cfg.c 19.8 KB
Newer Older
1 2
/* Control flow graph manipulation code for GNU compiler.
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3
   1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

22
/* This file contains low level functions to manipulate the CFG and
23
   analyze it.  All other modules should not transform the data structure
24 25 26
   directly and use abstraction instead.  The file is supposed to be
   ordered bottom-up and should not contain any code dependent on a
   particular intermediate language (RTL or trees).
27 28 29 30

   Available functionality:
     - Initialization/deallocation
	 init_flow, clear_edges
31 32
     - Low level basic block manipulation
	 alloc_block, expunge_block
33
     - Edge manipulation
34
	 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 36
	 - Low level edge redirection (without updating instruction chain)
	     redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37
     - Dumping and debugging
38 39 40
	 dump_flow_info, debug_flow_info, dump_edge_info
     - Allocation of AUX fields for basic blocks
	 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
41
     - clear_bb_flags
42 43 44 45
     - Consistency checking
	 verify_flow_info
     - Dumping and debugging
	 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
46 47 48 49
 */

#include "config.h"
#include "system.h"
50 51
#include "coretypes.h"
#include "tm.h"
52 53 54 55 56 57 58 59 60 61
#include "tree.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "regs.h"
#include "flags.h"
#include "output.h"
#include "function.h"
#include "except.h"
#include "toplev.h"
62
#include "tm_p.h"
63
#include "obstack.h"
64
#include "alloc-pool.h"
65 66
#include "timevar.h"
#include "ggc.h"
67 68 69 70 71 72 73 74

/* The obstack on which the flow graph components are allocated.  */

struct obstack flow_obstack;
static char *flow_firstobj;

/* Number of basic blocks in the current function.  */

75
int n_basic_blocks;
76

77 78 79 80
/* First free basic block number.  */

int last_basic_block;

81 82 83 84 85 86 87 88 89
/* Number of edges in the current function.  */

int n_edges;

/* The basic block array.  */

varray_type basic_block_info;

/* The special entry and exit blocks.  */
90
basic_block ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR;
91

92 93
/* Memory alloc pool for bb member rbi.  */
alloc_pool rbi_pool;
94

95 96
void debug_flow_info (void);
static void free_edge (edge);
97

98
/* Called once at initialization time.  */
99 100

void
101
init_flow (void)
102 103 104
{
  static int initialized;

105 106
  n_edges = 0;

107 108 109
  if (!initialized)
    {
      gcc_obstack_init (&flow_obstack);
110
      flow_firstobj = obstack_alloc (&flow_obstack, 0);
111 112 113 114 115
      initialized = 1;
    }
  else
    {
      obstack_free (&flow_obstack, flow_firstobj);
116
      flow_firstobj = obstack_alloc (&flow_obstack, 0);
117
    }
118 119 120 121 122 123 124

  ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (*ENTRY_BLOCK_PTR));
  ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
  EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (*EXIT_BLOCK_PTR));
  EXIT_BLOCK_PTR->index = EXIT_BLOCK;
  ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
  EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
125 126
}

127 128 129 130
/* Helper function for remove_edge and clear_edges.  Frees edge structure
   without actually unlinking it from the pred/succ lists.  */

static void
131
free_edge (edge e ATTRIBUTE_UNUSED)
132 133
{
  n_edges--;
134
  /* ggc_free (e);  */
135 136
}

137 138 139
/* Free the memory associated with the edge structures.  */

void
140
clear_edges (void)
141
{
142
  basic_block bb;
143
  edge e;
144

145
  FOR_EACH_BB (bb)
146
    {
147
      edge e = bb->succ;
148

149 150 151 152 153 154 155
      while (e)
	{
	  edge next = e->succ_next;

	  free_edge (e);
	  e = next;
	}
156

157 158
      bb->succ = NULL;
      bb->pred = NULL;
159 160
    }

161 162 163 164 165 166 167 168
  e = ENTRY_BLOCK_PTR->succ;
  while (e)
    {
      edge next = e->succ_next;

      free_edge (e);
      e = next;
    }
169

170 171
  EXIT_BLOCK_PTR->pred = NULL;
  ENTRY_BLOCK_PTR->succ = NULL;
172

173 174
  if (n_edges)
    abort ();
175 176
}

177
/* Allocate memory for basic_block.  */
178

179
basic_block
180
alloc_block (void)
181 182
{
  basic_block bb;
183
  bb = ggc_alloc_cleared (sizeof (*bb));
184
  return bb;
185 186
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/* Create memory pool for rbi_pool.  */

void
alloc_rbi_pool (void)
{
  rbi_pool = create_alloc_pool ("rbi pool", 
				sizeof (struct reorder_block_def),
				n_basic_blocks + 2);
}

/* Free rbi_pool.  */

void
free_rbi_pool (void)
{
  free_alloc_pool (rbi_pool);
}

/* Initialize rbi (the structure containing data used by basic block
   duplication and reordering) for the given basic block.  */

void
initialize_bb_rbi (basic_block bb)
{
  if (bb->rbi)
    abort ();
  bb->rbi = pool_alloc (rbi_pool);
  memset (bb->rbi, 0, sizeof (struct reorder_block_def));
}

217 218
/* Link block B to chain after AFTER.  */
void
219
link_block (basic_block b, basic_block after)
220 221 222 223 224 225
{
  b->next_bb = after->next_bb;
  b->prev_bb = after;
  after->next_bb = b;
  b->next_bb->prev_bb = b;
}
226

227 228
/* Unlink block B from chain.  */
void
229
unlink_block (basic_block b)
230 231 232
{
  b->next_bb->prev_bb = b->prev_bb;
  b->prev_bb->next_bb = b->next_bb;
233 234
  b->prev_bb = NULL;
  b->next_bb = NULL;
235
}
236

237 238
/* Sequentially order blocks and compact the arrays.  */
void
239
compact_blocks (void)
240 241 242
{
  int i;
  basic_block bb;
243

244 245 246 247 248 249 250 251 252 253 254
  i = 0;
  FOR_EACH_BB (bb)
    {
      BASIC_BLOCK (i) = bb;
      bb->index = i;
      i++;
    }

  if (i != n_basic_blocks)
    abort ();

255 256 257
  for (; i < last_basic_block; i++)
    BASIC_BLOCK (i) = NULL;

258 259 260 261
  last_basic_block = n_basic_blocks;
}

/* Remove block B from the basic block array.  */
262

263
void
264
expunge_block (basic_block b)
265
{
266
  unlink_block (b);
267 268
  BASIC_BLOCK (b->index) = NULL;
  n_basic_blocks--;
269
  /* ggc_free (b); */
270
}
271

272 273 274 275 276
/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
   created edge.  Use this only if you are sure that this edge can't
   possibly already exist.  */

edge
277
unchecked_make_edge (basic_block src, basic_block dst, int flags)
278 279
{
  edge e;
280
  e = ggc_alloc_cleared (sizeof (*e));
281 282 283 284 285 286 287 288 289 290 291 292 293 294
  n_edges++;

  e->succ_next = src->succ;
  e->pred_next = dst->pred;
  e->src = src;
  e->dest = dst;
  e->flags = flags;

  src->succ = e;
  dst->pred = e;

  return e;
}

295
/* Create an edge connecting SRC and DST with FLAGS optionally using
296
   edge cache CACHE.  Return the new edge, NULL if already exist.  */
297

298
edge
299
cached_make_edge (sbitmap *edge_cache, basic_block src, basic_block dst, int flags)
300 301 302 303
{
  int use_edge_cache;
  edge e;

304 305
  /* Don't bother with edge cache for ENTRY or EXIT, if there aren't that
     many edges to them, or we didn't allocate memory for it.  */
306
  use_edge_cache = (edge_cache
307
		    && src != ENTRY_BLOCK_PTR && dst != EXIT_BLOCK_PTR);
308 309 310 311 312

  /* Make sure we don't add duplicate edges.  */
  switch (use_edge_cache)
    {
    default:
313
      /* Quick test for non-existence of the edge.  */
314
      if (! TEST_BIT (edge_cache[src->index], dst->index))
315 316 317 318
	break;

      /* The edge exists; early exit if no work to do.  */
      if (flags == 0)
319
	return NULL;
320

321
      /* Fall through.  */
322 323 324 325 326
    case 0:
      for (e = src->succ; e; e = e->succ_next)
	if (e->dest == dst)
	  {
	    e->flags |= flags;
327
	    return NULL;
328 329 330
	  }
      break;
    }
331

332
  e = unchecked_make_edge (src, dst, flags);
333 334

  if (use_edge_cache)
335
    SET_BIT (edge_cache[src->index], dst->index);
336 337 338 339 340 341 342 343

  return e;
}

/* Create an edge connecting SRC and DEST with flags FLAGS.  Return newly
   created edge or NULL if already exist.  */

edge
344
make_edge (basic_block src, basic_block dest, int flags)
345 346 347 348
{
  return cached_make_edge (NULL, src, dest, flags);
}

349
/* Create an edge connecting SRC to DEST and set probability by knowing
350 351 352
   that it is the single edge leaving SRC.  */

edge
353
make_single_succ_edge (basic_block src, basic_block dest, int flags)
354 355 356 357 358 359
{
  edge e = make_edge (src, dest, flags);

  e->probability = REG_BR_PROB_BASE;
  e->count = src->count;
  return e;
360 361 362 363 364
}

/* This function will remove an edge from the flow graph.  */

void
365
remove_edge (edge e)
366 367 368 369 370
{
  edge last_pred = NULL;
  edge last_succ = NULL;
  edge tmp;
  basic_block src, dest;
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
  src = e->src;
  dest = e->dest;
  for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next)
    last_succ = tmp;

  if (!tmp)
    abort ();
  if (last_succ)
    last_succ->succ_next = e->succ_next;
  else
    src->succ = e->succ_next;

  for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next)
    last_pred = tmp;

  if (!tmp)
    abort ();
  if (last_pred)
    last_pred->pred_next = e->pred_next;
  else
    dest->pred = e->pred_next;

394
  free_edge (e);
395 396 397 398 399
}

/* Redirect an edge's successor from one block to another.  */

void
400
redirect_edge_succ (edge e, basic_block new_succ)
401 402 403 404 405 406 407 408 409 410 411 412 413 414
{
  edge *pe;

  /* Disconnect the edge from the old successor block.  */
  for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next)
    continue;
  *pe = (*pe)->pred_next;

  /* Reconnect the edge to the new successor block.  */
  e->pred_next = new_succ->pred;
  new_succ->pred = e;
  e->dest = new_succ;
}

415
/* Like previous but avoid possible duplicate edge.  */
416 417

edge
418
redirect_edge_succ_nodup (edge e, basic_block new_succ)
419 420
{
  edge s;
421

422 423 424 425
  /* Check whether the edge is already present.  */
  for (s = e->src->succ; s; s = s->succ_next)
    if (s->dest == new_succ && s != e)
      break;
426

427 428 429 430
  if (s)
    {
      s->flags |= e->flags;
      s->probability += e->probability;
431 432
      if (s->probability > REG_BR_PROB_BASE)
	s->probability = REG_BR_PROB_BASE;
433 434 435 436 437 438
      s->count += e->count;
      remove_edge (e);
      e = s;
    }
  else
    redirect_edge_succ (e, new_succ);
439

440 441 442 443 444 445
  return e;
}

/* Redirect an edge's predecessor from one block to another.  */

void
446
redirect_edge_pred (edge e, basic_block new_pred)
447 448 449 450 451 452
{
  edge *pe;

  /* Disconnect the edge from the old predecessor block.  */
  for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next)
    continue;
453

454 455 456 457 458 459 460
  *pe = (*pe)->succ_next;

  /* Reconnect the edge to the new predecessor block.  */
  e->succ_next = new_pred->succ;
  new_pred->succ = e;
  e->src = new_pred;
}
461 462

void
463
clear_bb_flags (void)
464
{
465 466 467 468
  basic_block bb;

  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    bb->flags = 0;
469
}
470

471
void
472
dump_flow_info (FILE *file)
473
{
474
  int i;
475
  basic_block bb;
476 477
  static const char * const reg_class_names[] = REG_CLASS_NAMES;

478
  if (reg_n_info)
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    {
      int max_regno = max_reg_num ();
      fprintf (file, "%d registers.\n", max_regno);
      for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
	if (REG_N_REFS (i))
	  {
	    enum reg_class class, altclass;

	    fprintf (file, "\nRegister %d used %d times across %d insns",
		     i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
	    if (REG_BASIC_BLOCK (i) >= 0)
	      fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
	    if (REG_N_SETS (i))
	      fprintf (file, "; set %d time%s", REG_N_SETS (i),
		       (REG_N_SETS (i) == 1) ? "" : "s");
	    if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
	      fprintf (file, "; user var");
	    if (REG_N_DEATHS (i) != 1)
	      fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
	    if (REG_N_CALLS_CROSSED (i) == 1)
	      fprintf (file, "; crosses 1 call");
	    else if (REG_N_CALLS_CROSSED (i))
	      fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
	    if (regno_reg_rtx[i] != NULL
		&& PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
	      fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));

	    class = reg_preferred_class (i);
	    altclass = reg_alternate_class (i);
	    if (class != GENERAL_REGS || altclass != ALL_REGS)
	      {
		if (altclass == ALL_REGS || class == ALL_REGS)
		  fprintf (file, "; pref %s", reg_class_names[(int) class]);
		else if (altclass == NO_REGS)
		  fprintf (file, "; %s or none", reg_class_names[(int) class]);
		else
		  fprintf (file, "; pref %s, else %s",
			   reg_class_names[(int) class],
			   reg_class_names[(int) altclass]);
	      }

	    if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
	      fprintf (file, "; pointer");
	    fprintf (file, ".\n");
	  }
    }
525

526
  fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
527
  FOR_EACH_BB (bb)
528
    {
529
      edge e;
530 531
      int sum;
      gcov_type lsum;
532

533
      fprintf (file, "\nBasic block %d ", bb->index);
534 535
      fprintf (file, "prev %d, next %d, ",
	       bb->prev_bb->index, bb->next_bb->index);
536 537
      fprintf (file, "loop_depth %d, count ", bb->loop_depth);
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
538 539 540 541 542
      fprintf (file, ", freq %i", bb->frequency);
      if (maybe_hot_bb_p (bb))
	fprintf (file, ", maybe hot");
      if (probably_never_executed_bb_p (bb))
	fprintf (file, ", probably never executed");
543
      fprintf (file, ".\n");
544

545 546 547
      fprintf (file, "Predecessors: ");
      for (e = bb->pred; e; e = e->pred_next)
	dump_edge_info (file, e, 0);
548

549 550 551
      fprintf (file, "\nSuccessors: ");
      for (e = bb->succ; e; e = e->succ_next)
	dump_edge_info (file, e, 1);
552

553 554
      fprintf (file, "\nRegisters live at start:");
      dump_regset (bb->global_live_at_start, file);
555

556 557
      fprintf (file, "\nRegisters live at end:");
      dump_regset (bb->global_live_at_end, file);
558

559
      putc ('\n', file);
560 561 562

      /* Check the consistency of profile information.  We can't do that
	 in verify_flow_info, as the counts may get invalid for incompletely
563
	 solved graphs, later eliminating of conditionals or roundoff errors.
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	 It is still practical to have them reported for debugging of simple
	 testcases.  */
      sum = 0;
      for (e = bb->succ; e; e = e->succ_next)
	sum += e->probability;
      if (bb->succ && abs (sum - REG_BR_PROB_BASE) > 100)
	fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
		 sum * 100.0 / REG_BR_PROB_BASE);
      sum = 0;
      for (e = bb->pred; e; e = e->pred_next)
	sum += EDGE_FREQUENCY (e);
      if (abs (sum - bb->frequency) > 100)
	fprintf (file,
		 "Invalid sum of incomming frequencies %i, should be %i\n",
		 sum, bb->frequency);
      lsum = 0;
      for (e = bb->pred; e; e = e->pred_next)
	lsum += e->count;
      if (lsum - bb->count > 100 || lsum - bb->count < -100)
	fprintf (file, "Invalid sum of incomming counts %i, should be %i\n",
		 (int)lsum, (int)bb->count);
      lsum = 0;
      for (e = bb->succ; e; e = e->succ_next)
	lsum += e->count;
      if (bb->succ && (lsum - bb->count > 100 || lsum - bb->count < -100))
	fprintf (file, "Invalid sum of incomming counts %i, should be %i\n",
		 (int)lsum, (int)bb->count);
591 592
    }

593
  putc ('\n', file);
594 595
}

596
void
597
debug_flow_info (void)
598 599 600
{
  dump_flow_info (stderr);
}
601 602

void
603
dump_edge_info (FILE *file, edge e, int do_succ)
604
{
605 606 607 608 609 610 611
  basic_block side = (do_succ ? e->dest : e->src);

  if (side == ENTRY_BLOCK_PTR)
    fputs (" ENTRY", file);
  else if (side == EXIT_BLOCK_PTR)
    fputs (" EXIT", file);
  else
612
    fprintf (file, " %d", side->index);
613 614 615

  if (e->probability)
    fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
616

617
  if (e->count)
618
    {
619
      fprintf (file, " count:");
620
      fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
621 622
    }

623
  if (e->flags)
624
    {
625 626
      static const char * const bitnames[] = {
	"fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
627 628
	"can_fallthru", "irreducible", "sibcall", "loop_exit",
	"true", "false", "exec"
629
      };
630 631
      int comma = 0;
      int i, flags = e->flags;
632

633
      fputs (" (", file);
634 635 636 637 638 639 640 641 642 643 644 645 646
      for (i = 0; flags; i++)
	if (flags & (1 << i))
	  {
	    flags &= ~(1 << i);

	    if (comma)
	      fputc (',', file);
	    if (i < (int) ARRAY_SIZE (bitnames))
	      fputs (bitnames[i], file);
	    else
	      fprintf (file, "%d", i);
	    comma = 1;
	  }
647

648 649 650 651
      fputc (')', file);
    }
}

652
/* Simple routines to easily allocate AUX fields of basic blocks.  */
653

654 655 656 657
static struct obstack block_aux_obstack;
static void *first_block_aux_obj = 0;
static struct obstack edge_aux_obstack;
static void *first_edge_aux_obj = 0;
658

659
/* Allocate a memory block of SIZE as BB->aux.  The obstack must
660
   be first initialized by alloc_aux_for_blocks.  */
661

662
inline void
663
alloc_aux_for_block (basic_block bb, int size)
664
{
665 666 667 668 669
  /* Verify that aux field is clear.  */
  if (bb->aux || !first_block_aux_obj)
    abort ();
  bb->aux = obstack_alloc (&block_aux_obstack, size);
  memset (bb->aux, 0, size);
670 671
}

672 673
/* Initialize the block_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_block for each basic block.  */
674 675

void
676
alloc_aux_for_blocks (int size)
677
{
678
  static int initialized;
679

680
  if (!initialized)
681
    {
682 683
      gcc_obstack_init (&block_aux_obstack);
      initialized = 1;
684
    }
685

686 687 688
  /* Check whether AUX data are still allocated.  */
  else if (first_block_aux_obj)
    abort ();
689
  first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
690
  if (size)
691
    {
692
      basic_block bb;
693

694 695
      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
	alloc_aux_for_block (bb, size);
696 697
    }
}
698

699
/* Clear AUX pointers of all blocks.  */
700 701

void
702
clear_aux_for_blocks (void)
703
{
704
  basic_block bb;
705

706 707
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
    bb->aux = NULL;
708 709 710 711 712 713
}

/* Free data allocated in block_aux_obstack and clear AUX pointers
   of all blocks.  */

void
714
free_aux_for_blocks (void)
715 716 717 718
{
  if (!first_block_aux_obj)
    abort ();
  obstack_free (&block_aux_obstack, first_block_aux_obj);
719
  first_block_aux_obj = NULL;
720 721

  clear_aux_for_blocks ();
722
}
723

724
/* Allocate a memory edge of SIZE as BB->aux.  The obstack must
725
   be first initialized by alloc_aux_for_edges.  */
726

727
inline void
728
alloc_aux_for_edge (edge e, int size)
729 730 731 732 733 734 735
{
  /* Verify that aux field is clear.  */
  if (e->aux || !first_edge_aux_obj)
    abort ();
  e->aux = obstack_alloc (&edge_aux_obstack, size);
  memset (e->aux, 0, size);
}
736

737 738
/* Initialize the edge_aux_obstack and if SIZE is nonzero, call
   alloc_aux_for_edge for each basic edge.  */
739

740
void
741
alloc_aux_for_edges (int size)
742 743
{
  static int initialized;
744

745 746 747 748
  if (!initialized)
    {
      gcc_obstack_init (&edge_aux_obstack);
      initialized = 1;
749
    }
750

751 752 753
  /* Check whether AUX data are still allocated.  */
  else if (first_edge_aux_obj)
    abort ();
754

755
  first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
756
  if (size)
757
    {
758 759 760
      basic_block bb;

      FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
761
	{
762 763 764 765
	  edge e;

	  for (e = bb->succ; e; e = e->succ_next)
	    alloc_aux_for_edge (e, size);
766 767 768 769
	}
    }
}

770
/* Clear AUX pointers of all edges.  */
771 772

void
773
clear_aux_for_edges (void)
774
{
775 776
  basic_block bb;
  edge e;
777

778
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
779
    {
780 781
      for (e = bb->succ; e; e = e->succ_next)
	e->aux = NULL;
782
    }
783 784 785 786 787 788
}

/* Free data allocated in edge_aux_obstack and clear AUX pointers
   of all edges.  */

void
789
free_aux_for_edges (void)
790 791 792 793
{
  if (!first_edge_aux_obj)
    abort ();
  obstack_free (&edge_aux_obstack, first_edge_aux_obj);
794
  first_edge_aux_obj = NULL;
795 796

  clear_aux_for_edges ();
797
}
798

799
void
800
debug_bb (basic_block bb)
801
{
802
  dump_bb (bb, stderr, 0);
803 804 805
}

basic_block
806
debug_bb_n (int n)
807 808
{
  basic_block bb = BASIC_BLOCK (n);
809
  dump_bb (bb, stderr, 0);
810
  return bb;
811
}
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

/* Dumps cfg related information about basic block BB to FILE.  */

static void
dump_cfg_bb_info (FILE *file, basic_block bb)
{
  unsigned i;
  bool first = true;
  static const char * const bb_bitnames[] =
    {
      "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
    };
  const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
  edge e;

  fprintf (file, "Basic block %d", bb->index);
  for (i = 0; i < n_bitnames; i++)
    if (bb->flags & (1 << i))
      {
	if (first)
	  fprintf (file, " (");
	else
	  fprintf (file, ", ");
	first = false;
	fprintf (file, bb_bitnames[i]);
      }
  if (!first)
    fprintf (file, ")");
  fprintf (file, "\n");

  fprintf (file, "Predecessors: ");
  for (e = bb->pred; e; e = e->pred_next)
    dump_edge_info (file, e, 0);

  fprintf (file, "\nSuccessors: ");
  for (e = bb->succ; e; e = e->succ_next)
    dump_edge_info (file, e, 1);
  fprintf (file, "\n\n");
}

/* Dumps a brief description of cfg to FILE.  */

void
brief_dump_cfg (FILE *file)
{
  basic_block bb;

  FOR_EACH_BB (bb)
    {
      dump_cfg_bb_info (file, bb);
    }
}