (code == ASHIFTRT)
		    new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
		  else
		    break;
		}
Richard Kenner committed
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811

	      y = copy_rtx (XEXP (y, 0));

	      /* If Y contains our first operand (the most common way this
		 can happen is if Y is a MEM), we would do into an infinite
		 loop if we tried to fold it.  So don't in that case.  */

	      if (! reg_mentioned_p (folded_arg0, y))
		y = fold_rtx (y, insn);

5812
	      return cse_gen_binary (code, mode, y, new_const);
Richard Kenner committed
5813
	    }
5814 5815 5816 5817
	  break;

	default:
	  break;
Richard Kenner committed
5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
	}

      new = simplify_binary_operation (code, mode,
				       const_arg0 ? const_arg0 : folded_arg0,
				       const_arg1 ? const_arg1 : folded_arg1);
      break;

    case 'o':
      /* (lo_sum (high X) X) is simply X.  */
      if (code == LO_SUM && const_arg0 != 0
	  && GET_CODE (const_arg0) == HIGH
	  && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
	return const_arg1;
      break;

    case '3':
    case 'b':
      new = simplify_ternary_operation (code, mode, mode_arg0,
					const_arg0 ? const_arg0 : folded_arg0,
					const_arg1 ? const_arg1 : folded_arg1,
					const_arg2 ? const_arg2 : XEXP (x, 2));
      break;
5840 5841 5842 5843 5844 5845

    case 'x':
      /* Always eliminate CONSTANT_P_RTX at this stage. */
      if (code == CONSTANT_P_RTX)
	return (const_arg0 ? const1_rtx : const0_rtx);
      break;
Richard Kenner committed
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865
    }

  return new ? new : x;
}

/* Return a constant value currently equivalent to X.
   Return 0 if we don't know one.  */

static rtx
equiv_constant (x)
     rtx x;
{
  if (GET_CODE (x) == REG
      && REGNO_QTY_VALID_P (REGNO (x))
      && qty_const[reg_qty[REGNO (x)]])
    x = gen_lowpart_if_possible (GET_MODE (x), qty_const[reg_qty[REGNO (x)]]);

  if (x != 0 && CONSTANT_P (x))
    return x;

5866 5867 5868 5869 5870 5871 5872 5873 5874
  /* If X is a MEM, try to fold it outside the context of any insn to see if
     it might be equivalent to a constant.  That handles the case where it
     is a constant-pool reference.  Then try to look it up in the hash table
     in case it is something whose value we have seen before.  */

  if (GET_CODE (x) == MEM)
    {
      struct table_elt *elt;

5875
      x = fold_rtx (x, NULL_RTX);
5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
      if (CONSTANT_P (x))
	return x;

      elt = lookup (x, safe_hash (x, GET_MODE (x)) % NBUCKETS, GET_MODE (x));
      if (elt == 0)
	return 0;

      for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
	if (elt->is_const && CONSTANT_P (elt->exp))
	  return elt->exp;
    }

Richard Kenner committed
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
  return 0;
}

/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
   number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
   least-significant part of X.
   MODE specifies how big a part of X to return.  

   If the requested operation cannot be done, 0 is returned.

   This is similar to gen_lowpart in emit-rtl.c.  */

rtx
gen_lowpart_if_possible (mode, x)
     enum machine_mode mode;
     register rtx x;
{
  rtx result = gen_lowpart_common (mode, x);

  if (result)
    return result;
  else if (GET_CODE (x) == MEM)
    {
      /* This is the only other case we handle.  */
      register int offset = 0;
      rtx new;

5915 5916 5917 5918 5919 5920 5921 5922
      if (WORDS_BIG_ENDIAN)
	offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
		  - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
      if (BYTES_BIG_ENDIAN)
	/* Adjust the address so that the address-after-the-data is
	   unchanged.  */
	offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
		   - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
5923
      new = gen_rtx_MEM (mode, plus_constant (XEXP (x, 0), offset));
Richard Kenner committed
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
      if (! memory_address_p (mode, XEXP (new, 0)))
	return 0;
      MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
      RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
      MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
      return new;
    }
  else
    return 0;
}

/* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
   branch.  It will be zero if not.

   In certain cases, this can cause us to add an equivalence.  For example,
   if we are following the taken case of 
   	if (i == 2)
   we can add the fact that `i' and '2' are now equivalent.

   In any case, we can record that this comparison was passed.  If the same
   comparison is seen later, we will know its value.  */

static void
record_jump_equiv (insn, taken)
     rtx insn;
     int taken;
{
  int cond_known_true;
  rtx op0, op1;
5953
  enum machine_mode mode, mode0, mode1;
Richard Kenner committed
5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
  int reversed_nonequality = 0;
  enum rtx_code code;

  /* Ensure this is the right kind of insn.  */
  if (! condjump_p (insn) || simplejump_p (insn))
    return;

  /* See if this jump condition is known true or false.  */
  if (taken)
    cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 2) == pc_rtx);
  else
    cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx);

  /* Get the type of comparison being done and the operands being compared.
     If we had to reverse a non-equality condition, record that fact so we
     know that it isn't valid for floating-point.  */
  code = GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0));
  op0 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0), insn);
  op1 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1), insn);

5974
  code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
Richard Kenner committed
5975 5976 5977 5978 5979 5980 5981
  if (! cond_known_true)
    {
      reversed_nonequality = (code != EQ && code != NE);
      code = reverse_condition (code);
    }

  /* The mode is the mode of the non-constant.  */
5982 5983 5984
  mode = mode0;
  if (mode1 != VOIDmode)
    mode = mode1;
Richard Kenner committed
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000

  record_jump_cond (code, mode, op0, op1, reversed_nonequality);
}

/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
   REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
   Make any useful entries we can with that information.  Called from
   above function and called recursively.  */

static void
record_jump_cond (code, mode, op0, op1, reversed_nonequality)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
     int reversed_nonequality;
{
Richard Kenner committed
6001
  unsigned op0_hash, op1_hash;
Richard Kenner committed
6002 6003 6004 6005 6006 6007 6008 6009
  int op0_in_memory, op0_in_struct, op1_in_memory, op1_in_struct;
  struct table_elt *op0_elt, *op1_elt;

  /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
     we know that they are also equal in the smaller mode (this is also
     true for all smaller modes whether or not there is a SUBREG, but
     is not worth testing for with no SUBREG.  */

6010
  /* Note that GET_MODE (op0) may not equal MODE.  */
Richard Kenner committed
6011
  if (code == EQ && GET_CODE (op0) == SUBREG
6012 6013
      && (GET_MODE_SIZE (GET_MODE (op0))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
Richard Kenner committed
6014 6015 6016 6017 6018
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
      rtx tem = gen_lowpart_if_possible (inner_mode, op1);

      record_jump_cond (code, mode, SUBREG_REG (op0),
6019
			tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
Richard Kenner committed
6020 6021 6022 6023
			reversed_nonequality);
    }

  if (code == EQ && GET_CODE (op1) == SUBREG
6024 6025
      && (GET_MODE_SIZE (GET_MODE (op1))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
Richard Kenner committed
6026 6027 6028 6029 6030
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
      rtx tem = gen_lowpart_if_possible (inner_mode, op0);

      record_jump_cond (code, mode, SUBREG_REG (op1),
6031
			tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
Richard Kenner committed
6032 6033 6034 6035 6036 6037
			reversed_nonequality);
    }

  /* Similarly, if this is an NE comparison, and either is a SUBREG 
     making a smaller mode, we know the whole thing is also NE.  */

6038 6039 6040 6041
  /* Note that GET_MODE (op0) may not equal MODE;
     if we test MODE instead, we can get an infinite recursion
     alternating between two modes each wider than MODE.  */

Richard Kenner committed
6042 6043
  if (code == NE && GET_CODE (op0) == SUBREG
      && subreg_lowpart_p (op0)
6044 6045
      && (GET_MODE_SIZE (GET_MODE (op0))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
Richard Kenner committed
6046 6047 6048 6049 6050
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
      rtx tem = gen_lowpart_if_possible (inner_mode, op1);

      record_jump_cond (code, mode, SUBREG_REG (op0),
6051
			tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
Richard Kenner committed
6052 6053 6054 6055 6056
			reversed_nonequality);
    }

  if (code == NE && GET_CODE (op1) == SUBREG
      && subreg_lowpart_p (op1)
6057 6058
      && (GET_MODE_SIZE (GET_MODE (op1))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
Richard Kenner committed
6059 6060 6061 6062 6063
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
      rtx tem = gen_lowpart_if_possible (inner_mode, op0);

      record_jump_cond (code, mode, SUBREG_REG (op1),
6064
			tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
Richard Kenner committed
6065 6066 6067 6068 6069 6070 6071 6072
			reversed_nonequality);
    }

  /* Hash both operands.  */

  do_not_record = 0;
  hash_arg_in_memory = 0;
  hash_arg_in_struct = 0;
Richard Kenner committed
6073
  op0_hash = HASH (op0, mode);
Richard Kenner committed
6074 6075 6076 6077 6078 6079 6080 6081 6082
  op0_in_memory = hash_arg_in_memory;
  op0_in_struct = hash_arg_in_struct;

  if (do_not_record)
    return;

  do_not_record = 0;
  hash_arg_in_memory = 0;
  hash_arg_in_struct = 0;
Richard Kenner committed
6083
  op1_hash = HASH (op1, mode);
Richard Kenner committed
6084 6085 6086 6087 6088 6089 6090
  op1_in_memory = hash_arg_in_memory;
  op1_in_struct = hash_arg_in_struct;
  
  if (do_not_record)
    return;

  /* Look up both operands.  */
Richard Kenner committed
6091 6092
  op0_elt = lookup (op0, op0_hash, mode);
  op1_elt = lookup (op1, op1_hash, mode);
Richard Kenner committed
6093

6094 6095 6096 6097 6098 6099 6100
  /* If both operands are already equivalent or if they are not in the
     table but are identical, do nothing.  */
  if ((op0_elt != 0 && op1_elt != 0
       && op0_elt->first_same_value == op1_elt->first_same_value)
      || op0 == op1 || rtx_equal_p (op0, op1))
    return;

Richard Kenner committed
6101
  /* If we aren't setting two things equal all we can do is save this
6102 6103 6104 6105 6106
     comparison.   Similarly if this is floating-point.  In the latter
     case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
     If we record the equality, we might inadvertently delete code
     whose intent was to change -0 to +0.  */

6107
  if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
Richard Kenner committed
6108 6109 6110 6111 6112 6113 6114 6115
    {
      /* If we reversed a floating-point comparison, if OP0 is not a
	 register, or if OP1 is neither a register or constant, we can't
	 do anything.  */

      if (GET_CODE (op1) != REG)
	op1 = equiv_constant (op1);

6116
      if ((reversed_nonequality && FLOAT_MODE_P (mode))
Richard Kenner committed
6117 6118 6119 6120 6121 6122 6123
	  || GET_CODE (op0) != REG || op1 == 0)
	return;

      /* Put OP0 in the hash table if it isn't already.  This gives it a
	 new quantity number.  */
      if (op0_elt == 0)
	{
6124
	  if (insert_regs (op0, NULL_PTR, 0))
Richard Kenner committed
6125 6126
	    {
	      rehash_using_reg (op0);
Richard Kenner committed
6127
	      op0_hash = HASH (op0, mode);
6128 6129 6130 6131 6132

	      /* If OP0 is contained in OP1, this changes its hash code
		 as well.  Faster to rehash than to check, except
		 for the simple case of a constant.  */
	      if (! CONSTANT_P (op1))
Richard Kenner committed
6133
		op1_hash = HASH (op1,mode);
Richard Kenner committed
6134 6135
	    }

Richard Kenner committed
6136
	  op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
Richard Kenner committed
6137 6138 6139 6140 6141 6142 6143
	  op0_elt->in_memory = op0_in_memory;
	  op0_elt->in_struct = op0_in_struct;
	}

      qty_comparison_code[reg_qty[REGNO (op0)]] = code;
      if (GET_CODE (op1) == REG)
	{
6144
	  /* Look it up again--in case op0 and op1 are the same.  */
Richard Kenner committed
6145
	  op1_elt = lookup (op1, op1_hash, mode);
6146

Richard Kenner committed
6147 6148 6149
	  /* Put OP1 in the hash table so it gets a new quantity number.  */
	  if (op1_elt == 0)
	    {
6150
	      if (insert_regs (op1, NULL_PTR, 0))
Richard Kenner committed
6151 6152
		{
		  rehash_using_reg (op1);
Richard Kenner committed
6153
		  op1_hash = HASH (op1, mode);
Richard Kenner committed
6154 6155
		}

Richard Kenner committed
6156
	      op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
Richard Kenner committed
6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
	      op1_elt->in_memory = op1_in_memory;
	      op1_elt->in_struct = op1_in_struct;
	    }

	  qty_comparison_qty[reg_qty[REGNO (op0)]] = reg_qty[REGNO (op1)];
	  qty_comparison_const[reg_qty[REGNO (op0)]] = 0;
	}
      else
	{
	  qty_comparison_qty[reg_qty[REGNO (op0)]] = -1;
	  qty_comparison_const[reg_qty[REGNO (op0)]] = op1;
	}

      return;
    }

6173 6174
  /* If either side is still missing an equivalence, make it now,
     then merge the equivalences.  */
Richard Kenner committed
6175 6176 6177

  if (op0_elt == 0)
    {
6178
      if (insert_regs (op0, NULL_PTR, 0))
Richard Kenner committed
6179 6180
	{
	  rehash_using_reg (op0);
Richard Kenner committed
6181
	  op0_hash = HASH (op0, mode);
Richard Kenner committed
6182 6183
	}

Richard Kenner committed
6184
      op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
Richard Kenner committed
6185 6186 6187 6188 6189 6190
      op0_elt->in_memory = op0_in_memory;
      op0_elt->in_struct = op0_in_struct;
    }

  if (op1_elt == 0)
    {
6191
      if (insert_regs (op1, NULL_PTR, 0))
Richard Kenner committed
6192 6193
	{
	  rehash_using_reg (op1);
Richard Kenner committed
6194
	  op1_hash = HASH (op1, mode);
Richard Kenner committed
6195 6196
	}

Richard Kenner committed
6197
      op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
Richard Kenner committed
6198 6199 6200
      op1_elt->in_memory = op1_in_memory;
      op1_elt->in_struct = op1_in_struct;
    }
6201 6202 6203

  merge_equiv_classes (op0_elt, op1_elt);
  last_jump_equiv_class = op0_elt;
Richard Kenner committed
6204 6205 6206 6207 6208 6209 6210 6211
}

/* CSE processing for one instruction.
   First simplify sources and addresses of all assignments
   in the instruction, using previously-computed equivalents values.
   Then install the new sources and destinations in the table
   of available values. 

6212 6213 6214
   If LIBCALL_INSN is nonzero, don't record any equivalence made in
   the insn.  It means that INSN is inside libcall block.  In this
   case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
Richard Kenner committed
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225

/* Data on one SET contained in the instruction.  */

struct set
{
  /* The SET rtx itself.  */
  rtx rtl;
  /* The SET_SRC of the rtx (the original value, if it is changing).  */
  rtx src;
  /* The hash-table element for the SET_SRC of the SET.  */
  struct table_elt *src_elt;
Richard Kenner committed
6226 6227 6228 6229
  /* Hash value for the SET_SRC.  */
  unsigned src_hash;
  /* Hash value for the SET_DEST.  */
  unsigned dest_hash;
Richard Kenner committed
6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
  /* The SET_DEST, with SUBREG, etc., stripped.  */
  rtx inner_dest;
  /* Place where the pointer to the INNER_DEST was found.  */
  rtx *inner_dest_loc;
  /* Nonzero if the SET_SRC is in memory.  */ 
  char src_in_memory;
  /* Nonzero if the SET_SRC is in a structure.  */ 
  char src_in_struct;
  /* Nonzero if the SET_SRC contains something
     whose value cannot be predicted and understood.  */
  char src_volatile;
  /* Original machine mode, in case it becomes a CONST_INT.  */
  enum machine_mode mode;
  /* A constant equivalent for SET_SRC, if any.  */
  rtx src_const;
Richard Kenner committed
6245 6246
  /* Hash value of constant equivalent for SET_SRC.  */
  unsigned src_const_hash;
Richard Kenner committed
6247 6248 6249 6250 6251
  /* Table entry for constant equivalent for SET_SRC, if any.  */
  struct table_elt *src_const_elt;
};

static void
6252
cse_insn (insn, libcall_insn)
Richard Kenner committed
6253
     rtx insn;
6254
     rtx libcall_insn;
Richard Kenner committed
6255 6256 6257
{
  register rtx x = PATTERN (insn);
  register int i;
6258
  rtx tem;
Richard Kenner committed
6259 6260
  register int n_sets = 0;

6261
#ifdef HAVE_cc0
Richard Kenner committed
6262 6263
  /* Records what this insn does to set CC0.  */
  rtx this_insn_cc0 = 0;
6264
  enum machine_mode this_insn_cc0_mode = VOIDmode;
6265
#endif
Richard Kenner committed
6266 6267 6268 6269 6270 6271

  rtx src_eqv = 0;
  struct table_elt *src_eqv_elt = 0;
  int src_eqv_volatile;
  int src_eqv_in_memory;
  int src_eqv_in_struct;
Richard Kenner committed
6272
  unsigned src_eqv_hash;
Richard Kenner committed
6273 6274 6275 6276 6277 6278 6279 6280 6281 6282

  struct set *sets;

  this_insn = insn;

  /* Find all the SETs and CLOBBERs in this instruction.
     Record all the SETs in the array `set' and count them.
     Also determine whether there is a CLOBBER that invalidates
     all memory references, or all references at varying addresses.  */

6283 6284 6285 6286
  if (GET_CODE (insn) == CALL_INSN)
    {
      for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
	if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6287
          invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6288 6289
    }

Richard Kenner committed
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
  if (GET_CODE (x) == SET)
    {
      sets = (struct set *) alloca (sizeof (struct set));
      sets[0].rtl = x;

      /* Ignore SETs that are unconditional jumps.
	 They never need cse processing, so this does not hurt.
	 The reason is not efficiency but rather
	 so that we can test at the end for instructions
	 that have been simplified to unconditional jumps
	 and not be misled by unchanged instructions
	 that were unconditional jumps to begin with.  */
      if (SET_DEST (x) == pc_rtx
	  && GET_CODE (SET_SRC (x)) == LABEL_REF)
	;

      /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
	 The hard function value register is used only once, to copy to
	 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
	 Ensure we invalidate the destination register.  On the 80386 no
6310
	 other code would invalidate it since it is a fixed_reg.
Mike Stump committed
6311
	 We need not check the return of apply_change_group; see canon_reg.  */
Richard Kenner committed
6312 6313 6314 6315

      else if (GET_CODE (SET_SRC (x)) == CALL)
	{
	  canon_reg (SET_SRC (x), insn);
6316
	  apply_change_group ();
Richard Kenner committed
6317
	  fold_rtx (SET_SRC (x), insn);
6318
	  invalidate (SET_DEST (x), VOIDmode);
Richard Kenner committed
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
	}
      else
	n_sets = 1;
    }
  else if (GET_CODE (x) == PARALLEL)
    {
      register int lim = XVECLEN (x, 0);

      sets = (struct set *) alloca (lim * sizeof (struct set));

      /* Find all regs explicitly clobbered in this insn,
	 and ensure they are not replaced with any other regs
	 elsewhere in this insn.
	 When a reg that is clobbered is also used for input,
	 we should presume that that is for a reason,
	 and we should not substitute some other register
	 which is not supposed to be clobbered.
	 Therefore, this loop cannot be merged into the one below
6337
	 because a CALL may precede a CLOBBER and refer to the
Richard Kenner committed
6338 6339 6340 6341 6342
	 value clobbered.  We must not let a canonicalization do
	 anything in that case.  */
      for (i = 0; i < lim; i++)
	{
	  register rtx y = XVECEXP (x, 0, i);
6343 6344 6345 6346 6347 6348
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx clobbered = XEXP (y, 0);

	      if (GET_CODE (clobbered) == REG
		  || GET_CODE (clobbered) == SUBREG)
6349
		invalidate (clobbered, VOIDmode);
6350 6351
	      else if (GET_CODE (clobbered) == STRICT_LOW_PART
		       || GET_CODE (clobbered) == ZERO_EXTRACT)
6352
		invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6353
	    }
Richard Kenner committed
6354 6355 6356 6357 6358 6359 6360
	}
	    
      for (i = 0; i < lim; i++)
	{
	  register rtx y = XVECEXP (x, 0, i);
	  if (GET_CODE (y) == SET)
	    {
6361 6362
	      /* As above, we ignore unconditional jumps and call-insns and
		 ignore the result of apply_change_group.  */
Richard Kenner committed
6363 6364 6365
	      if (GET_CODE (SET_SRC (y)) == CALL)
		{
		  canon_reg (SET_SRC (y), insn);
6366
		  apply_change_group ();
Richard Kenner committed
6367
		  fold_rtx (SET_SRC (y), insn);
6368
		  invalidate (SET_DEST (y), VOIDmode);
Richard Kenner committed
6369 6370 6371 6372 6373 6374 6375 6376 6377
		}
	      else if (SET_DEST (y) == pc_rtx
		       && GET_CODE (SET_SRC (y)) == LABEL_REF)
		;
	      else
		sets[n_sets++].rtl = y;
	    }
	  else if (GET_CODE (y) == CLOBBER)
	    {
6378
	      /* If we clobber memory, canon the address.
Richard Kenner committed
6379 6380 6381
		 This does nothing when a register is clobbered
		 because we have already invalidated the reg.  */
	      if (GET_CODE (XEXP (y, 0)) == MEM)
6382
		canon_reg (XEXP (y, 0), NULL_RTX);
Richard Kenner committed
6383 6384 6385 6386
	    }
	  else if (GET_CODE (y) == USE
		   && ! (GET_CODE (XEXP (y, 0)) == REG
			 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
6387
	    canon_reg (y, NULL_RTX);
Richard Kenner committed
6388 6389
	  else if (GET_CODE (y) == CALL)
	    {
6390 6391
	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */
Richard Kenner committed
6392
	      canon_reg (y, insn);
6393
	      apply_change_group ();
Richard Kenner committed
6394 6395 6396 6397 6398 6399 6400
	      fold_rtx (y, insn);
	    }
	}
    }
  else if (GET_CODE (x) == CLOBBER)
    {
      if (GET_CODE (XEXP (x, 0)) == MEM)
6401
	canon_reg (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
6402 6403 6404 6405 6406 6407
    }

  /* Canonicalize a USE of a pseudo register or memory location.  */
  else if (GET_CODE (x) == USE
	   && ! (GET_CODE (XEXP (x, 0)) == REG
		 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
6408
    canon_reg (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
6409 6410
  else if (GET_CODE (x) == CALL)
    {
6411
      /* The result of apply_change_group can be ignored; see canon_reg.  */
Richard Kenner committed
6412
      canon_reg (x, insn);
6413
      apply_change_group ();
Richard Kenner committed
6414 6415 6416
      fold_rtx (x, insn);
    }

6417 6418 6419
  /* Store the equivalent value in SRC_EQV, if different, or if the DEST
     is a STRICT_LOW_PART.  The latter condition is necessary because SRC_EQV
     is handled specially for this case, and if it isn't set, then there will
Richard Kenner committed
6420
     be no equivalence for the destination.  */
6421 6422
  if (n_sets == 1 && REG_NOTES (insn) != 0
      && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
6423 6424
      && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
	  || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
6425
    src_eqv = canon_reg (XEXP (tem, 0), NULL_RTX);
Richard Kenner committed
6426 6427 6428 6429 6430 6431 6432 6433 6434

  /* Canonicalize sources and addresses of destinations.
     We do this in a separate pass to avoid problems when a MATCH_DUP is
     present in the insn pattern.  In that case, we want to ensure that
     we don't break the duplicate nature of the pattern.  So we will replace
     both operands at the same time.  Otherwise, we would fail to find an
     equivalent substitution in the loop calling validate_change below.

     We used to suppress canonicalization of DEST if it appears in SRC,
6435
     but we don't do this any more.  */
Richard Kenner committed
6436 6437 6438 6439 6440 6441

  for (i = 0; i < n_sets; i++)
    {
      rtx dest = SET_DEST (sets[i].rtl);
      rtx src = SET_SRC (sets[i].rtl);
      rtx new = canon_reg (src, insn);
6442
      int insn_code;
Richard Kenner committed
6443

6444 6445 6446
      if ((GET_CODE (new) == REG && GET_CODE (src) == REG
	   && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
	       != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
6447 6448
	  || (insn_code = recog_memoized (insn)) < 0
	  || insn_n_dups[insn_code] > 0)
6449
	validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
Richard Kenner committed
6450 6451 6452 6453 6454 6455
      else
	SET_SRC (sets[i].rtl) = new;

      if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
	{
	  validate_change (insn, &XEXP (dest, 1),
6456
			   canon_reg (XEXP (dest, 1), insn), 1);
Richard Kenner committed
6457
	  validate_change (insn, &XEXP (dest, 2),
6458
			   canon_reg (XEXP (dest, 2), insn), 1);
Richard Kenner committed
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
	}

      while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SIGN_EXTRACT)
	dest = XEXP (dest, 0);

      if (GET_CODE (dest) == MEM)
	canon_reg (dest, insn);
    }

6470 6471 6472 6473
  /* Now that we have done all the replacements, we can apply the change
     group and see if they all work.  Note that this will cause some
     canonicalizations that would have worked individually not to be applied
     because some other canonicalization didn't work, but this should not
6474 6475 6476
     occur often. 

     The result of apply_change_group can be ignored; see canon_reg.  */
6477 6478 6479

  apply_change_group ();

Richard Kenner committed
6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
  /* Set sets[i].src_elt to the class each source belongs to.
     Detect assignments from or to volatile things
     and set set[i] to zero so they will be ignored
     in the rest of this function.

     Nothing in this loop changes the hash table or the register chains.  */

  for (i = 0; i < n_sets; i++)
    {
      register rtx src, dest;
      register rtx src_folded;
      register struct table_elt *elt = 0, *p;
      enum machine_mode mode;
      rtx src_eqv_here;
      rtx src_const = 0;
      rtx src_related = 0;
      struct table_elt *src_const_elt = 0;
      int src_cost = 10000, src_eqv_cost = 10000, src_folded_cost = 10000;
      int src_related_cost = 10000, src_elt_cost = 10000;
      /* Set non-zero if we need to call force_const_mem on with the
	 contents of src_folded before using it.  */
      int src_folded_force_flag = 0;

      dest = SET_DEST (sets[i].rtl);
      src = SET_SRC (sets[i].rtl);

      /* If SRC is a constant that has no machine mode,
	 hash it with the destination's machine mode.
	 This way we can keep different modes separate.  */

      mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
      sets[i].mode = mode;

      if (src_eqv)
	{
	  enum machine_mode eqvmode = mode;
	  if (GET_CODE (dest) == STRICT_LOW_PART)
	    eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  do_not_record = 0;
	  hash_arg_in_memory = 0;
	  hash_arg_in_struct = 0;
	  src_eqv = fold_rtx (src_eqv, insn);
Richard Kenner committed
6522
	  src_eqv_hash = HASH (src_eqv, eqvmode);
Richard Kenner committed
6523 6524 6525 6526

	  /* Find the equivalence class for the equivalent expression.  */

	  if (!do_not_record)
Richard Kenner committed
6527
	    src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
Richard Kenner committed
6528 6529 6530 6531 6532 6533 6534 6535

	  src_eqv_volatile = do_not_record;
	  src_eqv_in_memory = hash_arg_in_memory;
	  src_eqv_in_struct = hash_arg_in_struct;
	}

      /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
	 value of the INNER register, not the destination.  So it is not
Richard Kenner committed
6536
	 a valid substitution for the source.  But save it for later.  */
Richard Kenner committed
6537 6538 6539 6540 6541 6542 6543 6544 6545
      if (GET_CODE (dest) == STRICT_LOW_PART)
	src_eqv_here = 0;
      else
	src_eqv_here = src_eqv;

      /* Simplify and foldable subexpressions in SRC.  Then get the fully-
	 simplified result, which may not necessarily be valid.  */
      src_folded = fold_rtx (src, insn);

6546 6547 6548 6549 6550 6551 6552
#if 0
      /* ??? This caused bad code to be generated for the m68k port with -O2.
	 Suppose src is (CONST_INT -1), and that after truncation src_folded
	 is (CONST_INT 3).  Suppose src_folded is then used for src_const.
	 At the end we will add src and src_const to the same equivalence
	 class.  We now have 3 and -1 on the same equivalence class.  This
	 causes later instructions to be mis-optimized.  */
Richard Kenner committed
6553 6554 6555 6556 6557 6558 6559 6560 6561
      /* If storing a constant in a bitfield, pre-truncate the constant
	 so we will be able to record it later.  */
      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
	  || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (GET_CODE (src) == CONST_INT
	      && GET_CODE (width) == CONST_INT
6562 6563 6564 6565 6566
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
	    src_folded
	      = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
					  << INTVAL (width)) - 1));
Richard Kenner committed
6567
	}
6568
#endif
Richard Kenner committed
6569 6570 6571 6572 6573 6574 6575 6576 6577

      /* Compute SRC's hash code, and also notice if it
	 should not be recorded at all.  In that case,
	 prevent any further processing of this assignment.  */
      do_not_record = 0;
      hash_arg_in_memory = 0;
      hash_arg_in_struct = 0;

      sets[i].src = src;
Richard Kenner committed
6578
      sets[i].src_hash = HASH (src, mode);
Richard Kenner committed
6579 6580 6581 6582
      sets[i].src_volatile = do_not_record;
      sets[i].src_in_memory = hash_arg_in_memory;
      sets[i].src_in_struct = hash_arg_in_struct;

6583 6584 6585 6586
      /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
	 a pseudo that is set more than once, do not record SRC.  Using
	 SRC as a replacement for anything else will be incorrect in that
	 situation.  Note that this usually occurs only for stack slots,
Jeff Law committed
6587
	 in which case all the RTL would be referring to SRC, so we don't
6588 6589 6590 6591 6592 6593 6594
	 lose any optimization opportunities by not having SRC in the
	 hash table.  */

      if (GET_CODE (src) == MEM
	  && find_reg_note (insn, REG_EQUIV, src) != 0
	  && GET_CODE (dest) == REG
	  && REGNO (dest) >= FIRST_PSEUDO_REGISTER
6595
	  && REG_N_SETS (REGNO (dest)) != 1)
6596 6597
	sets[i].src_volatile = 1;

6598 6599 6600 6601
#if 0
      /* It is no longer clear why we used to do this, but it doesn't
	 appear to still be needed.  So let's try without it since this
	 code hurts cse'ing widened ops.  */
Richard Kenner committed
6602 6603 6604 6605 6606 6607 6608 6609
      /* If source is a perverse subreg (such as QI treated as an SI),
	 treat it as volatile.  It may do the work of an SI in one context
	 where the extra bits are not being used, but cannot replace an SI
	 in general.  */
      if (GET_CODE (src) == SUBREG
	  && (GET_MODE_SIZE (GET_MODE (src))
	      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
	sets[i].src_volatile = 1;
6610
#endif
Richard Kenner committed
6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628

      /* Locate all possible equivalent forms for SRC.  Try to replace
         SRC in the insn with each cheaper equivalent.

         We have the following types of equivalents: SRC itself, a folded
         version, a value given in a REG_EQUAL note, or a value related
	 to a constant.

         Each of these equivalents may be part of an additional class
         of equivalents (if more than one is in the table, they must be in
         the same class; we check for this).

	 If the source is volatile, we don't do any table lookups.

         We note any constant equivalent for possible later use in a
         REG_NOTE.  */

      if (!sets[i].src_volatile)
Richard Kenner committed
6629
	elt = lookup (src, sets[i].src_hash, mode);
Richard Kenner committed
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639

      sets[i].src_elt = elt;

      if (elt && src_eqv_here && src_eqv_elt)
        {
          if (elt->first_same_value != src_eqv_elt->first_same_value)
	    {
	      /* The REG_EQUAL is indicating that two formerly distinct
		 classes are now equivalent.  So merge them.  */
	      merge_equiv_classes (elt, src_eqv_elt);
Richard Kenner committed
6640 6641
	      src_eqv_hash = HASH (src_eqv, elt->mode);
	      src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
Richard Kenner committed
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
	    }

          src_eqv_here = 0;
        }

      else if (src_eqv_elt)
        elt = src_eqv_elt;

      /* Try to find a constant somewhere and record it in `src_const'.
	 Record its table element, if any, in `src_const_elt'.  Look in
	 any known equivalences first.  (If the constant is not in the
Richard Kenner committed
6653
	 table, also set `sets[i].src_const_hash').  */
Richard Kenner committed
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
      if (elt)
        for (p = elt->first_same_value; p; p = p->next_same_value)
	  if (p->is_const)
	    {
	      src_const = p->exp;
	      src_const_elt = elt;
	      break;
	    }

      if (src_const == 0
	  && (CONSTANT_P (src_folded)
	      /* Consider (minus (label_ref L1) (label_ref L2)) as 
		 "constant" here so we will record it. This allows us
		 to fold switch statements when an ADDR_DIFF_VEC is used.  */
	      || (GET_CODE (src_folded) == MINUS
		  && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
		  && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
	src_const = src_folded, src_const_elt = elt;
      else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
	src_const = src_eqv_here, src_const_elt = src_eqv_elt;

      /* If we don't know if the constant is in the table, get its
	 hash code and look it up.  */
      if (src_const && src_const_elt == 0)
	{
Richard Kenner committed
6679 6680
	  sets[i].src_const_hash = HASH (src_const, mode);
	  src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
Richard Kenner committed
6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722
	}

      sets[i].src_const = src_const;
      sets[i].src_const_elt = src_const_elt;

      /* If the constant and our source are both in the table, mark them as
	 equivalent.  Otherwise, if a constant is in the table but the source
	 isn't, set ELT to it.  */
      if (src_const_elt && elt
	  && src_const_elt->first_same_value != elt->first_same_value)
	merge_equiv_classes (elt, src_const_elt);
      else if (src_const_elt && elt == 0)
	elt = src_const_elt;

      /* See if there is a register linearly related to a constant
         equivalent of SRC.  */
      if (src_const
	  && (GET_CODE (src_const) == CONST
	      || (src_const_elt && src_const_elt->related_value != 0)))
        {
          src_related = use_related_value (src_const, src_const_elt);
          if (src_related)
            {
	      struct table_elt *src_related_elt
		    = lookup (src_related, HASH (src_related, mode), mode);
	      if (src_related_elt && elt)
	        {
		  if (elt->first_same_value
		      != src_related_elt->first_same_value)
		    /* This can occur when we previously saw a CONST 
		       involving a SYMBOL_REF and then see the SYMBOL_REF
		       twice.  Merge the involved classes.  */
		    merge_equiv_classes (elt, src_related_elt);

	          src_related = 0;
		  src_related_elt = 0;
	        }
              else if (src_related_elt && elt == 0)
	        elt = src_related_elt;
	    }
        }

6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753
      /* See if we have a CONST_INT that is already in a register in a
	 wider mode.  */

      if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
	  && GET_MODE_CLASS (mode) == MODE_INT
	  && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
	{
	  enum machine_mode wider_mode;

	  for (wider_mode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
	       && src_related == 0;
	       wider_mode = GET_MODE_WIDER_MODE (wider_mode))
	    {
	      struct table_elt *const_elt
		= lookup (src_const, HASH (src_const, wider_mode), wider_mode);

	      if (const_elt == 0)
		continue;

	      for (const_elt = const_elt->first_same_value;
		   const_elt; const_elt = const_elt->next_same_value)
		if (GET_CODE (const_elt->exp) == REG)
		  {
		    src_related = gen_lowpart_if_possible (mode,
							   const_elt->exp);
		    break;
		  }
	    }
	}

6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
      /* Another possibility is that we have an AND with a constant in
	 a mode narrower than a word.  If so, it might have been generated
	 as part of an "if" which would narrow the AND.  If we already
	 have done the AND in a wider mode, we can use a SUBREG of that
	 value.  */

      if (flag_expensive_optimizations && ! src_related
	  && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
	  && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	{
	  enum machine_mode tmode;
6765
	  rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795

	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
	      rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
	      struct table_elt *larger_elt;

	      if (inner)
		{
		  PUT_MODE (new_and, tmode);
		  XEXP (new_and, 0) = inner;
		  larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
		  if (larger_elt == 0)
		    continue;

		  for (larger_elt = larger_elt->first_same_value;
		       larger_elt; larger_elt = larger_elt->next_same_value)
		    if (GET_CODE (larger_elt->exp) == REG)
		      {
			src_related
			  = gen_lowpart_if_possible (mode, larger_elt->exp);
			break;
		      }

		  if (src_related)
		    break;
		}
	    }
	}
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842

#ifdef LOAD_EXTEND_OP
      /* See if a MEM has already been loaded with a widening operation;
	 if it has, we can use a subreg of that.  Many CISC machines
	 also have such operations, but this is only likely to be
	 beneficial these machines.  */
      
      if (flag_expensive_optimizations &&  src_related == 0
	  && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	  && GET_MODE_CLASS (mode) == MODE_INT
	  && GET_CODE (src) == MEM && ! do_not_record
	  && LOAD_EXTEND_OP (mode) != NIL)
	{
	  enum machine_mode tmode;
	  
	  /* Set what we are trying to extend and the operation it might
	     have been extended with.  */
	  PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
	  XEXP (memory_extend_rtx, 0) = src;
	  
	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
	      struct table_elt *larger_elt;
	      
	      PUT_MODE (memory_extend_rtx, tmode);
	      larger_elt = lookup (memory_extend_rtx, 
				   HASH (memory_extend_rtx, tmode), tmode);
	      if (larger_elt == 0)
		continue;
	      
	      for (larger_elt = larger_elt->first_same_value;
		   larger_elt; larger_elt = larger_elt->next_same_value)
		if (GET_CODE (larger_elt->exp) == REG)
		  {
		    src_related = gen_lowpart_if_possible (mode, 
							   larger_elt->exp);
		    break;
		  }
	      
	      if (src_related)
		break;
	    }
	}
#endif /* LOAD_EXTEND_OP */
 
Richard Kenner committed
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
      if (src == src_folded)
        src_folded = 0;

      /* At this point, ELT, if non-zero, points to a class of expressions
         equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
	 and SRC_RELATED, if non-zero, each contain additional equivalent
	 expressions.  Prune these latter expressions by deleting expressions
	 already in the equivalence class.

	 Check for an equivalent identical to the destination.  If found,
	 this is the preferred equivalent since it will likely lead to
	 elimination of the insn.  Indicate this by placing it in
	 `src_related'.  */

      if (elt) elt = elt->first_same_value;
      for (p = elt; p; p = p->next_same_value)
        {
	  enum rtx_code code = GET_CODE (p->exp);

	  /* If the expression is not valid, ignore it.  Then we do not
	     have to check for validity below.  In most cases, we can use
	     `rtx_equal_p', since canonicalization has already been done.  */
	  if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
	    continue;

6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
	  /* Also skip paradoxical subregs, unless that's what we're
	     looking for.  */
	  if (code == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (p->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (p->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
	    continue;

Richard Kenner committed
6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
          if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
	    src = 0;
          else if (src_folded && GET_CODE (src_folded) == code
		   && rtx_equal_p (src_folded, p->exp))
	    src_folded = 0;
          else if (src_eqv_here && GET_CODE (src_eqv_here) == code
		   && rtx_equal_p (src_eqv_here, p->exp))
	    src_eqv_here = 0;
          else if (src_related && GET_CODE (src_related) == code
		   && rtx_equal_p (src_related, p->exp))
	    src_related = 0;

	  /* This is the same as the destination of the insns, we want
	     to prefer it.  Copy it to src_related.  The code below will
	     then give it a negative cost.  */
	  if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
	    src_related = dest;

        }

      /* Find the cheapest valid equivalent, trying all the available
         possibilities.  Prefer items not in the hash table to ones
         that are when they are equal cost.  Note that we can never
         worsen an insn as the current contents will also succeed.
6904
	 If we find an equivalent identical to the destination, use it as best,
Mike Stump committed
6905
	 since this insn will probably be eliminated in that case.  */
Richard Kenner committed
6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
      if (src)
	{
	  if (rtx_equal_p (src, dest))
	    src_cost = -1;
	  else
	    src_cost = COST (src);
	}

      if (src_eqv_here)
	{
	  if (rtx_equal_p (src_eqv_here, dest))
	    src_eqv_cost = -1;
	  else
	    src_eqv_cost = COST (src_eqv_here);
	}

      if (src_folded)
	{
	  if (rtx_equal_p (src_folded, dest))
	    src_folded_cost = -1;
	  else
	    src_folded_cost = COST (src_folded);
	}

      if (src_related)
	{
	  if (rtx_equal_p (src_related, dest))
	    src_related_cost = -1;
	  else
	    src_related_cost = COST (src_related);
	}

      /* If this was an indirect jump insn, a known label will really be
	 cheaper even though it looks more expensive.  */
      if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
	src_folded = src_const, src_folded_cost = -1;
	  
      /* Terminate loop when replacement made.  This must terminate since
         the current contents will be tested and will always be valid.  */
      while (1)
        {
6947
          rtx trial, old_src;
Richard Kenner committed
6948 6949 6950 6951 6952

          /* Skip invalid entries.  */
          while (elt && GET_CODE (elt->exp) != REG
	         && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
	    elt = elt->next_same_value;	     
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971

	  /* A paradoxical subreg would be bad here: it'll be the right
	     size, but later may be adjusted so that the upper bits aren't
	     what we want.  So reject it.  */
	  if (elt != 0
	      && GET_CODE (elt->exp) == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (elt->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
	      /* It is okay, though, if the rtx we're trying to match
		 will ignore any of the bits we can't predict.  */
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (elt->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
	    {
	      elt = elt->next_same_value;
	      continue;
	    }
Richard Kenner committed
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
	      
          if (elt) src_elt_cost = elt->cost;

          /* Find cheapest and skip it for the next time.   For items
	     of equal cost, use this order:
	     src_folded, src, src_eqv, src_related and hash table entry.  */
          if (src_folded_cost <= src_cost
	      && src_folded_cost <= src_eqv_cost
	      && src_folded_cost <= src_related_cost
	      && src_folded_cost <= src_elt_cost)
	    {
	      trial = src_folded, src_folded_cost = 10000;
	      if (src_folded_force_flag)
		trial = force_const_mem (mode, trial);
	    }
          else if (src_cost <= src_eqv_cost
	           && src_cost <= src_related_cost
	           && src_cost <= src_elt_cost)
	    trial = src, src_cost = 10000;
          else if (src_eqv_cost <= src_related_cost
	           && src_eqv_cost <= src_elt_cost)
6993
	    trial = copy_rtx (src_eqv_here), src_eqv_cost = 10000;
Richard Kenner committed
6994
          else if (src_related_cost <= src_elt_cost)
6995
	    trial = copy_rtx (src_related), src_related_cost = 10000;
Richard Kenner committed
6996 6997
          else
	    {
6998
	      trial = copy_rtx (elt->exp);
Richard Kenner committed
6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
	      elt = elt->next_same_value;
	      src_elt_cost = 10000;
	    }

	  /* We don't normally have an insn matching (set (pc) (pc)), so
	     check for this separately here.  We will delete such an
	     insn below.

	     Tablejump insns contain a USE of the table, so simply replacing
	     the operand with the constant won't match.  This is simply an
	     unconditional branch, however, and is therefore valid.  Just
	     insert the substitution here and we will delete and re-emit
	     the insn later.  */

7013 7014 7015 7016
	  /* Keep track of the original SET_SRC so that we can fix notes
	     on libcall instructions.  */
 	  old_src = SET_SRC (sets[i].rtl);

Richard Kenner committed
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
	  if (n_sets == 1 && dest == pc_rtx
	      && (trial == pc_rtx
		  || (GET_CODE (trial) == LABEL_REF
		      && ! condjump_p (insn))))
	    {
	      /* If TRIAL is a label in front of a jump table, we are
		 really falling through the switch (this is how casesi
		 insns work), so we must branch around the table.  */
	      if (GET_CODE (trial) == CODE_LABEL
		  && NEXT_INSN (trial) != 0
		  && GET_CODE (NEXT_INSN (trial)) == JUMP_INSN
		  && (GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_DIFF_VEC
		      || GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_VEC))

7031
		trial = gen_rtx_LABEL_REF (Pmode, get_label_after (trial));
Richard Kenner committed
7032 7033

	      SET_SRC (sets[i].rtl) = trial;
7034
 	      cse_jumps_altered = 1;
Richard Kenner committed
7035 7036 7037 7038 7039
	      break;
	    }
	   
	  /* Look for a substitution that makes a valid insn.  */
          else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
7040
	    {
7041 7042 7043
	      /* If we just made a substitution inside a libcall, then we
		 need to make the same substitution in any notes attached
		 to the RETVAL insn.  */
7044 7045 7046 7047
	      if (libcall_insn
		  && (GET_CODE (old_src) == REG
		      || GET_CODE (old_src) == SUBREG
		      ||  GET_CODE (old_src) == MEM))
7048 7049 7050
		replace_rtx (REG_NOTES (libcall_insn), old_src, 
			     canon_reg (SET_SRC (sets[i].rtl), insn));

7051 7052 7053 7054 7055 7056
	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */

	      validate_change (insn, &SET_SRC (sets[i].rtl),
			       canon_reg (SET_SRC (sets[i].rtl), insn),
			       1);
7057
	      apply_change_group ();
7058 7059
	      break;
	    }
Richard Kenner committed
7060 7061 7062 7063 7064 7065 7066 7067

	  /* If we previously found constant pool entries for 
	     constants and this is a constant, try making a
	     pool entry.  Put it in src_folded unless we already have done
	     this since that is where it likely came from.  */

	  else if (constant_pool_entries_cost
		   && CONSTANT_P (trial)
7068 7069 7070 7071 7072
		   && ! (GET_CODE (trial) == CONST
			 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
		   && (src_folded == 0
		       || (GET_CODE (src_folded) != MEM
			   && ! src_folded_force_flag))
7073 7074
		   && GET_MODE_CLASS (mode) != MODE_CC
		   && mode != VOIDmode)
Richard Kenner committed
7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
	    {
	      src_folded_force_flag = 1;
	      src_folded = trial;
	      src_folded_cost = constant_pool_entries_cost;
	    }
        }

      src = SET_SRC (sets[i].rtl);

      /* In general, it is good to have a SET with SET_SRC == SET_DEST.
	 However, there is an important exception:  If both are registers
	 that are not the head of their equivalence class, replace SET_SRC
	 with the head of the class.  If we do not do this, we will have
	 both registers live over a portion of the basic block.  This way,
	 their lifetimes will likely abut instead of overlapping.  */
      if (GET_CODE (dest) == REG
	  && REGNO_QTY_VALID_P (REGNO (dest))
	  && qty_mode[reg_qty[REGNO (dest)]] == GET_MODE (dest)
	  && qty_first_reg[reg_qty[REGNO (dest)]] != REGNO (dest)
	  && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
	  /* Don't do this if the original insn had a hard reg as
	     SET_SRC.  */
	  && (GET_CODE (sets[i].src) != REG
	      || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER))
	/* We can't call canon_reg here because it won't do anything if
	   SRC is a hard register.  */
	{
	  int first = qty_first_reg[reg_qty[REGNO (src)]];
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120
	  rtx new_src
	    = (first >= FIRST_PSEUDO_REGISTER
	       ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));

	  /* We must use validate-change even for this, because this
	     might be a special no-op instruction, suitable only to
	     tag notes onto.  */
	  if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
	    {
	      src = new_src;
	      /* If we had a constant that is cheaper than what we are now
		 setting SRC to, use that constant.  We ignored it when we
		 thought we could make this into a no-op.  */
	      if (src_const && COST (src_const) < COST (src)
		  && validate_change (insn, &SET_SRC (sets[i].rtl), src_const,
				      0))
		src = src_const;
	    }
Richard Kenner committed
7121 7122 7123 7124 7125 7126 7127 7128 7129
	}

      /* If we made a change, recompute SRC values.  */
      if (src != sets[i].src)
        {
          do_not_record = 0;
          hash_arg_in_memory = 0;
          hash_arg_in_struct = 0;
	  sets[i].src = src;
Richard Kenner committed
7130
          sets[i].src_hash = HASH (src, mode);
Richard Kenner committed
7131 7132 7133
          sets[i].src_volatile = do_not_record;
          sets[i].src_in_memory = hash_arg_in_memory;
          sets[i].src_in_struct = hash_arg_in_struct;
Richard Kenner committed
7134
          sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
Richard Kenner committed
7135 7136 7137 7138 7139
        }

      /* If this is a single SET, we are setting a register, and we have an
	 equivalent constant, we want to add a REG_NOTE.   We don't want
	 to write a REG_EQUAL note for a constant pseudo since verifying that
7140
	 that pseudo hasn't been eliminated is a pain.  Such a note also
Richard Kenner committed
7141 7142 7143 7144
	 won't help anything.  */
      if (n_sets == 1 && src_const && GET_CODE (dest) == REG
	  && GET_CODE (src_const) != REG)
	{
7145
	  tem = find_reg_note (insn, REG_EQUAL, NULL_RTX);
Richard Kenner committed
7146 7147 7148 7149 7150 7151
	  
	  /* Record the actual constant value in a REG_EQUAL note, making
	     a new one if one does not already exist.  */
	  if (tem)
	    XEXP (tem, 0) = src_const;
	  else
7152 7153
	    REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL,
						  src_const, REG_NOTES (insn));
Richard Kenner committed
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169

          /* If storing a constant value in a register that
	     previously held the constant value 0,
	     record this fact with a REG_WAS_0 note on this insn.

	     Note that the *register* is required to have previously held 0,
	     not just any register in the quantity and we must point to the
	     insn that set that register to zero.

	     Rather than track each register individually, we just see if
	     the last set for this quantity was for this register.  */

	  if (REGNO_QTY_VALID_P (REGNO (dest))
	      && qty_const[reg_qty[REGNO (dest)]] == const0_rtx)
	    {
	      /* See if we previously had a REG_WAS_0 note.  */
7170
	      rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
Richard Kenner committed
7171 7172 7173 7174 7175 7176 7177 7178
	      rtx const_insn = qty_const_insn[reg_qty[REGNO (dest)]];

	      if ((tem = single_set (const_insn)) != 0
		  && rtx_equal_p (SET_DEST (tem), dest))
		{
		  if (note)
		    XEXP (note, 0) = const_insn;
		  else
7179 7180 7181
		    REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_WAS_0,
							  const_insn,
							  REG_NOTES (insn));
Richard Kenner committed
7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204
		}
	    }
	}

      /* Now deal with the destination.  */
      do_not_record = 0;
      sets[i].inner_dest_loc = &SET_DEST (sets[0].rtl);

      /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
	 to the MEM or REG within it.  */
      while (GET_CODE (dest) == SIGN_EXTRACT
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SUBREG
	     || GET_CODE (dest) == STRICT_LOW_PART)
	{
	  sets[i].inner_dest_loc = &XEXP (dest, 0);
	  dest = XEXP (dest, 0);
	}

      sets[i].inner_dest = dest;

      if (GET_CODE (dest) == MEM)
	{
7205 7206 7207 7208 7209 7210 7211 7212
#ifdef PUSH_ROUNDING
	  /* Stack pushes invalidate the stack pointer.  */
	  rtx addr = XEXP (dest, 0);
	  if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
	       || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
	      && XEXP (addr, 0) == stack_pointer_rtx)
	    invalidate (stack_pointer_rtx, Pmode);
#endif
Richard Kenner committed
7213 7214 7215 7216 7217 7218 7219
	  dest = fold_rtx (dest, insn);
	}

      /* Compute the hash code of the destination now,
	 before the effects of this instruction are recorded,
	 since the register values used in the address computation
	 are those before this instruction.  */
Richard Kenner committed
7220
      sets[i].dest_hash = HASH (dest, mode);
Richard Kenner committed
7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232

      /* Don't enter a bit-field in the hash table
	 because the value in it after the store
	 may not equal what was stored, due to truncation.  */

      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
	  || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (src_const != 0 && GET_CODE (src_const) == CONST_INT
	      && GET_CODE (width) == CONST_INT
7233 7234 7235
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && ! (INTVAL (src_const)
		    & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
Richard Kenner committed
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260
	    /* Exception: if the value is constant,
	       and it won't be truncated, record it.  */
	    ;
	  else
	    {
	      /* This is chosen so that the destination will be invalidated
		 but no new value will be recorded.
		 We must invalidate because sometimes constant
		 values can be recorded for bitfields.  */
	      sets[i].src_elt = 0;
	      sets[i].src_volatile = 1;
	      src_eqv = 0;
	      src_eqv_elt = 0;
	    }
	}

      /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
	 the insn.  */
      else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
	{
	  PUT_CODE (insn, NOTE);
	  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	  NOTE_SOURCE_FILE (insn) = 0;
	  cse_jumps_altered = 1;
	  /* One less use of the label this insn used to jump to.  */
7261 7262
	  if (JUMP_LABEL (insn) != 0)
	    --LABEL_NUSES (JUMP_LABEL (insn));
Richard Kenner committed
7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
	  /* No more processing for this set.  */
	  sets[i].rtl = 0;
	}

      /* If this SET is now setting PC to a label, we know it used to
	 be a conditional or computed branch.  So we see if we can follow
	 it.  If it was a computed branch, delete it and re-emit.  */
      else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
	{
	  rtx p;

	  /* If this is not in the format for a simple branch and
	     we are the only SET in it, re-emit it.  */
	  if (! simplejump_p (insn) && n_sets == 1)
	    {
	      rtx new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
	      JUMP_LABEL (new) = XEXP (src, 0);
	      LABEL_NUSES (XEXP (src, 0))++;
	      delete_insn (insn);
	      insn = new;
	    }
7284 7285 7286 7287 7288 7289 7290
	  else
	    /* Otherwise, force rerecognition, since it probably had
	       a different pattern before.
	       This shouldn't really be necessary, since whatever
	       changed the source value above should have done this.
	       Until the right place is found, might as well do this here.  */
	    INSN_CODE (insn) = -1;
Richard Kenner committed
7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316

	  /* Now that we've converted this jump to an unconditional jump,
	     there is dead code after it.  Delete the dead code until we
	     reach a BARRIER, the end of the function, or a label.  Do
	     not delete NOTEs except for NOTE_INSN_DELETED since later
	     phases assume these notes are retained.  */

	  p = insn;

	  while (NEXT_INSN (p) != 0
		 && GET_CODE (NEXT_INSN (p)) != BARRIER
		 && GET_CODE (NEXT_INSN (p)) != CODE_LABEL)
	    {
	      if (GET_CODE (NEXT_INSN (p)) != NOTE
		  || NOTE_LINE_NUMBER (NEXT_INSN (p)) == NOTE_INSN_DELETED)
		delete_insn (NEXT_INSN (p));
	      else
		p = NEXT_INSN (p);
	    }

	  /* If we don't have a BARRIER immediately after INSN, put one there.
	     Much code assumes that there are no NOTEs between a JUMP_INSN and
	     BARRIER.  */

	  if (NEXT_INSN (insn) == 0
	      || GET_CODE (NEXT_INSN (insn)) != BARRIER)
7317
	    emit_barrier_before (NEXT_INSN (insn));
Richard Kenner committed
7318 7319 7320 7321

	  /* We might have two BARRIERs separated by notes.  Delete the second
	     one if so.  */

7322 7323
	  if (p != insn && NEXT_INSN (p) != 0
	      && GET_CODE (NEXT_INSN (p)) == BARRIER)
Richard Kenner committed
7324 7325 7326 7327 7328 7329
	    delete_insn (NEXT_INSN (p));

	  cse_jumps_altered = 1;
	  sets[i].rtl = 0;
	}

7330 7331
      /* If destination is volatile, invalidate it and then do no further
	 processing for this assignment.  */
Richard Kenner committed
7332 7333

      else if (do_not_record)
7334 7335 7336
	{
	  if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
	      || GET_CODE (dest) == MEM)
7337
	    invalidate (dest, VOIDmode);
7338 7339
	  else if (GET_CODE (dest) == STRICT_LOW_PART
		   || GET_CODE (dest) == ZERO_EXTRACT)
7340
	    invalidate (XEXP (dest, 0), GET_MODE (dest));
7341 7342
	  sets[i].rtl = 0;
	}
Richard Kenner committed
7343 7344

      if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
Richard Kenner committed
7345
	sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
Richard Kenner committed
7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357

#ifdef HAVE_cc0
      /* If setting CC0, record what it was set to, or a constant, if it
	 is equivalent to a constant.  If it is being set to a floating-point
	 value, make a COMPARE with the appropriate constant of 0.  If we
	 don't do this, later code can interpret this as a test against
	 const0_rtx, which can cause problems if we try to put it into an
	 insn as a floating-point operand.  */
      if (dest == cc0_rtx)
	{
	  this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
	  this_insn_cc0_mode = mode;
7358
	  if (FLOAT_MODE_P (mode))
7359 7360
	    this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
					     CONST0_RTX (mode));
Richard Kenner committed
7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385
	}
#endif
    }

  /* Now enter all non-volatile source expressions in the hash table
     if they are not already present.
     Record their equivalence classes in src_elt.
     This way we can insert the corresponding destinations into
     the same classes even if the actual sources are no longer in them
     (having been invalidated).  */

  if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
      && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
    {
      register struct table_elt *elt;
      register struct table_elt *classp = sets[0].src_elt;
      rtx dest = SET_DEST (sets[0].rtl);
      enum machine_mode eqvmode = GET_MODE (dest);

      if (GET_CODE (dest) == STRICT_LOW_PART)
	{
	  eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  classp = 0;
	}
      if (insert_regs (src_eqv, classp, 0))
7386 7387 7388 7389
	{
	  rehash_using_reg (src_eqv);
	  src_eqv_hash = HASH (src_eqv, eqvmode);
	}
Richard Kenner committed
7390
      elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
Richard Kenner committed
7391 7392 7393
      elt->in_memory = src_eqv_in_memory;
      elt->in_struct = src_eqv_in_struct;
      src_eqv_elt = elt;
7394 7395 7396 7397 7398 7399 7400 7401

      /* Check to see if src_eqv_elt is the same as a set source which
	 does not yet have an elt, and if so set the elt of the set source
	 to src_eqv_elt.  */
      for (i = 0; i < n_sets; i++)
	if (sets[i].rtl && sets[i].src_elt == 0
	    && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
	  sets[i].src_elt = src_eqv_elt;
Richard Kenner committed
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
    }

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl && ! sets[i].src_volatile
	&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
      {
	if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
	  {
	    /* REG_EQUAL in setting a STRICT_LOW_PART
	       gives an equivalent for the entire destination register,
	       not just for the subreg being stored in now.
	       This is a more interesting equivalence, so we arrange later
	       to treat the entire reg as the destination.  */
	    sets[i].src_elt = src_eqv_elt;
Richard Kenner committed
7416
	    sets[i].src_hash = src_eqv_hash;
Richard Kenner committed
7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435
	  }
	else
	  {
	    /* Insert source and constant equivalent into hash table, if not
	       already present.  */
	    register struct table_elt *classp = src_eqv_elt;
	    register rtx src = sets[i].src;
	    register rtx dest = SET_DEST (sets[i].rtl);
	    enum machine_mode mode
	      = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);

	    if (sets[i].src_elt == 0)
	      {
		register struct table_elt *elt;

		/* Note that these insert_regs calls cannot remove
		   any of the src_elt's, because they would have failed to
		   match if not still valid.  */
		if (insert_regs (src, classp, 0))
7436 7437 7438 7439
		  {
		    rehash_using_reg (src);
		    sets[i].src_hash = HASH (src, mode);
		  }
Richard Kenner committed
7440
		elt = insert (src, classp, sets[i].src_hash, mode);
Richard Kenner committed
7441 7442 7443 7444 7445 7446 7447 7448 7449
		elt->in_memory = sets[i].src_in_memory;
		elt->in_struct = sets[i].src_in_struct;
		sets[i].src_elt = classp = elt;
	      }

	    if (sets[i].src_const && sets[i].src_const_elt == 0
		&& src != sets[i].src_const
		&& ! rtx_equal_p (sets[i].src_const, src))
	      sets[i].src_elt = insert (sets[i].src_const, classp,
Richard Kenner committed
7450
					sets[i].src_const_hash, mode);
Richard Kenner committed
7451 7452 7453 7454 7455 7456 7457 7458
	  }
      }
    else if (sets[i].src_elt == 0)
      /* If we did not insert the source into the hash table (e.g., it was
	 volatile), note the equivalence class for the REG_EQUAL value, if any,
	 so that the destination goes into that class.  */
      sets[i].src_elt = src_eqv_elt;

7459
  invalidate_from_clobbers (x);
7460 7461 7462 7463

  /* Some registers are invalidated by subroutine calls.  Memory is 
     invalidated by non-constant calls.  */

Richard Kenner committed
7464 7465
  if (GET_CODE (insn) == CALL_INSN)
    {
7466
      if (! CONST_CALL_P (insn))
7467
	invalidate_memory ();
Richard Kenner committed
7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
      invalidate_for_call ();
    }

  /* Now invalidate everything set by this instruction.
     If a SUBREG or other funny destination is being set,
     sets[i].rtl is still nonzero, so here we invalidate the reg
     a part of which is being set.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
7479 7480 7481
	/* We can't use the inner dest, because the mode associated with
	   a ZERO_EXTRACT is significant.  */
	register rtx dest = SET_DEST (sets[i].rtl);
Richard Kenner committed
7482 7483 7484 7485 7486 7487

	/* Needed for registers to remove the register from its
	   previous quantity's chain.
	   Needed for memory if this is a nonvarying address, unless
	   we have just done an invalidate_memory that covers even those.  */
	if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
7488
	    || GET_CODE (dest) == MEM)
7489
	  invalidate (dest, VOIDmode);
7490 7491
	else if (GET_CODE (dest) == STRICT_LOW_PART
		 || GET_CODE (dest) == ZERO_EXTRACT)
7492
	  invalidate (XEXP (dest, 0), GET_MODE (dest));
Richard Kenner committed
7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503
      }

  /* Make sure registers mentioned in destinations
     are safe for use in an expression to be inserted.
     This removes from the hash table
     any invalid entry that refers to one of these registers.

     We don't care about the return value from mention_regs because
     we are going to hash the SET_DEST values unconditionally.  */

  for (i = 0; i < n_sets; i++)
7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541
    {
      if (sets[i].rtl)
	{
	  rtx x = SET_DEST (sets[i].rtl);

	  if (GET_CODE (x) != REG)
	    mention_regs (x);
	  else
	    {
	      /* We used to rely on all references to a register becoming
		 inaccessible when a register changes to a new quantity,
		 since that changes the hash code.  However, that is not
		 safe, since after NBUCKETS new quantities we get a
		 hash 'collision' of a register with its own invalid
		 entries.  And since SUBREGs have been changed not to
		 change their hash code with the hash code of the register,
		 it wouldn't work any longer at all.  So we have to check
		 for any invalid references lying around now.
		 This code is similar to the REG case in mention_regs,
		 but it knows that reg_tick has been incremented, and
		 it leaves reg_in_table as -1 .  */
	      register int regno = REGNO (x);
	      register int endregno
		= regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
			   : HARD_REGNO_NREGS (regno, GET_MODE (x)));
	      int i;

	      for (i = regno; i < endregno; i++)
		{
		  if (reg_in_table[i] >= 0)
		    {
		      remove_invalid_refs (i);
		      reg_in_table[i] = -1;
		    }
		}
	    }
	}
    }
Richard Kenner committed
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569

  /* We may have just removed some of the src_elt's from the hash table.
     So replace each one with the current head of the same class.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
	if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
	  /* If elt was removed, find current head of same class,
	     or 0 if nothing remains of that class.  */
	  {
	    register struct table_elt *elt = sets[i].src_elt;

	    while (elt && elt->prev_same_value)
	      elt = elt->prev_same_value;

	    while (elt && elt->first_same_value == 0)
	      elt = elt->next_same_value;
	    sets[i].src_elt = elt ? elt->first_same_value : 0;
	  }
      }

  /* Now insert the destinations into their equivalence classes.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
	register rtx dest = SET_DEST (sets[i].rtl);
7570
	rtx inner_dest = sets[i].inner_dest;
Richard Kenner committed
7571 7572 7573 7574 7575 7576 7577
	register struct table_elt *elt;

	/* Don't record value if we are not supposed to risk allocating
	   floating-point values in registers that might be wider than
	   memory.  */
	if ((flag_float_store
	     && GET_CODE (dest) == MEM
7578
	     && FLOAT_MODE_P (GET_MODE (dest)))
7579 7580 7581 7582
	    /* Don't record BLKmode values, because we don't know the
	       size of it, and can't be sure that other BLKmode values
	       have the same or smaller size.  */
	    || GET_MODE (dest) == BLKmode
Richard Kenner committed
7583 7584 7585 7586
	    /* Don't record values of destinations set inside a libcall block
	       since we might delete the libcall.  Things should have been set
	       up so we won't want to reuse such a value, but we play it safe
	       here.  */
7587
	    || libcall_insn
Richard Kenner committed
7588 7589
	    /* If we didn't put a REG_EQUAL value or a source into the hash
	       table, there is no point is recording DEST.  */
7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
	    || sets[i].src_elt == 0
	    /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
	       or SIGN_EXTEND, don't record DEST since it can cause
	       some tracking to be wrong.

	       ??? Think about this more later.  */
	    || (GET_CODE (dest) == SUBREG
		&& (GET_MODE_SIZE (GET_MODE (dest))
		    > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
		&& (GET_CODE (sets[i].src) == SIGN_EXTEND
		    || GET_CODE (sets[i].src) == ZERO_EXTEND)))
Richard Kenner committed
7601 7602 7603 7604 7605 7606 7607 7608
	  continue;

	/* STRICT_LOW_PART isn't part of the value BEING set,
	   and neither is the SUBREG inside it.
	   Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT.  */
	if (GET_CODE (dest) == STRICT_LOW_PART)
	  dest = SUBREG_REG (XEXP (dest, 0));

7609
	if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
Richard Kenner committed
7610 7611
	  /* Registers must also be inserted into chains for quantities.  */
	  if (insert_regs (dest, sets[i].src_elt, 1))
7612 7613 7614 7615 7616 7617
	    {
	      /* If `insert_regs' changes something, the hash code must be
		 recalculated.  */
	      rehash_using_reg (dest);
	      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
	    }
Richard Kenner committed
7618

7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630
	if (GET_CODE (inner_dest) == MEM
	    && GET_CODE (XEXP (inner_dest, 0)) == ADDRESSOF)
	  /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
	     that (MEM (ADDRESSOF (X))) is equivalent to Y. 
	     Consider the case in which the address of the MEM is
	     passed to a function, which alters the MEM.  Then, if we
	     later use Y instead of the MEM we'll miss the update.  */
	  elt = insert (dest, 0, sets[i].dest_hash, GET_MODE (dest));
	else
	  elt = insert (dest, sets[i].src_elt,
			sets[i].dest_hash, GET_MODE (dest));

7631
	elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
7632 7633 7634
			  && (! RTX_UNCHANGING_P (sets[i].inner_dest)
			      || FIXED_BASE_PLUS_P (XEXP (sets[i].inner_dest,
							  0))));
7635

Richard Kenner committed
7636 7637 7638 7639 7640 7641 7642 7643 7644
	if (elt->in_memory)
	  {
	    /* This implicitly assumes a whole struct
	       need not have MEM_IN_STRUCT_P.
	       But a whole struct is *supposed* to have MEM_IN_STRUCT_P.  */
	    elt->in_struct = (MEM_IN_STRUCT_P (sets[i].inner_dest)
			      || sets[i].inner_dest != SET_DEST (sets[i].rtl));
	  }

7645 7646 7647 7648
	/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
	   narrower than M2, and both M1 and M2 are the same number of words,
	   we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
	   make that equivalence as well.
Richard Kenner committed
7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660

	   However, BAR may have equivalences for which gen_lowpart_if_possible
	   will produce a simpler value than gen_lowpart_if_possible applied to
	   BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
	   BAR's equivalences.  If we don't get a simplified form, make 
	   the SUBREG.  It will not be used in an equivalence, but will
	   cause two similar assignments to be detected.

	   Note the loop below will find SUBREG_REG (DEST) since we have
	   already entered SRC and DEST of the SET in the table.  */

	if (GET_CODE (dest) == SUBREG
7661 7662 7663
	    && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
		 / UNITS_PER_WORD)
		== (GET_MODE_SIZE (GET_MODE (dest)) - 1)/ UNITS_PER_WORD)
Richard Kenner committed
7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674
	    && (GET_MODE_SIZE (GET_MODE (dest))
		>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
	    && sets[i].src_elt != 0)
	  {
	    enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
	    struct table_elt *elt, *classp = 0;

	    for (elt = sets[i].src_elt->first_same_value; elt;
		 elt = elt->next_same_value)
	      {
		rtx new_src = 0;
Richard Kenner committed
7675
		unsigned src_hash;
Richard Kenner committed
7676 7677 7678 7679 7680 7681 7682 7683 7684
		struct table_elt *src_elt;

		/* Ignore invalid entries.  */
		if (GET_CODE (elt->exp) != REG
		    && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
		  continue;

		new_src = gen_lowpart_if_possible (new_mode, elt->exp);
		if (new_src == 0)
7685
		  new_src = gen_rtx_SUBREG (new_mode, elt->exp, 0);
Richard Kenner committed
7686 7687 7688 7689 7690 7691 7692 7693 7694

		src_hash = HASH (new_src, new_mode);
		src_elt = lookup (new_src, src_hash, new_mode);

		/* Put the new source in the hash table is if isn't
		   already.  */
		if (src_elt == 0)
		  {
		    if (insert_regs (new_src, classp, 0))
7695 7696 7697 7698
		      {
			rehash_using_reg (new_src);
			src_hash = HASH (new_src, new_mode);
		      }
Richard Kenner committed
7699 7700 7701 7702 7703 7704 7705 7706 7707 7708
		    src_elt = insert (new_src, classp, src_hash, new_mode);
		    src_elt->in_memory = elt->in_memory;
		    src_elt->in_struct = elt->in_struct;
		  }
		else if (classp && classp != src_elt->first_same_value)
		  /* Show that two things that we've seen before are 
		     actually the same.  */
		  merge_equiv_classes (src_elt, classp);

		classp = src_elt->first_same_value;
7709 7710 7711 7712 7713
		/* Ignore invalid entries.  */
		while (classp
		       && GET_CODE (classp->exp) != REG
		       && ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
		  classp = classp->next_same_value;
Richard Kenner committed
7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747
	      }
	  }
      }

  /* Special handling for (set REG0 REG1)
     where REG0 is the "cheapest", cheaper than REG1.
     After cse, REG1 will probably not be used in the sequel, 
     so (if easily done) change this insn to (set REG1 REG0) and
     replace REG1 with REG0 in the previous insn that computed their value.
     Then REG1 will become a dead store and won't cloud the situation
     for later optimizations.

     Do not make this change if REG1 is a hard register, because it will
     then be used in the sequel and we may be changing a two-operand insn
     into a three-operand insn.

     Also do not do this if we are operating on a copy of INSN.  */

  if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
      && NEXT_INSN (PREV_INSN (insn)) == insn
      && GET_CODE (SET_SRC (sets[0].rtl)) == REG
      && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
      && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl)))
      && (qty_first_reg[reg_qty[REGNO (SET_SRC (sets[0].rtl))]]
	  == REGNO (SET_DEST (sets[0].rtl))))
    {
      rtx prev = PREV_INSN (insn);
      while (prev && GET_CODE (prev) == NOTE)
	prev = PREV_INSN (prev);

      if (prev && GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SET
	  && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl))
	{
	  rtx dest = SET_DEST (sets[0].rtl);
7748
	  rtx note = find_reg_note (prev, REG_EQUIV, NULL_RTX);
Richard Kenner committed
7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761

	  validate_change (prev, & SET_DEST (PATTERN (prev)), dest, 1);
	  validate_change (insn, & SET_DEST (sets[0].rtl),
			   SET_SRC (sets[0].rtl), 1);
	  validate_change (insn, & SET_SRC (sets[0].rtl), dest, 1);
	  apply_change_group ();

	  /* If REG1 was equivalent to a constant, REG0 is not.  */
	  if (note)
	    PUT_REG_NOTE_KIND (note, REG_EQUAL);

	  /* If there was a REG_WAS_0 note on PREV, remove it.  Move
	     any REG_WAS_0 note on INSN to PREV.  */
7762
	  note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
Richard Kenner committed
7763 7764 7765
	  if (note)
	    remove_note (prev, note);

7766
	  note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
Richard Kenner committed
7767 7768 7769 7770 7771 7772
	  if (note)
	    {
	      remove_note (insn, note);
	      XEXP (note, 1) = REG_NOTES (prev);
	      REG_NOTES (prev) = note;
	    }
7773 7774 7775 7776 7777 7778

	  /* If INSN has a REG_EQUAL note, and this note mentions REG0,
	     then we must delete it, because the value in REG0 has changed.  */
	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
	  if (note && reg_mentioned_p (dest, XEXP (note, 0)))
	    remove_note (insn, note);
Richard Kenner committed
7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811
	}
    }

  /* If this is a conditional jump insn, record any known equivalences due to
     the condition being tested.  */

  last_jump_equiv_class = 0;
  if (GET_CODE (insn) == JUMP_INSN
      && n_sets == 1 && GET_CODE (x) == SET
      && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
    record_jump_equiv (insn, 0);

#ifdef HAVE_cc0
  /* If the previous insn set CC0 and this insn no longer references CC0,
     delete the previous insn.  Here we use the fact that nothing expects CC0
     to be valid over an insn, which is true until the final pass.  */
  if (prev_insn && GET_CODE (prev_insn) == INSN
      && (tem = single_set (prev_insn)) != 0
      && SET_DEST (tem) == cc0_rtx
      && ! reg_mentioned_p (cc0_rtx, x))
    {
      PUT_CODE (prev_insn, NOTE);
      NOTE_LINE_NUMBER (prev_insn) = NOTE_INSN_DELETED;
      NOTE_SOURCE_FILE (prev_insn) = 0;
    }

  prev_insn_cc0 = this_insn_cc0;
  prev_insn_cc0_mode = this_insn_cc0_mode;
#endif

  prev_insn = insn;
}

7812
/* Remove from the ahsh table all expressions that reference memory.  */
Richard Kenner committed
7813
static void
7814
invalidate_memory ()
Richard Kenner committed
7815
{
7816 7817
  register int i;
  register struct table_elt *p, *next;
Richard Kenner committed
7818

7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838
  for (i = 0; i < NBUCKETS; i++)
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (p->in_memory)
	  remove_from_table (p, i);
      }
}

/* XXX ??? The name of this function bears little resemblance to
   what this function actually does.  FIXME.  */
static int
note_mem_written (addr)
     register rtx addr;
{
  /* Pushing or popping the stack invalidates just the stack pointer.  */
  if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
       || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
      && GET_CODE (XEXP (addr, 0)) == REG
      && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
Richard Kenner committed
7839
    {
7840 7841 7842 7843 7844 7845 7846
      if (reg_tick[STACK_POINTER_REGNUM] >= 0)
	reg_tick[STACK_POINTER_REGNUM]++;

      /* This should be *very* rare.  */
      if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
	invalidate (stack_pointer_rtx, VOIDmode);
      return 1;
Richard Kenner committed
7847
    }
7848
  return 0;
Richard Kenner committed
7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
}

/* Perform invalidation on the basis of everything about an insn
   except for invalidating the actual places that are SET in it.
   This includes the places CLOBBERed, and anything that might
   alias with something that is SET or CLOBBERed.

   X is the pattern of the insn.  */

static void
7859
invalidate_from_clobbers (x)
Richard Kenner committed
7860 7861 7862 7863 7864
     rtx x;
{
  if (GET_CODE (x) == CLOBBER)
    {
      rtx ref = XEXP (x, 0);
7865 7866 7867 7868 7869 7870 7871 7872 7873
      if (ref)
	{
	  if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
	      || GET_CODE (ref) == MEM)
	    invalidate (ref, VOIDmode);
	  else if (GET_CODE (ref) == STRICT_LOW_PART
		   || GET_CODE (ref) == ZERO_EXTRACT)
	    invalidate (XEXP (ref, 0), GET_MODE (ref));
	}
Richard Kenner committed
7874 7875 7876 7877 7878 7879 7880 7881 7882 7883
    }
  else if (GET_CODE (x) == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  register rtx y = XVECEXP (x, 0, i);
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx ref = XEXP (y, 0);
7884 7885 7886 7887 7888 7889
	      if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
		  || GET_CODE (ref) == MEM)
		invalidate (ref, VOIDmode);
	      else if (GET_CODE (ref) == STRICT_LOW_PART
		       || GET_CODE (ref) == ZERO_EXTRACT)
		invalidate (XEXP (ref, 0), GET_MODE (ref));
Richard Kenner committed
7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
	    }
	}
    }
}

/* Process X, part of the REG_NOTES of an insn.  Look at any REG_EQUAL notes
   and replace any registers in them with either an equivalent constant
   or the canonical form of the register.  If we are inside an address,
   only do this if the address remains valid.

   OBJECT is 0 except when within a MEM in which case it is the MEM.

   Return the replacement for X.  */

static rtx
cse_process_notes (x, object)
     rtx x;
     rtx object;
{
  enum rtx_code code = GET_CODE (x);
  char *fmt = GET_RTX_FORMAT (code);
  int i;

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
    case PC:
    case CC0:
    case LO_SUM:
      return x;

    case MEM:
      XEXP (x, 0) = cse_process_notes (XEXP (x, 0), x);
      return x;

    case EXPR_LIST:
    case INSN_LIST:
      if (REG_NOTE_KIND (x) == REG_EQUAL)
7932
	XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
Richard Kenner committed
7933
      if (XEXP (x, 1))
7934
	XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
Richard Kenner committed
7935 7936
      return x;

7937 7938
    case SIGN_EXTEND:
    case ZERO_EXTEND:
7939
    case SUBREG:
7940 7941 7942 7943 7944 7945 7946 7947 7948
      {
	rtx new = cse_process_notes (XEXP (x, 0), object);
	/* We don't substitute VOIDmode constants into these rtx,
	   since they would impede folding.  */
	if (GET_MODE (new) != VOIDmode)
	  validate_change (object, &XEXP (x, 0), new, 0);
	return x;
      }

Richard Kenner committed
7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963
    case REG:
      i = reg_qty[REGNO (x)];

      /* Return a constant or a constant register.  */
      if (REGNO_QTY_VALID_P (REGNO (x))
	  && qty_const[i] != 0
	  && (CONSTANT_P (qty_const[i])
	      || GET_CODE (qty_const[i]) == REG))
	{
	  rtx new = gen_lowpart_if_possible (GET_MODE (x), qty_const[i]);
	  if (new)
	    return new;
	}

      /* Otherwise, canonicalize this register.  */
7964
      return canon_reg (x, NULL_RTX);
7965 7966 7967
      
    default:
      break;
Richard Kenner committed
7968 7969 7970 7971 7972
    }

  for (i = 0; i < GET_RTX_LENGTH (code); i++)
    if (fmt[i] == 'e')
      validate_change (object, &XEXP (x, i),
7973
		       cse_process_notes (XEXP (x, i), object), 0);
Richard Kenner committed
7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013

  return x;
}

/* Find common subexpressions between the end test of a loop and the beginning
   of the loop.  LOOP_START is the CODE_LABEL at the start of a loop.

   Often we have a loop where an expression in the exit test is used
   in the body of the loop.  For example "while (*p) *q++ = *p++;".
   Because of the way we duplicate the loop exit test in front of the loop,
   however, we don't detect that common subexpression.  This will be caught
   when global cse is implemented, but this is a quite common case.

   This function handles the most common cases of these common expressions.
   It is called after we have processed the basic block ending with the
   NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
   jumps to a label used only once.  */

static void
cse_around_loop (loop_start)
     rtx loop_start;
{
  rtx insn;
  int i;
  struct table_elt *p;

  /* If the jump at the end of the loop doesn't go to the start, we don't
     do anything.  */
  for (insn = PREV_INSN (loop_start);
       insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
       insn = PREV_INSN (insn))
    ;

  if (insn == 0
      || GET_CODE (insn) != NOTE
      || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
    return;

  /* If the last insn of the loop (the end test) was an NE comparison,
     we will interpret it as an EQ comparison, since we fell through
8014
     the loop.  Any equivalences resulting from that comparison are
Richard Kenner committed
8015 8016 8017 8018
     therefore not valid and must be invalidated.  */
  if (last_jump_equiv_class)
    for (p = last_jump_equiv_class->first_same_value; p;
	 p = p->next_same_value)
Kaveh R. Ghazi committed
8019 8020 8021 8022 8023 8024 8025 8026 8027
      {
        if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
	    || (GET_CODE (p->exp) == SUBREG
	        && GET_CODE (SUBREG_REG (p->exp)) == REG))
	  invalidate (p->exp, VOIDmode);
        else if (GET_CODE (p->exp) == STRICT_LOW_PART
	         || GET_CODE (p->exp) == ZERO_EXTRACT)
	  invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
      }
Richard Kenner committed
8028 8029 8030 8031 8032 8033

  /* Process insns starting after LOOP_START until we hit a CALL_INSN or
     a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).

     The only thing we do with SET_DEST is invalidate entries, so we
     can safely process each SET in order.  It is slightly less efficient
8034 8035 8036 8037 8038 8039
     to do so, but we only want to handle the most common cases.

     The gen_move_insn call in cse_set_around_loop may create new pseudos.
     These pseudos won't have valid entries in any of the tables indexed
     by register number, such as reg_qty.  We avoid out-of-range array
     accesses by not processing any instructions created after cse started.  */
Richard Kenner committed
8040 8041 8042

  for (insn = NEXT_INSN (loop_start);
       GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
8043
       && INSN_UID (insn) < max_insn_uid
Richard Kenner committed
8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061
       && ! (GET_CODE (insn) == NOTE
	     && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
       insn = NEXT_INSN (insn))
    {
      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	  && (GET_CODE (PATTERN (insn)) == SET
	      || GET_CODE (PATTERN (insn)) == CLOBBER))
	cse_set_around_loop (PATTERN (insn), insn, loop_start);
      else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	       && GET_CODE (PATTERN (insn)) == PARALLEL)
	for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	  if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
	      || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
	    cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
				 loop_start);
    }
}

8062 8063 8064 8065 8066 8067 8068 8069
/* Process one SET of an insn that was skipped.  We ignore CLOBBERs
   since they are done elsewhere.  This function is called via note_stores.  */

static void
invalidate_skipped_set (dest, set)
     rtx set;
     rtx dest;
{
8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084
  enum rtx_code code = GET_CODE (dest);

  if (code == MEM
      && ! note_mem_written (dest)	/* If this is not a stack push ... */
      /* There are times when an address can appear varying and be a PLUS
	 during this scan when it would be a fixed address were we to know
	 the proper equivalences.  So invalidate all memory if there is
	 a BLKmode or nonscalar memory reference or a reference to a
	 variable address.  */
      && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
	  || cse_rtx_varies_p (XEXP (dest, 0))))
    {
      invalidate_memory ();
      return;
    }
8085

8086 8087 8088 8089 8090 8091 8092
  if (GET_CODE (set) == CLOBBER
#ifdef HAVE_cc0
      || dest == cc0_rtx
#endif
      || dest == pc_rtx)
    return;

8093
  if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
8094
    invalidate (XEXP (dest, 0), GET_MODE (dest));
8095 8096
  else if (code == REG || code == SUBREG || code == MEM)
    invalidate (dest, VOIDmode);
8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116
}

/* Invalidate all insns from START up to the end of the function or the
   next label.  This called when we wish to CSE around a block that is
   conditionally executed.  */

static void
invalidate_skipped_block (start)
     rtx start;
{
  rtx insn;

  for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
       insn = NEXT_INSN (insn))
    {
      if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
	continue;

      if (GET_CODE (insn) == CALL_INSN)
	{
8117 8118
	  if (! CONST_CALL_P (insn))
	    invalidate_memory ();
8119 8120 8121 8122 8123 8124 8125
	  invalidate_for_call ();
	}

      note_stores (PATTERN (insn), invalidate_skipped_set);
    }
}

Richard Kenner committed
8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136
/* Used for communication between the following two routines; contains a
   value to be checked for modification.  */

static rtx cse_check_loop_start_value;

/* If modifying X will modify the value in CSE_CHECK_LOOP_START_VALUE,
   indicate that fact by setting CSE_CHECK_LOOP_START_VALUE to 0.  */

static void
cse_check_loop_start (x, set)
     rtx x;
Kaveh R. Ghazi committed
8137
     rtx set ATTRIBUTE_UNUSED;
Richard Kenner committed
8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221
{
  if (cse_check_loop_start_value == 0
      || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
    return;

  if ((GET_CODE (x) == MEM && GET_CODE (cse_check_loop_start_value) == MEM)
      || reg_overlap_mentioned_p (x, cse_check_loop_start_value))
    cse_check_loop_start_value = 0;
}

/* X is a SET or CLOBBER contained in INSN that was found near the start of
   a loop that starts with the label at LOOP_START.

   If X is a SET, we see if its SET_SRC is currently in our hash table.
   If so, we see if it has a value equal to some register used only in the
   loop exit code (as marked by jump.c).

   If those two conditions are true, we search backwards from the start of
   the loop to see if that same value was loaded into a register that still
   retains its value at the start of the loop.

   If so, we insert an insn after the load to copy the destination of that
   load into the equivalent register and (try to) replace our SET_SRC with that
   register.

   In any event, we invalidate whatever this SET or CLOBBER modifies.  */

static void
cse_set_around_loop (x, insn, loop_start)
     rtx x;
     rtx insn;
     rtx loop_start;
{
  struct table_elt *src_elt;

  /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
     are setting PC or CC0 or whose SET_SRC is already a register.  */
  if (GET_CODE (x) == SET
      && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
      && GET_CODE (SET_SRC (x)) != REG)
    {
      src_elt = lookup (SET_SRC (x),
			HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
			GET_MODE (SET_DEST (x)));

      if (src_elt)
	for (src_elt = src_elt->first_same_value; src_elt;
	     src_elt = src_elt->next_same_value)
	  if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
	      && COST (src_elt->exp) < COST (SET_SRC (x)))
	    {
	      rtx p, set;

	      /* Look for an insn in front of LOOP_START that sets
		 something in the desired mode to SET_SRC (x) before we hit
		 a label or CALL_INSN.  */

	      for (p = prev_nonnote_insn (loop_start);
		   p && GET_CODE (p) != CALL_INSN
		   && GET_CODE (p) != CODE_LABEL;
		   p = prev_nonnote_insn  (p))
		if ((set = single_set (p)) != 0
		    && GET_CODE (SET_DEST (set)) == REG
		    && GET_MODE (SET_DEST (set)) == src_elt->mode
		    && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
		  {
		    /* We now have to ensure that nothing between P
		       and LOOP_START modified anything referenced in
		       SET_SRC (x).  We know that nothing within the loop
		       can modify it, or we would have invalidated it in
		       the hash table.  */
		    rtx q;

		    cse_check_loop_start_value = SET_SRC (x);
		    for (q = p; q != loop_start; q = NEXT_INSN (q))
		      if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
			note_stores (PATTERN (q), cse_check_loop_start);

		    /* If nothing was changed and we can replace our
		       SET_SRC, add an insn after P to copy its destination
		       to what we will be replacing SET_SRC with.  */
		    if (cse_check_loop_start_value
			&& validate_change (insn, &SET_SRC (x),
					    src_elt->exp, 0))
8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239
		      {
			/* If this creates new pseudos, this is unsafe,
			   because the regno of new pseudo is unsuitable
			   to index into reg_qty when cse_insn processes
			   the new insn.  Therefore, if a new pseudo was
			   created, discard this optimization.  */
			int nregs = max_reg_num ();
			rtx move
			  = gen_move_insn (src_elt->exp, SET_DEST (set));
			if (nregs != max_reg_num ())
			  {
			    if (! validate_change (insn, &SET_SRC (x),
						   SET_SRC (set), 0))
			      abort ();
			  }
			else
			  emit_insn_after (move, p);
		      }
Richard Kenner committed
8240 8241 8242 8243 8244 8245
		    break;
		  }
	    }
    }

  /* Now invalidate anything modified by X.  */
8246
  note_mem_written (SET_DEST (x));
Richard Kenner committed
8247

8248
  /* See comment on similar code in cse_insn for explanation of these tests.  */
Richard Kenner committed
8249
  if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
8250
      || GET_CODE (SET_DEST (x)) == MEM)
8251
    invalidate (SET_DEST (x), VOIDmode);
8252 8253
  else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
	   || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
8254
    invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
Richard Kenner committed
8255 8256 8257 8258 8259 8260 8261 8262 8263
}

/* Find the end of INSN's basic block and return its range,
   the total number of SETs in all the insns of the block, the last insn of the
   block, and the branch path.

   The branch path indicates which branches should be followed.  If a non-zero
   path size is specified, the block should be rescanned and a different set
   of branches will be taken.  The branch path is only used if
8264
   FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
Richard Kenner committed
8265 8266 8267 8268 8269 8270 8271

   DATA is a pointer to a struct cse_basic_block_data, defined below, that is
   used to describe the block.  It is filled in with the information about
   the current block.  The incoming structure's branch path, if any, is used
   to construct the output branch path.  */

void
8272
cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
Richard Kenner committed
8273 8274 8275 8276
     rtx insn;
     struct cse_basic_block_data *data;
     int follow_jumps;
     int after_loop;
8277
     int skip_blocks;
Richard Kenner committed
8278 8279 8280 8281
{
  rtx p = insn, q;
  int nsets = 0;
  int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
8282
  rtx next = GET_RTX_CLASS (GET_CODE (insn)) == 'i' ? insn : next_real_insn (insn);
Richard Kenner committed
8283 8284 8285 8286 8287 8288 8289 8290 8291 8292
  int path_size = data->path_size;
  int path_entry = 0;
  int i;

  /* Update the previous branch path, if any.  If the last branch was
     previously TAKEN, mark it NOT_TAKEN.  If it was previously NOT_TAKEN,
     shorten the path by one and look at the previous branch.  We know that
     at least one branch must have been taken if PATH_SIZE is non-zero.  */
  while (path_size > 0)
    {
8293
      if (data->path[path_size - 1].status != NOT_TAKEN)
Richard Kenner committed
8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336
	{
	  data->path[path_size - 1].status = NOT_TAKEN;
	  break;
	}
      else
	path_size--;
    }

  /* Scan to end of this basic block.  */
  while (p && GET_CODE (p) != CODE_LABEL)
    {
      /* Don't cse out the end of a loop.  This makes a difference
	 only for the unusual loops that always execute at least once;
	 all other loops have labels there so we will stop in any case.
	 Cse'ing out the end of the loop is dangerous because it
	 might cause an invariant expression inside the loop
	 to be reused after the end of the loop.  This would make it
	 hard to move the expression out of the loop in loop.c,
	 especially if it is one of several equivalent expressions
	 and loop.c would like to eliminate it.

	 If we are running after loop.c has finished, we can ignore
	 the NOTE_INSN_LOOP_END.  */

      if (! after_loop && GET_CODE (p) == NOTE
	  && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
	break;

      /* Don't cse over a call to setjmp; on some machines (eg vax)
	 the regs restored by the longjmp come from
	 a later time than the setjmp.  */
      if (GET_CODE (p) == NOTE
	  && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
	break;

      /* A PARALLEL can have lots of SETs in it,
	 especially if it is really an ASM_OPERANDS.  */
      if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
	  && GET_CODE (PATTERN (p)) == PARALLEL)
	nsets += XVECLEN (PATTERN (p), 0);
      else if (GET_CODE (p) != NOTE)
	nsets += 1;
	
8337 8338 8339 8340
      /* Ignore insns made by CSE; they cannot affect the boundaries of
	 the basic block.  */

      if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
8341
	high_cuid = INSN_CUID (p);
8342 8343
      if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
	low_cuid = INSN_CUID (p);
Richard Kenner committed
8344 8345 8346 8347 8348

      /* See if this insn is in our branch path.  If it is and we are to
	 take it, do so.  */
      if (path_entry < path_size && data->path[path_entry].branch == p)
	{
8349
	  if (data->path[path_entry].status != NOT_TAKEN)
Richard Kenner committed
8350 8351 8352 8353 8354 8355 8356 8357 8358
	    p = JUMP_LABEL (p);
	  
	  /* Point to next entry in path, if any.  */
	  path_entry++;
	}

      /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
	 was specified, we haven't reached our maximum path length, there are
	 insns following the target of the jump, this is the only use of the
8359 8360 8361 8362 8363 8364 8365 8366
	 jump label, and the target label is preceded by a BARRIER.

	 Alternatively, we can follow the jump if it branches around a
	 block of code and there are no other branches into the block.
	 In this case invalidate_skipped_block will be called to invalidate any
	 registers set in the block when following the jump.  */

      else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
Richard Kenner committed
8367 8368 8369
	       && GET_CODE (p) == JUMP_INSN
      	       && GET_CODE (PATTERN (p)) == SET
	       && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
8370
	       && JUMP_LABEL (p) != 0
Richard Kenner committed
8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382
	       && LABEL_NUSES (JUMP_LABEL (p)) == 1
	       && NEXT_INSN (JUMP_LABEL (p)) != 0)
	{
	  for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
	    if ((GET_CODE (q) != NOTE
	         || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
	         || NOTE_LINE_NUMBER (q) == NOTE_INSN_SETJMP)
	        && (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
	      break;

	  /* If we ran into a BARRIER, this code is an extension of the
	     basic block when the branch is taken.  */
8383
	  if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
Richard Kenner committed
8384 8385 8386
	    {
	      /* Don't allow ourself to keep walking around an
		 always-executed loop.  */
8387 8388 8389 8390 8391
	      if (next_real_insn (q) == next)
		{
		  p = NEXT_INSN (p);
		  continue;
		}
Richard Kenner committed
8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413

	      /* Similarly, don't put a branch in our path more than once.  */
	      for (i = 0; i < path_entry; i++)
		if (data->path[i].branch == p)
		  break;

	      if (i != path_entry)
		break;

	      data->path[path_entry].branch = p;
	      data->path[path_entry++].status = TAKEN;

	      /* This branch now ends our path.  It was possible that we
		 didn't see this branch the last time around (when the
		 insn in front of the target was a JUMP_INSN that was
		 turned into a no-op).  */
	      path_size = path_entry;

	      p = JUMP_LABEL (p);
	      /* Mark block so we won't scan it again later.  */
	      PUT_MODE (NEXT_INSN (p), QImode);
	    }
8414 8415 8416 8417 8418
	  /* Detect a branch around a block of code.  */
	  else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
	    {
	      register rtx tmp;

8419 8420 8421 8422 8423
	      if (next_real_insn (q) == next)
		{
		  p = NEXT_INSN (p);
		  continue;
		}
8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449

	      for (i = 0; i < path_entry; i++)
		if (data->path[i].branch == p)
		  break;

	      if (i != path_entry)
		break;

	      /* This is no_labels_between_p (p, q) with an added check for
		 reaching the end of a function (in case Q precedes P).  */
	      for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
		if (GET_CODE (tmp) == CODE_LABEL)
		  break;
	      
	      if (tmp == q)
		{
		  data->path[path_entry].branch = p;
		  data->path[path_entry++].status = AROUND;

		  path_size = path_entry;

		  p = JUMP_LABEL (p);
		  /* Mark block so we won't scan it again later.  */
		  PUT_MODE (NEXT_INSN (p), QImode);
		}
	    }
Richard Kenner committed
8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461
	}
      p = NEXT_INSN (p);
    }

  data->low_cuid = low_cuid;
  data->high_cuid = high_cuid;
  data->nsets = nsets;
  data->last = p;

  /* If all jumps in the path are not taken, set our path length to zero
     so a rescan won't be done.  */
  for (i = path_size - 1; i >= 0; i--)
8462
    if (data->path[i].status != NOT_TAKEN)
Richard Kenner committed
8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495
      break;

  if (i == -1)
    data->path_size = 0;
  else
    data->path_size = path_size;

  /* End the current branch path.  */
  data->path[path_size].branch = 0;
}

/* Perform cse on the instructions of a function.
   F is the first instruction.
   NREGS is one plus the highest pseudo-reg number used in the instruction.

   AFTER_LOOP is 1 if this is the cse call done after loop optimization
   (only if -frerun-cse-after-loop).

   Returns 1 if jump_optimize should be redone due to simplifications
   in conditional jump instructions.  */

int
cse_main (f, nregs, after_loop, file)
     rtx f;
     int nregs;
     int after_loop;
     FILE *file;
{
  struct cse_basic_block_data val;
  register rtx insn = f;
  register int i;

  cse_jumps_altered = 0;
8496
  recorded_label_ref = 0;
Richard Kenner committed
8497 8498 8499 8500
  constant_pool_entries_cost = 0;
  val.path_size = 0;

  init_recog ();
8501
  init_alias_analysis ();
Richard Kenner committed
8502 8503 8504

  max_reg = nregs;

8505 8506
  max_insn_uid = get_max_uid ();

Richard Kenner committed
8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521
  all_minus_one = (int *) alloca (nregs * sizeof (int));
  consec_ints = (int *) alloca (nregs * sizeof (int));

  for (i = 0; i < nregs; i++)
    {
      all_minus_one[i] = -1;
      consec_ints[i] = i;
    }

  reg_next_eqv = (int *) alloca (nregs * sizeof (int));
  reg_prev_eqv = (int *) alloca (nregs * sizeof (int));
  reg_qty = (int *) alloca (nregs * sizeof (int));
  reg_in_table = (int *) alloca (nregs * sizeof (int));
  reg_tick = (int *) alloca (nregs * sizeof (int));

8522 8523 8524 8525
#ifdef LOAD_EXTEND_OP

  /* Allocate scratch rtl here.  cse_insn will fill in the memory reference
     and change the code and mode as appropriate.  */
8526
  memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
8527 8528
#endif

Richard Kenner committed
8529 8530
  /* Discard all the free elements of the previous function
     since they are allocated in the temporarily obstack.  */
8531
  bzero ((char *) table, sizeof table);
Richard Kenner committed
8532 8533 8534 8535 8536
  free_element_chain = 0;
  n_elements_made = 0;

  /* Find the largest uid.  */

8537 8538
  max_uid = get_max_uid ();
  uid_cuid = (int *) alloca ((max_uid + 1) * sizeof (int));
8539
  bzero ((char *) uid_cuid, (max_uid + 1) * sizeof (int));
Richard Kenner committed
8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574

  /* Compute the mapping from uids to cuids.
     CUIDs are numbers assigned to insns, like uids,
     except that cuids increase monotonically through the code.
     Don't assign cuids to line-number NOTEs, so that the distance in cuids
     between two insns is not affected by -g.  */

  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) != NOTE
	  || NOTE_LINE_NUMBER (insn) < 0)
	INSN_CUID (insn) = ++i;
      else
	/* Give a line number note the same cuid as preceding insn.  */
	INSN_CUID (insn) = i;
    }

  /* Initialize which registers are clobbered by calls.  */

  CLEAR_HARD_REG_SET (regs_invalidated_by_call);

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if ((call_used_regs[i]
	 /* Used to check !fixed_regs[i] here, but that isn't safe;
	    fixed regs are still call-clobbered, and sched can get
	    confused if they can "live across calls".

	    The frame pointer is always preserved across calls.  The arg
	    pointer is if it is fixed.  The stack pointer usually is, unless
	    RETURN_POPS_ARGS, in which case an explicit CLOBBER
	    will be present.  If we are generating PIC code, the PIC offset
	    table register is preserved across calls.  */

	 && i != STACK_POINTER_REGNUM
	 && i != FRAME_POINTER_REGNUM
8575 8576 8577
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	 && i != HARD_FRAME_POINTER_REGNUM
#endif
Richard Kenner committed
8578 8579 8580
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
	 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
#endif
8581
#if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
Richard Kenner committed
8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593
	 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
#endif
	 )
	|| global_regs[i])
      SET_HARD_REG_BIT (regs_invalidated_by_call, i);

  /* Loop over basic blocks.
     Compute the maximum number of qty's needed for each basic block
     (which is 2 for each SET).  */
  insn = f;
  while (insn)
    {
8594 8595
      cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
			      flag_cse_skip_blocks);
Richard Kenner committed
8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636

      /* If this basic block was already processed or has no sets, skip it.  */
      if (val.nsets == 0 || GET_MODE (insn) == QImode)
	{
	  PUT_MODE (insn, VOIDmode);
	  insn = (val.last ? NEXT_INSN (val.last) : 0);
	  val.path_size = 0;
	  continue;
	}

      cse_basic_block_start = val.low_cuid;
      cse_basic_block_end = val.high_cuid;
      max_qty = val.nsets * 2;
      
      if (file)
	fprintf (file, ";; Processing block from %d to %d, %d sets.\n",
		 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
		 val.nsets);

      /* Make MAX_QTY bigger to give us room to optimize
	 past the end of this basic block, if that should prove useful.  */
      if (max_qty < 500)
	max_qty = 500;

      max_qty += max_reg;

      /* If this basic block is being extended by following certain jumps,
         (see `cse_end_of_basic_block'), we reprocess the code from the start.
         Otherwise, we start after this basic block.  */
      if (val.path_size > 0)
        cse_basic_block (insn, val.last, val.path, 0);
      else
	{
	  int old_cse_jumps_altered = cse_jumps_altered;
	  rtx temp;

	  /* When cse changes a conditional jump to an unconditional
	     jump, we want to reprocess the block, since it will give
	     us a new branch path to investigate.  */
	  cse_jumps_altered = 0;
	  temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
8637 8638
	  if (cse_jumps_altered == 0
	      || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
Richard Kenner committed
8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654
	    insn = temp;

	  cse_jumps_altered |= old_cse_jumps_altered;
	}

#ifdef USE_C_ALLOCA
      alloca (0);
#endif
    }

  /* Tell refers_to_mem_p that qty_const info is not available.  */
  qty_const = 0;

  if (max_elements_made < n_elements_made)
    max_elements_made = n_elements_made;

8655
  return cse_jumps_altered || recorded_label_ref;
Richard Kenner committed
8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673
}

/* Process a single basic block.  FROM and TO and the limits of the basic
   block.  NEXT_BRANCH points to the branch path when following jumps or
   a null path when not following jumps.

   AROUND_LOOP is non-zero if we are to try to cse around to the start of a
   loop.  This is true when we are being called for the last time on a
   block and this CSE pass is before loop.c.  */

static rtx
cse_basic_block (from, to, next_branch, around_loop)
     register rtx from, to;
     struct branch_path *next_branch;
     int around_loop;
{
  register rtx insn;
  int to_usage = 0;
8674
  rtx libcall_insn = NULL_RTX;
8675
  int num_insns = 0;
Richard Kenner committed
8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706

  /* Each of these arrays is undefined before max_reg, so only allocate
     the space actually needed and adjust the start below.  */

  qty_first_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
  qty_last_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
  qty_mode= (enum machine_mode *) alloca ((max_qty - max_reg) * sizeof (enum machine_mode));
  qty_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
  qty_const_insn = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
  qty_comparison_code
    = (enum rtx_code *) alloca ((max_qty - max_reg) * sizeof (enum rtx_code));
  qty_comparison_qty = (int *) alloca ((max_qty - max_reg) * sizeof (int));
  qty_comparison_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));

  qty_first_reg -= max_reg;
  qty_last_reg -= max_reg;
  qty_mode -= max_reg;
  qty_const -= max_reg;
  qty_const_insn -= max_reg;
  qty_comparison_code -= max_reg;
  qty_comparison_qty -= max_reg;
  qty_comparison_const -= max_reg;

  new_basic_block ();

  /* TO might be a label.  If so, protect it from being deleted.  */
  if (to != 0 && GET_CODE (to) == CODE_LABEL)
    ++LABEL_NUSES (to);

  for (insn = from; insn != to; insn = NEXT_INSN (insn))
    {
8707
      register enum rtx_code code = GET_CODE (insn);
8708 8709 8710
      int i;
      struct table_elt *p, *next;

8711 8712 8713 8714 8715 8716
      /* If we have processed 1,000 insns, flush the hash table to
	 avoid extreme quadratic behavior.  We must not include NOTEs
	 in the count since there may be more or them when generating
	 debugging information.  If we clear the table at different
	 times, code generated with -g -O might be different than code
	 generated with -O but not -g.
8717 8718 8719

	 ??? This is a real kludge and needs to be done some other way.
	 Perhaps for 2.9.  */
8720
      if (code != NOTE && num_insns++ > 1000)
8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734
	{
	  for (i = 0; i < NBUCKETS; i++)
	    for (p = table[i]; p; p = next)
	      {
		next = p->next_same_hash;

		if (GET_CODE (p->exp) == REG)
		  invalidate (p->exp, p->mode);
		else
		  remove_from_table (p, i);
	      }

	  num_insns = 0;
	}
Richard Kenner committed
8735 8736 8737 8738 8739

      /* See if this is a branch that is part of the path.  If so, and it is
	 to be taken, do so.  */
      if (next_branch->branch == insn)
	{
8740 8741
	  enum taken status = next_branch++->status;
	  if (status != NOT_TAKEN)
Richard Kenner committed
8742
	    {
8743 8744 8745 8746 8747
	      if (status == TAKEN)
		record_jump_equiv (insn, 1);
	      else
		invalidate_skipped_block (NEXT_INSN (insn));

Richard Kenner committed
8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763
	      /* Set the last insn as the jump insn; it doesn't affect cc0.
		 Then follow this branch.  */
#ifdef HAVE_cc0
	      prev_insn_cc0 = 0;
#endif
	      prev_insn = insn;
	      insn = JUMP_LABEL (insn);
	      continue;
	    }
	}
        
      if (GET_MODE (insn) == QImode)
	PUT_MODE (insn, VOIDmode);

      if (GET_RTX_CLASS (code) == 'i')
	{
8764 8765
	  rtx p;

Richard Kenner committed
8766 8767 8768 8769
	  /* Process notes first so we have all notes in canonical forms when
	     looking for duplicate operations.  */

	  if (REG_NOTES (insn))
8770
	    REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
Richard Kenner committed
8771 8772 8773 8774

	  /* Track when we are inside in LIBCALL block.  Inside such a block,
	     we do not want to record destinations.  The last insn of a
	     LIBCALL block is not considered to be part of the block, since
8775
	     its destination is the result of the block and hence should be
Richard Kenner committed
8776 8777
	     recorded.  */

8778
	  if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
8779
	    libcall_insn = XEXP (p, 0);
8780
	  else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
8781
	    libcall_insn = NULL_RTX;
Richard Kenner committed
8782

8783
	  cse_insn (insn, libcall_insn);
Richard Kenner committed
8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798
	}

      /* If INSN is now an unconditional jump, skip to the end of our
	 basic block by pretending that we just did the last insn in the
	 basic block.  If we are jumping to the end of our block, show
	 that we can have one usage of TO.  */

      if (simplejump_p (insn))
	{
	  if (to == 0)
	    return 0;

	  if (JUMP_LABEL (insn) == to)
	    to_usage = 1;

8799 8800 8801 8802 8803 8804 8805 8806
	  /* Maybe TO was deleted because the jump is unconditional.
	     If so, there is nothing left in this basic block.  */
	  /* ??? Perhaps it would be smarter to set TO
	     to whatever follows this insn, 
	     and pretend the basic block had always ended here.  */
	  if (INSN_DELETED_P (to))
	    break;

Richard Kenner committed
8807 8808 8809 8810 8811
	  insn = PREV_INSN (to);
	}

      /* See if it is ok to keep on going past the label
	 which used to end our basic block.  Remember that we incremented
8812
	 the count of that label, so we decrement it here.  If we made
Richard Kenner committed
8813 8814 8815 8816 8817 8818 8819
	 a jump unconditional, TO_USAGE will be one; in that case, we don't
	 want to count the use in that jump.  */

      if (to != 0 && NEXT_INSN (insn) == to
	  && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
	{
	  struct cse_basic_block_data val;
8820
	  rtx prev;
Richard Kenner committed
8821 8822 8823 8824

	  insn = NEXT_INSN (to);

	  if (LABEL_NUSES (to) == 0)
8825
	    insn = delete_insn (to);
Richard Kenner committed
8826

8827 8828
	  /* If TO was the last insn in the function, we are done.  */
	  if (insn == 0)
Richard Kenner committed
8829 8830
	    return 0;

8831 8832 8833 8834 8835 8836 8837 8838
	  /* If TO was preceded by a BARRIER we are done with this block
	     because it has no continuation.  */
	  prev = prev_nonnote_insn (to);
	  if (prev && GET_CODE (prev) == BARRIER)
	    return insn;

	  /* Find the end of the following block.  Note that we won't be
	     following branches in this case.  */
Richard Kenner committed
8839 8840
	  to_usage = 0;
	  val.path_size = 0;
8841
	  cse_end_of_basic_block (insn, &val, 0, 0, 0);
Richard Kenner committed
8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870

	  /* If the tables we allocated have enough space left
	     to handle all the SETs in the next basic block,
	     continue through it.  Otherwise, return,
	     and that block will be scanned individually.  */
	  if (val.nsets * 2 + next_qty > max_qty)
	    break;

	  cse_basic_block_start = val.low_cuid;
	  cse_basic_block_end = val.high_cuid;
	  to = val.last;

	  /* Prevent TO from being deleted if it is a label.  */
	  if (to != 0 && GET_CODE (to) == CODE_LABEL)
	    ++LABEL_NUSES (to);

	  /* Back up so we process the first insn in the extension.  */
	  insn = PREV_INSN (insn);
	}
    }

  if (next_qty > max_qty)
    abort ();

  /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
     the previous insn is the only insn that branches to the head of a loop,
     we can cse into the loop.  Don't do this if we changed the jump
     structure of a loop unless we aren't going to be following jumps.  */

8871 8872
  if ((cse_jumps_altered == 0
       || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
Richard Kenner committed
8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884
      && around_loop && to != 0
      && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
      && GET_CODE (PREV_INSN (to)) == JUMP_INSN
      && JUMP_LABEL (PREV_INSN (to)) != 0
      && LABEL_NUSES (JUMP_LABEL (PREV_INSN (to))) == 1)
    cse_around_loop (JUMP_LABEL (PREV_INSN (to)));

  return to ? NEXT_INSN (to) : 0;
}

/* Count the number of times registers are used (not set) in X.
   COUNTS is an array in which we accumulate the count, INCR is how much
8885 8886 8887 8888 8889
   we count each register usage.  

   Don't count a usage of DEST, which is the SET_DEST of a SET which 
   contains X in its SET_SRC.  This is because such a SET does not
   modify the liveness of DEST.  */
Richard Kenner committed
8890 8891

static void
8892
count_reg_usage (x, counts, dest, incr)
Richard Kenner committed
8893 8894
     rtx x;
     int *counts;
8895
     rtx dest;
Richard Kenner committed
8896 8897
     int incr;
{
8898
  enum rtx_code code;
Richard Kenner committed
8899 8900 8901
  char *fmt;
  int i, j;

8902 8903 8904 8905
  if (x == 0)
    return;

  switch (code = GET_CODE (x))
Richard Kenner committed
8906 8907
    {
    case REG:
8908 8909
      if (x != dest)
	counts[REGNO (x)] += incr;
Richard Kenner committed
8910 8911 8912 8913 8914 8915 8916 8917 8918
      return;

    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
8919 8920 8921 8922 8923 8924 8925
      return;

    case CLOBBER:                                                        
      /* If we are clobbering a MEM, mark any registers inside the address
         as being used.  */
      if (GET_CODE (XEXP (x, 0)) == MEM)
	count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
Richard Kenner committed
8926 8927 8928 8929 8930
      return;

    case SET:
      /* Unless we are setting a REG, count everything in SET_DEST.  */
      if (GET_CODE (SET_DEST (x)) != REG)
8931
	count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
8932 8933 8934 8935 8936 8937 8938 8939 8940 8941

      /* If SRC has side-effects, then we can't delete this insn, so the
	 usage of SET_DEST inside SRC counts.

	 ??? Strictly-speaking, we might be preserving this insn
	 because some other SET has side-effects, but that's hard
	 to do and can't happen now.  */
      count_reg_usage (SET_SRC (x), counts,
		       side_effects_p (SET_SRC (x)) ? NULL_RTX : SET_DEST (x),
		       incr);
Richard Kenner committed
8942 8943
      return;

8944 8945 8946 8947
    case CALL_INSN:
      count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);

      /* ... falls through ...  */
Richard Kenner committed
8948 8949
    case INSN:
    case JUMP_INSN:
8950
      count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);
Richard Kenner committed
8951 8952 8953 8954

      /* Things used in a REG_EQUAL note aren't dead since loop may try to
	 use them.  */

8955
      count_reg_usage (REG_NOTES (x), counts, NULL_RTX, incr);
Richard Kenner committed
8956 8957 8958 8959
      return;

    case EXPR_LIST:
    case INSN_LIST:
8960
      if (REG_NOTE_KIND (x) == REG_EQUAL
8961
	  || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE))
8962
	count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
8963
      count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
Richard Kenner committed
8964
      return;
8965 8966 8967
      
    default:
      break;
Richard Kenner committed
8968 8969 8970 8971 8972 8973
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
8974
	count_reg_usage (XEXP (x, i), counts, dest, incr);
Richard Kenner committed
8975 8976
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8977
	  count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
Richard Kenner committed
8978 8979 8980 8981 8982 8983
    }
}

/* Scan all the insns and delete any that are dead; i.e., they store a register
   that is never used or they copy a register to itself.

8984 8985 8986 8987
   This is used to remove insns made obviously dead by cse, loop or other
   optimizations.  It improves the heuristics in loop since it won't try to
   move dead invariants out of loops or make givs for dead quantities.  The
   remaining passes of the compilation are also sped up.  */
Richard Kenner committed
8988 8989

void
8990
delete_trivially_dead_insns (insns, nreg)
Richard Kenner committed
8991 8992 8993 8994
     rtx insns;
     int nreg;
{
  int *counts = (int *) alloca (nreg * sizeof (int));
8995
  rtx insn, prev;
Kaveh R. Ghazi committed
8996
#ifdef HAVE_cc0
8997
  rtx tem;
Kaveh R. Ghazi committed
8998
#endif
Richard Kenner committed
8999
  int i;
9000
  int in_libcall = 0, dead_libcall = 0;
Richard Kenner committed
9001 9002

  /* First count the number of times each register is used.  */
9003
  bzero ((char *) counts, sizeof (int) * nreg);
Richard Kenner committed
9004
  for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
9005
    count_reg_usage (insn, counts, NULL_RTX, 1);
Richard Kenner committed
9006 9007 9008 9009

  /* Go from the last insn to the first and delete insns that only set unused
     registers or copy a register to itself.  As we delete an insn, remove
     usage counts for registers it uses.  */
9010
  for (insn = prev_real_insn (get_last_insn ()); insn; insn = prev)
Richard Kenner committed
9011 9012
    {
      int live_insn = 0;
9013
      rtx note;
Richard Kenner committed
9014

9015 9016
      prev = prev_real_insn (insn);

9017 9018 9019
      /* Don't delete any insns that are part of a libcall block unless
	 we can delete the whole libcall block.

9020 9021
	 Flow or loop might get confused if we did that.  Remember
	 that we are scanning backwards.  */
9022
      if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
9023 9024 9025 9026
	{
	  in_libcall = 1;
	  live_insn = 1;
	  dead_libcall = 0;
9027

9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047
	  /* See if there's a REG_EQUAL note on this insn and try to
	     replace the source with the REG_EQUAL expression.
	
	     We assume that insns with REG_RETVALs can only be reg->reg
	     copies at this point.  */
	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
	  if (note)
	    {
	      rtx set = single_set (insn);
	      if (set
		  && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
		{
		  remove_note (insn,
			       find_reg_note (insn, REG_RETVAL, NULL_RTX));
		  dead_libcall = 1;
		}
	    }
	}
      else if (in_libcall)
	live_insn = ! dead_libcall;
9048
      else if (GET_CODE (PATTERN (insn)) == SET)
Richard Kenner committed
9049 9050 9051 9052 9053
	{
	  if (GET_CODE (SET_DEST (PATTERN (insn))) == REG
	      && SET_DEST (PATTERN (insn)) == SET_SRC (PATTERN (insn)))
	    ;

9054 9055 9056 9057 9058 9059 9060 9061
#ifdef HAVE_cc0
	  else if (GET_CODE (SET_DEST (PATTERN (insn))) == CC0
		   && ! side_effects_p (SET_SRC (PATTERN (insn)))
		   && ((tem = next_nonnote_insn (insn)) == 0
		       || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
		       || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
	    ;
#endif
Richard Kenner committed
9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078
	  else if (GET_CODE (SET_DEST (PATTERN (insn))) != REG
		   || REGNO (SET_DEST (PATTERN (insn))) < FIRST_PSEUDO_REGISTER
		   || counts[REGNO (SET_DEST (PATTERN (insn)))] != 0
		   || side_effects_p (SET_SRC (PATTERN (insn))))
	    live_insn = 1;
	}
      else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	  {
	    rtx elt = XVECEXP (PATTERN (insn), 0, i);

	    if (GET_CODE (elt) == SET)
	      {
		if (GET_CODE (SET_DEST (elt)) == REG
		    && SET_DEST (elt) == SET_SRC (elt))
		  ;

9079 9080 9081 9082 9083 9084 9085 9086
#ifdef HAVE_cc0
		else if (GET_CODE (SET_DEST (elt)) == CC0
			 && ! side_effects_p (SET_SRC (elt))
			 && ((tem = next_nonnote_insn (insn)) == 0
			     || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
			     || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
		  ;
#endif
Richard Kenner committed
9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099
		else if (GET_CODE (SET_DEST (elt)) != REG
			 || REGNO (SET_DEST (elt)) < FIRST_PSEUDO_REGISTER
			 || counts[REGNO (SET_DEST (elt))] != 0
			 || side_effects_p (SET_SRC (elt)))
		  live_insn = 1;
	      }
	    else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
	      live_insn = 1;
	  }
      else
	live_insn = 1;

      /* If this is a dead insn, delete it and show registers in it aren't
9100
	 being used.  */
Richard Kenner committed
9101

9102
      if (! live_insn)
Richard Kenner committed
9103
	{
9104
	  count_reg_usage (insn, counts, NULL_RTX, -1);
9105
	  delete_insn (insn);
Richard Kenner committed
9106
	}
9107

9108
      if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
9109 9110 9111 9112
	{
	  in_libcall = 0;
	  dead_libcall = 0;
	}
Richard Kenner committed
9113 9114
    }
}